
The Book Review Column1

by William Gasarch
Department of Computer Science

University of Maryland at College Park
College Park, MD, 20742

email: gasarch@cs.umd.edu

In this column we review the following books.

1. The Art of Computer Programming Volume 4, Fascicles 2, 3, and 4 by Donald
Knuth. Review by John Rogers. Volume 4 is actually out– at least in parts. I would describe
it with one word: Knuthian. John Rogers, the reviewer, has more words.

2. A Course in Computational Algebraic Number Theory By Henri Cohen. Review
by Timothy Kelley. This book provides both the algorithms and the proofs that they work.
Rather comprehensive.

3. Foundations of Computer Security by David Salomon. Review by Richard Jankowski.
The intended audience is newcomers to the field. Does it succeed? Read the review to find
out!

4. Derivation and Computation: taking the Curry-Howard correspondence seriously
by Harold Simmons. Review by Robert J. Irwin. My short description can do no better than
to quote the review itself: Simmons’s text, whose thrust is pedagogical, intends to be a not-
quite-one-stop-shopping experience for readers interested in the interplay between the kinds of
symbol-pushing undertaken in logic and in computation.

5. Theoretical and Experimental DNA Computation. by M. Amos. Review by Maulik
Dave. Can we really solve problems with DNA? Read the review to find out if you should
read the book to find out.

Books I want Reviewed
If you want a FREE copy of one of these books in exchange for a review, then email me at

gasarchcs.umd.edu
Reviews need to be in LaTeX, LaTeX2e, or Plaintext.

Books on Algorithms and Data Structures

1. Algorihtms on Strings by Crochemore, Hancart, and Lecroq.

2. Algorithms for Statistical Signal Processing by Proakis, Rader, Ling, Nikias, Moonen, Proudler.

3. Nonlinear Integer Programming by Li and Sun.

4. Binary Quadratic Forms: An Algorithmic Approach by Buchmann and Vollmer.

5. Curve and Surface Reconstruction: Algorithms with Mathematical Analysis by Dey
1 c© William Gasarch, 2008.

1

Books on Cryptography, Coding Theory, and Security

1. Crytanalytic Attacks on RSA by Song Yan.

2. Concurrent Zero-Knowledge by Alon Rosen.

3. Introduction to Cryptography: Principles and Applications by Delfs and Knebl.

4. Cryptography and Computational Number Theory edited by Lam, Shparlinski, Wang, Xing.

5. Coding, Cryptography, and Combinatorics edited by Feng, Niederreiter, Xing.

6. Formal Correctness of Security Protcols by Bella

7. Coding for Data and Computer Communications by David Salomon.

8. Block Error-Correcting Codes: A Computational Primer by Xambo-Descamps.

9. A consise introduction to data compression by David Salomon.

Combinatorics Books

1. A Coures in Enumeration by Aigner.

2. Computationally Oriented Matroids by Bokowski

Auction Theory and Game Theory

1. Putting Auction Theory to Work by Paul Milgrom.

2. Game Theory: Decisions, Interactions, and Evolution by James Webb.

Logic and Verification Books

1. Elements of Finite Model Theory by Libkin.

2. Finite Model Theory and its Applications By Gradel, Kolatis, Libkin, Marx, Spencer, Vardi,
Venema, Weinstein.

3. Software Abstractions: Logic, Language, and Analysis by Jackson.

4. Formal Models of Communicating Systems: Languages, Automata, and Monadic Second-
Order Logic by Benedikt Bollig.

5. Modelling Distributed Systems by Fokkink.

Misc

1. How to Prove it: A structured approache by Velleman.

2. Difference Equations: From Rabbits to Chaos by Cull, Flahive, and Robson.

3. Geometric Algebra for Computer Scientists: An Object Oriented Approach to Geometry by
Dorst, Fontijne, and Mann.

2

Review2 of
The Art of Computer Programming

Volume 4, Fascicles 2, 3, and 4
by Donald E. Knuth

Pearson Education (Addison-Wesley), 2005
399 pages, Softcover

Review by
John D. Rogers (jrogers@cs.depaul.edu)

School of CTI, DePaul University

1 Introduction

DePaul University, where I teach, offers a Master of Science degree in Computer Science. Most of
the students entering this program have very little background in CS and we help them fill this in
by offering undergraduate CS courses tailored to older (and so more motivated) students.

Teaching the course in discrete mathematics is both a pleasure and a challenge. A pleasure
because it is a real joy to present some of the gems of our field to people who have never encountered
the mathematics we rely on. Pulling out Euclid’s GCD algorithm and Euler’s cycle finding algorithm
and discussing the wonderful elegance of each reminds me of why I entered this field.

The challenge comes from connecting the material to practice. Many of these students come from
the banking, investing, consulting, or trading firms located steps away from our downtown campus
and many are working programmers. For most, the MS is a professional degree so connecting Eu-
clid’s algorithm to public key cryptography helps them understand why grasping the fundamentals
of number theory or combinatorics or graph theory (and the more difficult algorithms and proofs
to come in later courses) is relevant to practice.

