Open Problems Column Edited by William Gasarch This Issue's Column!

This issue's Open Problem Column is by William Gasarch and Erik Metz. It is on *Generalizing the* 3SUM *Problem*.

Request for Columns!

I invite any reader who has knowledge of some area to contact me and arrange to write a column about open problems in that area. That area can be (1) broad or narrow or anywhere inbetween, and (2) really important or really unimportant or anywhere inbetween.

> Generalizing the 3SUM Problem By William Gasarch¹ and Erik Metz²

1 3SUM-Hardness and Completeness

Def 1.1 3SUM is the following problem:

- 1. Input: A set A of n integers.
- 2. Output: YES if there is $x, y, z \in A$ such that x + y + z = 0, NO otherwise.
- 3. Caveat: The complexity of an algorithm is the number of operations. Hence we count one multiplication, even if the numbers involved are huge, to be one step.

Def 1.2 An algorithm is *subquadratic* if there exists an $\epsilon > 0$ such that the algorithm runs in time $O(n^{2-\epsilon})$.

There is an $O(n^2)$ algorithm for 3SUM. Is there a subquadratic algorithm? The consensus is that there is not.

Imagine if we did not have the Cook-Levin theorem, but the consensus was that SAT was hard. We could still define notions of hardness and even completeness. This is what Gajentaan and Overmars [GO12] did in the context of 3SUM where there is no analog to the Cook-Levin Theorem.

 $^{^{1}}$ gasarch@umd.edu

²emetz16180gmail.com

Def 1.3 Let A and B be problems.

- 1. $A \leq B$ if, given an oracle for B, one can solve A in subquadratic time.
- 2. A problem B is 3SUM-hard if 3SUM $\leq B$.
- 3. A problem B is 3SUM-complete if 3SUM $\leq B$ and $B \leq$ 3SUM.

Gajentaan and Overmars [GO12] proved many problems 3SUM-complete. See Soss et al. [SEO03] and King [Kin20] for additional 3SUM-complete problems.

2 Generalizing 3SUM

Def 2.1 Let $a, b, c \in \mathbb{Z}$. The abcSUM *problem* is as follows: Given a set of n integers, A, is there $x, y, z \in A$ such that ax + by + cz = 0.

If a = 0 or b = 0 or c = 0 then abcSUM is 2SUM which is in O(n) time. If a, b, c share a factor than you can just divide by it. What about the other cases? Henceforth we will assume $a \neq 0, b \neq 0$, and $c \neq 0$. We will also assume that a, b, c have no common factors.

3 abcSUM is \leq 3SUM

Theorem 3.1 Let $a, b, c \in \mathbb{Z}$. Then $abcSUM \leq 3SUM$.

Proof: Assume there is an $O(n^{2-\epsilon})$ algorithm for 3SUM. Here is an $O(n^{2-\epsilon})$ algorithm for abcSUM.

- 1. Input A.
- 2. Let

$$A' = \{7ar + 1 : r \in A\} \cup \{7br + 2 : r \in A\} \cup \{7cr - 3 : r \in A\}.$$

3. Run the 3SUM algorithm on A'. If it says YES, output YES. If it says NO, then output NO.

This algorithm is clearly in $O(n^{2-\epsilon})$ time. We show that it is correct.

If alg says YES then there is $x, y, z \in A$ with ax + by + cz = 0.

Assume the algorithm says YES. Then there is an $x, y, z \in A'$ such that x + y + z = 0. Let $x = 7ar_1 + d_1$, $y = 7br_2 + d_2$, $z = 7cr_3 + d_3$ where $r_1, r_2, r_3 \in A$ and $d_1, d_2, d_3 \in \{1, 2, -3\}$.

$$(7ar_1 + d_1) + (7br_2 + d_2) + (7cr_3 + d_3) = 0$$

$$d_1 + d_2 + d_3 \equiv 0 \pmod{7}.$$

By cases one can see that you must have $\{d_1, d_2, d_3\} = \{1, 2, -3\}$. Since x + y + z = 0 we have $ar_1 + br_2 + cr_3 = 0$.

If there is $x, y, z \in A$ with ax + by + cz = 0 then alg says YES. Assume that there is an $x, y, z \in A$ such that ax + by + cz = 0. Then

$$(7ax + 1) + (7by + 2) + (7cz - 3) = 7(ax + by + cz) = 0$$

Hence the algorithm will find this triple and say YES.

4 For Many a, b, c: 3SUM \leq abcSUM

Def 4.1 Let $a, b, c \in \mathbb{Z}$ with $a, b, c \neq 0$ and a, b, c have no common factor. (a, b, c) are *cool* if there exists $D \in \mathbb{N}$ and $k_1, k_2, k_3 \in \mathbb{Z}$ (all distinct) such that the following hold:

- $ak_1 + bk_2 + ck_3 = 0.$
- The only solution to

$$ak' + bk'' + ck''' \equiv 0 \pmod{D}$$

with $k', k'', k''' \in \{k_1, k_2, k_3\}$ (repeats allowed) is k_1, k_2, k_3 .

Theorem 4.2 Let $a, b, c \in \mathbb{Z}$ be cool. Then $3SUM \leq abcSUM$.

Proof: Assume there is an $O(n^{2-\epsilon})$ algorithm for abcSUM Here is an $O(n^{2-\epsilon})$ algorithm for 3SUM.

Let D, k_1, k_2, k_3 be from (a, b, c) being cool.

- 1. Input A.
- 2. