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Abstract. The purpose of this note is to give an exposition of the best-known bound
on the density of sets whose difference set contains no squares which was first derived by
Pintz, Steiger and Szemerédi in [PSS88]. We show how their method can be brought in
line with the modern view of the energy increment strategy employed in problems such
as Szemerédi’s Theorem on arithmetic progressions, and explore the extent to which the
particularities of the method are specific to the set of squares.

1. Introduction

Results about the types of arithmetic structures one is guaranteed to find inside dense

sets of integers have been around since the 1950s when Roth [Rot53] first proved that any

subset of the integers of positive upper density contains a three-term arithmetic progression.

Szemerédi [Sze75], and independently, Furstenberg [Fur77] extended this result to longer

progressions. Much of what drives additive combinatorics these days is closely related to

the search for better bounds for this problem. Another type of structure mathematicians

have always been fascinated by is that of perfect squares. Sárközy [Sár78a] proved the

following beautiful theorem in 1978.

Theorem 1.1. Any subset A ⊆ [N ] = {1, 2, . . . , N} which contains no square difference

has density

α� (log logN)2/3

(logN)1/3
.

Throughout this article, we shall take the symbol ”�” to mean ”is bounded above by

a constant times”. Results of this type can, by very similar methods, be extended to

polynomial structures other than the squares, more precisely, any polynomial that has an

integer root. For example, it is true for x2−1 (for a simple argument in the spirit of [Gre02],

see [Wol03]) but not x2 + 1 (since there are no squares congruent to 2 mod 3, we can take
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the set of all multiples of 3). The general polynomial result is known as the Bergelson-

Leibmann Theorem, and was first proved by ergodic theoretic methods [BL96]. Although

these are extremely natural and beautiful, no quantitative bounds can be obtained.

Let us also briefly mention that one can ask whether the sets of differences of a dense set

necessarily contains an element which is a prime minus 1. Again, the answer is yes and

the interested reader is referred to [Sár78c]. Observe that this problem is of no interest for

differences of the form p − k with k 6= 1: If k is prime, the difference set always contains

0 which is of the form p − k. If k is composite, the set of all multiples of k is very dense

and contains no differences of the form p − k. If k = 0, we can take all multiples of

any composite number to give us a dense counterexample. The methods of [PSS88] were

recently applied to the shifted (by 1) primes by [Luc07], but the bounds are superseded

by recent work of Ruzsa and Sanders [RS07]. We shall briefly discuss these matters in the

final section.

Finally, let us remark that the corresponding problem for squares in sumsets was settled

in [JLS82] by graph theoretic methods. In this case it is possible to find a set of density

11/32 whose sumset is square-free.

In this article we are mainly concerned with outlining the main steps leading to a proof

of the best known bound on the density of sets whose difference sets contain no squares,

which was published in [PSS88], with a subsequent extension of the result to kth powers

in [BPPS91].

Theorem 1.2. There exist constants c and c′ such that for all N sufficiently large, any

set A ⊆ [N ] whose difference set is square-free has density

α ≤ c(logN)−c
′ log log log logN .

This bound is quite extraordinary in the sense that it is by far superior to any bound known

for a similar problem concerning arithmetic structures in sets of integers. In particular, the

best known bound for the existence of 3-term arithmetic progressions was very recently

improved by Bourgain [Bou06] to

α� (log logN)2(logN)−2/3.

See [GT06] for the currently best known bounds for progressions of length 4. For progres-

sions of length k > 4, the best known bound is due to Gowers [Gow01] and of the form

(log logN)−c, where the constant c can be taken to be 2−2k+9
.
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In fact, the squares bound is good enough to give us information about the existence

of arithmetic structure in the prime numbers, which have asymptotic density (logN)−1.

We cannot draw similar conclusions from the bounds on Roth’s Theorem, although the

existence of arithmetic progressions in the primes is now known by other methods [GT04].

In [Sár78a] Sárközy conjectures that α � N−1/2+ε for any positive ε. He also showed in

Part II [Sár78b] of his impressive series of papers that α − 1/2 > q(p)/2 for all primes

p ≡ 1 mod 4, where q(p) is the least positive quadratic non-residue of p, so the conjecture

would imply that q(p) = O(pε) for all p ≡ 1 mod 4, which is believed to be out of reach of

the currently known techniques in analytic number theory.

The conjecture should also be compared with the best known construction which is due to

Ruzsa [Ruz84]. He constructs a subset of [N ] of density

α ≥ N−1/2(1−log 7/ log 65),

where the exponent is approximately equal to −0.266923.

Let us first recall the comparatively simple iteration argument used by Green [Gre02] to

tackle this question, which yields the bound α � (log logN)−1/11. At the ith step we

have a set Ai of density αi whose difference set is square-free. The latter property ensures

the existence of a large Fourier coefficient, which in turn can be used to establish that Ai

has increased density on an arithmetic progression (of a certain length, Ni+1 say). After

rescaling, we obtain a set Ai+1 of increased density αi+1 ≥ αi(1 + α12
i ), whose difference

set is again square-free. If α were � (log logN)−1/11, we could repeat this process until

the density has increased beyond 1, which is clearly nonsense.

It has been shown in several instances that it can be more efficient to use a collection of

large Fourier coefficients rather than a single one. This is what we shall refer to as the

energy increment strategy, which originated in the work of Szemerédi [Sze90] and was also

deployed around the same time by [HB87].

In order to obtain the much better bound stated above in Theorem 1.2, Pintz, Steiger

and Szemerédi employ a further iteration, sitting inside the one just described, which aims

to build up a relatively large collection of large Fourier coefficients. By nature of the

set of squares, we should be able to locate these large Fourier coefficients near rationals

with small denominator. Either we can increase the number of such intervals with a large

Fourier coefficient at each step of the iteration significantly, and we end up with large

total L2-mass (which gives a good bound on α by Parseval), or we fail to do so at some

point. Using combinatorial properties of the rational numbers, the latter case implies a
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lower bound on the L2-mass of Fourier coefficients near rationals with a specific (although

unspecified) denominator, and as usual this allows us to pass down to a subprogression on

which A has increased density.

Throughout the proof, we may assume that α ≥ c (logN)−c
′ log log log logN for suitable con-

stants c and c′. We shall use the letter A to denote the characteristic function of the set

A, and for ease of notation we set L = logN, l = log logN, logiN = log log ... logN , where

the logarithm is always taken to base e. Put k = e2l, K = el
2
.

We shall be using Fourier analysis on Z, and define the Fourier coefficient of a set A ⊆ [N ]

at θ ∈ T via the formula

Â(θ) :=
∑
x∈Z

A(x)e(θx).

Also, write I(a/q, η) for the interval of length η around a/q, and let

Fi(q, η) =
1

|A|N
∑

t
N
∈

S
a≤q

(a,q)=1

I(a
q
,η)

|Âi(t/N)|2,

that is, Fi(q, η) is the sum of squares of Fourier coefficients near rationals with denominator

q. Parseval’s identity takes the form

N∑
t=1

|Â(t/N)|2 = N |A|,

which implies that Fi(q, η) as defined above is bounded by 1. The convolution of two

functions f, g : Z→ C will be defined as

f ∗ g(x) =
∑
y

f(x)g(y − x),

which has the well-known property that its Fourier transform is the pointwise product of

the Fourier transforms of f and g.

Let us briefly outline the structure of the remainder of this article. Section 2 is devoted

to describing the (pretty standard) iteration, which already gives some improvement over

previously known bounds. Section 3 and 4 contain the details of the inner iteration, whereas

in Section 5 we will be concerned with working out bounds. Then we will be in a position

to discuss the merits of the method in Section 6. An appendix is included for readers

who are not familiar with traditional circle method estimates, although we do take some

pre-exposure to Fourier analysis for granted.
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2. The outer iteration

At step i, we are given a set Ai of density αi whose difference set is square-free. From

now on we fix i, and dropping the index we write A = Ai, α = αi, F (q, η) = Fi(q, η). We

shall set N1 = N/2, and without loss of generality assume that A has density at least α/2

on [N1]. Write B = A ∩ [N1], and let the function S be defined by S(x) = 2
√
x/N1T (x),

where T denotes the characteristic function of the set of squares less than N1. Following

the lines of the usual argument, we have

(1)
∑
x∈Z

A ∗B(x)S(x) = 0,

from which it follows that

(2)
∑
t6=0

|Â(t/N)B̂(t/N)Ŝ(t/N)| � |A|2|T |.

Working with a weighted version of the squares makes them uniformly distributed on [N1],

a process which does not harm the validity of (1) but improves the major arc estimates

for Ŝ(t/N) significantly. Note that this strategy corresponds to replacing the characteris-

tic function with the von-Mangoldt function in the corresponding problem for primes, a

standard procedure in analytic number theory.

We shall see that (2) implies that Â(t/N) takes rather large values rather frequently. By

Hölder’s Inequality, we can neglect those values of t for which |Â(t/N)| or |B̂(t/N)| ≤
|A|/K provided that α� K−2/5. Indeed, we have

∑
these t

|Â(t/N)B̂(t/N)Ŝ(t/N)| � max
these t

|Â(t/N)|1/3
(

N∑
t=1

|Â(t/N)|2
)5/6( N∑

t=1

|Ŝ(t/N)|6
)1/6

.

The L6-estimate for Ŝ(t/N) (see Lemma A.5 in the appendix) implies that this expression

is bounded above by a small constant times |A|2|T |.
It turns out that we can also neglect the values of t which belong to the minor arcs (again,

for a precise definition see appendix). That is, we need only consider those t for which

t/N ∈ I(a/q, (qQ)−1) for q ≤ R. Indeed, for t/N close to rationals with denominator

greater than R, Lemma A.4 implies that∑
these t

|Â(t/N)B̂(t/N)Ŝ(t/N)| � N |A||T |√
K/L

.

This quantity is negligible provided that α� (K/L)−1/2.
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In order to perform dyadic averaging over the remaining ranges of parameters, define for

1 ≤ b ≤ r ≤ R with (b, r) = 1 the A-special major arcs as

τ(b, r) =

{
t 6= 0 :

t

N
∈ I

(
b

r
,

1

rQ

)
, |Â(t/N)| ≥ |A|

K

}
,

where Q = N/K throughout.

Lemma 2.1 (Bound on A-special very major arcs). Let 1 ≤ b ≤ r ≤ R with (b, r) = 1.

Then we have ∑
t∈τ(b,r)

|Ŝ(t/N)| � l3|T |√
r

with τ(b, r) defined as above.

Proof. We use the exponential sum estimates in the appendix (Lemma A.1 and Lemma

A.2) to obtain∑
t∈τ(b,r)

|Ŝ(t/N)| �
∑

t∈τ(b,r)

(√
log r√
r
|FS(t/N − b/r)|+

√
r log r(1 + |t/N − b/r|N)

)

�
√

log r√
r
|T | logK +

√
r log rK2,

where by our choice of K the first term is bounded by l3|T |/
√
r and the second term is

clearly negligible. �

It follows easily that

|A|2|T | �
∑
r≤R

∑
b≤r

(b,r)=1

|Â(t/N)B̂(t/N)Ŝ(t/N)| �
∑
r≤R

∑
b≤r

(b,r)=1

max
t∈τ(b,r)

|Â(t/N)| max
t∈τ(b,r)

|B̂(t/N)| l
3|T |√
r
.

Next we shall partition the set of relevant fractions b
r

into sets

LX,V =

{
b

r
: X < r ≤ 2X,

|A|
V

< max
t∈τ(b,r)

|Â(t/N)| ≤ 2|A|
V

,
|A|
V

< max
t∈τ(b,r)

|B̂(t/N)| ≤ 2|A|
V

}
for integers X ≤ R, V ≤ K. There are logR logK of these sets. Hence there exist

parameters X ≤ R, V ≤ K such that

|A|2|T |
logR logK

� |LX,V |
|A|2

V 2

l3|T |√
X
,

which in turn immediately implies that

|LX,V | �
V 2
√
X

l3 logR logK
.
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But we know more: By definition, |LX,V | ≤ α−1XV 2 maxX<r≤2X F (r, (rQ)−1), and by

Parseval |LX,V | ≤ α−1V 2. Putting everything together, we obtain

(3) max
X<r≤2X

F (r,
1

rQ
)� α2

(l3 logR logK)2
.

By our choice of the parameters R and K, we will always have logR = O(l2) = logK so

that the denominator is always O(l14). The bound (3) will be useful in conjunction with

the following standard lemma, which says that we can obtain a density increment of size

about F (q, (qQ)−1) on a progression of common difference q2 and length at least Q/(qL).

Lemma 2.2 (Density increment on an arithmetic progression). Let q > 1, N ′ = b(ηq2L)−1c,
and let A ⊂ [N ] have density α. Then we can find a set A′ ⊂ [N ′] of density

α′ ≥ α +
1

8
F (q, η),

with the additional property that if A− A was square-free, so is A′ − A′.

Proof. We shall show that under the assumption that A has large Fourier mass near ra-

tionals with denominator q, A has large intersection with some translate of an arith-

metic progression of common difference q2 which is not too short. Let this progression be

P = {q2k : 1 ≤ k ≤ |P |} with |P | = N ′, and consider

(4) J :=
1

N

N∑
t=1

|Â ∗ P (t/N)|2 =
∑
x

|A ∗ P (x)|2 =
∑
x

|A ∩ (P + x)|2,

which is the quantity we are trying to find a lower bound for. Now if t/N ∈ I(a/q, η), then

q2kt/N = aqk +O(ηq2|P |), so that e(q2kt/N) = 1 +O(L−1) and hence

|P̂ (t/N)| = |
|P |∑
k=1

e(q2kt/N)| = |P |
(
1 +O

(
L−1

))
.

It follows from this and 4 that

J =
1

N

N∑
t=1

t|Â(t/N)|2|P̂ (t/N)|2 ≥ |A|
2|P |2

N

(
1 +O

(
L−1

))
(1 + α−1F (q, η)).

We therefore find that there exists an x such that

|A ∩ (P + x)| � |P |(α +
1

8
F (q, η)),

and the statement of the Lemma follows. �
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The argument so far shows that we can get a density increase of α 7→ α + F/8 with

F � α2l−14 at each step, and the length of the progression to which we scale after d steps

is N 7→ N/(KRL)d = Ω(N/Lcld), which means we can iterate d� L/l2 times. This gives

rise to the condition L/l2 � α−1 logα−1l14, which in turn results in a bound on the density

of

α� l17

L
.

Using a further iteration, which we are about to describe in more detail, we shall be able

to raise the exponent of the denominator in the above bound from 1 to a function of N

tending (slowly) to infinity.

3. The inner iteration

At the mth step of what we from now on call the inner iteration, we inherit a set of large

Fourier coefficients near rationals with denominator bounded by Xm,

P(m)
Xm,Vm

=

{
u :

u

N
∈ I

(
a

q
,
m

Q

)
, 1 ≤ a ≤ q ≤ Xm, (a, q) = 1, |Â(u/N)| ≥ |A|

Vm

}
,

where Xm and Vm are the parameters maximizing the expression |PX,V |V −2. Since triv-

ially, max1≤X,1≤V |PX,V |V −2 ≥ 1, we may assume that Vm ≤ Xm. Let R(m)
Xm,Vm

be the

corresponding set of centres of intervals a/q.

For fixed u ∈ P(m), write Bu(x) = e(ux/N)B(x). We now consider the expression∑
x∈Z

A ∗ −Bu(x)S(x),

which is again zero under the assumption that A − A is square-free. Observe that this is

where we make definite use of that fact that A − A contains no squares, as opposed to

relatively few. It follows that for fixed u ∈ P(m), we have∑
t6=0

|Â(t/N)B̂((u+ t)/N)Ŝ(t/N)| � |A|
2|T |
Vm

.

Just as before, by a simple use of Hölder’s Inequality we can neglect values of t for which

one of Â(t/N), Â((u + t)/N) or Ŝ(t/N) is small in modulus. Indeed, if t is such that

|Â(t/N)| or |B̂((u+ t)/N)| ≤ |A|/K, then the contribution from these t is bounded by

max
these t

|Â(t/N)|1/3
(

N∑
t=1

|Â(t/N)|2
)5/6( N∑

t=1

|Ŝ(t/N)|6
)1/6

� |A|2|T |
α5/6K1/3

,

which is negligible compared with |A|2|T |V −1
m provided that α� (XmK

−1/3)6/5.
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On the other hand, minor and major arc estimates for Ŝ(t/N) imply that for t to be taken

into account, t/N needs to be close to a rational with small denominator r < Xm+1/Xm.

For if t is near a rational with denominator between Xm+1/Xm = X3
mX1 and K, which

corresponds to the fairly major arcs, Lemma A.3 yields∑
these t

|Â(t/N)B̂((u+ t)/N)Ŝ(t/N)| ≤ max
Xm+1/Xm<r≤K

N |A|T
r1/3

≤ α−1|A|2|T |
XmX

1/3
1

,

which is � |A|2|T |V −1
m provided that α� X

−1/3
1 .

Similarly, for t on the minor arcs (Lemma A.4), that is K ≤ r ≤ Q, we have∑
these t

|Â(t/N)B̂((u+ t)/N)Ŝ(t/N)| ≤ α−1|A|2|T |√
K/L

,

which is � |A|2|T |V −1
m provided that α� Xm(K/L)−1/2.

We again perform dyadic averaging over the remaining ranges of parameters. To this end,

for u ∈ P(m), 1 ≤ b ≤ r ≤ Q, we define the A-special major arcs with respect to u as

(b, r) = 1, let

τ(b, r, u) =

{
t 6= 0 :

t

N
∈ I

(
b

r
,

1

rQ

)
, |Â(t/N)| ≥ |A|

K
, |B̂((u+ t)/N)| ≥ |A|

K

}
.

With this definition we have that for each u ∈ P(m),

|A|2|T |
Vm

�
∑

r≤Xm+1
Xm

∑
b≤r

(b,r)=1

∑
t∈τ(b,r,u)

|Â(t/N)B̂((u+ t)/N)Ŝ(t/N)|

�
∑

r≤Xm+1
Xm

∑
b≤r

(b,r)=1

max
t∈τ(b,r,u)

|Â(t/N)| max
t∈τ(b,r,u)

|B̂((u+ t)/N)|
∑

t∈τ(b,r,u)

|Ŝ(t/N)|

But as before, we have
∑

t∈τ(b,r,u) |Ŝ(t/N)| � l3|T |r−1/2 by Lemma 2.1. Hence for each

u ∈ P(m), we can choose integers 1 ≤ Vu ≤ K, 1 ≤ Wu ≤ K, 1 ≤ Xu ≤ Xm+1/Xm such

that the set Lu given by{
b

r
: Xu < r ≤ 2Xu,

|A|
Vu

< max
t∈τ(b,r,u)

∣∣∣∣Â( t

N

)∣∣∣∣ ≤ 2|A|
Vu

,
|A|
Wu

< max
t∈τ(b,r,u)

∣∣∣∣B̂(u+ t

N

)∣∣∣∣ ≤ 2|A|
Wu

}
has size

|Lu| �
VuWu

√
Xu

l3(logK)2Vm log (Xm+1/Xm)
.
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When splitting the sum into dyadic ranges, the number of choices for Vu,Wu, Xu is bounded

above by (logK)2 log (Xm+1/Xm). Hence we can make the same choice of Vu,Wu, Xu for

at least |P(m)|/(logK)2 log (Xm+1/Xm) different u ∈ P(m). Let us denote the set of such u

by P̃(m), using parameters Ṽ , W̃ , X̃.

Observe that for each u ∈ P̃(m), we have found a w ∈ τ(b, r, u) with the property that

|Â((u + w)/N)| ≥ |A|/W̃ . We would like to count the number of distinct u + w in order

to determine whether we can achieve a significant increase in total L2-mass. For the sake

of clarity, the technical details of this counting argument as well as the rough explanation

of why we should expect it to work have been postponed until the next section. Writing

F (m) = maxX̃<r≤2X̃ F (r, 1
rQ

) and τ = maxq≤Xm τ(q), we find by Lemma 4.1 that there are

at least

α2

F (m)

|P̃(m)
Xm,Vm

|
τ 4X̃ log X̃Ṽ 2

min |Lu|2 �
α2W̃ 2

F (m)

|P̃(m)
Xm,Vm

|
V 2
m

1

τ 4(logK)4+2(log (Xm+1/Xm))2+1+1(l3)2

different u + w with the property that (u + w)/N ∈ I(c/s, (m + 1)/Q) and |A|/W̃ <

|Â((u + w)/N)| ≤ 2|A|/W̃ . This allows us to define the set P(m+1)
Xm+1,Vm+1

, where we choose

parameter Vm+1 = W̃ and Xm+1 = X4
mX1 (before passing to the next step of the iteration,

we will need to reset them so they correspond to the maximum of the expression |PX,V |V −2).

Thus we have just shown that

|P(m+1)
Xm+1,Vm+1

|
V 2
m+1

≥
|P(m)

Xm,Vm
|

V 2
m

α2

F (m)

1

τ 4(logK)6(log (Xm+1/Xm))4l6
=
|P(m)

Xm,Vm
|

V 2
m

α2E

F (m)
.

When choosing our main parameters X1 and M we shall ensure that E = Ω(L−1/2) always.

Now we are faced with two possible cases:

(1) Suppose α2E/F (m) ≥ L1/2 for all m ≤ M , then by Parseval we have α ≤ L−M/2, and

we will have completed the proof without leaving the inner iteration, simply by building

up a collection of Fourier coefficients with large total L2-mass.

(2) Otherwise, there exists m ≤ M such that α2E/F (m) ≤ L1/2, i.e. F (m) ≥ αE/L1/2.

This lower bound on F (m) enables us to pass down to a subprogression on which A has

increased density.
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4. Combinatorics of rational numbers

We had established that for all u ∈ P̃ (recall that u/N ∈ I(a/q,m/Q)), there is a set Lu
defined by{
b

r
: Xu < r ≤ 2Xu,

|A|
Vu

< max
t∈τ(b,r,u)

∣∣∣∣Â( t

N

)∣∣∣∣ ≤ 2|A|
Vu

,
|A|
Wu

< max
t∈τ(b,r,u)

∣∣∣∣B̂(u+ t

N

)∣∣∣∣ ≤ 2|A|
Wu

}
.

Since Xm ≤ X4m

1 , the intervals I(a
q
, m
Q

) are disjoint whenever m ≤ Q/X4m

1 (which is yet

another condition we have to satisfy when choosing our parameters), so that counting the

number of distinct u+ w is equivalent to counting the number of distinct a
q

+ b
r
.

In lowest terms, a
q

+ b
r

can be expressed as

ar′+bq′

f

r′q′d
f

,

where d = (q, r), q = dq′, r = dr′, f = (ar′+bq′, d), and we immediately note that (q′, r′) = 1

and (f, q′) = (f, r′) = 1.

For fixed a
q

we associate a pair {d, f} with every b
r
∈ La/q = Lu, where u is the unique

element in P̃ associated with a
q
. For each a

q
, there exists a pair {d, f} associated with lots

of b
r
∈ La/q, say all b

r
∈ L̃a/q. By averaging, we find that |L̃a/q| ≥ τ(q)−2|La/q|. Similarly,

for each q, there exists {d, f} associated with lots of a
q
, say all a

q
with a ∈ Ã(q). Again, by

averaging, we must have |Ã(q)| ≥ τ(q)−2|A(q)|, while
∑

q≤Xm
|A(q)| = P̃ .

Now fix c
s
, and count the number of solutions to the equation

(5)
c

s
=
a

q
+
b

r

with a
q
∈ Q̃ = {a

q
: q ≤ X̃, a ∈ Ã(q)} and b

r
∈ L̃a/q.

Write s = q′r′e, then choose f , which immediately determines d, q, r. It is clear that a

mod q′ is determined by ar′ + bq′ = cf . Denote the number of distinct a mod f by r(q).

By the Chinese Remainder Theorem, we deduce that there are r(q) q
q′f

choices for a, which

in turn automatically determines b. We conclude that the number of solutions to (5) is

≤
∑

q=q′r′e

∑
f≤d≤r≤X̃ r(efq

′) d
f
, so we have an upper bound on the number of solutions

provided we have an upper bound for r(q).
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Fix q, and the associated popular pair {d, f}. The crucial observation is that L̃a1/q and

L̃a2/q are disjoint if a1 6≡ a2 mod f . Then

r(q) min |L̃a/q| ≤ |
⋃

a∈Ã(q)

L̃a/q| ≤ |{
b

r
:
b

r
∈ ∪La/q}| ≤

∑
r≤R,d|r

|{b :
b

r
∈ ∪La/q}| ≤

X̃

d
Br,

where Br is the number of distinct numerators b such that b
r
∈ ∪La/q, so that the number

of solutions to (5) is bounded above by X̃ log X̃Br

min |L̃a/q |
. It follows immediately that the number

of distinct a
q

+ b
r

with a
q
∈ R̃(m), b

r
∈ La/q is

≥
∑

q≤X̃
∑

a∈Ã(q) |L̃a/q|
no. of sols to (5)

�
∑
q≤Xm

|Ã(q)|min |L̃a/q|

(
X̃ log X̃Br

min |L̃a/q|

)−1

�
min |L̃a/q|2|R̃(m)|
τ 4X̃ log X̃Br

.

But Br and the L2-mass of Fourier coefficients near rationals with denominator r are by

sheer definition related via the inequality F (m)(r, 1
rQ

) ≥ αBr

Ṽ 2 . Thus we have proved:

Lemma 4.1 (Combinatorics of rational numbers). Let R̃(m) be the set of centres of inter-

vals corresponding to P̃(m), with parameters Ṽ , W̃ , X̃ as specified in the preceding section.

For u ∈ P̃, let

Lu =

{
b

r
: Xu < r ≤ 2Xu,

α

Vu
< max

t∈τ(b,r,u)
|Â(t)| ≤ 2α

Vu
,
α

Wu

< max
t∈τ(b,r,u)

|Â(u+ t)| ≤ 2α

Wu

}
.

Then the number of distinct a
q

+ b
r

with a
q
∈ R̃(m), b

r
∈ La/q is

� |R̃
(m)|
Ṽ 2

α2

F (m)

min |La/q|2

τ 4X̃ log X̃
,

where F (m) = maxX̃<r≤2X̃ F
(m)(r, 1

rQ
) and τ = maxq≤Xm τ(q).

Let us summarize what this section has achieved: We were trying to assess whether we

could increase the L2-mass of the large Fourier coefficients, and for this purpose we counted

how many of them there are, that is we counted the number of distinct new intervals with

centres a
q
+ b

r
. The obvious way of doing this is to divide the number of all relevant fractions

of the form a
q

+ b
r
, that is

∑
appropriate a,q |La/q|, by the number of solutions to c

s
= a

q
+ b

r

with a
q
∈ R(m), b

r
∈ La/q.

F (m)(r, 1
rQ

) ≥ αBr

Ṽ 2 immediately gives us the desired connection between the L2-mass near

denominator r and the number of distinct numerators b such that b
r
∈ ∪La/q, Br. The

upshot is that either we have lots of these for some r, i.e. B = maxr Br is large, in which

case we have (by definition) large L2-mass near a specific denominator and we can scale. If
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not, i.e. if B is small, then by the above counting argument we obtain lots of new intervals

so that the total L2 mass increases significantly.

5. Working out bounds

It’s a bit of a mess: To make combinatorics of rationals work (and this is where the real

restrictions of this method lie), we need E = Ω(L−1/2) as remarked above, that is we need

(6) τ = max
q≤Xm

τ(q)� LC

for some small constant C and

(7) log
Xm+1

Xm

≤ l2l

It is a well-known number-theoretic fact that

log τ(Xm)� logXm

log logXm

� 4m logX1

m+ log logX1

≤ Cl,

and we therefore choose

M =
1

2
log4N

as well as

X1 = L(log3N)1/4

in order to satisfy both (6) and (7). We can then check that all the other conditions are

satisfied: We also needed

α� X
−1/3
1 , α� Xm√

K/L
, α�

(
Xm

K1/3

)6/5

to ensure that we can neglect the contributions from the non-arithmetic part, that is the

fairly major and the minor arcs, and

m ≤ Q

X4m

1

to force the intervals I(a
q
, m
Q

) to be disjoint. We have made no attempts to optimize the

constants involved here.

6. Concluding remarks

The method which we have discussed was extended to cover the case of kth powers in

[BPPS91]. Only minor modifications to the argument are necessary, and these occur almost

exclusively through the Hardy-Littlewood type estimates in the appendix.
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It should also be clear that similar progress can be made for polynomial differences such

as x2−1. Very recently, Lucier [Luc07] applied the method to the shifted primes to obtain

a bound of (
(log3N)4

log logN

)log5N

on the density of the set which avoids the set of all p = 1, p a prime. However, it should

be noted that the currently best-known bound for this problem obtained in [RS07] is of

the form

exp(−c 4
√

logN)

and does not use this technique. Indeed, it is relatively straightforward to obtain a density

increment of size in the case of primes, which cannot be bettered by the technique described

in this article. (For comparison, the straightforward density increase in the case of squares

is of size α3, and can be improved to α2 using combinatorics of rationals.)

Given the fact that the application to the primes is slightly bogus, it would be very inter-

esting to find a genuinely new and useful application of this method.

A. Appendix: Major and minor arcs estimates for weighted squares

The material in this section is entirely standard and we give barely enough detail to make

this exposition self-contained. For an introduction to the circle method, see [Vau81].

By Dirichlet’s Theorem, t/N ∈ I(a/q, (qQ)−1) for some 1 ≤ a ≤ q ≤ Q, (a, q) = 1.

Call the set of those t for which q ≤ R the major arcs and the set of those t for which

R < q ≤ Q = N/K the minor arcs. It is a typical feature of the Hardy-Littlewood method

that the exact values of the boundaries between the arcs need to be determined in the

course of the proof. We define the generating function of the weighted squares by

FS(θ) =
∑
x2≤N1

2x√
N1

e(x2θ).

Note that FS(θ) coincides with our earlier definition of Ŝ(θ) used throughout the proof.

Lemma A.1 (Weighted exponential sums for squares). Let θ belong to the interval I(a/q, η).

Then we have the bound

|FS(θ)| �
√

log q
√
q
|FS(η)|+

√
q log q(1 + |η|N).

Proof. Consider the truncated version FS(θ,m) =
∑

x≤m 2xe(x2θ)/
√
N1 of FS, as well as

the Gauss sum B(a/q,m) =
∑

x≤m e(x
2a/q). If m ≤ q, we have B(a/q,m) �

√
q log q
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and using Abel’s Inequality (which says that if g is monotone, then |
∑

x≤m g(x)f(x)| is

bounded above by maxx≤m |g(x)|maxj≤m |
∑

x≤j f(x)|), we conclude that FS(a/q,m) �
m
√
q log q/N . It follows that FS(a/q) �

√
q log q. In the case where m > q, we find

FS(a/q,m) = B(a/q, q)m2/(q
√
N) +O(m

√
q log q/N) by splitting into segments of length

q, and so FS(a/q) = B(a/q, q)
√
N/q + O(

√
q log q). Now let θ = a/q + η with (a, q) = 1.

By partial summation, we obtain FS(θ,m) − B(a/q, q)FS(η,m)/q = O(m
√
q log q/N(1 +

|η|m2)), whence FS(θ) = B(a/q, q)FS(η)/q +O(
√
q log q(1 + |η|N)). �

For small values of η, we can give a fairly good estimate for FS(η).

Lemma A.2. Let 1
10
< h = ηN ≤ H = N1/8. Then

|FS(η)| � |T |
|h|

.

Note that without weighting the exponential sum, we would have a bound of |T ||h|−1/2

here, which isn’t good enough for the purposes of this paper.

Proof. Let us split the range of summation for FS into intervals

Rij = {x : x2 ∈ [N(i+ j/H)/h,N(i+ (j + 1)/H)/h)}.

Now break up the sum

FS(h/N) =

bh/2c−1∑
i=1

H∑
j=0

∑
x∈Rij

2xe(x2h/N)/|T |+O(|T |/|h|).

On Rij, x
2h/N is equal to an integer plus a small remainder of at most H−1, so the sum

becomes
h/2∑
i=1

T∑
j=0

e(j/H)/|T |
∑
x∈Rij

2x+
∑
x2≤N1

2x/(H|T |).

It is easily shown that
∑

x∈Rij
2x = N/(Hh) + O(|T |), and hence the sum is bounded by

O(hH + |T |/H) �

Lemma A.3 (Major arcs). For t ∈ I(a/q, (qQ)−1) with q ≤ R, we have

|FS(t/N)| � |T |
3
√
q
.

Proof. If q � K, then h > 1/10 and putting together the previous two lemmas yields

|FS(t/N)| =
√

log q/q|T |/|h| + O(
√
q log qN/(qQ)). The first term clearly dominates and

thus, if q ≤ R, we have FS(t/N)� |T |q−1/3. �
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Lemma A.4 (Minor arcs). For t ∈ I(a/q, (qQ)−1) with R < q ≤ Q, we have

|FS(t/N)| � |T |√
K/L

.

Proof. If q ranges between R and N1/8, the result follows from methods used above. For

q > N1/8, it follows from Weyl’s Inequality that |FS(t/N)| �
√
N logN(q−1/2 +

√
Q/N),

which is clearly bounded above by
√
QL provided that q � K. �

We also need the following consequence of Hua’s Lemma:

Lemma A.5 (L6-bound for weighted squares).

N∑
t=1

|FS(t/N)|6 � |T |6.

We omit the proof but point out that the lemma corresponds to (a weighted version of)

the well-known fact that the number of representations of an integer n as the sum of six

squares is asymptotic to n2.
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