One encounters that same pleasure in Don Knuth’s latest additions to his collection of volumes
titled “The Art of Computer Programming.” At the same time, he also meets the challenge of
practical relevance.

2 Summary

Before discussing that pleasure and challenge, let me review the scope of this multi-decade project,
as described on Knuth’s web page dedicated to it (www-cs-faculty.stanford.edu/~knuth/taocp.
html). So far, he has completed the first three volumes and parts of the fourth volume of what is
planned to be a seven-volume set. As many know, volume 1 deals with fundamental algorithms,
volume 2 with seminumerical algorithms, and volume 3 with sorting and searching.

Volume 4 is concerned with combinatorial algorithms and will eventually appear in three (or
maybe four) books. Continuing the chapter numbering of the first three volumes, this one will
contain chapters 7 and 8. Volume 4A will take up sections 7.1 (“Zeroes and Ones”), 7.2 (“Generating
All Possibilities”), and perhaps also 7.3 (“Shortest Paths”). The work reviewed here comprises
subsection 7.2.1 (“Generating Basic Combinatorial Patterns”).

2 c©2008, John D. Rogers

3

Knowing that, even in retirement, it will take time to complete this opus, Knuth has decided
to issue portions in fascicles, an old word referring to published installments of a longer work. In
this case, each fascicle is a soft-covered book containing, respectively, 128, 128 + 23, and 128 − 8
pages. To date, there are four fascicles, each with its own table of contents and index. Fascicles 0
and 1 are scheduled to appear in 2008. Fascicle 1 of Volume 1 presents Knuth’s MMIX machine
and is not reviewed here.

Fascicles 2, 3, and 4 cover subsection 7.2.1, which in turn contains seven sub-subsections:

• 7.2.1.1: Generating all n-tuples

• 7.2.1.2: Generating all permutations

• 7.2.1.3: Generating all combinations

• 7.2.1.4: Generating all partitions

• 7.2.1.5: Generating all set partitions

• 7.2.1.6: Generating all trees

• 7.2.1.7: History and further references

The first two appear in fascicle 2, the next three in fascicle 3, and the last two in fascicle 4.
It may seem that this form puts a reader in media res (which it does!) but each fascicle has its

own table of contents and index and is written so that it can stand pretty much on its own. In the
text there are references to other portions of the set but most are to chapters already published
and, in those cases where a reference is to something not yet available, it does not greatly impair
understanding.

Knuth issued these fascicles to explain how to generate basic combinatorial patterns. He does
not call this enumeration as this implies creating a list of objects. One usually wishes to visit the
objects one by one so as to determine whether each possesses some property. Of course, being able
to generate the objects one-by-one in some kind of order means being able to enumerate them. But
his emphasis on generation often requires a more subtle algorithmic approach.

He moves from the simplest objects, showing how to generate all n-bit strings, to the complex,
showing how to generate all n-node trees. He follows this with a 25-page history of the subject.

Most reading this review need no explanation of the objects being generated so, rather than
discussing each unit, I will take as a typical example section 7.2.1.2, generating all permutations
on n items.

Knuth begins by reviewing what a permutation is and then launches immediately into algo-
rithm L (for lexicographic), which generates in lexicographic order the permutations of an ordered
multiset. He traces the algorithm back to 14th century India and 18th century Germany and briefly
analyzes the work L does to pass from one permutation to its successor.

Referring back to Gray code sequences in the previous (and incredibly thorough) section, where
he presents algorithms that generate each n-bit string from the previous by changing only one bit,
he lays out algorithm P, which generates each permutation from the previous by performing one
swap of adjacent elements.

Why is this called algorithm P? That’s answered in its analysis, when Knuth reveals that this is
the procedure used to carry out the “plain changes” method of ringing a set of church bells. Need

4

a reference? There are two, pointing to 17th century English texts, followed by a brief digression
into other change ringing sequences.

After a short detour into using permutation generation to solve alphametic puzzles (“SEND +
MORE = MONEY” is the best known), Knuth launches into a general framework that makes use of
the group theoretic properties of sets of permutations.

We next see algorithm G (a general permutation generator that uses a Sims table), algorithm
X (lexicographic generation with restricted prefixes), algorithm H (dual permutation generator),
algorithm C (generation by cyclic shifts), and algorithm E (generation using Ehrlich swaps). Each
time, potentially unfamiliar terms (e.g., Sims table, Ehrlich swap) are explained and references
provided.

Topological sorts come next. In this case, restrictions are placed on which order pairs of elements
may appear in a permutation. Algorithm V deals with that.

Knuth ends with a caution about generating permutations, noting that one should consider
whether that’s the best way to solve the problem, even in the case of small instances of NP-complete
problems.

