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In this column we review the following books.

1. Boolean Functions and Computation Models by Clote and Kranakis. Review by R.
Gregory Taylor. This monograph covers an wide range of topics including Boolean functions
and Boolean circuit families, propositional proof systems, sequential and parallel models of
computation, and function algebras.

2. Selected Papers in Discrete Mathematics by D. Knuth. Review by Carlos A.S. Oliveira.
This book is a compilation of work published (plus some unpublished papers) by the author.

3. Linear Optimization and Extensions – Problems and Solutions by Dimitris Alevas
and Manfred Padberg. Review by Carlos A.S. Oliveira. This book is a companion to another
book on this topic; however, it stands alone as a good collection of problems and solutions in
the field of linear optimization and linear programming.

4. Introduction to the Design and Analysis of Algorithms By Ananay Levitin. Reviewed
by William Fahle. This is an algorithms book for an undergraduate course that is organized
by technique rather than problem.

Books I want Reviewed
If you want a FREE copy of one of these books in exchange for a review, then email me at

gasarchcs.umd.edu
Reviews need to be in LaTeX, LaTeX2e, or Plaintext.

Books on Algorithms

1. A Course on Computational Number Theory by Henri Cohen.

2. Algorithms: Design Techniques and Analysis by Alsuwaiyel.

3. Computational Techniques of the Simplex Method by Maros.

4. Immunocomputing: Principles and Appliations by Tarakanov, Skormin, Sokolova.

5. Dynamic Reconfiguration: Architectures and Algorithms by Vaidyanathan and Trahan.

Complexity Theory

1. Computational Complexity: A Quantitative Perspective by Marius Zimand

2. Algebraic Complexity Theory by Burgisser, Clausen, and Shokrollahi.

3. Classical and Quantum Computing (with C++ and Java Simulations) by Hardy and Steeb.
1 c© William Gasarch, 2004.
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Books on Cryptography

1. Elliptic Curves: Number Theory and Cryptography by Larry Washington.

2. Block Error-Correcting Codes: A Computational Primer by Xambo-Descamps.

Combinatorics

1. Tolerance Graphs by Golumbic and Trenk

2. Combinatorial Designs: Constructions and Analysis by Stinson.

Modelling and Semantics

1. Logic in Computer Science: Modelling and Reasoning about Systems by Huth and Ryan.

2. Semantic Integration of Heterogenous Software Specifications by Martin Groβe-Rhode.

Misc

1. Symbolic Asymptotics by John Shackell.

2. The Random Projection Method by Vempala. (This book applies the method to algorithms
and complexity and learning.)

3. Alfred Tarski: Life and Logic by Feferman and Feferman.

Review of2

Boolean Functions and Computation Models
by Peter Clote and Evangelos Kranakis
Published by Springer-Verlag, 2002, 601 pages

Reviewed by R. Gregory Taylor (Manhattan College)
This wide-ranging monograph covers a number of research areas including Boolean functions and

Boolean circuit families, propositional proof systems, sequential and parallel models of computation,
and function algebras. If anything links them all together, it is surely complexity.

Of the several available models for computing Boolean functions, Boolean circuits present them-
selves as a particularly interesting choice according to the authors. First, Boolean circuits have
application within the field of parallel algorithm design. Second, lower bounds for Boolean circuits
are closely related to the P =? NP question. Chapter 1 of the book under review covers the basics
of Boolean functions and Boolean circuits while Chapter 2 takes up lower bounds.

Chapter 1 (Boolean Functions and Circuits). Classes of Boolean functions corresponding
to various well-known complexity classes are defined. Thus NCk is the class of functions f :
{0, 1}∗ 7→ {0, 1} whereby each member fn of an associated family {fn|fn = f � {0, 1}n} is computed
by an O(logk n)-depth, O(nO(1))-size Boolean circuit Cn with fan-in 2. The class ACk is defined
similarly substituting unbounded fan-in AND- and OR-gates for arbitrary gates with fan-in at most

2copyright 2004, Gregory Taylor

2



2. (So AC0 is the class of Boolean functions computed by constant-depth polynomial-size circuits
with NOT-gates and with unbounded fan-in AND- and OR-gates.)

In Section 1.6 the topic is Boolean circuits and formal languages. It is shown that (the charac-
teristic function of) any regular (context-free) language is in nonuniform NC1 (AC1). (Chapter 1
considers nonuniform circuit families only.)

Section 1.7 reviews circuits for arithmetic operations. Addition of just two n-bit integers is
shown to be in AC0, and their multiplication in NC1. As for integer division, an algorithm based
on Newton iteration and due to Brent puts it in NC2 whereas a more complex technique involving
Chinese remaindering and due to Beame, Cook, and Hoover improves this to NC1. (The very recent
result of Allender, Barrington, and Hesse putting integer division in uniform TC0 is not covered.)

Section 1.8 takes up the design of circuits for arbitrary Boolean functions. First, there is the
standard technique based upon disjunctive normal form. The existence of “universal circuits” is
demonstrated, specifically, a size-O(22n

) circuit with multiple outputs such that any n-ary Boolean
circuit is computed by one of them. It is then shown that, with such a universal circuit in hand,
any n-ary Boolean function f is computable by a circuit with fan-in 2 and size O(2n/n) (Shannon’s
Method). Another technique due to Lupanov improves this to 2n/n + o(2n/n). If f happens to be
symmetric, then a size O(n) circuit is possible—still fan-in 2—and it is mentioned in passing that
depth O(log n) may be assumed.

Section 1.9 shows that, given Boolean circuit C of fan-in 2 but arbitrary fan-out having n input-
and m output-gates, it is possible to construct an equivalent fan-in-2 fan-out-2 circuit C ′ whose
size and depth are bounded above by linear functions in size(C), depth(C), n, and m.

