The Canonical Van Der Waerden's Theorem: An Exposition By William Gasarch

1 Introduction

We first recall van der Waerden's theorem.
Notation 1.1 If $m \in \mathrm{~N}$ then $[m]$ is $\{1, \ldots, m\}$.

Definition 1.2 If $k \in \mathrm{~N}$ then a k-AP is an arithmetic progression of length k. Henceforth we abbreviate "arithmetic progression' by AP and "arithmetic progression of length k " by k-AP.

The following statement is the original van der Waerden's Theorem. It was first proven in [4] but see also [2].

Theorem 1.3 For every $k \geq 1$ and $c \geq 1$ there exists $W=W(k, c)$ such that for every c-coloring COL : $[W] \rightarrow[c]$ there exists a monochromatic k-AP. In other words there exists $a, d, d \neq 0$, such that

- $a, a+d, a+2 d, \ldots, a+(k-1) d \in[W]$, and
- $C O L(a)=C O L(a+d)=\cdots=C O L(a+(k-1) d)$.

Note 1.4 Formally colors are numbers; however, we will often use R, B, G, etc for colors for clarity.

What if we use an infinite number of colors instead of a finite number of colors. Then the analog of Theorem 1.3 is false as the coloring $C O L(x)=x$ shows. However in this case we may get something else.

Definition 1.5 Let $k \in \mathrm{~N}$. Let $C O L$ be a coloring of N (which may use a finite or infinite number of colors). A rainbox $k-A P$ is an arithmetic sequence $a, a+d, a+2 d, \ldots, a+(k-1) d$ such that all of these are colored differently.

The following is the Canonical van der Waerden's theorem. It was first proven by Erdos and Graham [1] using Szemerédi 's theorem. Rödl and Prömel [3] later came up with an elementary proof. We present their proof.

Theorem 1.6 Let $k \in \mathrm{~N}$. Let $C O L: \mathrm{N} \rightarrow \mathrm{N}$ be a coloring of the naturals. One of the following two must occur.

- There exists a monochromatic $k-A P$.
- There exists a rainbox $k-A P$.

2 Proof of theorem

We will need the following lemma to prove the canonical van der Waerden's Theorem. It is the two-diminsional case of the Gallai-Witt theorem.

Lemma 2.1 Let $c, M \in \mathrm{~N}$. Let $C O L^{*}: \mathrm{N} \times \mathrm{N} \rightarrow[c]$. There exists a, d, D such that all of the following are the same color.

$$
\{(a+i D, d+j D) \mid-M \leq i, j \leq M\} .
$$

Theorem 2.2 Let $k \in \mathrm{~N}$. Let $C O L: \mathrm{N} \rightarrow \mathrm{N}$ be a coloring of the naturals. One of the following two must occur.

- There exists a monochromatic $k-A P$.
- There exists a rainbox $k-A P$.

Proof:

Let $C O L^{*}$ be the following finite coloring of $\mathrm{N} \times \mathrm{N}$. Given (a, d) look at the following sequence

$$
(C O L(a), C O L(a+d), C O L(a+2 d), \ldots, C O L(a+k d)) .
$$

(Yes- we need to look at $k+1$ long sequences.)
This coloring partitions the numbers $\{0, \ldots, k\}$ in terms of which ones are colored the same. For example, if $k=3$ and

$$
(C O L(a), C O L(a+d), C O L(a+2 d), C O L(a+3 d))=(R, B, R, G)
$$

then the partition is $\{\{0,2\},\{1\},\{3\}\}$. We map (a, d) to the partition induced on $\{0, \ldots, k\}$ by the coloring. There are only a finite number of such partitions (actually the number of them is the k th Bell Numbers).