To test and improve the reader’s understanding he includes 112 exercises, each one scored
according to its difficulty, along with solutions. The exercises are important as they often expand
on some of the material. In fact, of the 69 pages devoted to this topic, 33 are taken up with exercises
and solutions.

3 Opinion

Who would benefit from this book? One obvious audience is computer scientists. Speaking as one
of those, I enjoyed these fascicles. Knuth is teaching me the way I try to teach my students in that
introductory discrete math class, which is to convince the audience that the notion of generating
combinatorial objects is intrinsically interesting AND it derives from and leads to other areas
of mathematics AND it connects to pursuits outside computer science AND people from widely
different times and places have wrestled with and sometimes solved associated problems AND it
can be applied to solve real-world problems today. This is science writing for computer scientists.

Who else? One could use this in a course devoted to combinatorial generation. But it would
also find a place in a more general algorithms course as a supplemental text. Although not written
as a textbook, the presentation and the exercises give it a solid pedagogical feel. And the price is
right: Each fascicle costs around US$20 so students shouldn’t suffer sticker shock.

Working programmers tackling these problems will certainly welcome the diversity of approaches
to solving them. I program very little but, when I need to, it’s usually to test hypotheses about
combinatorial objects by looking at small examples. I have found the material here very useful in
generating all partially ordered sets on 10 or fewer elements in order to get an idea of the properties
of poset games. I will note that Knuth relies heavily on branching in his algorithms. This allows
them to be expressed succinctly and with a focus on the steps making changes to an object but it
does mean that the algorithms do not leap off the page into a language like Java without rearranging
some code.

The real value in this work comes from its scholarly attention to detail. Knuth recognizes and
acknowledges the many and varied people and writings that provided him with algorithms, methods,
variations, digressions, inspiration. Sometimes in computer science we forget that although our

5

discipline is hardly 60 years old we owe a debt to intellectual forebears going back many centuries.
Knuth honors that debt and the text is all the richer for it.

I will end the review with a mention of the last section, the one on the history of combinatorial
generation. This is good stuff. Starting with the I Ching, it sweeps along to the rhythmic structure
of ancient Indian poetry and the metrical structure of classical Greek poetry and from there to
a variety of places, objects, and people. On this sojourn he shows how authors in the past have
attempted combinatorial generation in a multitude of settings and ultimately makes the point that
it’s not easy to get right.

But Knuth gets it right. The algorithms work, the text flows easily, the references and ex-
planations entice, and the exercises challenge and teach. In 1999, the journal American Scientist
named the original three volumes of The Art of Computer Programming one of the century’s best
monographs in physical science. These fascicles continue to uphold that selection.

6

Review of1

A Course in Computational Algebraic Number Theory
By Henri Cohen

Published by Springer, 2000, 534 pages
Reviewed by Timothy Kelley (klle2td@jmu.edu)

James Madison University

Introduction:

Algebraic number theory is a field of number theory that studies algebraic numbers. An algebraic
number is a number that exists in the set of complex numbers and is a root of a polynomial
whose coefficients are in the set of integers. That is, for a number α ∈ C and polynomial
A ∈ Z[X],2 α is an algebraic number if A(α) = 0, and A is not identically zero.3 The
computational aspect of this study involves examining, mathematically, the algorithms that solve
problems related to number theory. These algorithms include fast powering algorithms, various
algorithms for linear algebra, Euclid’s algorithm for greatest common divisor, and elliptical
curves, to name a few. These algorithms have become very important in the study of
cryptography. The latest cryptography algorithms use elliptical curves, The Advanced Encryption
Standard (AES) performs arithmetic over a binary finite field with a degree of 8, and RSA
requires large primes to be generated and encryption and decryption require that the value of a
message be raised to a large number. Thus, not only is the subject of number theory interesting
in its own right, it has important real-world applications in cryptology.

Summary and Comments:

This book is divided into ten chapters and two appendices. The first six chapters are meant to be
used as a full year course in the subject of computational algebraic number theory and proceed
from elementary algorithms to more advanced topics such as computing integral bases in number
fields. The author states two goals for his book. In the author’s words, the first goal is, ”to give a
reasonably comprehensive introductory course in computation number theory.”4 In this aspect, I
initially felt that he had failed. Upon further reflection on the subject matter and the intended
audience, senior undergraduate or graduate students studying number theory, I feel that this
book offers an intense look at the necessary subject matter to enter into the field of number
theory. I say intense because it assumes a fairly high level of background in the subject. Luckily,
the text contains a considerable bibliography with a section dedicated to essential introductory
books, which contains ten books. Thus, for readers that are not familiar with the subject, but
which to make themselves so, this book contains a road map to prepare for reading this book.