Section 1.10 focuses on Boolean formulæ (fan-out-1 circuits). If fan-in 2 is also assumed, then
such a formula is a binary tree with an associated leafsize (number of input-gates or number of
occurrences of sentence letters). It is shown (Theorem 1.10.2(1) due to Spira) that the minimal
depth of a fan-in-2 Boolean circuit computing f : {0, 1}∗ 7→ {0, 1} lies between log2(L(f) + 1) and
k · log2(L(f) + 1), where L(f) is the size of a minimal Boolean formula computing f and k ≈ 5.13.
Theorem 1.10.2(2), due to Wegener, then specializes Spira’s result to monotonic f .

The final section of Chapter 1 is given over to a brief discussion of various other nonuniform
models of computation, e.g., Boolean cellular automata, Hopfield nets, and so-called anonymous
networks.

Chapter 2 (Circuit Lower Bounds). Given a Boolean function f of n arguments, one
wishes to know the minimal size and minimal depth of circuits computing f . Since, by Immerman’s
Theorem 6.2.5, depth and size can be related to computation time and number of active processors,
respectively, of parallel programs computing f , these issues have practical significance.

The work of Shannon and Lupanov settles the question of the size of fan-in-2 circuits of arbitrary
depth in a certain sense. Namely, it is shown (Theorem 2.2.1) that, for almost all Boolean functions
f of n arguments, the minimal size of a fan-in-2 Boolean circuit computing f exceeds 2n/n, which
coincides with Shannon’s upper bound from Chapter 1. In Corollary 2.2.1 it is shown that, for
almost all monotone Boolean functions f , the minimal size of a fan-in-2 monotone Boolean circuit
computing f exceeds 2n/2

10n . The latter result uses the notion of a slice function whereby all slice
functions are monotone but not vice versa.

A classical result due to Nechiporuk gives a lower bound on the size of a Boolean formula
computing function f in terms of the number of f ’s nonconstant subfunctions, where a subfunction
of n-ary f is the (n− k)-ary function that is the result of holding k of its arguments constant.

Section 2.4 presents a proof, due to Haken and Cook, of an exponential lower bound on the size of
monotonic real circuits of bounded fan-in computing the so-called Broken Mosquito Screen Problem.
(Real circuits are composed of real gates representing unary or binary real-valued functions on the
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reals.)
Sections 2.5 and 2.6 describe the application of the random restriction method, introduced

initially by Furst, Saxe, and Sipser, in obtaining first a superpolynomial and then successively
better exponential lower bounds for the parity function, which is important by virtue of the fact
that many other Boolean functions can be expressed in terms of it. Important contributions due
to Sipser, H̊astad, and Razborov are covered here. In Section 2.7 algebraic lower bound techniques
for obtaining circuit lower bounds for the majority and modulus functions, due to Razborov and
Smolensky, respectively, are discussed. For example, the latter showed an exponential lower bound
on the circuit complexity of function MODr even in the presence of MODp gates, where p is prime
and r is not a power of p. (Boolean function MODn

p of n arguments yields output 0 just in case
the sum of its arguments is a multiple of p.) Section 2.8 fills out the picture by presenting what is
currently known concerning the computational power of MODm gates, where m is not assumed to
be prime—results attributed to Barrington-Beigel-Rudich, and Tsai.

Characteristic of this genre of results concerning specific types of gates is Theorem 2.10.1, due
to Beigel, showing that any Boolean function computable by a depth-d circuit having m majority
gates is computable by a larger, depth-(d + 2) circuit having a single majority gate. Thus the
number of majority gates can be reduced to 1 with little increase in circuit depth at least.

Chapter 3 (Circuit Upper Bounds). In this chapter, where many of the most interest-
ing results are due to the authors themselves, ideas from permutation group theory are applied
so as to obtain circuit upper bound results for families of Boolean functions, e.g., for families of
characteristic functions of formal languages over alphabet {0, 1}. To begin, the invariance (au-
tomorphism) group Aut(f) of n-ary function f is defined to be the set of permutations σ ∈ Sn

such that f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)). Further, a language L is said to realize a sequence
〈Gn : n ≥ 1〉 of permutation groups Gn ≤ Sn if Autn(L) = Gn for all n, where Autn(L) is the
invariance group of (the characteristic function of) Ln = {w ∈ L : length(w) = n}. Thus, as de-
scribed in Exercise 3.11.1, the sequence 〈Dn : n ≥ 1〉 of dihedral groups is realized by the language
(0∗1∗0∗)|(1∗0∗1∗), whereas Theorem 3.2.2 says in effect that the sequence 〈An : n ≥ 1〉, where An

is the alternating group on n letters, is not realized by any language L over alphabet {0, 1}.
Various notions of representability, of permutation groups by Boolean functions, are introduced.

Theorem 3.2.4 (Isomorphism Theorem) states that every G ≤ Sn is such that G = Aut(f) for some
“Boolean” f : {0, 1}n 7→ {0, . . . , blog(n + 1)c − 1}. (This amounts to G’s being blog(n + 1)c-
representable in the authors’ sense.) The automorphism group of any undirected graph is 2-
representable, and apparently that of any directed graph is 3-representable. (If self-loops are
permitted, change 2 and 3 to 3 and 4, respectively.) The authors’ Representation Theorem (Theo-
rem 3.4.2) states that if H = G∩K, where H < G < Sn and K is k-representable for some k, then,
among subgroups of G, we have that H acting on {0, 1}n is maximal with regard to number of
orbits—no permutation in G can be added to H without decreasing the number of orbits. It then
turns out (Theorem 3.4.3) that G ≤ Sn is k-representable for some k just in case G is a subgroup
of Sn maximal with respect to orbits. (Further, the least such k will satisfy k ≤

(
n

bn/2c
)

and of
course any k-representable permutation group is (k + 1)-representable as well.) With just a “few”
exceptions—these include An with n ≥ 3—any maximal subgroup of Sn is 2-representable. (Here
“maximal” is being used in the usual sense.) As shown by Kisielewicz, there exist 3-representable
groups that are not 2-representable. However, it is not known apparently whether this holds for
any k > 2.

