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Welcome to the Book Reviews Column. We hope to bring you at least two reviews of books
every month. In this column four books are reviewed.

1. Proofs and Confirmations: the story of the alternating sign matrix conjecture , by
David Bressoud. This is the exciting story of how the alternating sign conjecture was solved.
It gives a nice view of how mathematics is actually done. Reviewed by Jeremy Avigad.

2. Proofs and Refutations by Imre Lakatos. This is an classic work in the philosophy of
mathematics. It forces us to think of what we do in a new light. It is reviewed here since it
is a nice companion review to Proofs and Confirmations. Reviewed by William Gasarch.

3. Dynamic Logic (Foundations of Computing) by D. Harel, D. Kozen and J. Tiuryn.
This is a book about assigning logic and semantics to programs. Reviewed by Riccardo
Pucella.

4. Analysis of Algorithms:An Active Learning Approach by Jeffrey J. McConnell. Re-
view by Christopher Jennings This is a undergraduate text in algorithms that encourages a
more hands-on approach then most books.

Review of
Proofs and Confirmations: the story of the alternating sign matrix conjecture 2

Author of Book:David Bressoud
Co-published by Cambridge University Press and MAA in 1999

256 pages, $23.00
Author of Review: Jeremy Avigad

1 Overview

An alternating sign matrix is a square matrix whose entries are all either 0, 1, or −1, with the
properties that each row and each column sums to 1, and that the non-zero entries in each row and
column alternate in sign. For example,




0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0
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is such a matrix. In the mid-1980’s William Mills, David Robbins, and Howard Rumsey found
themselves wondering how the number of n× n alternating sign matrices, An, grows as a function
of n. On the basis of combinatorial fiddling and brute calculation, they came up with the following
formula:

An =
n−1∏

j=0

(3j + 1)!

(n+ j)!
.

This equation came to be known as the ASM conjecture, and computational verification of the first
20 cases made it practically certain to be correct. But a proof remained elusive, despite the simplic-
ity of the conjecture and a good deal of effort from the community of algebraic combinatoricists.
Doron Zeilberger finally announced a proof in 1992, but it was not until 1995 that all the gaps
were filled in and all the details were checked carefully; certifying the resulting 71 page manuscript
employed the efforts of 88 referees and a computer. Soon after, Greg Kuperberg discovered another
proof, exploiting connections with physicists’ models of “square ice.” Zeilberger was then able to
use this connection to establish refinements of the alternating sign matrix conjecture as well.

Proofs and Confirmations fills out this story gracefully, guiding the reader through the long
and elaborate proofs. In the introduction, David Bressoud writes:

My intention in this book is not just to describe this discovery of new mathematics, but
to guide you into this land and lead you up some of the recently scaled peaks. This is not
an exhaustive account of the marvels that have been uncovered, but rather a selected
tour that will, I hope, encourage you to return and pursue your own exploration.

This passage is representative of the tenor of Bressoud’s exposition.

2 Contents and audience

In many ways, Combinatorics is a black sheep among the subjects of pure mathematics. It is often
viewed as a study of isolated puzzles, lacking a deep conceptual framework and unifying ideas, and
poorly integrated with the broader history and culture of mathematics.3 Proofs and Confirmations
may not do much to dispel the notion that combinatoricists like puzzles: alternating sign matrices
arose incidentally in the study of an algorithm for evaluating determinants, and in Bressoud’s
account mathematical curiosity and the spirit of a challenge are the main motivating factors. But,
in the end, the connection with square ice shows that the research has applications to statistical
mechanics; and the book’s final chapter indicates that there are additional ties to representation
theory and the study of Lie algebras.

Indeed, Bressoud’s book goes a long way towards meeting the objection that combinatorics is
a subject without a broader context. In working through the book, one finds a wealth of generally
useful concepts (matrices and determinants, binomial coefficients, generating functions, hyperge-
ometric series, Pfaffians), and fundamental methods (including various forms of induction and
recursive definition, and the strategy of exploiting symmetries that become apparent when one
varies the representation of a problem). One also encounters connections to a number of branches
of mathematics, including linear algebra, the study of differential equations, and the study of elliptic
functions.

Finally, Bressoud shows us that algebraic combinatorics has a long and rich history. In the course
of the narrative we encounter figures ranging from the fourteenth century Chinese mathematician

3For a discussion of these views and a spirited response, see W. T. Gowers’ “The two cultures of mathematics” in
V. Arnold et al., eds., Mathematics: Frontiers and Perspectives, American Mathematical Society, 2000, pages 65–78.
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Chu Shih-Chieh, to Viete, Newton, Gauss, Sylvester, Cauchy, Jacobi, Cayley, and Weyl, along
with many others. These names are not dropped casually, but are, rather, introduced with brief
contextual sketches that help the reader place them in the web of mathematical ideas. Even Charles
Dodgson (better known as Lewis Carroll) makes an appearance, as the inventor of the algorithm
for computing determinants that inspired the study of ASM’s in the first place.

Proofs and Confirmations should appeal to a number of audiences. First, of course, are students
and researchers in algebraic combinatorics and related fields. The book is streamlined to bring the
reader to the forefront of contemporary research as quickly and smoothly as possible. The nature
of the subject makes it impossible to avoid pages of detailed calculations, but Bressoud has a gift
for framing these calculations with the ideas and intuitions that guide them.

The fact that the book requires nothing more than familiarity with linear algebra, however,
makes it accessible to a much wider audience. Its particular focus renders it unsuitable as a
textbook for an introductory course in, say, Discrete Mathematics; but it could well be used in an
undergraduate or graduate seminar, where the emphasis is on fostering the methods of mathematical
exploration rather than conveying a standard body of content. Each chapter is followed by a long
list of thoughtful and illuminating exercises, many of which encourage further experimentation with
a symbolic computation package like Mathematica or Maple.