The second goal the author had was to write a practical guide for number theory. The book
focuses not only on the fundamental algorithms but on the implementation of these algorithms, as
well. When describing the algorithms in this book the author gives them in ready program form,

1This Review is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/2.5/)
2This is the format this book uses to denote a polynomial.
3Henri Cohen, ”A Course in Computational Algebraic Number Theory,” p 153.
4Ibid. p XIII

gives a mathematical analysis, as well as proofs of some of the algorithms. Where proofs are not
given directly they can either be found in other literature or are given as exercises for the reader.
Giving the steps necessary to implement an algorithm allows the reader of this book to implement
them in their favorite language and machine to get a feel for how the algorithm works. In fact,
the second section of the first chapter describes the necessary components for implementing a
multi-precision package, which can then be improved by adding the other algorithms found
throughout the book. In this aspect, I felt the author did an excellent job. Whereas, some of the
algorithms are difficult to understand in their implementation form, due to the author’s choice to
optimize them as well as the language used to describe them, for the most part, having the
implementation aides understanding the theoretical aspects of the problem, or at the very least
allows the reader to experiment with the algorithms to get a feel for them.

The first chapter contains the basic algorithms used often in number theory. This includes various
powering algorithms, Euclid’s algorithms, algorithms for the Chinese remainder theorem, finding
primitive roots, and computing square roots modulo p. Typically the author will discus the näıve
way of solving the problem and then demonstrate a faster way of doing so. For example, the näıve
method for powering requires n -1 multiplications in a group. The author then describes a several
more efficient methods, the simplest being the algorithm that computes:

gn =
∏

εi=1(g
2i

)

which compute s gn in some group G using the binary representation of n and is described as:

Algorithm 1.2.1 (Right-Left Binary). Given g ∈ G and n ∈ XXX[Z], this algorithm
computes gn in G. We write 1 for the unit element of G.

1. [Initialize] Set y ← 1. If n = 0, output y and terminate. If n < 0 let N ← −n
and z ← g−1. Otherwise, set y ← n and z ← g.
2. [Multiply?] If N is odd set y ← z • y.
3. [Halve N] Set N ← bN/2c. If N = 0, output y as the answer and terminate the
algorithm. Otherwise set z ← z • z and go to step 2.5

As I mentioned above, occasionally the implementation is difficult to understand due to the way
it is written. This is especially true for the more complex algorithms. After the implementation
has been given the complexity typically follows as well as general discussion about interesting
properties. For example, the above algorithm performs no worse than 2blg|n|c+ 1. From this
basic exploration of the fundamental algorithms, the author moves onto common problems of
linear algebra, which are often necessary in number-theoretic algorithms.

Chapter two contains algorithms for solving linear algebra problems and describes the difficulties
inherent in solving these types of problems, mainly stability, especially when dealing with the real
numbers, which is a problem of numeric analysis. Once again, for the subjects not covered
directly, the author provides several sources to the reader. The algorithms covered in this chapter
include algorithms for Gaussian elimination, computing the inverse of a matrix, computing
determinants, and for computing the characteristic polynomial. The second part of this chapter

5Ibid. p 8

deals with arbitrary m× n matrices. This part includes algorithms for finding the kernel and
image of a matrix, the inverse image, supplementing a matrix (taking an n× k matrix, where
k ≤ n, and finding an invertible n× n matrix with the first k columns are the original matrix),
operations on subspaces, and for computing the Hermite and Smith normal forms. This chapter
also contains various algorithms for dealing with Lattices.

Chapter three begins to utilize the algorithms explored in the first chapters for operations on
polynomials. Before that the author discusses the way in which they chose to represent
polynomials in an actual program. This is an important discussion when trying to meet the
second goal of this book, practicality. In addition to this discussion there are algorithms for
finding the resultant of a polynomial, factoring polynomials, in the general sense and modulo p,
and for finding the greatest common divisor between polynomials.

Chapter four begins the necessary background for algebraic number theory, the first three
chapters being preparatory work for the final three chapters of the course work segment of the
book. This begins more of an exploration of the theory, containing more definitions and theorems.
These include the definition of algebraic numbers, as I wrote above, number fields, and the
various fundamental results for both of these terms. The algorithms examined in this chapter are
those for finding the signature of a polynomial, polynomial reduction, algorithms for solving the
subfield problem and for field membership and isomorphism, it is important to note that these
algorithms draw heavily on those algorithms described in chapters two and three, particularly the
lattice algorithms and the algorithm for factoring polynomials. This chapter also lays out the
primary computational tasks of algebraic number theory, which are addressed throughout the
remainder of the book. These are:

1. Compute an integral basis of ZK , determine the decomposition of prime numbers
in ZK , and p-adic valuations for given ideals or elements.
2. Compute the Galois group of the Galois closure of K.
3. Compute a system of fundamental units of K and/or the regulator R(K)...
4. Compute the class number and the structure of the class group Cl(K). It is
essentially impossible to do this without also computing the regulator.
5. Given an ideal of ZK , determine whether or not it is principal, and if it is,
compute α ∈ K such that I = αZK .6

The next two chapters deal with these problems. However, chapter seven introduces, for the most
part, without proofs, a survey of results about elliptic curves, and the following chapters deal with
the history and future of factoring algorithms.