Section 3.5 is given over entirely to a logspace algorithm, due to the authors themselves, that,
given input (a disjoint-cycle representation of) a single permutation σ ∈ Sn, determines whether
cyclic group 〈σ〉 ≤ Sn is 2-representable and, if so, constructs a Boolean function representing 〈σ〉.
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In §3.6 it is shown that almost all Boolean functions have trivial automorphism groups—just
{idn}—and this enables the authors to formulate and prove a certain 0–1 law for Boolean functions.

Let L(P) be the class of languages L ⊆ {0, 1}∗ whose automorphism groups have polynomial
index, that is, |Sn : Autn(L)| is nO(1). In §3.7 it is first demonstrated that any L in L(P) is in
nonuniform NC. This is then improved (Theorem 3.7.3) to L in TC0 and hence in NC1, where
the former is the class of (Boolean functions computed by) constant-depth, polynomial-size circuits
having unbounded fan-in threshold gates. (This discussion would be enhanced by some examples
of languages in L(P).) In §3.8 the topic is the relation between the quantity of symmetry exhibited
by language L (number of orbits of Autn(L)) and its computational complexity. The main result
here is Theorem 3.8.3, due to Babai, Beals, and Takácsi–Nagy, stating that if the automorphism
groups Autn(L) of L are transitive with polynomially many orbits, then L is in TC0.

The remainder of Chapter 3 is given over to a discussion of the bit complexity of anonymous
networks, with either ring or hypercube topology, qua computers of Boolean functions. (By bit
complexity we mean the total number of bits exchanged by all processors over an entire computa-
tion.)

Chapter 4 (Randomness and Satisfiability). The topic in this relatively short chapter is
threshold phenomena for k-SAT: letting φ be an random instance involving m clauses (disjunctions)
and n propositional variables, then it may happen that deciding satisfiability for φ is easy provided
that clause-to-variable ratio m

n is somewhat below (“easy yes”) or somewhat above (“easy no”)
a certain threshold value. In §4.2 it is shown that in the case of 2-SAT this threshold value
is 1. The case of 3-SAT is harder, which is hardly surprising given NP-completeness. Various
techniques yield successively better upper bounds on an unsatisfiability threshold—higher ratios m

n
almost surely make for an easy no—that is seen to fall from 5.19 (Theorem 4.3.1) to 4.78 to 4.667
(Theorem 4.3.2) to 4.642 to an ultimate value of 4.601 (Theorem 4.3.3). (A threshold around 4.2
is predicted by empirical studies.) Section 4.4 takes up the other half of the story, first establishing
a lower bound on a satisfiability threshold (easy yes below) for k-SAT generally and yielding 2

3 for
k = 3. Theorem 4.4.2, due to Frieze and Suen, improves this to 3.003.

The Satisfiability Problem is itself of interest, say the authors, due to its wide applications
within artificial intelligence and software design. About this they are no doubt right. What is not
clear, on the other hand, is what Chapter 4 has to do with the rest of the book, an issue to which
we return below (see Opinion). At no point in Chapter 4 do the authors choose to refer—or need
to refer apparently—to any other part of their text, and vice versa.

Chapter 5 (Propositional Proof Systems). At over 160 pages this is the longest chapter
in the book by far. By a propositional proof system one means a polynomial-time-computable onto
function f : Σ∗ 7→ TAUT, where Σ is some finite alphabet. Such an f is polynomially bounded
provided that there exists a polynomial p in a single variable such that every member A of TAUT
is the image of a “proof” in Σ∗ whose length does not exceed p(|A|). As shown by Cook and
Reckhow in their 1977 paper, there exists a polynomially bounded propositional proof system
for TAUT just in case NP =? co-NP (Theorem 5.2.1). This result has given rise to a program
of establishing lower bounds on sizes of proofs, within natural propositional proof systems, of a
variety of combinatorial principles, all in an effort to relate the existence of polynomially bounded
proof systems to P =? NP. The principles considered include the various versions of the Pigeonhole
Principle (PHP) that the authors present on page 254. A notion of polynomial simulation of one
proof system by another facilitates comparisons of distinct proof systems with respect to proof
strength. In brief, a propositional proof system P1 simulates P2 just in case, for any proof Q of
tautology A in P2, there is a proof P of A in P1, where the length of P is polynomial in the length
of Q.
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In successive sections of Chapter 5, the authors consider the following proof systems and their
several variants: the Gentzen sequent calculus LK, Robinson’s resolution refutation, various alge-
braic refutation systems (Nullstellensatz and the polynomial, Gaussian, and binomial calculi), the
cutting plane proof system, and Frege systems. A characteristic result (Theorem 5.3.5) states that,
although there exist polynomial-size LK proofs, using cut, of a certain version of PHP, the length
of any cut-free proof has superpolynomial size. In §5.8 eleven open problems are described in some
detail.

Chapter 6 (Machine Models and Function Algebras). This chapter consists largely
of the first author’s contribution to E. Griffor, ed., Handbook of Computability Theory (Elsevier,
1998). By a function algebra one means the class of functions obtained by first introducing certain
“initial” functions and then closing under various function-forming operations. The study of the
relationship between machine models of computation and function algebras is motivated by an
interest in presenting machine-independent characterizations of complexity classes, typically defined
in terms of particular machine models, in terms of function classes. (The authors suggest that the
latter are to the former as software to hardware.) This chapter is a survey of techniques used to
characterize complexity classes using function algebras.

