DIFFERENCE SETS WITHOUT SQUARES

I. Z. RUZSA (Budapest)

Abstract

A sequence of natural numbers $A = a_1, a_2, \ldots$ is constructed such that no $a_l - a_j$ is a square and there are $> x^{0,73} a_i$'s below x.

Notation

Throughout the paper, if A, B, \ldots is a sequence of nonnegative integers, a_i, b_i, \ldots is its *i*'th element and $A(x), B(x), \ldots$ the number of its elements < x. As usual,

$$A \pm B = \{a \pm b \colon a \in A, b \in B\}.$$

1. Introduction

It was conjectured by Lovász and proved by Sárközy [2] that if S is any sequence of natural numbers of positive asymptotic density, then S - Snecessarily contains a square. Let D(x) denote the maximal number of integers that can be selected from [1, x] so that no difference between them is a square. Sárközy even proved

$$D(x) = O(x(\log x)^{-1/3+\epsilon}).$$

Obviously $D(x) \ge \sqrt{x/2}$. In general, given any sequence Q, the greedy algorithm provides an S such that

$$(S-S)\cap Q=\emptyset, S(x)\geq \frac{x}{2Q(x)}.$$

Erdős stated the conjecture

$$D(x) = O(x^{1/2} \log^k x)$$

AMS (MOS) subject classifications (1970). Primary 05B10, 10L05. Key words and phrases. Difference sets, intersective set. with some constant k. Sárközy [3] disproved this but still conjectured

 $D(x) = O(x^{1/2+\epsilon}).$

Our aim is to prove

THEOREM 1. $D(x) > c_1 x^{\gamma}$, where $c_1 > 0$ and

$$\gamma = \frac{1}{2} \left(1 + \frac{\log 7}{\log 65} \right) = 0.733077 \dots$$

More generally, let $D_k(x)$ denote the maximal number of integers that can be selected from [1, x] so that no difference between them is a k'th power. For a natural number m let $r_k(m)$ denote the maximal number of residues (mod m) that can be selected so that no difference between them is a k'th power residue.

THEOREM 2. For every k and squarefree m we have

$$D_k(x) \geq m^{-1} x^{\gamma(k,m)}.$$

where

$$\gamma(k,m) = 1 - \frac{1}{k} + \frac{\log r_k(m)}{k \log m}$$

Write

$$d_k = \limsup \frac{\log D_k(x)}{\log x}$$

COBOLLARY. If p(k) is the least prime $\equiv 1 \pmod{j}$, then we have

$$d_k \geq 1 - rac{1}{k} + rac{\log k}{k\log p(2k)}$$
 .

Especially

$$d_3 \ge 1 - \frac{1}{3} + \frac{\log 3}{3 \log 7} = 0,854858...,$$
$$d_5 \ge 1 - \frac{1}{5} + \frac{\log 5}{5 \log 11} = 0,934237....$$

Linnik's theorem $p(k) < k^{C}$ yields

$$d_k > 1 - rac{1-\delta}{k}$$

with some fixed $\delta > 0$.

2. Proof of Theorem 2

Let $R \subset [1, m]$ be a set of integers such that no difference is a k'th power residue modulo m and $|R| = r_k(m)$. Let A consist of the natural numbers of the form

$$a=\Sigma r_{i}m^{j}.$$

where $r_j \in R$ if k | j and $1 \leq r \leq m$ is arbitrary otherwise. Then obviously

$$A(m^{n}) = R^{1+[n-1/k]}m^{n-1-[n-1/k]}$$

whence

$$A(x) \geq m^{-1} x^{\gamma(k,m)} \quad (x > m)$$

follows immediately. Now suppose $a - a' = t^k$, $a, a' \in A$.

$$a = \Sigma r_i m^j, a' = \Sigma r'_i m^j.$$

Let s be the first suffix for which $r_s \neq r'_s$. We have

$$t^{k} = a - a' = (r_{s} - r'_{s})m^{s} + zm^{s+1},$$

z integer. If $k \nmid s$, then $m^{s}|t^{k}$ but $m^{s+1} \nmid t^{k}$ is impossible (here we need that m be squarefree). If k|s, s = ku, then

$$(t/m^u)^k \equiv r_s - r'_s \pmod{m}, \quad r_s, r'_s \in R,$$

in contradiction with the definition of R. This completes the proof.

