DIFFERENCE SETS WITHOUT SQUARES

I. Z. RUZSA (Budapest)

Abstract

A sequence of natural numbers $A=a_{1}, a_{2}, \ldots$ is constructed such that no $a_{i}-a_{j}$ is a square and there are $>x^{0,73} a_{i}$'s below x.

Notation

Throughout the paper, if A, B, \ldots is a sequence of nonnegative integers, a_{i}, b_{i}, \ldots is its i 'th element and $A(x), B(x), \ldots$ the number of its elements $\leq x$. As usual,

$$
A \pm B=\{a \pm b: a \in A, b \in B\}
$$

1. Introduction

It was conjectured by Lovász and proved by Sárközy [2] that if S is any sequence of natural numbers of positive asymptotic density, then $S-S$ necessarily contains a square. Let $D(x)$ denote the maximal number of integers that can be selected from $[1, x]$ so that no difference between them is a square. Sárközy even proved

$$
D(x)=O\left(x(\log x)^{-1 / 3+\varepsilon}\right)
$$

Obviously $D(x) \geq \sqrt{x} / 2$. In general, given any sequence Q, the greedy algorithm provides an S such that

$$
(S-S) \cap Q=\emptyset, \quad S(x) \geq \frac{x}{2 Q(x)}
$$

Erdős stated the conjecture

$$
D(x)=O\left(x^{1 / 2} \log ^{k} x\right)
$$

$A M S(M O S)$ subject classifications (1970). Primary 05B10, 10L05.
Key words and phrases. Difference sets, intersective set.
with some constant k. Sárközy [3] disproved this but still conjectured

$$
D(x)=O\left(x^{1 / 2+\varepsilon}\right)
$$

Our aim is to prove
TheOrem 1. $D(x)>c_{1} x^{\gamma}$, where $c_{1}>0$ and

$$
\gamma=\frac{1}{2}\left(1+\frac{\log 7}{\log 65}\right)=0,733077 \ldots
$$

More generally, let $D_{k}(x)$ denote the maximal number of integers that can be selected from $[1, x]$ so that no difference between them is a k 'th power. For a natural number m let $r_{k}(m)$ denote the maximal number of residues $(\bmod m)$ that can be selected so that no difference between them is a k 'th power residue.

Theorem 2. For every k and squarefree m we have

$$
D_{k}(x) \geq m^{-1} x^{\gamma(k, m)}
$$

where

$$
\gamma(k, m)=1-\frac{1}{k}+\frac{\log r_{k}(m)}{k \log m}
$$

Write

$$
d_{k}=\lim \sup \frac{\log D_{k}(x)}{\log x}
$$

Corollary. If $p(k)$ is the least prime $\equiv 1(\bmod j)$, then we have

$$
d_{k} \geq 1-\frac{1}{k}+\frac{\log k}{k \log p(2 k)}
$$

Especially

$$
\begin{aligned}
& d_{3} \geq 1-\frac{1}{3}+\frac{\log 3}{3 \log 7}=0,854858 \ldots \\
& d_{5} \geq 1-\frac{1}{5}+\frac{\log 5}{5 \log 11}=0,934237 \ldots
\end{aligned}
$$

Linnik's theorem $p(k)<k^{C}$ yields

$$
d_{k}>1-\frac{1-\delta}{k}
$$

with some fixed $\delta>0$.

2. Proof of Theorem 2

Let $R \subset[1, m]$ be a set of integers such that no difference is a k 'th power residue modulo m and $|R|=r_{k}(m)$. Let A consist of the natural numbers of the form

$$
a=\Sigma r_{j} m^{j}
$$

where $r_{j} \in R$ if $k \mid j$ and $1 \leq r \leq m$ is arbitrary otherwise. Then obviously

$$
A\left(m^{n}\right)=R^{1+[n-1 / k]} m^{n-1-[n-1 / k]}
$$

whence

$$
A(x) \geq m^{-1} x^{\gamma(k, m)} \quad(x>m)
$$

follows immediately. Now suppose $a-a^{\prime}=t^{k}, a, a^{\prime} \in A$.

$$
a=\Sigma r_{j} m^{j}, a^{\prime}=\Sigma r_{j}^{\prime} m^{j}
$$

Let s be the first suffix for which $r_{s} \neq r_{s}^{\prime}$. We have

$$
t^{k}=a-a^{\prime}=\left(r_{s}-r_{s}^{\prime}\right) m^{s}+z m^{s+1}
$$

z integer. If $k \nmid s$, then $m^{s} \mid t^{k}$ but $m^{s+1} \nmid t^{k}$ is impossible (here we need that m be squarefree). If $k \mid s, s=k u$, then

$$
\left(t / m^{u}\right)^{k} \equiv r_{s}-r_{s}^{\prime}(\bmod m), \quad r_{s}, r_{s}^{\prime} \in R,
$$

in contradiction with the definition of R. This completes the proof.