Among sequential models of computation, the authors emphasize alternating multitape Turing
machines (ATMs). Complexity class ALOGTIME is defined as the class of languages accepted
by ATMs in time logarithmic in the length of input. Restricting ATM computations to some
fixed constant number of alternations leads to the definition of the logtime hierarchy LH. Two
results concerning ALOGTIME are highlighted. First, the authors present Barrington’s proof
that a certain word problem for any given finite nonsolvable permutation group is complete for
ALOGTIME under DLOGTIME reductions. Second, they mention S. Buss’ result showing that a
certain “Boolean formula valuation problem” is similarly complete.

As for parallelism, the concurrent random access machine (CRAM) model is described in §6.2.2.
A CRAM is a finite sequence R1, . . . , Rm of random access machines, each with its own local memory
and an infinite collection of registers each capable of holding a single natural number. In addition,
a CRAM possesses an infinite collection of global registers Mg

0 ,Mg
1 , . . . accessible to all Ri and used

for reading input, passing messages between processors, and writing output. Global Mg
i may be

read concurrently by several processors, and priority resolution is used to handle write conflicts.
While operating synchronously on the same program, the various Ri may have different data in
their respective local memories. Further, they recognize a unique processor identification number
(PID) so that one and the same instruction (“increment Mg

PID . . . ”) changes in meaning over the
various Ri. The CRAM instruction set includes local operations, global operations for reading
and writing, and control instructions ([conditional] GOTOs and HALT). A sampling of parallel
algorithms, focused on string matching, are presented following unpublished notes of E. Kaltofen.

Uniform circuit families, whereby some uniformity criteria relate the members of {Cn : n ∈ N}
to one another, are investigated in Chapter 6. Uniform ACk, i.e., those Boolean functions whose n-
ary restrictions are computed by LOGTIME-uniform circuit families, is of particular interest: these
functions f are precisely those whose n-ary restrictions fn are computable in O(logk n) computation
steps by a CRAM with polynomially many active processors—Theorem 6.2.5 mentioned earlier.

In §6.3 various recursion schemes are surveyed, and the resulting function algebras are then
related to complexity classes derived from the ATM and CRAM models primarily. Application of
Gödel arithmetization techniques to machine model M presupposes that a corresponding function
algebra contain string manipulation functions and the like sufficient to ensure the availability of
functions NEXTM such that NEXTM (x, c) = d whenever c and d encode successive configurations
of machine M for input x, where M is an instance of M.
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A typical result here is the description, due to the first author, of a function algebra A0 for
the class of number-theoretic functions with polynomial growth (whose bit-graphs) are in LH
(Theorem 6.3.3). (A k-ary number-theoretic function f has polynomial growth provided that
|f(x1, . . . , xk)| is O(max1≤i≤k|xi|) for some k, where |x| = dlog2(x + 1)e.) To form A0 one first
introduces the following initial functions: the constant-0 function, k-ary projection functions for
arbitrary k, binary successor functions s0 and s1 defined by s0(x) = 2 · x and s1(x) = 2 · x + 1,
length function |x| defined above, binary function BIT(x, i) returning the ith bit within the binary
representation of x, and the binary smash function defined by x#y = 2|x|·|y|. One then closes under
function composition and so-called concatenation recursion on notation. It then follows, by an argu-
ment involving AC0-reducibility, that TC0 is identical with the function algebra formed like A0 but
with the additional inclusion of integer multiplication among the initial functions (Theorem 6.3.5
due to Clote and Takeuti).

Chapter 7 (Higher Types). By a type-2 functional one means a total mapping taking (k+`)-
tuples consisting of k number-theoretic functions and ` natural numbers to a single natural number.
The associated sequential computation model is that of the oracle Turing machine (OTM) that,
in addition to the usual input, output, and worktapes, possesses an oracle query tape and oracle
answer tape for each function input. (There is also an oracle query state for each function input.)
The collection BFF of basic feasible type-2 functionals is defined, and a result of Kapron and Cook
relating them to OTMs is cited (Theorem 7.2.2). (The proof is left to Exercise 7.8.5.)

Analogous to the collection A0 of functions that played a central role in Chapter 6, the collec-
tion A0 of type-2 functionals is the smallest class containing certain initial functionals and closed
under certain functional-forming operations (Definition 7.3.3). Most of Chapter 7 is given over to
showing that type-2 functional F (f1, . . . , fk, x1, . . . , x`) is in A0 just in case it is computable by an
oracle concurrent random access machine (OCRAM) MF in constant time, where the number of
MF ’s processors is polynomially related to arguments f1, . . . , fk, x1, . . . , x` (Theorem 7.5.3). The
OCRAM model, which permits simultaneous oracle calls to input functions by its several processors,
is described in §7.5, and several longer examples of OCRAM programs are given.

Opinion. Although some the material covered in Boolean Functions and Computation Models
can be found elsewhere in the secondary literature—we are thinking particularly of circuit lower
bounds (Chapter 2) and propositional proof systems (Chapter 5)—there is no other text that brings
together such a wealth of diverse results concerning the research topics at issue. The very interesting
material in Chapter 3, on the other hand, is found nowhere else to our knowledge. Although we
did find the discussion in Chapter 2 of Sipser’s random restriction method—the lead-in page 91
in particular—hard to follow, the authors’ exposition is usually quite clear, and whatever small
deficiencies exist in that regard can surely be overlooked given the book’s prodigious scope and
depth. (The descriptions of the various propositional proof systems in Chapter 5 and of the several
computation models in Chapters 6 and 7 are especially nice.) In their preface, the authors suggest
that the individual chapters can be read independently, and this really does seem to be the case,
since definitions of terminology and notation are often repeated as needed.