More generally, the book will appeal to anyone who likes algebra and combinatorics, and is
curious as to what is currently going on at the intersection of these two disciplines. (I should
make it clear that it is this group to which I myself belong.) Proofs and Confirmations is not light
recreational reading, and following the proofs through to the end requires effort and endurance.
But many of the topics developed along the way also stand alone, and can be enjoyed in their
own right. For example, the reader can flip open to page 208 and learn that the determinant of
a skew symmetric matrix is equal to the square of the associated Pfaffian. The book sketches the
history behind this discovery, due to Cayley, and provides exercises that guide the reader through
an elegant proof.

Finally, Bressoud has something to say about the development of mathematical ideas, based
not only on the book’s historical allusions, but also on comments from contemporary researchers.
Bressoud provides us with snippets from verbal and written accounts from some of the key players
in the proof of the ASM conjecture, and even a few photographs. The book’s title was inspired by
Imre Lakatos’ Proofs and Refutations, which, in turn, borrows from Karl Popper’s Conjectures and
Refutations. In adapting Popper’s analysis of the sciences to the history of mathematics, Lakatos’
book created a stir when it was published in 1976; Lakatos aimed to show that formal models of
mathematics based on the axiomatic method do not do justice to the “logic of discovery,” i.e. the
heuristic development of the subject.4

Although Bressoud tries to fill out the picture of mathematical discovery in ways that com-
plement Lakatos’, Proofs and Confirmations is a very different book. Proofs and Refutations was
intended as a philosophical work that uses mathematical and historical examples to support its
claims. In contrast, Proofs and Confirmations does not try to provide a sustained historical or
philosophical analysis; the primary emphasis is on the mathematics, with philosophical remarks
confined mainly to the book’s introduction and conclusion. The latter draw on the usual metaphors
of mathematical inquiry—exploration, discovery, and creation—and supplement them with some

4Lakatos’ rhetoric is less damning when one recognizes that the axiomatic method was not designed to play this
role. But Lakatos’ writings do contain important insights, and are still widely discussed today. I am partial to a
critique of Lakatos’ work by Solomon Feferman, “The logic of mathematical discovery versus the logical structure of
mathematics,” in P. D. Asquith and I. Hacking, eds., PSA 1978: Proceedings of the 1978 Biennial Meeting of the
Philosophy of Science Association, vol. 2, 1981, pages 309–327, recently republished in In the Light of Logic, Oxford
University, 1998, pages 77–93.
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new ones. For example:

The doing of mathematics is more akin to being dropped on a distant and unknown
mountain peak and then seeking to find one’s way home.. . . Research in mathematics
almost never begins with careful definitions and lemmas on which we build until some-
thing interesting is discovered. It starts with the discovery, and proof is the process of
tying that discovery back to what is already known. (p. 258)

In the same discussion, mathematics is also compared to archeology, where objects are found in
isolation and then related to their social, cultural, and historical context:

This is the role of proof, to enrich the entire web of context that leads to understanding.
The mathematician does not dig for lost artifacts of a vanished civilization but for the
fundamental patterns that undergird our universe, and like the archeologist we usually
only find small fragments. As archeology attempts to reconstruct the society in which
this object was used, so mathematics is the reconstruction of these patterns into terms
we can comprehend. (Ibid.)

Mathematics tends to resist simplifying characterizations, and one should be wary of drawing
sweeping conclusions on the basis of one case study. Moreover, as a branch of mathematics, algebraic
combinatorics has some atypical features. For example, the accessibility of its basic notions to a
bright high school student, and the amenability of its conjectures to computational verification,
give the subject a flavor that is distinct from, say, that of algebraic geometry or ergodic theory.
Bressoud’s remarks do, however, contain interesting insights into the attitudes and motives that
drive mathematical inquiry, and they make it clear that there is much more to be said about the
process of mathematical discovery than can be couched in terms of formal axiomatic proof.

3 Opinions

Proofs and Confirmations is a lovely book, a pleasure to read and to learn from. The exposition is
clear and well organized, and anything but stodgy. As an example, consider the following colorful
passage:

Let us pause for the moment to appreciate the audacity of what we are proposing. . . Equation
(5.4) is a system of r+ 1 equations in r unknowns. There is no guarantee that it has a
solution. The only reason to proceed is the observation that we seem to have completed
a missing symmetry. To a mathematician, there could be no better reason. (page 158)

This breathless exuberance may strike the reader as a little campy, but comments like these serve
a useful purpose, providing structure to a long proof, and highlighting key ideas and intuitions.

It would be nice if mathematical narratives like Bressoud’s were more common. This is not to
deny the importance of traditional textbooks and references, where style and content is dictated
by the need to lay out the fundamentals of a subject, rather than carry the reader in pursuit of
a single thread. After all, setting forth the basics in an organized manner is certainly important.
But so is the joy of buckling down and following a line of inquiry just for the fun of it, and few
books manage to share that enjoyment as well as this one does.
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Review of Proofs and Refutations5

Author of Book: Imre Lakatos
Published by Cambridge University Press

174 pages, $27.95
Author of Review: William Gasarch (gasarch@cs.umd.edu)

4 What is this book about?

The following questions have been raised by some philosophers of mathematics.

1. When is a statement considered true?

2. What are the standards of rigor? Are they absolute?

3. Is certainty possible?

4. When is a statement considered interesting?

The formalists believed that rigorous proof from axioms constituted mathematical truth and
that certainty is possible. Moreover, they identified math with formal proof. Lakatos disagrees and
his book is a counterargument.

The book consists mainly of a dialogue between a teacher and several students about the
following statement

“For all polyhedra V −E +F = 2 where V is the number of vertices, E is the number of edges,
and F is the number of faces.”
The dialogue is actually a presentation of various thoughts on this statement from many mathe-
maticians over the last 200 years. There are many footnotes that say who is begin paraphrased;
however, the dialogue format allows the arguments to flow smoothly. In the course of the dialogue
proofs are offered, counterexamples are found, and statements are modified. The dialogue vividly
shows how standards of rigor have changed and how elusive certainty is. It also (implicitly) calls
into question the current confidence that we now have it right.