Example 2.3

1. Let $k=10$ and assume

$$
(C O L(a), C O L(a+d), \ldots, C O L(a+(9 d))=(R, Y, B, I, V, Y, R, B, B, R) .
$$

Then (a, d) maps to $\{\{0,6,9\},\{1,5\},\{2,7,8\},\{3\},\{4\}$,$\} .$
2. Let $k=6$ and assume

$$
(C O L(a), C O L(a+d) \ldots, C O L(a+(5 d))=(R, Y, B, I, V, Y) .
$$

Then (a, d) maps to $\{\{0\},\{1\},\{2\},\{3\},\{4\},\{5\}\}$.

Let M be a constant to be picked later. By Lemma 2.1 There exists a, d, D such that all of the following are the same $C O L^{*}$

$$
\{(a+i D, d+j D) \mid-M \leq i, j \leq M\} .
$$

There are two cases.
Case 1: $\operatorname{COL}^{*}(a, d)$ is the partition where the last k elements all go into a class by themselves. (we do not care what happens to the first element). This means that there is a rainbow k-AP and we are done.
Case 2: There exists $x, y \neq 0$ such that $\operatorname{COL}^{*}(a, d)$ is the partition that puts $a+x d$ and $a+y d$ in the same class. (We needed to use k instead of $k-1$ so that we would obtain, in this case, $x, y \neq 0$.) More simply, $C O L(a+x d)=C O L(a+y d)$. Since for all $-M \leq i, j \leq M$,

$$
C O L^{*}(a, d)=C O L^{*}(a+i D, d+j D)
$$

we have that, for all $-M \leq i, j \leq M$,

$$
C O L(a+i D+x(d+j D))=C O L(a+i D+y(d+j D))
$$

Assume that $C O L(a+x d)=C O L(a+y d)=R$. Note that we do not know what the color of $C O L(a+i D+x(d+j D))$ or $C O L^{*}(a+i D+y(d+j D))$ is, just that they are the same.

We want to find the (i, j) with $-M \leq i, j \leq M$ such that $C O L^{*}(a+i D, d+j D)$ affects $C O L(a+x d)$.

Note that
if

$$
a+x d=a+i D+x(d+j D)
$$

then

$$
\begin{gathered}
x d=i D+x d+x j D \\
0=i D+x j D \\
0=i+x j \\
i=-x j .
\end{gathered}
$$

Hence we have that

$$
a+x d=(a-x j)+x(d+j D) .
$$

So what does this tell us? In the equation

$$
C O L(a+i D+x(d+j D))=C O L(a+i D+y(d+j D)) .
$$

Let $i=-x j$ and you get

$$
\begin{gathered}
C O L(a-x j D+x(d+j D))=C O L(a-x j D+y(d+j D)) . \\
R=C O L(a+x d)=C O L(a+y d+j(y D-x D)) .
\end{gathered}
$$

This holds for $-M \leq j \leq M$. Looking at $j=0,1, \ldots, k-1$, and letting $A=a+y d$ and $D^{\prime}=y D-x D$, we get

$$
C O L(A)=C O L\left(A+D^{\prime}\right)=C O L\left(A+2 D^{\prime}\right)=\cdots=C O L\left(A+(k-1) D^{\prime}\right)=R .
$$

This yields an monochromatic k-AP.
What value do we need for M ? We want $j=0,1, \ldots, k-1$. We want $i=-x j$. We know that $1 \leq x \leq k$. Hence it suffices to take $M=k^{2}$.

References

[1] P. Erödos and R. Graham. Old and New Problems and results in Combinatorial Number Theory. Academic Press, 1980. book 28 in a series called L Enseignement Math. This book seems to be out of print.
[2] R. Graham, B. Rothchild, and J. Spencer. Ramsey Theory. Wiley, 1990.
[3] H. J. Prömel and V. Prömel. An elementary proof of the canonizing version of GallaiWitt's theorem. JCTA, 42:144-149, 1986. http://www.cs.umd.edu/~gasarch/vdw/ vdw.html.
[4] B. van der Waerden. Beweis einer Baudetschen Vermutung. Nieuw Arch. Wisk., 15:212216, 1927.