3. Proof of Theorem 1 and the Corollary

To deduce Theorem 1 and the Corollary from Theorem 2 we have to show

$$
\begin{equation*}
r_{2}(65) \geq 7 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{k}(p) \geq k \text { if } p \equiv 1(\bmod 2 k) \text { is a prime. } \tag{2}
\end{equation*}
$$

To get (1), consider the following 7 residues:

$$
(0,0),(0,2),(1,8),(2,1),(2,3),(3,9),(4,7)
$$

where in each pair the first component is the residue modulo 5 and the second modulo 13.

Now we prove (2). Let Q be the set of k 'adic residues modulo p : we have

$$
|Q|=q=1+(p-1) / k
$$

The greedy algorithm yields

$$
r_{k}(p) \geq p / q
$$

which is $>k-1$ for large p, but for small primes we have to be more careful.
By induction we shall construct b_{1}, \ldots, b_{k} so that $b_{i}-b_{j} \notin Q$ for $i \neq j$ and

$$
\begin{equation*}
\left|B_{j}+Q\right| \leq 1+j(q-1), \quad j=1, \ldots k \tag{3}
\end{equation*}
$$

where $B_{j}=\left\{b_{1}, \ldots, b_{j}\right\}$. Given b_{1}, \ldots, b_{j}, let b_{j+1} be any element of

$$
\left(B_{j}+Q+Q\right) \backslash\left(B_{j}+Q\right)
$$

Since $b_{j+1} \notin B_{j}+Q, b_{j+1}-b_{i} \notin Q$ for $i<j$ and since $b_{j+1} \in B_{j}+Q+Q$, the sets $B_{j}+Q$ and $b_{j+1}+Q$ are not disjoint. (Observe that $Q=-Q$, since $p \equiv 1(\bmod 2 k)$ guarantees that -1 is a $k '$ th power residue.) Hence

$$
\begin{gathered}
\left|B_{j+1}+Q\right|=\left|\left(B_{j}+Q\right) \cup\left(b_{j+1}+Q\right)\right| \leq \\
\leq\left|B_{j}+Q\right|+\left|b_{j+1}+Q\right|-\mathbf{1} \leq \mathbf{1}+j(q-\mathbf{1})+q-\mathrm{1},
\end{gathered}
$$

as wanted.
This procedure breaks off if $B_{j}+Q+Q=B_{j}+Q$. This can happen only if $B_{j}+Q$ contains all the residues, thus if b_{j} is the last, then $1+j(q-1) \geq$ $\geq p$, i.e., $j \geq k$.
Q.E.D.

4. Final remarks

I first considered $k=2, m=5$, where $r_{2}(5)=2$, and thus I found $d_{2}>0.7153 \ldots$ A. Balog improved this by showing $r_{2}(41)=5, d_{2}>0.71669 \ldots$ He stated the conjecture that $r_{2}(p)>p^{1 / 2-s}$ for infinitely many primes p. I highly disbelieve this. R. Freud remarked that composite numbers may also be worth considering, and after this I found $r_{2}(65)=7$. On the other hand, I proved $r_{2}(m)<\sqrt{m}$ if m consists exclusively of primes $\equiv 1(\bmod 4)$. I think $4 k-1$ primes can only spoil the situation, thus I conjecture that $r_{2}(m)<\sqrt{m}$ always. This would mean that by this method we cannot exceed $3 / 4$ in the original problem.

Problem. Does $\lim \frac{\log D(x)}{\log x}$ exists?
I am quite sure it does.
Problem. Is there a fixed sequence A without square differences such that $A(x)>c D(x)$ for all x with a fixed $c>0$? I think the answer would be negative. like in the case of Sidon's problem (cf. Halberstam-Roth [1], Chapter 2, Section 3.). In general, the finite and infinite case may be completely different; I plan to return to this in another paper.

REFERENCES

[1] H. Halberstam and K. F. Roth, Sequences, Clarendon, Oxford, 1966. MR 35 \# 1565
[2] A. Sárközy, On difference sets of sequences of integers, I, Acta Math. Acad. Sci. Hungar. 31 (1978), 125-149. MR 57 \# 5942
[3] A. SÁRközy, On difference sets of sequences of integers, II. Ann. Univ. Sci. Budapest. Eötvös Seटt. Math. 21 (1978), 45-53. MR 80j: 10062a
(Received April 2, 1982)
MTA MATEMATIKAI KUTATÓ INTEZZET
H-1364 BUDAPEST
P.O. BOX 127 .

REAITANODA U. 13-15.
HUNGARY

