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1 Introduction

We first recall van der Waerden’s theorem.

Notation 1.1 If m ∈ N then [m] is {1, . . . ,m}.

Definition 1.2 If k ∈ N then a k-AP is an arithmetic progression of length k. Henceforth
we abbreviate “arithmetic progression’ by AP and “arithmetic progression of length k” by
k-AP.

The following statement is the original van der Waerden’s Theorem. It was first proven
in [4] but see also [2].

Theorem 1.3 For every k ≥ 1 and c ≥ 1 there exists W = W (k, c) such that for every
c-coloring COL : [W ] → [c] there exists a monochromatic k-AP. In other words there exists
a, d, d 6= 0, such that

• a, a + d, a + 2d, . . . , a + (k − 1)d ∈ [W ], and

• COL(a) = COL(a + d) = · · · = COL(a + (k − 1)d).

Note 1.4 Formally colors are numbers; however, we will often use R, B, G, etc for colors
for clarity.

What if we use an infinite number of colors instead of a finite number of colors. Then
the analog of Theorem 1.3 is false as the coloring COL(x) = x shows. However in this case
we may get something else.

Definition 1.5 Let k ∈ N. Let COL be a coloring of N (which may use a finite or infinite
number of colors). A rainbox k-AP is an arithmetic sequence a, a+d, a+2d, . . . , a+(k−1)d
such that all of these are colored differently.

The following is the Canonical van der Waerden’s theorem. It was first proven by Erdos
and Graham [1] using Szemerédi ’s theorem. Rödl and Prömel [3] later came up with an
elementary proof. We present their proof.

Theorem 1.6 Let k ∈ N. Let COL : N → N be a coloring of the naturals. One of the
following two must occur.

• There exists a monochromatic k-AP.

• There exists a rainbox k-AP.
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2 Proof of theorem

We will need the following lemma to prove the canonical van der Waerden’s Theorem. It is
the two-diminsional case of the Gallai-Witt theorem.

Lemma 2.1 Let c,M ∈ N. Let COL∗ : N × N → [c]. There exists a, d,D such that all of
the following are the same color.

{(a + iD, d + jD) | −M ≤ i, j ≤ M}.

Theorem 2.2 Let k ∈ N. Let COL : N → N be a coloring of the naturals. One of the
following two must occur.

• There exists a monochromatic k-AP.

• There exists a rainbox k-AP.

Proof:
Let COL∗ be the following finite coloring of N × N. Given (a, d) look at the following

sequence

(COL(a), COL(a + d), COL(a + 2d), . . . , COL(a + kd)).

(Yes- we need to look at k + 1 long sequences.)
This coloring partitions the numbers {0, . . . , k} in terms of which ones are colored the

same. For example, if k = 3 and

(COL(a), COL(a + d), COL(a + 2d), COL(a + 3d)) = (R,B, R,G)

then the partition is {{0, 2}, {1}, {3}}. We map (a, d) to the partition induced on {0, . . . , k}
by the coloring. There are only a finite number of such partitions (actually the number of
them is the kth Bell Numbers).

Example 2.3

1. Let k = 10 and assume

(COL(a), COL(a + d), . . . , COL(a + (9d)) = (R, Y,B, I, V, Y, R,B,B,R).

Then (a, d) maps to {{0, 6, 9}, {1, 5}, {2, 7, 8}, {3}, {4}, }.

2. Let k = 6 and assume

(COL(a), COL(a + d) . . . , COL(a + (5d)) = (R, Y,B, I, V, Y ).

Then (a, d) maps to {{0}, {1}, {2}, {3}, {4}, {5}}.
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Let M be a constant to be picked later. By Lemma 2.1 There exists a, d,D such that
all of the following are the same COL∗

{(a + iD, d + jD) | −M ≤ i, j ≤ M}.

There are two cases.
Case 1: COL∗(a, d) is the partition where the last k elements all go into a class by
themselves. (we do not care what happens to the first element). This means that there is
a rainbow k-AP and we are done.
Case 2: There exists x, y 6= 0 such that COL∗(a, d) is the partition that puts a + xd and
a+yd in the same class. (We needed to use k instead of k−1 so that we would obtain, in this
case, x, y 6= 0.) More simply, COL(a + xd) = COL(a + yd). Since for all −M ≤ i, j ≤ M ,

COL∗(a, d) = COL∗(a + iD, d + jD).

we have that, for all −M ≤ i, j ≤ M ,

COL(a + iD + x(d + jD)) = COL(a + iD + y(d + jD)).

Assume that COL(a + xd) = COL(a + yd) = R. Note that we do not know what the
color of COL(a + iD + x(d + jD)) or COL∗(a + iD + y(d + jD)) is, just that they are the
same.

We want to find the (i, j) with −M ≤ i, j ≤ M such that COL∗(a + iD, d + jD) affects
COL(a + xd).

Note that
if

a + xd = a + iD + x(d + jD)

then

xd = iD + xd + xjD

0 = iD + xjD

0 = i + xj

i = −xj.

Hence we have that

a + xd = (a− xj) + x(d + jD).

So what does this tell us? In the equation

COL(a + iD + x(d + jD)) = COL(a + iD + y(d + jD)).
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Let i = −xj and you get

COL(a− xjD + x(d + jD)) = COL(a− xjD + y(d + jD)).

R = COL(a + xd) = COL(a + yd + j(yD − xD)).

This holds for −M ≤ j ≤ M . Looking at j = 0, 1, . . . , k− 1, and letting A = a+ yd and
D′ = yD − xD, we get

COL(A) = COL(A + D′) = COL(A + 2D′) = · · · = COL(A + (k − 1)D′) = R.

This yields an monochromatic k-AP.
What value do we need for M? We want j = 0, 1, . . . , k − 1. We want i = −xj. We

know that 1 ≤ x ≤ k. Hence it suffices to take M = k2.
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