Here is where this book grabbed my attention. While the discussion of elliptic curves is brief, it
suggests the evolving field of number theory, and as a graduate level text-book, something that is
something I feel is important; not just describing what is, but what the new aspects of the field
are as motivation for students wanting to go that extra bit. Certainly, the book is a bit dated, as
the author states, ”It is essentially impossible for an author to keep up with the rapid pace of
progress in all areas of this subject.”7 The fact that elliptic curves are still cutting edge, both in

6Ibid. p 217
7Ibid. p XIII

terms of number theory and cryptography, shows that the basic principles are important, and this
book serves as a good starting reference.

Chapter seven starts by defining elliptic curves and their various properties, but outlines very few
algorithms. The second half of the chapter is used for describing the algorithms for working on
elliptic curves. Once again, this section is brief, but like other areas that are not detailed, the
author gives several books where more detailed information can be found.

The final three chapters focus on different aspects of factoring. Chapter eight describes factoring
algorithms before 1970, outlining the history of factoring algorithms, as well as touching on
compositeness tests, and primality tests, one of which is based on chapter seven’s discussion on
elliptic curves. The author makes the distinction between compositeness tests, those that
determine that a number has a certain probability of being prime, and primality tests, those that
prove a number is prime. Of particular interest here is Atkin’s test, which utilizes the elliptic
curve test and has been able to prove the primality of numbers with more than 1000 decimal
places. It is also interesting to note that Atkin’s test runs in polynomial time.8 Chapter ten
delves into modern factoring algorithms and eventually reaches the discussion of quadratic sieve
factoring and number field sieve factoring. These are of particular interest in the field of
cryptography, as many of the attacks on RSA are based on trying to factor the very large number
n, which is generated by the multiplication of two large primes. So the author leaves the reader
with not only a very interesting theoretical problem, but also a very relevant one.

The first appendix is an overview of available multi-precision packages for use with number
theory. I will note here that since the book was first published in 1993, this discussion is a bit
outdated, but the general advice is still good, as the author describes the merits and pitfalls of
various commercial and freely available packages. The second appendix is a list of useful tables
such as class numbers for complex quadratic fields. These are useful when experimenting with the
algorithms in this book.

Conclusions:

This book is very dense. As I mentioned earlier, on first read I did not believe this could be used
as an introductory text. Now I feel that it might be, but only if the students involved are well
versed in both the study of number theory and the study of algorithms. This book assumes a lot
of prior knowledge on the part of the reader. However, if you have the background this book can
be both an excellent reference and an excellent jumping off point for further exploration. The
bibliography is comprehensive and the author is careful to mention aspects of the field which he
touches on lightly but are addressed in more detail elsewhere. In fact, many proofs are omitted
because they can be found in other literature. While I didn?t find this book entirely useful, those
sections I had background in were very interesting. Thus, my final advice is, if you have
experience in the field you will find this book very useful. If you do not have the experience, but
are interested in the topic, you should either, find some introductory texts and study them hard
before spending the money, or purchase this book and use the bibliography as a guide for what
introductory texts to purchase.

8Ibid. p 471

Review of3

Foundations of Computer Security
by David Salomon

Springer-Verlag 2006, 369 pp., $69.95, Hardcover.

Review by
Richard Jankowski jankowsr@mskcc.org

1 Introduction

The field of Computer Security probably doesn’t require much of an introduction in light of recent
media events. Lost and stolen laptops are placing individuals at risk of identity theft and viruses and
worms are wreaking havoc across corporate networks. In Foundations of Computer Security, David
Salomon introduces the reader to the foundational concepts of computer security. The intended
audience of this book is newcomers with a limited experience with computers.

2 Summary

Salomon begins Chapter 1 with a topic that is often overlooked in security books: Physical Security.
Topics such as side-channel attacks are introduced, and the author provides good coverage of the
relevant and realistic threats associated with computer systems, especially portable devices. The
reader will leave this chapter with the understanding that a computer is only as secure as the
physical environment where it is located.

Chapter 2 is the largest chapter of the book, covering the topic of viruses. The author provides
a very nice introduction into the topic covering subjects such as the motivation of virus writers,
their techniques, virus propagation tactics, and classifications of the different types of viruses. An
interesting part of this chapter deals with the methods viruses use to stealthily spread throughout
the system. Some pseudo-code is used in examples, but all of it is of a high enough level to be
approachable by the intended audience of readers.

Chapters 3 and 4 cover worms and Trojan horses respectively. Worms are introduced with a
discussion of Code Red I, and an overview of the techniques worms use to spread and communicate
with one another. The chapter on Trojan horses discusses the applications of Trojan horses and
techniques of installing Trojan applications on systems. The concept of rigging a compiler is covered,
but the code used in the examples may be a little over the heads of the target audience of this book
(newcomers with only a basic knowledge of computers).

