
The Book Review Column1

by William Gasarch
Department of Computer Science

University of Maryland at College Park
College Park, MD, 20742

email: gasarch@cs.umd.edu

Welcome to the Book Reviews Column. We hope to bring you at least two reviews of books every
month. In this column three books are reviewed.

1. Distributed Computing by Attiya and Welch, reviewed by Maurice Herlihy. This is a
textbook aimed at grad students, and advanced undergrads, for a course on Distributed
Computing.

2. Hilbert’s Tenth Problem , by Yuri Matiyasevich reviewed by Randall Pruim. This book
provides a systematic treatment of the solutions to Hilbert’s Tenth Problem, including his-
torical notes and additional applications of the techniques used in the proof.

3. Lambda Calculi: A Guide for Computer Scientists by Chris Hankin, reviewed by
Christopher League. This is a book on Lambda calculus, for grad students and advanced
undergrads, aimed at computer scientists (as opposed to logicians).

4. Systems that Learn (second edition) by Jain, Osherson, Royer, Sharma, reviewed by
Carl Smith. This is a book on Inductive Inference, which is the study of models of learning
with a computability angle. The book starts from the beginning, and hence could be used a
text in an intro graduate course, or as a supplment to a course on PAC and other learning
models.

I am looking for reviewers for the following books
If you want a FREE copy of one of these books in exchange for a review, then email me at

gasarchcs.umd.edu If you want more information about any of these books, again, feel free to email
me.

1. Data Structures and Algorithms in Java by Goodrich and Tamassia.

2. Modern Graph Theory by Bollobas.

3. Control Flow Semantics by Jaco de Bakker and Erik de Vink

4. Complexity and Real Computation by Blum, Cucker, Shub, and Smale.

5. The Functional Approach to Programming by Cousineau and Mauny.

6. Computational Geometry by de Berg, van Kreveld, Overmars, and Schwarzkpf

7. Term Rewriting and all that by Baader and Nipkow

The following are DIMACS workshop books which are collections of articles on the topic in the
title.

1. Randomization Methods in Algorithm Design.

1 c© William Gasarch, 2000.

1

2. Microsurveys in Discrete Probability.

3. Mathematical Support of Molecular Biology.

4. Multichannel Optical Networks: Theory and Practice.

5. Networks in Distributed Computing.

6. Advances in Switching Networks.

7. Network Design: Connectivity and Facilities Location.

8. External Memory Algorithms

Review of2

Distributed Computing
Authors: Attiya and Welch

Publisher: McGraw Hill, 1998
Paperback: ISBN 0077093526, $75.00

464 Pages

Reviewer: Maurice Herlihy

Department of Computer Science
Brown University

Last Spring, I used this book as the text for an upper-division undergraduate “Introduction to
Distributed Computing” course, so I am reviewing this book primarily as a textbook.

This text provides a broad-ranging introduction to the modern theory of Distributed Comput-
ing. It provides background sufficient to introduce advanced undergraduates or beginning graduate
students to the kind of research that typically appears in symposiums such as the ACM Principles
of Distributed Computing (PODC) or the International Symposium on DIStributed Computing
(DISC).

The first section, entitled “Fundamentals”, introduces a number of classical problems from
distributed computing, familiarizing the student with the kinds of problems, models, and techniques
needed to reason about distributed problems. The section on basic network algorithms is a gentle
introduction to a number of basic networking problems. Both the problems and solutions are
simple, and clearly stated, and I found that students enjoyed this section because it built up their
confidence. The section on leader election in rings introduces three themes central to distributed
computing. First, the importance of models: synchronous and asynchronous rings behave quite
differently. Second, even though the algorithms considered here are quite simple, they still require
a non-trivial analysis. Finally, this section provides students with the first example of how to
exploit asynchrony and faults to prove lower bounds. Even though the subject itself is no longer a
primary focus of research, I nevertheless found leader election to be an effective way of conveying
these fundamental points to my students. The section on mutual exclusion in shared memory
provides another opportunity to reason about concurrent processes, and introduces various notions
of fairness. For each mutual exclusion algorithm, my students typically started by asserting that
it “obviously” works. After some discussion, they would be convinced that correctness was far
from obvious, and after additional thought, they would decide it was indeed obvious after all.

2 c© Maurice Herlihy 2000

2

The sections on consensus and on causality and time are both pitched at an appropriate level for
advanced undergraduates.

The second section of the book concerns how to simulate one kind of system with another. This
section starts by introducing some formal machinery, and proceeds to consider how to implement
broadcast and multicast, correctness conditions for shared memory, implementations of read/write
variables, and “compiling” algorithms designed to tolerate one kind of failure into algorithms that
tolerate other kinds of failures. I covered the multicast algorithms and correctness conditions.
Because of the emphasis on formalism, and the focus on subtle distinctions among failure models,
the remaining material struck me as perhaps more appropriate for first-year graduate students.

The third and final section of the book covers advanced topics. Students reacted well to the sec-
tion on wait-free simulation of arbitrary objects (many were excited by applications to concurrent
data structures), and to the section on asynchronously solvable systems. The section on random-
ization interested students with a sufficiently strong background in probability theory. Problems
such as bounded timestamping elicited less enthusiasm.

The book includes a number of exercises, which were quite useful in preparing homeworks and
exams. Many of the exercises have bugs, however, so it is prudent to consult the authors’ errata
page at

http//www.cs.technion.ac.il/̃ hagit/DC/errata.html
before making assignments.
It should be mentioned that this text is about fundamentals of distributed computing, not

distributed systems. It does not cover deadlock detection, two-phase locking and serializability
theory, distributed commitment protocols, checkpointing, practical mutual exclusion algorithms,
and other theoretical topics related to distributed systems.

One mild criticism of the presentation is that the authors provide little or no explicit motivation
for the models and problems considered in the text. In particular, the authors draw no distinction
between problems interesting primarily as mathematical exercises, and problems interesting because
they tell us something about computation as it is practiced. To pick one example, when I taught the
course, I felt it important to warn students that the problem of mutual exclusion using read-write
variables is a valuable theoretical exercise, training them to think rigorously about concurrency,
fairness properties, and so on, but that there are fundamental architectural reasons (which every
computer scientist should understand) why it makes no sense to use read-write variables for mutual
exclusion in real systems. By contrast, lower bounds such as the impossibility of fault-tolerant
consensus in asynchronous systems do have wide-ranging applications for real distributed systems.

To summarize, this book provides a useful and well-written introduction to distributed com-
puting, especialy for advanced undergraduates and beginning graduate students.

Review of3

Hilbert’s Tenth Problem
Author: Yuri Matiyasevich

Publisher: The MIT Press, 1993
Hardcover: ISBN 0-262-13295-8

xxii+ 264 pages

Reviewer: Randall Pruim

Department of Mathematics and Statistics
Calvin College

Grand Rapids, MI 49506

3 c© Randall Pruim, 2000

3

rpruim@calvin.edu

1 Overview

In 1900, the mathematician David Hilbert gave an address in which he provided a collection of
problems “that the nineteenth century left for the twentieth century to solve.” [Matiyasevich, page
xix] This address was subsequently expanded into a version that appeared as an article and has
since been translated and reprinted several times (see, for example, Mathematical Developments
Arising from Hilbert’s Problems, vol. 28 of Proceedings of Symposia in Pure Mathematics, pp.
1–34, AMS, 1976). Of Hilbert’s problems, one (the tenth) was what we now refer to as a decision
problem, namely:

Given a diophantine equation with any number of unknown quantities and with
rational integral numerical coefficients: To devise a process according to which it can
be determined by a finite number of operations whether the equation is solvable in
rational integers. [Hilbert, 1900]

A diophantine equation is specified by a multi-variate polynomial with integer coefficients
D(x1, . . . , xk) and a domain X from which a solution x1, . . . , xk ∈ Xk to the equation

D(x1, . . . , xk) = 0

is sought. Using this notation, a more modern formulation of Hilbert’s Tenth Problem is the
following:

Devise an algorithm that on input of (a code for) a diophantine equationD(x1, . . . , xk)
determines (deterministically, in finitely many steps) whether or not D(x1, . . . , xk) = 0
is solvable over the integers, that is with X = Z.

This problem of Hilbert led to 70 years of research that eventually culminated in its negative
solution: There is no such algorithm. This book presents a complete, self-contained proof of
this fact, as well as a number of applications and extensions of the techniques involved from the
perspective of one of the key researchers involved.

2 Summary of Contents

The content of the book is divided into two halves of approximately 100 pages each. The first
five chapters (and the brief appendices presenting some results from number theory) provide a
self-contained, complete proof of the negative solution to Hilbert’s Tenth Problem. Chapters 6
through 10 introduce various extensions and applications of the results and techniques used in
solving Hilbert’s Tenth Problem. There is no mention, however, of any partial results which arose
in the failed attempts to find a positive solution to Hilbert’s Tenth Problem.

Chapter 1 is a short and straightforward chapter in which Matiyasevich presents the definitions
and basic properties of the main “diophantine objects” of study in the book: diophantine equa-
tions (and systems of equations), sets, relations, and functions. Several equivalent formulations of
Hilbert’s Tenth Problem are also presented, including considering diophantine equations over the
domain X = N .

4

A diophantine set A (of singletons) is a set defined by

A = {a | ∃x1, . . . , xkD(a, x1, . . . , xk) = 0} ,

where D is a polynomial with integer coefficients, and a and the xi range over the natural numbers.
With this definition, a stronger result that implies the negative solution to Hilbert’s Tenth Problem
can be stated: The diophantine sets are precisely the computably enumerable sets. For those familiar
with some computability theory, this stronger form of Hilbert’s Tenth Problem can serve as a nice
framework for remembering the results presented here in terms of diophantine sets. (It also can
serve to dull some of the mystery, since one needs to remember that for a long time this equivalence
was suspected by many not to hold.) Definitions of the other diophantine objects are analogous.

Chapter 2 is the most difficult chapter in the first part of the book and presents a proof that
exponentiation is a diophantine function of two variables. Chronologically, finding a diophantine
relation of exponential growth was “the last missing link in establishing the algorithmic unsolvabil-
ity of Hilbert’s Tenth Problem,” [page 38], and the original proof by Matiyasevich used a relation
derived from the Fibonacci sequence. The improvements of this original technique to show (di-
rectly) that exponentiation is diophantine simplify the remaining argument, since there are many
things that are quite naturally expressed using exponential diophantine equations that are not eas-
ily expressed using only ordinary diophantine equations. (Imagine trying to formulate Fermat’s
Last Theorem, for example, as an ordinary diophantine equation rather than as an exponential
diophantine equation.)

The proof presented in sections 2.1–2.4 is quite technical and the motivation for some of the
steps is not immediately clear, but these sections can easily be skipped on a first reading and the
remainder of the first part of the book is considerably easier to read.

Chapter 3 deals with three possible ways to code sequences of numbers as single numbers: Cantor
codes, Gödel codes (based on the Chinese Remainder Theorem), and positional codes (based on
exponentiation of a constant base). The latter of these is the most useful in the remainder of the
text (although the other two reappear from time to time as well) largely because certain operations
on codes (such as concatenation, even with mixed bases) can more easily be demonstrated to be
(exponential) diophantine using positional coding.

Using the results on exponential diophantine equations from the previous chapter, Matiyasevich
uses positional coding to demonstrate that factorial, binomial coefficients and prime numbers are
exponential diophantine and hence diophantine. The fact that the set of primes is a diophantine
set is equivalent to the statement that there is a multivariate polynomial with integer coefficients
such that the (positive) natural numbers in its range (over inputs from the natural numbers) are
precisely the set of primes. In the commentary to this chapter, Matiyasevich points out that an
exponential diophantine representation for the primes was already known in 1952 (the result of
work by Julia Robinson), and at the time was considered to provide evidence that exponentiation
was probably not diophantine, since the existence of such a polynomial seemed unlikely.

Chapter 4 discusses the construction of universal diophantine equations and uses these to demon-
strate that there are diophantine sets with non-diophantine complement. In particular, it is shown
by diagonalization that the set of all codes of solvable diophantine equations (H) is a diophantine
set, but that its complement is not.

Chapter 5 puts the final pieces together to demonstrate that the diophantine sets are precisely
the computably enumerable sets. This chapter begins with a nice development of Turing machines
and quickly develops a large “tool chest” of useful machines by introducing two operations for
constructing new machines from old ones, denoted as if M1 then M2, and while M1 do M2 od.
From here it is a simple matter to show that every diophantine set is Turing semi-decidable (i.e.,

5

computably enumerable) by showing that Turing machines are capable of searching for solutions
to polynomial equations. More interestingly, it is also the case that every computably enumerable
set is (exponential) diophantine, i.e., that diophantine equations can “simulate” Turing machines.
Once the equivalence of computably enumerable and diophantine has been established, the only
remaining piece is the familiar result from computability theory that a computably enumerable
set is computable if and only if its complement is also computably enumerable. Then, since H is
diophantine (= computably enumerable), but its complement is not, H is not computable, so there
is no algorithm for determining in finitely many steps whether or not a given diophantine equation
has a solution.

Having presented a complete proof of the unsolvability of Hilbert’s Tenth Problem, Matiyasevich
turns in the second part of the book to applications. Chapter 6 deals with the elimination of
bounded universal quantifiers in expressions like

∃x∀y ≤ x∃z1 . . . zk [D(x, y, z1, . . . , zk) = 0] .

Once one knows the equivalence of diophantine and Turing representations from the previous chap-
ter, it is clear that such bounded quantifiers can be eliminated, but historically, other methods for
eliminating these bounded quantifiers were used in the original proof that exponentiation is dio-
phantine. Two such methods are presented in this chapter. The chapter concludes with a discussion
of simple sets (from a diophantine point of view).

Chapters 7 and 8 deal with various generalizations of the diophantine problem in which one is
interested in such things as whether a diophantine equation has finitely or infinitely many solutions,
diophantine equations over the Gaussian integers and over the rationals, and relationships between
the number of variables used in diophantine representations and the degree of the representations.
In particular, it is shown that every diophantine set has an exponential representation that uses
only three unknowns.

The final two chapters consider decision problems from outside number theory. Chapter 9
considers decision problems for real numbers and from calculus and shows, for example, that the
problems of determining whether a computable real is rational or determining whether a function
(from a suitably nice class of functions) has an anti-derivative in another (suitably nice) class of
functions are both undecidable. Chapter 10 considers decision problems for two kinds of games: a
“diophantine game” that is somewhat like an Ehrenfeucht-Fraise game and generalized versions of
knights on a chessboard.

3 Style

The style of the book is narrative but terse. The reader will immediately notice that the book
contains no theorems, at least none that are typographically distinguished in the usual manner of
mathematics books. Instead, results are developed and stated within the narrative. Fortunately
the statements of most of the important results are italicized and the sections are generally short
and well-named, so it is still possible to locate results fairly quickly.

The book is a translation (from Russian), but it reads as if it were not, although it does use
“semi-decidable” throughout instead of the more common “computably enumerable” (or “recur-
sively enumerable”).

The book makes extensive use of numbered equations, which is perhaps unavoidable with this
material, but requires a good deal of back-referencing by the reader. Consistent use of notational
conventions simplifies this somewhat, but most references to equations are made without any ex-

6

plicit indication of the content of the cited equation, and many pages include a dozen or more such
references, often from previous chapters.

Each chapter of the book is concluded with sections of exercises, open questions, unsolved
problems and commentary. The preface indicates that the exercises contain problems of “varying
difficulty,” and many are difficult or at least technically involved. The hints provided in the back
are sufficient for the more routine exercises, but often consist solely of references to the literature for
the more difficult problems, which the author admits “amount to small research problems” intended
to “present diverse results but without proofs.” [page xx] The commentary of each chapter seeks
to place the results of the chapter in context, relating it to the historical development of the proof,
unsuccessful attempts and partial results which came along the way and further developments and
applications of the techniques presented.

The bibliography contains an extensive (35 pages) list of references to literature related to the
negative solution of Hilbert’s Tenth Problem and other applications of the techniques involved.
There are indexes organized by notation, names and subject, but the latter of these is quite short.

4 Opinion

The author intends this book to be accessible to a “broad readership, especially to younger mathe-
maticians” and he succeeds in providing a self-contained, complete and systematic presentation of
the negative solution of Hilbert’s Tenth Problem that requires essentially no prerequisite knowledge.
The outline of the main proof is nicely motivated and clearly presented throughout the 100 pages
of the first half of the book. Motivation for the specific number-theoretic techniques involved along
the way is not always as clear, but most of the individual steps do not involve much more than
rudimentary knowledge in number theory (facts about prime numbers, congruences, and the like),
and the few more advanced results from number theory are nicely presented in the appendices.

While proofs of the main result of the book have appeared elsewhere, most of them either
presume more prerequisite knowledge or omit details of some of the number theory. So for those
interested in a complete proof, this is likely the best source available. In particular, Matiyasevich
has included several new proofs which streamline the argument.

For those whose appetite is not satisfied by the first half of the book, there are more than
enough additional applications presented in the second half, which according to the author have
not appeared in any collected form before. And the bibliography and commentaries together provide
a very thorough account of all the work that led up to the final solution to Hilbert’s Tenth Problem.

Lambda Calculi: A Guide for Computer Scientists§

by Chris Hankin

Review by: Christopher League
Yale University Computer Science

§Graduate Texts in Computer Science, Vol. 3; Oxford, 1994 (162 pages)

7

1 Overview

The λ calculus is an elegant computational model first described by Alonzo Church in 1932, and
now used extensively in the formal semantics of programming languages. Originally the inspiration
for the Lisp programming language, its typed variants are now the foundation for modern type-safe
languages such as Haskell and ML.

Terms in the λ calculus may be defined inductively as follows. Any variable x is a term. If M is
a term, then (λx.M) is also a term, called an abstraction. An abstraction is analogous to a function
in programming languages; x is the formal parameter and M is the body. Finally, if M and N are
terms, then (M N) is also a term. This term is called an application, and roughly corresponds to
a function call in a programming language. We can also define relations on λ terms to represent
various ways of reducing or converting one term to another. A standard rule called β reduces terms
of the form (λx.M)N to M [x := N], a substitution in which we replace all free occurrences of the
variable x in M with the term N .

The λ calculus is of fundamental importance to computer science; it plays a rôle not only in
programming languages, but also in the theory of computation. Since recursion and numerals can
both be encoded as terms, the λ calculus can simulate a Turing machine. And since the λ calculus
is simpler to describe and more programming-oriented than a Turing machine, perhaps it should
supplant (or at least supplement) Turing machines in the computer science curriculum.

This book is a short introduction to the basic theory of the type-free λ calculus, intended for
graduate students and advanced undergraduates. The only prerequisite, according to the author,
is a standard discrete mathematics course, covering logic and set theory. He intends for the topics
and presentation to be especially relevant to computer scientists (as opposed to, say, mathematical
logicians).

Chapters 1 through 3 cover the basics that any presentation of λ calculi must include: defini-
tions, substitution, reduction, normal forms, and the Church-Rosser theorem. The rest is a series
of loosely-related additional topics: combinatory logic, computability, types, practical issues such
as strictness analysis and type inference, and an introduction to other calculi used in computer
science. In the next section, I will briefly sketch each chapter, and conclude with my personal
impressions of the text.

2 Content summary

Chapter 1 is a 5-page overview of formal systems, BNF grammars, and mathematical induction. It
is probably insufficient if the reader is not already familiar with these topics. A more substantial
introduction may be found in Chapter 2. Using the propositional logic as an analogy, the author
introduces inductive definitions, axiom schemata, and inference rules. He then uses these tools to
define the lambda calculus, which includes syntax of terms and contexts, definitions of free and
bound variables, and an equivalence relation on terms.

Chapter 2 then considers substitution in more detail. Above, I said M [x := N] means to
replace free occurrences of x in M with the term N . We also must ensure that free variables in
N do not become bound in M . This may be accomplished by 1) renaming bound variables in M ,
2) using a convention wherein all bound variables are chosen to be different from free variables,
or 3) using de Bruijn notation, which eliminates variables altogether in favor of natural numbers.
de Bruijn notation, while difficult for humans to manipulate, is often used in implementations and
machine-checkable proofs.

Next we encounter the fixed point theorem, a rather surprising first result, crucial for the

8

account of computability in Chapter 6. The theorem states that for any term F there exists a term
X such that the application of F to X is equivalent to X . The proof is constructive; it shows how
to create the fixed point of any term. Fixed points always involve self-application, as in the term
Y ≡ (λx.(x x)) (λx.(x x)). Finally, Chapter 2 defines consistency and completeness, arguing that
the λ calculus enjoys both.

Chapter 3 covers reduction, a reflexive and transitive (but not symmetric) relation between
λ terms that intuitively corresponds to computation. A reduction should be compatible as well,
meaning that it behaves the same way in any context. The β rule above induces one such reduction.
We then explore confluence (the Church-Rosser property) which states that any two reduction
sequences starting from equivalent terms have a common reduct. A normal form is also defined as
a term which contains no redexes.

Now that the very basics of the λ calculus have been introduced, the author turns to Schönfinkel
and Curry’s Combinatory Logic in Chapter 4. This is a calculus in which two so-called combinators,
S and K (with “hard-coded” equivalence rules), are sufficient in place of λ abstraction. Surprisingly,
the fixed point theorem still holds. The author then relates CL to the λ calculus: S and K can
be defined using λ terms, and a new abstraction operator λ∗ may be built using only S and K.
Finally, he defines a compiler from λ terms to combinatory logic, and shows how to optimize the
resulting code using CL equivalences.

Chapter 5 investigates the model theory of the λ calculus. First, to introduce the idea, the
author describes a set-theoretic model for propositional logic. Unfortunately, a model for λ calculus
is not so simple due to self-application. It would require a set D which is isomorphic to its own
function space, D → D. Thus the formulation of the λ model is difficult to understand without
some background in domain theory.

Chapter 6 gives an account of computability based on the λ calculus. We first revisit the
fixed point theorem; fixed point combinators are essential for computability because they enable
recursive definitions. Next we explore two ways of encoding numeral systems as λ terms. The first
scheme pairs a number with a place-holder to represent its successor. This way we can retrieve the
predecessor in constant time. Addition and multiplication can be defined as recursive functions.
The second scheme uses the more familiar Church numerals. Here, finding the predecessor is linear,
but addition and multiplication can be encoded without recursion.

Given recursion and numerals, the author proposes a class of numeric functions that are λ-
definable. He then establishes a link between λ-definable and partial recursive functions, which
are known to be Turing computable. Finally, we see that Gödel’s incompleteness theorem has an
analog in the λ calculus. Determining whether an arbitrary λ term has a normal form is undecidable
(analogous to the halting problem for Turing machines).

Chapter 7 introduces a few typed λ calculi. In the simply typed λ calculus, every term has
a single known type associated with it. λ abstractions have arrow types (σ → τ); if x has type
(σ → τ) and y has type σ, then the application (x y) has type τ . Many terms from the type-
free λ calculus cannot be assigned types in this system; most notably, self application is banned
because a term cannot be both a function type and the correct argument type. This means we
cannot construct fixed points; since there is no recursion, all reductions terminate with a normal
form. There exists an algorithm to infer the type of any term.

Next we see the polymorphically-typed λ calculus of Girard and Reynolds. Types can contain
variables, bound by the logical quantifier ∀ (e.g., ∀α.α→ α is the type of the polymorphic identity
function). The quantifier is introduced by a new type abstraction Λ. Since type inference for this
calculus is undecidable, we annotate the argument of each λ abstraction with its type; then type
checking is decidable. Finally, the author introduces a calculus with intersection types in which a

9

term can be considered to have two types simultaneously. This system can express the type of self
application: (λx.(x x)) has type (σ ∩ (σ → τ)) → τ for all types σ and τ . Now, all terms of the
type-free λ calculus can be assigned types, but type checking is undecidable.

Chapter 8 addresses an assortment of practical issues, including evaluation order, reduction
machines, strictness analysis, and polymorphic type inference. In Chapter 2, evaluation order was
left undefined; but when implementing a programming language based on the λ calculus, this is
an important decision. Theoretically, normal order is traditionally used because it ensures that a
normal form is reached if one exists. It is not practical, however, because it evaluates arguments
every time they appear in the body of a function. Applicative order, used by ML, evaluates
arguments exactly once, but might not reach a normal form, even if one exists; consider a constant
function (λx.3) applied to a non-terminating argument. Lazy evaluation, used in Haskell, evaluates
arguments at most once, and would seem to be the best of both worlds. However, it is not as
efficient to implement as applicative order, and is somewhat trickier to describe formally as well.

Reduction machines are useful for formally describing the differences between these evaluation
orders; some of the ideas from combinatory logic reappear here. Strictness analysis determines
statically that particular sub-terms must be evaluated; this information is useful for avoiding the
overhead of lazy evaluation when an argument is certain to be used. Finally, Chapter 8 investigates
polymorphic type inference. In the previous chapter, we learned that type inference is undecidable
in the polymorphically-typed λ calculus. Milner discovered, however, that if we restrict how poly-
morphism is introduced, we can formulate an implicitly typed polymorphic calculus and give an
algorithm for type inference. This calculus is often called Mini-ML.

The last chapter introduces a few additional calculi. Abramsky’s Lazy λ calculus more accu-
rately describes a lazy implementation of plain λ. Boudol’s γ calculus is process-based, extending
λ with non-determinism and concurrency. It is similar in flavor to Milner’s Calculus of Com-
municating Systems. Finally, the λσ calculus is equivalent to plain λ, but it explicitly includes
substitution machinery as part of the calculus. In plain λ, even with de Bruijn indices, substitution
is meta-linguistic.

3 Opinion

It was the author’s intent to make this topic comprehensible and relevant to computer scientists.
He states in the preface:

I strongly believe that there is a distinct cultural difference between computer science
students and their mathematically trained counterparts. The former have sound com-
putational intuitions but are generally unfamiliar and uncomfortable with formalism.

I certainly agree with the distinction. Judging from the text, however, I think the author is
somewhat optimistic about the formal background of computer scientists, even those bound for
graduate school.

Chapter 2, for example, contains at best a perfunctory explanation of all the fundamentals:
syntax, equivalence, three approaches to substitution, fixed points, consistency, and completeness
are squeezed into only 18 pages. Where appropriate, examples from programming languages are
inserted, but these feel like concessions to the non-mathematical segment of the audience in an
otherwise mathematical text.

Similarly, the connection between the λ calculus and the theory of computation in Chapter 6
requires a thorough understanding of partial recursive functions, recursively enumerable sets, and

10

Gödel numbering. I think an account of the theory of computation using the λ calculus as the
primary model would be much more interesting.

Nevertheless, the book does succeed in pulling together a collection of topics that are relevant to
computer science. The long-standing canonical reference¶ does not include the topics of Chapters 8
and 9, for instance, and is generally less concerned with implementation issues (reduction machines,
lazy evaluation, and explicit substitutions). With the help of a motivated instructor, this book could
be the primary text for an effective course on the λ calculus.

Review of‖

Systems that Learn (second edition)
Authors: Jain, Osherson, Royer, Sharma

Publisher: The MIT Press, 1999
Hardcover: ISBN 0-262-100770

317 pages

Reviewer: Carl Smith
While this new edition shares much in common with the first edition, it is hardly fair to call it

the “second edition.” Firstly, only one of the four authors was among the triumvirate that produced
the first edition. Secondly, although the new Systems that Learn is 50% larger than the first, it is
not just an augmentation of more recent material. For sure, new material has been added, but more
importantly, there has been a serious reorganization reflecting the codification of the fundamental
core results in the intervening years. Furthermore, while the first edition focused primarily on
language, as opposed to function, learning, the recent edition presents a balanced treatment of
both threads. Like the first edition, there are numerous exercises, many of which point to extension
of the material covered, making the book suitable for use as a graduate course text.

The obligatory introduction lays the groundwork for the technicalities to follow by formalizing
somewhat the learning process. The first (of three) parts is rounded out by an in depth discussion
of how to treat data, hypotheses and scientists as formal processes and some of the fundamental
ramifications of doing so. Making these notions computable also received serious consideration here.
The learning of languages and functions are considered in tandem. The presentation is coherent
throughout, laying out the basic principles and paradigms considered in the rest of the book.

The second part of the book concerns various fundamental generalizations of the basic paradigm
of learning. The discussion starts with various strategies for learning. These strategies revolve
on around constraining the learning process in some way. For example, demanding that every
hypothesis is consistent with all of the observed data produces an initially surprising constriction
of what is learnable. The discussion of various constraints leads naturally to considering various
criteria of learning. There are several notions of what it might mean for a scientist (modeled as an
algorithm) to succeed at learning some function or language, given suitable examples. For example,
does the learning happen only in the limit, or perhaps, after a fixed number of conjectures?

Another historically important issue that ramifies as an identification criteria is the proximity
of the produced answer to the desired result. From the earliest days of the learning theory it
was realized that science proceeds quite nicely utilizing only partially correct theories. The same
phenomenon is also abundantly clear in human activities as well. Consequently, there has been much
research on learning criteria where the learner is only required to come up with an “approximation”
of the desired result. Different notions of “approximation” give rise to different identification
criteria, most of which explained and discussed in the volume under review.

¶Barendregt, H.P. The Lambda Calculus: Its Syntax and Semantics. Elsevier: Amsterdam, 1984
‖ c© Carl Smith, 2000

11

The second part of the book is rounded out with a discussion of of various data environments.
The early formal studies of learning assumed that the data arrived unstructured and unmolested.
More recent studies reported on consider models of inaccurate data and data with some extra
structure, as is the case when the data is delived in some regular order.

The third and final part of the book does what any book attempting to survey a research area
must do, that is, consider the additional topics that seem to be important but have not yet been
integrated into the fundamental core knowledge of the area. As is the nature of such adventures,
there are some omissions, and the authors cannot be faulted for them. An entire chapter is devoted
to team and probabilistic learning. Within the formal study of learning, it is rare when two different
criteria turn out to capture the same collection of learnable phenomena. The deep relationships
between learning by teams of algorithms and learning via probabilistic learning algorithms continues
to stimulate much research. The presentation here is a excellent condensation of this line of inquiry.

The difficulty of learning persuaded many researchers to consider learning with some sort of
additional information. Of course, there are a variety of ways to formalize the notion of “extra
information.” Among the techniques discussed are using bounds on the size of the answer sought
and use of a known good approximation. A separate chapter is devoted to the use of an oracle
during learning. Oracle learning gives the learning algorithm an arbitrary consultant to query.
The results here focus on how the expressive power of the oracle trades off against the class of
phenomena that is learnable.

Defining the complexity of learning has always been on onerous problem due to the fact the
complexity of the learning algorithm, in the traditional complexity of algorithms sense, is much
different from the intuitive notion of learning complexity. Many of the various and sundry notions
of the complexity of learning are discussed in a chapter of the additional topics section.

The book concludes with a modern discussion of the enumeration technique. This technique
dates to the earliest days of formal learning theory. The basic idea is to start with a list of possible
answers, examine data to eliminate them one at a time, finally arriving at a potential answer that
cannot be eliminated by the data. This final answer must be correct, since it is a program that
agrees with all the data. A haunting question has been “Is this all there is to learning, the rest
being just the complexity of the process?” The key to understanding the issues raised turned out
to be one of transformations. The same issue seems to be at the core of the pedagogical technique
of giving examples. If it is the case that some phenomenon can be learned, and all transformations
of it can also be learned, then we say the original phenomenon can be learned robustly. In the
classroom, we all hope that our students will learn from our examples to apply the techniques
learned in new situations later in their lives. Are we teaching them robustly? This research area
is fraught with difficulty and has been a catalyst to many elegant results. The third edition of
Systems that Learn will undoubtedly contain more material on this topic.

Carl H. Smith
College Park, MD
November 4, 1999

12