In the case of almost every theorem, a full proof is given and its source cited. Various pseu-
docodes for presenting algorithms are introduced and adhered to consistently at least within any
single chapter. The final section of each chapter is devoted to historical and bibliographical re-
marks. There are ten to forty exercises, of various degrees of difficulty at the end of each chapter.
These occasionally include open problems. Finally, there is an extensive bibliography, and the
index, mixing symbols and terms, is perhaps adequate for most readers. (There is no name index.)

For anyone wishing to get quickly to the forefront of current research with respect to the topics
it covers, this book is doubtless a good place to start. On the other hand, the book’s tremendous
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scope means that the demands on the reader are considerable. For instance, the reader will find only
two examples, with diagrams, of Boolean circuits—on pages 8 and 436—and they are essentially
the same.

Our one reservation concerns the organization of the book across chapters: specifically, the text
gives the impression of being, in a sense, not one book but, rather, four. The first extends over
Chapters 1 through 3, covering Boolean functions and complexity classes derived from the Boolean
circuit model. In later chapters these ideas do occasionally resurface to be sure. For example, the
combinatorial argument for a certain Boolean circuit lower-bound result from Chapter 2 figures
in an argument for an exponential lower bound on the size of proofs of a version of PHP within
bounded-depth Frege systems. But such connections typically receive no mention within chapter
introductions and are, for the most part, buried within the text. This has the unfortunate con-
sequence that Chapter 5, say, on propositional proof systems will probably strike most readers as
largely unrelated to any of the other chapters, although Pudlák’s Theorem 5.6.7, relating cutting
planes refutations to real circuits, and remarks on pages viii and 366 point in the right direction.
Chapter 4 is stand-alone, as mentioned earlier. Finally, Chapters 6 and 7, where complexity classes
derived from the ATM and CRAM (OCRAM) models are characterized by function(al) algebras,
also stand as a unit. Ultimately, the results mentioned at the end of our discussion of Chapter 6 do
make for connections to complexity classes derived from the Boolean circuit model and introduced
in Chapter 1. And Immerman’s Theorem 6.25 is no doubt important in this regard. But these links
are not cited in the authors’ brief overview on page 415, and the overall impression, once again, is
that of disjointness.

Perhaps the authors chose not to emphasize interconnections, between the several research
areas covered, just because, as they stand, these interconnections seem not so impressive. And this
situation no doubt reflects, to some extent, the current state of knowledge. The challenge implicit
in Boolean Functions and Computation Models is that of finding interesting ways to relate Boolean
circuit families to propositional proof systems, say, so that it is more often the case that lower
bounds on depth for the former yield lower bounds on proof size within the latter. And it is likely
that the appearance of this stimulating book will lead its readers in just such directions.

Review of3

Selected Papers in Discrete Mathematics
by D. Knuth

Published by CSLI (Center for the Study of Language and Information Publication
Paperback, 286 pages, $72.00

$42.00 on Amazon used

Review by Carlos A.S. Oliveira
Dept. of Ind. & Systems Engineering, University of Florida

1 Introduction

The book “Selected Papers in Discrete Mathematics” is a compilation of work published (plus some
unpublished papers) by Donald E. Knuth, in the area of discrete mathematics. Clearly, the author
does not need any introduction, and is well known by his authoritative work in areas such analysis
of algorithms and digital typography. However, more than this, Knuth is a great example of good

3copyright 2004, Carlos Oliverira
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expositor and writer. Thus, even if your interests are not directly related to the more mathematical
areas of computer science, it is greatly rewarding to read this book as a way of learning how to
write good papers.

The selection and ordering of the papers in this volume seems to have been performed more by
subject than chronological order. Although there is not a clear indication of such a division (which
can be seen as a minor organizational issue), one can identify from the table of contents the major
topics that have been addressed in the papers forming the book. Initially, for example, there are
a couple of papers related to the issue of notation, then exposition papers on history of discrete
mathematics. Other than the table of contents, a good way to find topics covered in the book is
checking the comprehensive index.

2 Topics Covered

The book is extensive, with 812 pages, index included, of mostly mathematical topics. Thus, I
will not make a review of every paper, since this would be boring to readers and probably not
worthwhile the effort (one can check the preface for a brief description of the contents of each
chapter). I will instead describe the main areas that are covered by the book and provide examples
based on the papers on each area. If you have interest, keep in mind that there is much more that
was not discussed here.

The first chapter of the book describes how computers can be useful as a tool for helping the
development of mathematics. The paper, written in 1965, serves roughly as a statement of the type
of mathematics the author is interested in. The use of computers in discrete mathematics has only
increased since the time the paper was written, thus it is interesting to compare the results stated
there with what we have today.

The first major topic discussed in the book is related to the use of notation in discrete math-
ematics, and how they can influence the discovery and development of useful results. One of the
interests of Knuth has been the establishment of good mathematical notation, especially to be used
in his series “The Art of Computer Programming.” Some of the notations discussed in these papers
are:

• the so called Iverson’s convention, where square brackets around an expression are used to
return a value 1 if and only if the expression is true. This can be useful to simplify summations
and other types of formulas used in discrete mathematics;

• a different convention for writing Stirling numbers, where a Stirling number of the first type

is written as
[
a
b

]
, and of the second type as

{
a
b

}
. This leads to much simplification in many

of the formulas including Stirling numbers, and new insights as well. For example, the simple
result [

a
b

]
=

[
−b
−a

]
can be better appreciated only due to this improved notation, as explained in the paper;

• the notation [F (z)]G(z) for the vector product of two polynomial functions is shown to lead
to easier manipulation of this type of operations in Chapter 3.