After the dialogue Lakatos claims that mathematical discovery follows the following simple
pattern.

1. Primitive conjecture.

2. Informal proof (perhaps a thought experiment).

3. Counterexamples are found (perhaps counterexamples to the proof, perhaps counterexamples
to the conjecture).

4. Proofs are re-examined and a new primitive conjecture is found.

Lakatos then shows this pattern in the history of Cauchy’s theorem that the limit of a converging
series of continuous functions is continuous (this statement is actually false, you need to assume
uniform convergence). This process of mathematical discovery illustrates that “final” proof from
axioms is neither the heart of the matter nor the last word.

5 c©2001, William Gasarch
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5 Further Reading

Here is a list of other material on the issues raised by Lakatos.

1. The Logic of Mathematical Discovery versus the Logical Structure of Mathematics. Included
in the book In the Light of Logic by Solomon Fefferman. (The book was published in 1998,
but this article originally appeared in the Proceedings of the 1978 Biennial Meeting of the
Philosophers of Science Association, vol 2, 309-327.) This is a fine criticism of some of Lakatos’
points. To name two such points: (a) most mathematicians work in domains where certainty
is possible and common, and (b) the history presented is not really correct but is arranged
to make Lakatos’ points.

2. Lakatos’ Philosophy of Mathematics: A historical approach by Koetsier. (Published in 1991.)
This book looks at some episodes in the history of mathematics and sees how well they fit
Lakatos’ framework.

3. Social Constructivism as a Philosophy of Mathematics Edited by Paul Ernest. This is a
collection of essays about mathematics. The authors all think that math is more a social
construct then an absolute science. There is a chapter about Lakatos’ work. The book has
some valid points to make, though I think it is too extreme.

4. Conjectures and Refutations: The Growth of Scientific Knowledge by Karl Popper. (Published
in 1963, and known to Lakatos.) Popper was concerned with Philosophy of Science. He
believed that certainty was elusive in science and that scientists should propose ways to
refute their own theories- if they survive those refutations then they are accepted (for now).
Lakatos would agree that certainty is elusive.

5. The Structure of Scientific Revolution by Thomas Kuhn. (Published in 1962. Not referenced
in Lakatos’s book which was written at about the same time but not published until much
later. It is not clear if Lakatos knew of Kuhn’s ideas.) Kuhn claims that in practice when
scientists do normal science, they do not run experiments to test their theories. They adapt a
paradigm (way of looking at things) and all the experiments they do are within that paradigm.
It takes drastic evidence and time to change paradigms. When this happens the paradigm
gets radically overthrown (a revolution) and a new paradigm sets in. Kuhn views on science
can be seen as analogous to Lakatos in that certainty is elusive and part of what is accepted
depends on the prevailing attitudes. (Over time Kuhn’s views have mutated into the point of
view that there is no objective truth and that all of science depends on social surroundings.
See The Sokal Hoax: The sham that shook the academy by the editors of Lingua Franca.)

6. Social process and Proofs of Theorems and Programs by DeMillo, Lipton, and Perlis. This
paper’s goal was to show that program verification is not a realistic goal; however, it makes
the (more interesting) point that in mathematics a theorem’s proof is not the end point for
knowing that it is true- it is only the beginning. The work needs to be passed around and
the acceptance of its truth is more of a social process among mathematicians.

7. The following papers illustrate that the questions of what criteria we use to establish truth is
not a dry topic occupying philosophers far removed from the practice of math, but is actually
being debated within the math community.

(a) “Theoretical Mathematics”: Toward a cultural synthesis of mathematics and theoretical
physics by Jaffe and Quinn, Bulletin of the AMS, Vol 29, No 1, July 1993, pages 1-13.
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(b) On Proof and Progress in Mathematics by Thurston, Bulletin of the AMS, Vol 30, No
2, April 1994, pages 161-177.

(c) Responses to “Theoretical Mathematics”: Toward a cultural synthesis of mathemat-
ics and theoretical physics by Atiyah, Borel, Chaitin, Fridean, Glimm, Gray, Hirsch,
MacLane, Mandelbrot, Ruelle, Schwarz, Uhlenbeck, Thom, Witten, Zeeman. Bulletin
of the AMS, Vol 30, No 2, April 1994, pages 178-207.

(d) Response to Comments on “Theoretical Mathematics” by Jaffe and Quinn Bulletin of
the AMS, Vol 30, No 2, April 1994, pages 208-211.

6 Opinion

The introduction to Lakatos’ Philosophy of Mathematics: A historical approach contains the fol-
lowing quote:

“This study is a contribution to the philosophy of mathematics and like most philosophical
treatises it neither addresses itself to any practical problem, nor does it solve them.”

This quote raises the question “Is this type of material worth reading?” The answer is yes.
Just as people in (say) AI should have a nodding acquaintance with NP-completeness, Computer
scientist theorists should have a nodding acquaintance with Philosophy of Mathematics. We are in
a young evolving field that is still defining new terms and concepts. It is helpful to realize that we
have underlying assumptions and what they are. Consider the following examples.

1. A set A is NP-complete if A ∈ NP and (∀B ∈ NP )[B ≤pm A]. Cook originally defined this
concept as A set A is NP-complete if A ∈ NP and (∀B ∈ NP )[B ≤pT A]. Other similar
definitions are also possible. It is not clear which one is “correct” or if any are.

2. There were several variants of ZK (zero-knowledge) and even some proofs that used the term
before it was formally defined (The Knowledge Complexity of Interactive Proof-Systems by
Goldrich, Goldwasser, and Rackoff, SICOMP Volume 18, 1989). Under the formal definition
of ZK, the proof that Graph Isomorphism is in ZK has to be done sequentially and not in
parallel. But the parallel protocol seems to not leak any knowledge. Does the parallel protocol
leak knowledge or not? If it does not, then perhaps the definition of ZK should be changed?