Chapter 5, Examples of Malware, is a nice chapter that covers the history of a dozen of the more
well-known viruses and worms. Most readers will probably find this chapter interesting, as they
can compare mainstream viruses with one another. Household-name viruses, like Michelangelo,
SirCAM, and Melissa are all discussed.

Chapter 6, Prevention and Defenses, deals with strategies to defend against the malicious soft-
ware described in the four previous chapters. The author discusses anti-virus software, backups,
and closes with a section on educating users about virus hoaxes.

Network Security is covered in Chapter 7, and the author does a very good job at introducing
the essentials. Port scanning and the various forms of spoofing are first introduced. The author

3 c©2008, Richard Jankowski

then dedicates several pages to spam covering topics such as spam proxies, filtering, and how to
avoid spam from a user perspective. Sound advice is given here, such as turning off preview mode
in your mail reader and not responding to any spam messages. Salomon closes this chapter with
an introduction to Denial of Service and Firewall Basics.

Chapter 8 deals with Authentication, and after a short introduction to what authentication
is, the author discusses common biometric authentication systems, such as fingerprints and fa-
cial recognition. The author closes the chapter with a very complete and important chapter on
passwords. The reader is given recommendations on developing good passwords, and threats to
passwords, such as dictionary attacks and sniffing are discussed.

Spyware is covered in Chapter 9. This author does a good job discussing the political, eco-
nomical, and other motivations behind the deployment of spyware. How spyware is distributed to
systems is discussed, as well as the differences between similar applications such as adware.

Chapter 10 covers identity theft, a very popular and timely topic. The author covers best
practices for avoiding being victimized, such as monitoring your credit and shredding unneeded
documents. Sound advice is given to destroy magnetic and optical storage when disposing of them,
and phishing techniques are discussed. The author closes this chapter with a technique called a
homograph threat, where the reader is introduced to the concept that the Web site they are visiting
may, in fact, be a spoofed site.

Privacy and Trust is the title for Chapter 11, and the author gives the reader practical advice to
protect themselves and their children. Trust is introduced in the form of consumer trust in making
online purchases.

Chapter 12, the final chapter of the book, introduces the reader to the basic elements of cryp-
tography. Basic ideas are introduced, such as the importance of keeping the encryption key secret,
monoalphabetic and polyalphabetic ciphers, one-time pads, and public key cryptography. It’s a lot
to squeeze into the 21 pages of the chapter, and like in Chapter 4, the author may start to go over
the heads of the intended audience, especially in the RSA section. The chapter closes with SSL
and a nice introduction to how the protocol is employed.

In addition to the main chapters, appendices cover the language notation system used by the
hacker underground and a timeline of viruses up until 2005. Also included is a ”Concluding Re-
marks” section that distills much of the advice given throughout the book in a way that the reader
can use as a take-away list.

3 Opinion

Overall, Foundations of Computer Security is a very nice and well-written introduction to the
essential concepts of computer security. The content was written in an easy tone that would make
it approachable to a security neophyte. The book is loaded with examples and exercises that are
useful in learning the material.

One of the things I found appealing about the book is much of the content is written in bulleted
lists. In my opinion, this allows the reader to quickly get an understanding of the core concepts of
the material.

This is a book I would not hesitate to give to someone who had very little computer experience
and wanted to learn the core concepts of security. The material covered is very broad in scope;
however the essentials were well treated and easy to comprehend.

Review4 of
Derivation and Computation: taking the Curry-Howard correspondence seriously

Author of book: Harold Simmons
Series: Cambridge Tracts in Theoretical Computer Science, Volume 51

Cambridge University Press, 2000, Hardcover, 384 pages, $75.00
Review by

Robert J. Irwin, Hamilton College

1 Overview

The term Curry-Howard correspondence (also: Curry-Howard isomorphism or formulae-as-types
correspondence) refers to the relationship between formal calculi for logical derivations and formal
calculi for computations. For example, minimal logic — the implicational fragment of intuitionistic
propositional logic — is isomorphic to the simply-typed λ-calculus. How so? If we associate the
propositional variables of the logic with the type variables of the λ-calculus, the logical formulae
will then correspond to simple types. Moreover, proofs in minimal logic correspond to λ-terms of
appropriate type, and the provability of a formula corresponds to the existence of a λ-term of that
type (i.e., to that type’s being inhabited). The germinal idea, due to Haskell B. Curry [1, 2] in the
context of combinatory logic with type assignment, was applied to typed λ-calculi and popularized
by William A. Howard in a manuscript widely circulated since 1969, but only published in 1980 [3].

The subtitle is a bit curious — folks have “[taken] the Curry-Howard correspondence seriously”
for decades and many texts on type theory feature the correspondence. For example, the influential
and oft-cited book that inspired the author to write the one under review [4] is about nothing else,
and the excellent introductory text [7] devotes a chapter to the subject. Readily available lecture
notes [5] treat the correspondence, and no modern textbook on the theory of programming languages
(e.g, [6]) can be complete without at least mention of the correspondence.

While the correspondence between minimal logic and simply-typed λ-calculus is particularly
transparent, it turns out that an odd assortment of background knowledge is needed to progress
to isomorphisms between richer pairs of logical and computational calculi. Simmons’s text, whose
thrust is pedagogical, intends to be a not-quite-one-stop-shopping experience for readers interested
in the interplay between the kinds of symbol-pushing undertaken in logic and in computation.

2 Summary of Contents

As the author writes in the Introduction, “[t]here is nothing worse than an exercise you can’t do
and have no way of finding a solution to it.” That is why, following about 200 pages of exposition,
with exercises, the remainder of the text is devoted to the presentation of (mostly) fully worked
solutions to all the preceding exercises, of which there are approximately 200.

After the Introduction comes a “Preview” chapter, which will help readers integrate the tuition
they are about to receive in the next nine chapters. Only a background in basic logic is assumed
— Simmons does not assume other authors have conditioned his readers for the news. Chapters
on “Derivation Systems” (minimal logic via natural deduction and Hilbert-type formalisms), basic
“Computation Mechanisms” (untyped combinatory logic and λ-calculus), “The Typed Combinator
Calculus”, “The Typed λ-Calculus” and “Substitution Algorithms” prepare the way for the key

4 c©Robert J. Irwin, 2008

chapter on “Applied λ-Calculi.” In the last-mentioned chapter, the emphasis shifts to the interpre-
tation of types as function spaces and terms as particular functions, leading to the investigation of
recursion and induction over the natural numbers and Gödel’s sytem T [9] (the primitive recursive
functionals).

Subsequent chapters cover “Multi-Recursive Arithmetic”, “Ordinals and Ordinal Notations”
and, finally, “Higher Order Recursion”. The multi-recursive arithmetic chapter studies recursion
in some detail, covering simultaneous recursion over multiple arguments, etc., the sort of material
typically given short shift in introductory (and many advanced) treatments of recursion theory,
but featured in more specialized works like [10, 11]. Higher-order formulations of recursion are
captured via the calculus λG, essentially Gödel’s T minus the equational reasoning. Hierarchies
of number-theoretic functions are studied and their relative complexities are shown to correspond
with their formulations in λG.

The chapter on ordinals and ordinal notations provides material often omitted from less self-
contained treatments. Still, as in other chapters, not all the necessary background is provided for
doing all the related exercises, though the reader is alerted when extra information is needed, and
given references to the select bibliography to supply the missing pieces (e.g., a proof of the Cantor
normal form theorem). The significance of the differences between ordinals and ordinal notations
is clearly established. Treatment of the ordinals less than the first critical ordinal ε0 is given, which
allows the analysis of λG to be completed in the final expository chapter.

Following the exposition are nine more chapters, each containing solutions to the exercises of
the corresponding expository chapter. Solutions are presented with a level of care and detail seldom
encountered in other texts.

3 Opinion

This text is recommended for the student or researcher who’s been exposed to bits and pieces of
the Curry-Howard correspondence, but wants a sharper idea of the big picture and is willing to
work through the exercises to see how the details fit together. Simmons has succeeded in pulling
together the main fruits of the correspondence for simple types in a single text.

Regarding style, the book is rather snappily written. It’s informal, breezy — sometimes posi-
tively jaunty — and always directly addressed to the reader. Rarely, the informality partly defeats
the explanation of parts of what is, essentially, a highly formal subject. Though well thought-out
overall, and elaborately typeset, the book retains some of the feel of lecture notes, from which it in
fact evolved. For example, the occasional definition is oddly written, with the definiendum unclear
or withheld to the last.

The short, but annotated and well-selected bibliography is sufficient to fill the gaps in the text.
Still, I wouldn’t recommend the book for rank beginners, who would be well-prepared by learning
the material in [7], which treats almost exclusively Curry’s simple type theory (“type-assignment”),
and perhaps a good, compatible proof theory book, say [8]. These two texts combined contain no
more exercises than Simmons’s, and only a fraction of them are solved.

From the Preview: “I could rationalize the choice of topics, but in the end this wouldn’t
convince you if I have missed your favourite.” What I miss is Schwichtenberg’s result that the
“extended” polynomials (polynomials plus the conditional) are precisely the functions definable in
the simply-typed λ-calculus [12], which could have been presented nicely in a few short exercises.

It can’t be emphasized enough that the great thing about this book is its many well-chosen,
completely solved exercises. This alone makes it a valuable text, especially for self-study.

References

[1] H.B. Curry. Functionality in Combinatory Logic, Proceedings of the National Academy of the
U.S.A., 20 (1934), 584-590.