The next topic discussed in the book is history of discrete mathematics. There it is included
an interesting paper about the work of Johann Faulhaber on summations of powers. As the paper
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describes, it is not exactly known what method he used (at the time mathematicians where more
interested in results than in proofs), but he accomplished amazing computational achievements
for the time. A puzzle proposed by Faulhaber is solved using computers, showing that he did
correct computations for very large numbers considering the time (he died in 1635). Another paper
(Chapter 5) discusses the work of Thomas Harriot, who did impressive discoveries in the area of
discrete mathematics in the early 17th century. Another paper of historical interest is Chapter 18,
since it was the first paper published by Knuth in discrete mathematics. It presents amusing work
on number representation, despite some inaccuracies that are pointed out in the postscript. (This
shows that, by the way, even expert researchers can make mistakes early in their careers.)

Matrices are important objects in discrete mathematics. They are constantly used as a rep-
resentation means as well as main objects of study. Many chapters in the book are related to
matrices. For example, Chapter 6 describes a very interesting result by Egorychev (1980), proving
a conjecture of van der Waerden (made in 1926) about the permanent of doubly stochastic matri-
ces. The concept of Pfaffian of a matrix, a generalization of determinant, is discussed in the next
chapter, together with a history of the discovery and use of Pfaffians. Combinatorial matrices are
the subject of Chapter 9. A combinatorial matrix is a type of matrix expressed in general as the
combination bJ + (a− b)I, where a and b are scalars, J is the matrix of ones, and I is the identity
matrix. The chapter introduces some properties of this type of matrix.

Graph theory is another fundamental topic in discrete mathematics, thoroughly explored in this
book. Topics such as spanning trees and graph enumeration are discussed in connection with diverse
problems. A first paper (Chapter 8) presents the well know theta function, introduced by Lovász
as a graph parameter whose value is always between the clique number and the chromatic number
of a graph. The paper is a nicely written introduction and survey of the concept of theta function
and its related characterizations. Chapter 10 describes properties of the so called Aztec diamond
graphs, such as the number of spanning trees in such graphs. The spectra of matrices representing
the tensor product of graphs is discussed in Chapter 11. The number of subtrees of a digraph is the
topic of Chapter 12. A generalization of a theorem of Cayley (1889), giving the number of directed
trees in a graph, is described in the next chapter (13). The generalization involves graphs with an
associated coloring of nodes, such that some rules concerning the orientation and the colors adjacent
to arcs must be enforced. The proof amounts to defining a correspondence between graphs and
integer sequences and using this correspondence to calculate the number of directed trees. Later
in the book (Chapter 24) interesting work is presented on the representation of strongly connected
directed graphs.

The next major topic covered in the book is manipulation of polynomials. A computationally
oriented paper appears in Chapter 15, showing how to use properties of convolution polynomials
using the Mathematica package. “Polynomials involving the floor function” is a paper devoted
to identities and general properties of polynomials, where variables are modified using the floor
operator. Numerous applications in computer science use the floor function, and therefore it is
important to understand how this operation can be manipulated when used on polynomials.

Discrete mathematics also plays an integral role (no pun intended) in modern algebra, for exam-
ple in the study of finite fields and groups. Work in this area is presented in some of the chapters.
Topics such as finite fields (Chapters 19 and 20), projective planes over semifields (Chapters 20
and 21), and grupoids (Chapter 22) are treated in full depth.

Recurrence relations in general appear on Chapters 37 through 39. In the first paper, linear
recurrences with constant coefficients are discussed. In the second paper, a recurrence of the type

M(n) =
{

g(0) if n = 0
g(n) + min0≤k<n(αM(k) + βM(n− k)) for n > 0
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is shown to be convex in some cases, being efficiently computable. In the third paper, a recurrence
related to trees in random graphs is studied.

The last two papers are a real “tour de force”, discussing ideas from the important area of
random graphs. This area is concerned with the properties of graphs whose edges are selected
randomly, according to some distribution, and was championed by Erdös and Réniy. Some of the
basic results in random graphs state that, after a specific threshold is achieved by the probability
distribution function, most graphs will have some specific property such as connectivity, for ex-
ample. The second last paper in the book describes the properties of initial cycles formed in a
evolving random graph (i.e., a graph in which edges are being added according to a probability
distribution). For example, one such property of interest is the distribution of cycle lengths. The
last paper, which is the largest in the book (150 pages, filling up a whole issue of the Random
Structures and Algorithms journal) describes results related to one of the most fascinating phenom-
ena in random graphs: the appearance of a giant component during the random process of adding
edges.

Other topics appear in different parts of the book. For example, matroids (Chapters 26 and 27),
permutations and partitions (Chapters 28 and 30 to 35), coding theory (Chapter 29), and number
theory (Chapter 36).

3 Conclusion

As seen above, “Selected Papers in Discrete Mathematics” is a book that covers a long range of
material of interest to people working in combinatorics, theoretical computer science, optimization,
and other related areas. However, it must be said that although some of the papers cover basic
concepts, the book is not suitable for a beginner to learn any of these topics. There are too many,
sometimes very distant topics being discussed, such as random graphs and algebra.

I would say that the audience for the book comprises two groups. First, researchers working
with discrete mathematics, which may want to have a good collection of papers in one of the areas
covered. A second group that would benefit from the book are professionals interested in how to
write good papers, and willing to learn at least a little of mathematics.

This said, the book is well deserving the price. The content is written in an authoritative
way. Suffices to say that these papers have been published in some of the best journals in the
area, and they were written and throughly revised by the same author of “The Art of Computer
Programming.”

Review of4

Linear Optimization and Extensions – Problems and Solutions
by Dimitris Alevas and Manfred Padberg

Springer-Verlag, 450 pages, $54.95, Softcover

1 Introduction

Linear Optimization and Extensions – Problems and Solutions – is a solution manual for another
book, released in 2000, by the second author [1]. The original book is a comprehensive introduction
to the topics of linear programming and combinatorial optimization. The current book, therefore,
has the initial goal of providing hints, and solutions for the problems there stated.