7 Parting Thoughts

Lakatos’ book (and others) are excellent to make you think about what math is and how much it is
affected by the times it is developed. These books are less good at reaching a final conclusion. Past
a point the never ending debate and lack of resolution can get tiring. It is good to be acquainted
with the issues raised; however, after a while one longs to read a proof of a theorem.
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Review of Dynamic Logic (Foundations of Computing) 6

Authors of Book: D. Harel, D. Kozen and J. Tiuryn
Published in 2000 by MIT press, 450 pages, $50.00

Review by Riccardo Pucella, Dept of CS, Cornell Univ

Introduction

In the 1960s, as programming languages were being used to write larger programs, those programs
became harder to understand, and people began to worry about issues such as correctness, that is,
determining whether a program computed what it was supposed to compute. As a consequence,
researchers started to look into the pragmatics of programming, leading among others to a criti-
cism of the GOTO statement [2] and the development of structured programming by Knuth and
Wirth. These greatly helped writing programs that were easier to understand, but the issue of
showing program correct remained. Undoubtedly helped by the fact that programs had a cleaner
structure, researchers began investigating formal approaches to proving programs correct, or, in
general, proving that programs satisfied properties of interest. Most approaches involved deriving
the proof of a property as one was writing the program, taking advantage of the structured way
these programs were written [3, 8]. These approaches were formalized, leading to the total or partial
correctness assertions of Hoare [10] or the weakest-precondition calculus of Dijkstra [3]. Essentially,
the logic of Hoare dealt with assertions {A}P{B} around a program P , indicating that if A were
true, executing program P would result in B being true. Inference rules indicated how to transform
assertions about programs into assertions about larger programs. For instance, if {A}P1{B} and
{B}P2{C} were true, then one could infer that {A}P1;P2{B} was true, with the intuitive reading
of P1;P2 as the sequential composition of P1 and P2. Many more formal systems along such lines
were devised, and they collectively acquired the name logics of programs, or program logics.

In a 1976 landmark paper, Pratt recognized that many such program logics could best be
understood as modal logics, by essentially associating with every program a modal operator [13]. His
idea was developed and refined by Fischer and Ladner [6] and others, culminating into a particular
form of program logic called Dynamic Logic. Basically, the recognition of the relationship between
program logic and modal logic allowed researchers to make use of the vast array of results on modal
logics.

The book “Dynamic Logic”, by Harel, Kozen, and Tiuryn, offers a self-contained introduction
to the subject. The earlier treatments on the subject are either dated, such as the survey by Harel
[9] giving the state of the field in 1984, or study Dynamic Logic as a non-trivial extension of modal
logic [7]. The latter approach is much more abstract and technically involved. In this review, I
hope to give a taste for the subject by looking at its simplest incarnation, the propositional variant
of Dynamic Logic, called PDL. (The book describes both the propositional and the first-order
variants.) Following which, I will return to the structure of the book, and some personal opinions.

Propositional Dynamic Logic

Let’s start from the basics. Recall (classical) propositional logic: start with a set Φ0 of primitive
propositions {p1, p2, . . .}, where a primitive proposition can be understood as a basic fact about
which we want to reason, such as “it is raining in Ithaca”, or “it is sunny in Ithaca”. We define
the set of formulas of the logic by induction: a primitive proposition is a formula, and if ϕ and ψ

6 c©2001, Riccardo Pucella
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are formula, so are ¬ϕ and ϕ ∧ ψ. We define ϕ ∨ ψ as an abbreviation for ¬(¬ϕ ∧ ¬ψ), ϕ⇒ ψ as
an abbreviation for ¬ϕ ∨ ψ, and ϕ ⇔ ψ as an abbreviation for (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ). To contrast
with the logics we will soon introduce, we refer to this logic (and related ones) as static logics.
Intuitively, such logics are used to reason about “unchanging” conditions. Propositional modal logic
is an extension of propositional logic that permits reasoning about modalities. Typical modalities
historically studied by philosophers include necessity, namely, that a formula ϕ is necessarily true
(written 2ϕ). One can discuss provability in such a framework, interpreting 2ϕ to mean “ϕ is
provable”. Temporal logic is a logic to reason about time, where 2ϕ is interpreted as “it is always
the case that ϕ” [4]. Epistemic logic is a modal logic to reason about knowledge, where 2ϕ (often
written Kϕ) is interpreted as “the agent knows ϕ” [5]. Modal logic is a general framework for
reasoning about such features, and it was Pratt’s insight that one could reason about programs in
such a setting. The intuition is to associate with every program α a modal operator [α], and to
interpret the formula [α]ϕ to mean “All halting executions of program α result in a state satisfying
ϕ”. (The program α may have many possible executions if it is nondeterministic.)

As we will be reasoning about programs, it is a good idea to focus on what the programs look like.
We start with an extremely simple language in which to express our programs. We take a set A =
{a1, . . .} of primitive programs. These are abstract operations we want our programs to perform.
Regular programs are formed by sequencing other programs α1;α2, by taking nondeterministic
choices of programs α1 ∪ α2, or by looping α∗ (meaning repeating program a 0 or more times,
nondeterministically).7 We define a logic called PDL (for Propositional Dynamic Logic) to reason
about such programs. The syntax of the logic distinguishes between programs and formulas, both
sets defined by mutual induction. We define the set of programs essentially as above: a primitive
program is a program; if α and β are programs, so are α; β, α ∪ β, and α∗; moreover, if ϕ is a
formula, then ϕ? is a program. We define the set of formulas as follows: a primitive proposition
is a formula; if ϕ and ψ are formulas, so are ¬ϕ and ϕ ∧ ψ; if α is a program and ϕ is a formula,
then [α]ϕ is a formula. Intuitively, the meaning of programs and formulas should be clear. We
have seen how programs are interpreted. The program ϕ? checks whether formula ϕ holds at the
current state of the program. If it does, the program terminates. Otherwise, it blocks. Formulas
keep the interpretation they have in propositional logic, with the added understanding that [α]ϕ
means to execute program α and check if ϕ holds whenever the program halts. We write 〈α〉ϕ as
an abbreviation for ¬[α]¬ϕ; one reading of 〈α〉ϕ is “at least one halting execution of α results in a
state satisfying ϕ.”