3. Proof of Theorem 1 and the Corollary

To deduce Theorem 1 and the Corollary from Theorem 2 we have to show

(1) $r_2(65) \ge 7$

 \mathbf{and}

(2)
$$r_k(p) \ge k$$
 if $p \equiv 1 \pmod{2k}$ is a prime.

To get (1), consider the following 7 residues:

$$(0, 0), (0, 2), (1, 8), (2, 1), (2, 3), (3, 9), (4, 7),$$

where in each pair the first component is the residue modulo 5 and the second modulo 13.

Now we prove (2). Let Q be the set of k'adic residues modulo p: we have

$$|Q| = q = 1 + (p - 1)/k.$$

The greedy algorithm yields

 $r_k(p) \ge p/q.$

which is > k - 1 for large p, but for small primes we have to be more careful.

By induction we shall construct b_1, \ldots, b_k so that $b_i - b_j \notin Q$ for $i \neq j$ and

(3)
$$|B_j + Q| \le 1 + j(q-1), \quad j = 1, \ldots k$$

where $B_j = \{b_1, \ldots, b_j\}$. Given b_1, \ldots, b_j , let b_{j+1} be any element of

 $(B_j + Q + Q) \backslash (B_j + Q).$

Since $b_{j+1} \notin B_j + Q$, $b_{j+1} - b_i \notin Q$ for i < j and since $b_{j+1} \notin B_j + Q + Q$, the sets $B_j + Q$ and $b_{j+1} + Q$ are not disjoint. (Observe that Q = -Q, since $p \equiv 1 \pmod{2k}$ guarantees that -1 is a k'th power residue.) Hence

$$\begin{split} |B_{j+1}+Q| &= |(B_j+Q) \cup (b_{j+1}+Q)| \leq \\ &\leq |B_j+Q|+|b_{j+1}+Q|-1 \leq 1+j(q-1)+q-1, \end{split}$$

as wanted.

This procedure breaks off if $B_j + Q + Q = B_j + Q$. This can happen only if $B_j + Q$ contains all the residues, thus if b_j is the last, then $1 + j(q-1) \ge p$, i.e., $j \ge k$. Q.E.D.

4. Final remarks

I first considered k = 2, m = 5, where $r_2(5) = 2$, and thus I found $d_2 > 0.7153...$ A. Balog improved this by showing $r_2(41) = 5$, $d_2 > 0.71669...$ He stated the conjecture that $r_2(p) > p^{1/2-\epsilon}$ for infinitely many primes p. I highly disbelieve this. R. Freud remarked that composite numbers may also be worth considering, and after this I found $r_2(65) = 7$. On the other hand, I proved $r_2(m) < \sqrt{m}$ if m consists exclusively of primes $\equiv 1 \pmod{4}$. I think 4k - 1 primes can only spoil the situation, thus I conjecture that $r_2(m) < \sqrt{m}$ always. This would mean that by this method we cannot exceed 3/4 in the original problem.

PROBLEM. Does $\lim \frac{\log D(x)}{\log x}$ exists?

I am quite sure it does.

PROBLEM. Is there a fixed sequence A without square differences such that A(x) > cD(x) for all x with a fixed c > 0? I think the answer would be negative. like in the case of Sidon's problem (cf. Halberstam—Roth [1], Chapter 2, Section 3.). In general, the finite and infinite case may be completely different; I plan to return to this in another paper.

208

REFERENCES

- [1] H. HALBERSTAM and K. F. ROTH, Sequences, Clarendon, Oxford, 1966. MR 35 # 1565
- [2] A. SÁRKÖZY, On difference sets of sequences of integers, I, Acta Math. Acad. Sci. Hungar. 31 (1978), 125-149. MR 57 # 5942
 [3] A. SÁRKÖZY, On difference sets of sequences of integers, II. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 21 (1978), 45-53. MR 80j: 10062a

(Received April 2, 1982)

MTA MATEMATIKAI KUTATÓ INTÉZET H-1364 BUDAPEST P.O. BOX 127. REÁITANODA U. 13-15. HUNGARY