4copyright 2004, Carlos Oliveira
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However, the authors managed to create a book that is far from being a simple solution manual.
This is clearly expressed in the introduction, where they describe the development process, as well
as their final objectives. They decided to write a self contained text, with summaries of the most
important points in each chapter, followed by solved exercises. Also, some of the presented exercises
are new, and were not included in [1]. The result is a well-written reference text, with much more
material than what can be expected of a solutions manual.

Each section of the book starts with a summary of the important facts appearing the corre-
sponding sections of [1]. All statements in the exercises are included, thus the student does not
need a copy of [1] to understand the problems. These features allow the book to be used as a self
contained reference.

2 Book Content

Introduction In the introduction, the topic of LP modeling is covered, with the help of several
examples. The examples, here called mini-cases, correspond to standard situations in industry
where LP theory is helpful. The examples are discussed in depth, and completely solved with
employment of computer packages, such as cplex and matlab. This chapter is directly relevant for
students who want to apply LP in the industry, with complete coverage of the LP modeling cycle,
and description of solving tools. However, it seams a little far fetched and even boring for students
interested only in the theory.

Linear Programming The second chapter deals with basic definitions of linear programming.
The standard formulation

min cx such that Ax = b, x ≥ 0

is presented, together with the related canonical form

max cx such that Ax ≤ b, x ≥ 0.

A basic result of linear programming is that these two forms are equivalent, what can be shown
using simple linear transformations. The chapter also presents other fundamentals from linear
algebra, which are very important to the clear understanding of linear programming algorithms.

Basic Concepts In this chapter the main operations on linear programs are defined and ex-
emplified. Concepts such as base, feasible solution, degenerate solution are defined, as well as the
geometric representation of a linear program, in terms of coordinates in the Rn. The exercises rein-
force the definitions and examples, in an effort to help students develop the intuition of polyhedral
geometry.

Five Preliminaries This chapter introduces the basic concepts of the simplex method. The
five preliminaries needed to understand the simplex method are: basic feasible solutions, which are
an algebraic representation for extreme points, the geometric points where optimal solutions are
located; the sufficient optimality criterion, which says when a solution is optimal; the unboundedness
criterion, which determines if a problem has unbounded solution; the rank-one update, used to find
the inverse of a matrix after a multiplication by the rank one matrix uvT ; and finally, the basis
change; which is the method employed to change from a basic feasible solution to another.
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Simplex Algorithms In chapter five the simplex algorithm is introduced. Several variants of
the basic algorithm are discussed, with different pivot column and row selection mechanisms. The
starting phase of the simplex is presented, using the Big-M and the two-phase methods. The
exercises in this chapter emphasize the algorithmic aspects of the simplex method. In particular,
sample implementations of the algorithms discussed are shown, using matlab. This alone is an
interesting feature, since most text books do not care about real implementation issues. The
exercises in this chapter serve also to formalize many of the results, which are necessary to prove
the correctness of the simplex, but can become boring if introduced in the initial explanation.

Primal-Dual Pairs Duality is one of the main properties of linear programming, and one can
say that this is the reason why LP is so popular as a tool for developing and proving the correctness
of algorithms. For example, in the theory of approximation algorithms, duality is frequently used
to prove approximation properties. As another example, in graph theory LP duality can be used
to prove the classical maximum flow/minimum cut theorem. Therefore, duality it is a property
useful not only for the simplex method, but for all algorithms that work with linear models. In
this chapter, the authors describe initially the mechanics of dual problem construction. The strong
duality theorem is then introduced, which leads to the very important complementary slackness
conditions: if x is the optimum solution for the primal problem, and u is the optimum solution for
the dual, then

u(Ax− b) = 0 and (uA− c)x = 0.

The duality theorem is used to prove the Farkas’ Lemma, a fundamental result that can be used to
build duality theory, being also useful in many other areas. The exercises in this chapter explore
important topics such as the dual simplex, again with sample implementation.

Analytical Geometry Chapter seven presents what seams to be a main departure from the
traditional method used to teach linear programming. Building on their experience in the field
of polyhedral techniques, the authors present an introduction to Analytical Geometry. This is a
prerequisite to the proper understanding of much of the modern algorithms for linear program-
ming, as well as its generalizations. However, in most books the material related to this topic is
kept to a minimum. The information contained in this chapter is also very useful for a complete
understanding of integer programming techniques explained latter. This is one of the features of
this book, and can become quite interesting for readers who want to explore other texts such as
“Integer and Combinatorial Optimization”, by Nemhauser and Wolsey.

Projective Algorithms In the eighth chapter, the interior points method is explained. This
is a class of polynomial algorithms for LP developed in the last two decades, which provides the
best performance for some large linear programs. The ideas used in its development use many of
the geometrical concepts described in chapter seven. The presentation in the book gives a large
number of geometrical insights, which help in the clear understanding of the technique. Some extra
topics, such as the logarithmic barrier function, which is very useful in current implementations of
LP solvers, are also explained in the introductory section.

Ellipsoid Algorithms In chapter nine, the ellipsoid algorithm for linear programming is intro-
duced. This algorithm has enormous importance in the theory of linear programming. Initially,
because this was the first polynomial time algorithm to solve linear programming problems (the
existing methods had exponential cases, despite the great efficiency on average of the simplex
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method). However, the ellipsoid method is also important in proving results about problems other
then linear programming, due to its generality. One interesting result derived from the ellipsoid al-
gorithm is the celebrated equivalence between optimization and separation; that is, the complexity
of separating an infeasible point from the feasible set (using a plane), is the same as that of the op-
timization problem. The book provides a very understandable summary of the facts concerning the
ellipsoid method, again with a sample computational implementation (which is not very efficient,
due to problems with the algorithm itself).