Note that we can write some fairly involved formulas using this setup. If we do not put any
restrictions on the ϕs that can appear in programs of the form ϕ?, we can write formulas such as
[[α]ψ?; β]ϕ, which says that if all halting executions of α result in a state where ψ holds, then all
halting executions of β result in a state where ϕ holds. It seems counterintuitive for our programs
to be able to perform speculative execution in that way, especially since such properties have a
tendency to be undecidable for any reasonable programming language. If we restrict PDL to only
allow as test formulas those in which no modal operator appears (in other words, a formula in a
test can only be a boolean combination of primitive propositions), we call the logic poor test PDL.
In contrast, the unrestricted version is called rich test PDL.

At this point, our logic is just a syntax for writing formulas with an intuitive understanding
of what they mean. We can formalize our intuitions about the logic by writing down axioms and
inference rules—essentially the properties of the logic. Given our intuitive understanding of the
meaning of formulas, we can come up with the following axioms for the logic:

7Hence the name regular programs: consider a program as a regular expression and let L be the language (over
A) generated by the regular expression; each sentence in L is a possible trace or execution of the program.
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1. axioms for propositional logic

2. [α](ϕ⇒ ψ)⇒ ([α]ϕ⇒ [α]ψ)

3. [α](ϕ ∧ ψ)⇔ [α]ϕ ∧ [α]ψ

4. [α ∪ β]ϕ⇔ [α]ϕ ∧ [β]ϕ

5. [α; β]ϕ⇔ [α][β]ϕ

6. [ψ?]ϕ⇔ (ψ ⇒ ϕ)

7. ϕ ∧ [α][α∗]ϕ⇔ [α∗]ϕ

8. ϕ ∧ [α∗](ϕ⇒ [α]ϕ)⇒ [α∗]ϕ

The following inference rules are also used:

ϕ ϕ⇒ ψ

ψ

ϕ

[α]ϕ
.

We say ϕ is provable (written ` ϕ) if ϕ is derivable from the axioms and the inference rules given
above.

At this point, note that all we have done is playing with syntax. We have no way of saying
whether a given formula is true or not. It was Tarski’s great contribution in the 1930s to point
out that semantics can be used to discuss truth of formulas in a logic, independently of any axiom
system. One gives a semantics for a logic by exhibiting a model for the formulas in the logic,
telling us how to assign truth values to formulas. Models for PDL are derived from models for
general modal logics due to Kripke [12]. (Indeed, this was one reason for the interest in casting
program logics in a modal framework.) Essentially, a model is a set of states; think of all the states
a program could be in. Programs take us from one state to another, and at every state we have
an interpretation function telling us what primitive propositions are true at that state. General
formulas will express properties of moving through that state space. Formally, a model M is a
tuple (S, π, σ) where S is a set of states, π is an interpretation function assigning a truth value to
each primitive proposition p at each state s, i.e. π(s)(p) ∈ {true, false}, and σ associates to every
primitive program a binary relation on the set of states. Intuitively, (s1, s2) ∈ σ(a) if executing the
primitive program a in state s1 leads to state s2. Our first step is to extend σ to all programs by
posing:

σ(α; β) = σ(α) ◦ σ(β),

σ(α ∪ β) = σ(α) ∪ σ(β),

σ(α∗) =
⋃
n≥0 σ(α)n.

For R and S binary relations, we write R ◦ S for the relation {(u, v) : ∃w.(u, w) ∈ R, (w, v) ∈ S},
and Rn is defined inductively with R0 the identity relation, and Rn+1 = Rn ◦R.

Using these definitions, we define what it means for a formula ϕ to be true (or satisfiable) in
state s of a model M , written (M, s) |= ϕ, by induction on the structure of ϕ. Note that my
notation is slightly different from the one in the book, but more in keeping with traditional modal
logic presentations.

(M, s) |= p for a primitive proposition p if π(s)(p) = true,

10



(M, s) |= ¬ϕ if (M, s) 6|= ϕ,

(M, s) |= ϕ ∧ ψ if (M, s) |= ϕ and (M, s) |= ψ,

(M, s) |= [α]ϕ for a program α if for all s′ such that (s, s′) ∈ σ(α), (M, s′) |= ϕ.

A formula [α]ϕ is true at a state s if for all states s′ that can be reached by executing the program
α, at state s, ϕ holds. We can verify that 〈α〉ϕ holds at a state s if and only if there is at least one
state that is reachable by program α from state s such that ϕ holds in the state, hence justifying
our intuitive reading of 〈α〉ϕ.

If a formula ϕ is true at all the states of a model M , we say that ϕ is valid in M and write
M |= ϕ. If a formula ϕ is valid in all models, we say ϕ is valid, and write simply |= ϕ.

We now have two distinct ways of reasoning in the logic: syntactically, by using the provability
relation, and semantically, by reasoning about the truth of formulas. Ideally, we would like these
two approaches to yield equivalent results. The properties relating the ` and |= relations are called
soundness and completeness. An axiomatization for a logic is sound if anything provable is valid:
formally, if ` ϕ implies |= ϕ. This property allows us to safely reason syntactically: anything we
can prove will be true. An axiomatization is complete if anything valid is in fact provable: formally,
if |= ϕ implies ` ϕ. Completeness guarantees us that if there is anything interesting we want to
say, we can in fact derive it syntactically. One of the core foundational results related to PDL is
that the axiomatization above is sound and complete for the Kripke models introduced above.