[2] H.B. Curry and R. Feys. Combinatory Logic, Vol. 1, North Holland, 1958; 2nd ed., 1968.

[3] W.A. Howard. The formulae-as-types notion of construction, in To H.B. Curry, ed. J.R. Hindley
and J.P. Seldin, Academic Press, UK 1980, pp. 479-490.

[4] J-Y. Girard, Y. Lafont and P. Taylor. Proofs and Types, Cambridge Tracts in Theoretical
Computer Science, Volume 7, Cambridge U. Press, 1989.

[5] M.H. Sorensen and P. Urzyczyn. Lectures on the Curry-Howard isomorphism. Technical Report
98/14, DIKU, Copenhagen, 1998.

[6] B.C. Peirce. Types and Programming Languages, MIT Press, 2002.

[7] J. Roger Hindley. Basic Simple Type Theory. Cambridge Tracts in Theoretical Computer Sci-
ence, Volume 42, Cambridge U. Press, 1997.

[8] A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory, 2nd ed., Cambridge Tracts in
Theoretical Computer Science, Volume 43, Cambridge U. Press, 2000.

[9] K. Gödel. Über eine bisher noch nicht unbenützte Erweiterung des finiten Standpunktes, Di-
alectica 12:280-287, 1958.

[10] R. Péter. Recursive Functions. Academic Press, 1967.

[11] H.E. Rose. Sub-Recursion: Functions and Heirarchies, Oxford Logic Guides, Oxford U. Press,
1984.

[12] H. Schwichtenberg. Definierbare Funktionen im λ-Kalkül mit Typen, Archiv für Mathematische
Logik und Grundlagenforschung, 17:113-114, 1975.

Review of
Theoretical and Experimental DNA Computation. 5

by M. Amos
Published in 2005 by Springer-Verlag Berlin Heidelberg, 172 pages

Reviewer: Maulik A. Dave

1 Overview

Interest in DNA computing has increased among research scientists since 1990s. Author himself is a
scientist working in DNA computing. The book is an overview of DNA computing. It touches both
theoretical and experimental aspects. The theoretical aspects include algorithms, and computing
models. The experimental aspects consist of various DNA experiments done for computing.

2 Content Summary

The book is divided into 6 chapters.

2.1 DNA molecule and operations on DNA

The first chapter gives a general introduction to DNA. A brief explanation of the double helix
structure of DNA is followed by a detailed explanation of operations on DNA. The terms such
as synthesis, denaturing, and ligation are explained. Cloning of DNA is described in details.
Techniques such as Gel Electrophoresis for sorting DNA by size, Restriction Enzymes for recognizing
specific DNA, and Polymerase Chain Reaction for amount of DNA in a given solution, are described.

2.2 Theoretical Computer Science

The second chapter introduces theoretical computer science. It begins with a brief section on gates,
and boolean algebra. Models such as automata, Turing machine, and Random Access machine are
described. Algorithms, and data structures are introduced. An introduction to computational
complexity theory includes the NP completeness.

2.3 DNA Computational Models

The models are referred as molecular because they described at abstract level. The models are
classified into filtering models, splicing models, constructive models, and membrane models. In
filtering models, a computation consists of a sequence of operations on finite multi-sets of strings.
With other models, a filtering model made by author, called parallel filtering model, is described in
details. The parallel filtering model has remove, union, copy and select operations. NP algorithms
written using these operations are also described. Splicing models has a splicing operation, which
takes two strings, and concatenates prefix, suffix of one another. Constructive models utilize
principal of self assembly. Models, which are chemical, or biological, but not DNA based are
described under the term membrane models.

5 c© 2008, Maulik Dave

2.4 Complexity of algorithms in DNA Computing

The chapter on complexity presents more insight into the DNA computing. It discusses in details,
two boolean circuit models. A DNA computing model, which is able to simulate boolean circuits,
is a Turing-complete model. The discussion on such models include introduction to the model,
laboratory implementation, an example application, and complexity analysis. Later in the chapter,
P-RAM simulation on DNA computing is discussed. Processor instruction set, overview of un-
derlying controller, and translation process from P-RAM algorithms to DNA implementation are
described. Further, the P-RAM model is explained by using List ranking problem as an example.

2.5 Laboratory experiments

Laboratory implementations of the algorithms are described with their actual experimental details
in last two chapters. Author’s own work is described in more details. It is compared with Alder-
man’s work. The chapters do not confine to the DNA computing only. It describes implementation
of Chess games on RNA. Groups of organisms having two nuclei, and possessing hair like cilia
for movement are called Ciliates. A small chapter is devoted for describing computing based on
ciliates.

3 Conclusion, and Comments

A high school level knowledge of biology, particularly of DNA is sufficient to understand the exper-
imental descriptions in the book. However, to appreciate the computing part of DNA computing,
knowledge of computers at undergraduate level is necessary. The book is a good introduction to
DNA computing for both new researchers, and readers having general interests.