Combinatorial Optimization Chapter ten gives an introduction to one of the most important
applications of linear programming theory: combinatorial optimization. Such problems have the
characteristic that some of their variables have integer value, which makes them much harder to
solve. The general mixed-integer linear program can be described as

max{c~x + d~y | A~x + D~y ≥ ~b, ~x ≥ ~0, ~y ≥ ~0, ~x ∈ Zn, ~y ∈ Rm}.

Due to results in computational complexity, it is believed that there is no efficient algorithm to
solve such problems. Thus, the basic solution method uses implicit enumeration techniques, such
as branch-and- bound. This approach is described in the introduction, and developed in exercises,
together with extensions of the basic technique, such as the cutting plane methods. This chapter
also explain the notions of complete and ideal formulations, used to describe a minimal polyhedron
containing the feasible solutions to a combinatorial optimization problem.

Appendices Some extended applications are described in the appendices. Particularly inter-
esting is the description of problems on printed circuit boards, used to introduce the traveling
salesman problem. Some of the most important techniques developed in text are applied to solve
the examples. This constitutes a nice explanation of the real usage for the presented theory.

3 Conclusion

The book is a very well planned and written. It presents a large number of exercises, examples,
programming codes, and interesting applications of the theory of linear programming. Having said
this, it must be clear that it is not meant to be a complete textbook, but just a complement
to existing texts. One of the advantages of giving introductory notes in each section is that, for
students who already know the theory, this can become a quick reference for the main results. For
professors and interested students, the book can also serve as a source of advanced exercises.

An important feature of the book, which sets it apart from other introductory texts, is the
inclusion of details about analytical geometry and projective algorithms. This can be confusing
to first time readers, but for people really interested in knowing the internal mechanisms used by
most modern algorithms, this is certainly the way to go. Also, the publication of sample computer
code is interesting to many people, and a feature not found in most books about LP.

In conclusion, I believe that the book will prove invaluable not only for students, but also for
professionals in industry and universities. This is certainly an important addition to the literature
of the area of linear programming.
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Review of5

Introduction to the Design and Analysis of Algorithms
Author of book: Ananay Levitin

Hardcover, 528 pages, Addison-Wesley, $85.00
On Amazon Used its just $32.00

Reviewer: William Fahle
This is a beginning algorithms book, suitable for the late undergraduate or early graduate

computer science student. Subjects covered include an introduction of the concept of algorithms, a
taxonomy of various algorithms and design techniques, up through a preliminary discussion of the
topics of complexity and computability. The subject of algorithms is, of course, well known and
fundamental to the computer sciences. This book provides an introduction to the subject through
the use of some well-known and not so well-known puzzles and computing problems.

The author endeavors in this work to establish a new taxonomy on algorithms. Rather than
group algorithms by the type of problem they solve such as sorting or searching, he classifies
them by the approach which is taken to solve the problem. Furthermore, the classic division of
approaches into divide-and-conquer, greedy, and dynamic programming is refined and extended
to include many common techniques. The general techniques include brute force, decrease-and-
conquer, transform-and-conquer, and even some techniques for NP-hard problems such as branch-
and-bound and backtracking.

Computer-based problems such as sorting, searching, string processing, and graph problems are
introduced, and puzzles such as the Knigsberg bridge puzzle posed by Euler are used as examples
for these problem types. The puzzles allow us to see the nature of problems that are easy to describe
but perhaps difficult to solve.

Essential data structures are introduced, and the formal notation for performance analysis is
described in detail, including big-oh, big-omega, and big-theta and what they mean mathematically.
The descriptions are very accessible, yet more advanced concepts such as the master theorem and
recurrence relations are also covered.

With these preliminaries out of the way, the text proceeds to introduce design techniques one
chapter at a time. Brute force is shown first, since this is often the obvious solution to any given
problem. By contrast the remaining approaches are shown to be more efficient if it is possible to
do so; problems for which no known better solution is known are also treated.

The next chapter covers divide-and-conquer, which is perhaps one of the easiest techniques
to understand for the beginning student. Next come decrease-and-conquer and transform-and-
conquer. The latter refers to simply solving a problem for a smaller input (usually recursively)
then using the result to solve the whole problem. The former refers to techniques such as reduction
or pre-sorting.

Chapter seven covers space and time tradeoffs, which arguably is not a design technique, but
there are several algorithms that exist entirely on the basis of such tradeoffs. These include b-trees,
hashing, and Boyer-Moore string matching. The next chapter is about dynamic programming,
which is perhaps a generalization of space-time tradeoffs, but problems in this domain tend to have
an optimal sub-problem which can be used to solve the larger problem.

The chapter on dynamic programming is followed by a section on the limitations of algorithmic
power and methods of coping with those limitations, such as approximation algorithms and schemes.
There is then an epilogue in which the material of the book is summarized, followed by a couple
of good appendices on the mathematics of algorithm analysis and recurrence relations, along with

5copyright 2004, William Fahle
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exercise hints. The bibliography is extensive, and the eighteen-page tagged index is comprehensive;
algorithms are listed by name and by type. Most of the games and puzzles used in the text are
indexed, along with special notation and numbers.

Rather than give solutions to some of the exercises, the author chose to give hints for every
problem. These hints will hopefully stimulate further thinking about each exercise, and certainly
the student should attempt the problem before looking at the hint.

Overall, this book, while not revolutionary, certainly has many points to recommend it. The
author has written in an accessible style with a solid aim to educate the reader rather than obscure
the content in needlessly complex language or notation. Nevertheless, the content is rigorous and
complete as far as it goes, and the puzzles used in examples along with the Socratic injection of
questions to the reader along the way make the read enjoyable and worthy of attention.
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