As we noted, the logic we described above treats programs as sequences of abstract primitive
programs. One can say much more interesting and precise things by considering actual operations
on an actual state. The typical approach is to consider a set of variables and take a state to be an
assignment of values to those variables (also known as a valuation), where the values are taken from
a fixed domain of computation. The primitive programs in such a setting are simply assignments of
values to variables. Intuitively, the primitive program x := 3 will make a transition from any given
state to a state which has the same valuation but for the fact that variable x is associated with the
value 3. To reason about such programs, we can extend our logic to a first-order logic, simply called
Dynamic Logic. On the logic side, we replace the primitive propositions by a first-order vocabulary
of predicate and function symbols. A predicate takes the form r(t1, . . . , tn) for terms t1, . . . , tn.
A term is either a variable or a function symbol applied to other terms. The interpretation of
predicate and function symbols is as in first-order predicate logic: they correspond respectively
to relations and functions over the domain of computation. We further allow quantification over
variables, so that ∀x.ϕ is an allowed formula. (As usual, we write ∃x.ϕ for ¬∀x.¬ϕ.) For example,
if we assume a standard interpretation for the equality predicate, the formula ∀y.〈x := 3〉y = x will
be true in any state with a valuation assigning the value 3 to all variables except possibly x. For
a full formalization of the logic, its semantics, and its properties, I will at this point refer to the
book.

The book

The book is divided in three parts. The first part is meant to make the book essentially self-
contained, by providing the necessary background material needed for the presentation of Dynamic
Logic. At a full one hundred and fifty pages, it makes up almost half of the book. The second
part focuses on the propositional variant of Dynamic Logic, while the third part focuses on the
first-order variant.

11



Chapter 1, Mathematical Preliminaries, is the obligatory review of basic mathematical
ideas from discrete mathematics, such as sets, relations, graphs, lattices, transfinite ordinals, and
set operators.

Chapter 2, Computability and Complexity, reviews the relevant topics from the theory of
computation. Among others, it looks at computational models including deterministic, nondeter-
ministic, and alternating Turing machines, the characterization of undecidable problems, and re-
views the basic complexity classes, discusses the arithmetic and analytic hierarchies, and first-order
inductive definability. It also reviews the basic notions of problem reducibility and completeness,
and presents a family of tiling problems, shown complete for various complexity classes.

Chapter 3, Logic, thoroughly reviews the basic notions of logic. It introduces several classical
logical systems: propositional logic, equational logic (the logic of equality), first-order predicate
logic, infinitary logic (a variant of predicate logic that allows some infinite expressions), and modal
logic. For each system, syntax and semantics are discussed, as well as axiomatizations and elemen-
tary results.

Chapter 4, Reasoning About Programs, defines the programming framework assumed
throughout the book. It defines the kind of programs studied, namely state-based imperative
programs, with a focus on the input/output relation of a program. It discusses the program con-
structs appearing in the study of Dynamic Logic: while programs, regular programs, recursion, r.e.
programs, nondeterminism. It defines the notion of partial and total correctness (partial correctness
does not stipulate that a program halts, total correctness does), and introduces Hoare Logic.

Chapter 5, Propositional Dynamic Logic, starts the study of PDL, the propositional variant
of dynamic logic. It gives the syntax and semantics of PDL, discusses the axiomatization given
above, proves it is sound with respect to the semantics, and proves various properties of the logic,
with a special focus on the iteration operator ∗ that makes the whole logic nontrivial. It also shows
how to faithfully encode Hoare Logic in PDL: intuitively, the Hoare Logic assertion {ϕ}α{ψ}
corresponds to the PDL formula ϕ⇒ [α]ψ.

Chapter 6, Filtration and Decidability, establishes one of the most significant and surprising
results for PDL, the so-called Small Model Theorem: if a formula ϕ is satisfiable, then it is satisfiable
in a finite model with a small number of states, exponential in the size of ϕ. A standard technique
from modal logic, filtration, is used to establish this result—although the technique has to be
adapted because of the special nature of the iteration operator. The Small Model Theorem is
surprising because PDL is not compact: an infinite set of formulas can be finitely satisfiable while
not being satisfiable, because of the iteration operator.8 The classical example of such a set of
formulas is the set {〈α∗〉ϕ} ∪ {¬ϕ,¬〈α〉ϕ,¬〈α2〉ϕ, . . .}. However, it turns out that the iteration
operator, albeit infinitary in nature, is still uniform enough in its effect to give a Small Model
Theorem. This theorem yield as a consequence that it is decidable to determine if a formula is
satisfiable: just enumerate all the finite models containing up to 2|ϕ| states, and check if ϕ holds in
any of them.

Chapter 7, Deductive Completeness, establishes that the axiomatization given above is
complete with respect to the semantics of PDL. This is achieved by showing that a consistent
formula ϕ is satisfiable. The proof follows the canonical model structure of completeness proofs for
modal logic, but with a twist. We first build a canonical nonstandard model for ϕ. A nonstandard
model is one where the relation corresponding to the iteration operator, i.e. σ(α∗), is not the
transitive reflexive closure of σ(α); rather, we simply require that ∪n≥0σ(α)n ⊆ σ(α∗). We then
collapse the nonstandard model into a standard model by filtration.

8A set of formulas F is satisfiable if there exists a model M and a state s such that (M,s) |= ϕ for every ϕ ∈ F ;
a set of formulas F if finitely satisfiable if every finite subset of F is satisfiable.
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Chapter 8, Complexity of PDL, revisits the decidability of the satisfiability problem, showing
that the problem has a more efficient algorithm than the naive one presented in Chapter 6, by giving
an EXPTIME algorithm for satisfiability. This is basically as good as it gets, as satisfiability for
PDL is shown to be EXPTIME-complete.

Chapter 9, Nonregular PDL, explores what happens when we allow nonregular operators in
programs. An easy result is that any nonregular operator yields a logic strictly more expressive
than PDL. Unfortunately, it does not take much for satisfiability to become undecidable. The
bulk of the chapter is devoted to establishing a “threshold” between decidable and undecidable
extensions. For example, PDL over context-free programs is undecidable.

Chapter 10, Other Variants of PDL, examines variants of PDL studied in the literature,
including deterministic PDL (where we disallow various forms of nondeterminism, either syntac-
tically or semantically) and automata PDL (where programs are finite-state machines), programs
with various restrictions on allowable tests, programs with complementation or intersections, pro-
grams with a converse operator, logics with well-foundedness and halting predicates, and extensions
to model concurrency.

Chapter 11, First-Order Dynamic Logic, starts the study of the first-order variant of Dy-
namic Logic. As we noted above, first-order Dynamic Logic adds a domain of computation to the
logic. States are no longer abstract, but are taken as a valuation for variables. Primitive programs
are no longer abstract, but consist of assignment to variables. Variables also appear at the level
of formulas, where they can be quantified over as in first-order predicate logic. Also as in first-
order predicate logic, we have a first-order vocabulary consisting of predicate and function symbols,
interpreted over the domain of computation. The chapter first discusses the classes of programs
considered. This requires more care than in PDL because of the added level of details in the syntax
of programs. Regular programs are defined as in PDL, but extensions include arrays, stacks, and
wildcard assignment (i.e. an assignment of the form x :=?). The semantics of first-order Dynamic
Logic are given, necessarily more involved than for its propositional variant. Essentially, one defines
a first-order structure for the vocabulary, specifying the interpretation of the predicate and function
symbols. This structure is turned into a Kripke structure by considering as the states the valuations
of the variables. As in PDL, programs are binary relations between states, and formulas are given
a meaning at particular state using the interpretation of the predicate and function symbols, as
well as the valuation for the variables.

Chapter 12, Relationships with Static Logics, investigates an aspect of Dynamic Logic
peculiar to its first-order variant. Reasoning can take two forms: uninterpreted (involving properties
independent of the domain of computation), and interpreted (where one focuses on a particular
domain or class of domains). This dichotomy permeates the rest of the book. Some basic properties
of first-order predicate logic are shown to fail to hold: the Löwenhein-Skolem theorem, completeness,
and compactness. Comparisons are then made between uninterpreted first-order Dynamic Logic
and infinitary logics. To study Dynamic Logic at the interpreted level, the chapter focuses on
a particular domain of computation, the natural numbers with the usual arithmetic operations.
Comparisons with infinitary logics are also made.

Chapter 13, Complexity, addresses the complexity of first-order Dynamic Logic. More pre-
cisely, the difficulty of determining the validity of formulas at either the uninterpreted or the
interpreted level is studied, for a variety of Dynamic Logics over the programming languages of
Chapter 11. The expressiveness results of Chapter 12 can be used to give rough bounds, by looking
at the difficulty of determining validity for various infinitary logics. (Clearly, because Dynamic
Logic subsumes first-order predicate logic, validity is undecidable; the question is: how undecid-
able?) The chapter also introduces the spectral complexity of a programming language. Roughly
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speaking, this notion provides a measure of the complexity of the halting problem for a program-
ming language. The spectral complexity of the languages introduced in Chapter 11 is investigated.

Chapter 14, Axiomatization, studies axiomatizations of first-order Dynamic Logic. By the
results of Chapter 13, since the validity problem for both the uninterpreted and interpreted levels
of Dynamic Logic are highly undecidable, one cannot hope to find a nice finitary axiomatization.
(This is a basic result from mathematical logic.) This does not prevent one to derive an infinitary
axiomatization, including, for instance, inference rules with infinitely many premises. Such a com-
plete axiomatization is given for uninterpreted first-order Dynamic Logic. Similar axiomatizations
are given for the interpreted level, although in this case completeness is taken to be relative to an
arithmetical structure.

Chapter 15, Expressive Power, studies the relative expressive power of languages. This can
be done for the uninterpreted level, by comparing Dynamic Logics over both languages in terms of
logical expressibility. By comparing the expressive power of logics, as opposed to the computational
power of programs, one can compare for example deterministic and nondeterministic languages. The
fundamental connection between expressive power of logics and spectral complexity is explored. The
impact of nondeterminism, bounded or unbounded memory, various kinds of stacks, and wildcard
assignments is investigated.

Chapter 16, Variants of DL, considers restrictions and extensions of Dynamic Logic. The
interest is mainly in questions of expressive on the uninterpreted level. Discussed are Algorith-
mic Logic (a predecessor of Dynamic Logic), Nonstandard Dynamic Logic (allowing nonstandard
models of time by referring only to first-order properties of time when measuring the length of a
computation), an extension of Dynamic Logic with well-foundedness and halting assertions, Dy-
namic Algebra (an abstract algebraic framework corresponding to PDL), probabilistic variants of
Dynamic Logic, and extensions to handle concurrency and communication.

Chapter 17, Other Approaches, explores topics closely related to Dynamic Logic. Dynamic
Logic is related to Temporal Logic; the main differences being that in Temporal Logic, programs
are not explicit in the language, but one can reason about intermediate states of a computation.
Process Logic is introduced, essentially a combination of both Dynamic Logic and Temporal Logic.
Process Logic uses explicit programs like Dynamic Logic, but moreover provides a way to reason
about the intermediate states reached by a program through its temporal operators. The µ-calculus
is introduced, which uses as its central expressive feature an operator to compute least fixpoints.
The propositional variant, known as the modal µ-calculus, subsumes all known variants of PDL, and
various forms of Temporal Logics, while having a simpler syntax. The modal µ-calculus, has become
popular for the specification and verification of properties of transition systems. Finally, Kleene
algebras (the algebra of regular expressions) and its extension with tests, can be used to carry out
simple program manipulations. The advantage is that Kleene algebras form a purely equational
subsystem, apparently less complex than PDL (given all known complexity theory results).

Overall, the book is well-paced. The one hundred and fifty pages of background material on
computability theory and logic may seem daunting, but in the long run will be appreciated. You
can skim over many of the background sections if you are familiar with the material, once you have
figured out the particular notation and terminology of the authors.

The description of PDL in part II of the book is technical (it is after all, a book on logic),
but easy to follow, with every detail put down on paper. Part III on first-order Dynamic Logic
requires a notably more careful reading, both because the material is more complex, and because
the treatment is denser. It is especially in that part that following the bibliographical references at
the end of every chapter becomes useful, even necessary, for a thorough understanding.

The book should be of interest mainly to students and researchers interested in program ver-
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ification. It offers interesting features for logicians and philosophers as well, as Dynamic Logic is
a nontrivial extension of modal logic. As the “programs” studied in Dynamic Logic need not be
typical programs, but any formalized notion of action, Dynamic Logic is well suited for reasoning
about actions and their effects, with obvious applications to artificial intelligence, and to normative
system specification (where it can be taken as a basis for deontic logic).

The book has been used as the basis for graduate courses; depending on the mathematical ma-
turity of the students, a fair amount of material can be covered. The main determining factor being
their previous exposure to mathematical logic. As PDL (resp. Dynamic Logic) extends proposi-
tional (resp. first-order predicate) logic, both syntactically and semantically, previous exposure
greatly helps, as does exposure to modal logic.

As I stated in the introduction, this book has the decisive advantage of focusing exclusively
on Dynamic Logic. Other treatments are often studied after a thorough exploration of modal
logic, including the temporal variants. This leads to deep, but difficult to follow treatments for the
beginner.

Especially interesting is that the book, while being an entry-level introduction to the subject,
does point to active areas of research. Particularly relevant are the application of Kleene algebra as
a more tractable theory of program transformations; it is currently being used to verify and reason
about compiler optimizations [11]. Process Logic is needed if one is interested in reasoning about
nonterminating programs, but it has not received much attention lately. Finally, the µ-calculus is
currently en vogue in the model checking community, where one is interested in verifying transition
systems [1], leading to practical considerations driving research. This book can be seen as an
introduction to the underlying ideas needed for a thorough understanding of the µ-calculus as a
specification language.
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Students don’t learn from reading a textbook — or from lectures, for that matter. That’s the
basic idea behind active learning. Well, okay. . . I admit it: that definition oversimplifies things.
Still, the active learning philosophy does stress that if you want people to acquire a skill rather than
just spit point form facts back at you, they have to practice using that skill. A lot. Skills can’t be
absorbed by reading or listening to other people apply them — a fact anyone who has taught an
introductory programming course will have stressed repeatedly to students. Seems obvious enough.
So how could a book be bold enough to claim that it will help teach students the skill of algorithmic
analysis using an active learning approach? A good question, and one to which this book is, for
the most part, a good answer.

The first chapter covers fundamental concepts such as best-case, worst-case, and average-case
analysis, big-O notation, and so forth, as well as fundamental mathematical skills. The book
assumes no mathematical knowledge beyond basic algebra, but this is a two-edged sword. None of
the topics are covered in detail, and the coverage of probability theory and recurrence relations is
especially thin. While this makes the book more accessible, it also precludes going directly from
this text to more advanced studies without first making up the missing background material.

The remaining chapters each cover one problem space or algorithmic technique. It was refreshing
to see a few topics that are often skipped in introductory texts, such as algorithms for parallel
architectures. Each chapter analyzes the classic algorithms in that area, deriving best-case, worst-
case, and average-case complexities. The discussion of the algorithms and the derivations are at
just the right level: they don’t make things so easy to follow that the reader takes them for granted
and skips over them without understanding; but they don’t skip so many details that the reader
becomes lost and frustrated.

The problem space presentations are all concisely written and easy to follow. There is just
enough historical and theoretical background to ensure that the rest of the chapter makes sense.
Although the book includes a list of references, the text rarely invokes them directly. As with the
condensed mathematical introduction, the intent of this is to make it possible to read each topic
in one sitting. The goal is for a student to cover the text material before class, then to attend
a lecture on the topic, and then work on group projects or other collaborative efforts where the
material is applied and the knowledge reinforced with application. Many professors assign reading

9 c©2001 Christopher G. Jennings
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materials as preparation for a class, but it is generally a minority of the class that actually comes
to class properly prepared. There are ways to correct this habit — for example, by requiring the
students to come to class prepared with written summaries along with answers to some related
questions. McConnell takes another approach by trying to make the reading itself less of a chore.
His argument would seem to be that, since algorithmic analysis is largely a collection of techniques
to be skillfully applied, one should spend time learning to apply the techniques rather than learning
basic facts.

For the most part, this is a sound approach, but McConnell seems to forget that text books are
also used as reference works once a class is over. The proper use of a textbook in teaching is to
supply basic facts, and the minimalist approach used by this text sometimes leaves out too many
of them. For example, the RAM (random access machine) model (with all operations but loops
and function calls assumed to take an equal amount of time), is used as the model of computation
throughout most of the textbook but not explicitly named until more than halfway through the
book. Even when this does happen (in the chapter on parallel algorithms), it is defined as “the
general model for the algorithms [we have studied until now]”, and no connection is made to the
description of the model that was provided in the first chapter.

Depending on your goals, this may or may not be a problem. If you are concentrating on
practical applications, the essentials are covered. If you want to prepare students for further
studies in this area, you will have to supplement the text material, either in your lectures or with
additional reading. Again, though, this has more to do with a nontraditional learning than a flaw
with the book. I might have preferred a book with the same introductory material in each section,
followed by some additional facts and background to strengthen the theoretical material in the text
— but that is a reflection of what my objectives would be for such a course. To be fair to the
author, his own learning objectives are clearly stated in the introduction, and he doesn’t waver
from them.

Aside from those issues, there were the usual sorts of errors and inconsistencies one expects to
find in a first edition. Here and there a word is missing. In a problem on radix sorting, the range
0 to 264 is given where 0 to 264 − 1 appears to have been intended. That sort of thing. I only
found this occasionally distracting, as at the start of the book when the author sets out using the
term “repetitive” (in contrast with recursive) and then switches over to the more commonly used
“iterative” a few paragraphs later for no apparent reason. However, these will no doubt disappear
as the book matures.

In summary, this textbook makes one fundamental assumption: the reader wants to learn the
skill of algorithmic analysis for the purpose of applying it to everyday problems. If that is your
goal, this is the book to use. If your taste turns more to the theoretical rather than the applied,
then this book alone may not suffice (nor does it claim to), though it would serve as a useful partner
to a more traditional text.

17


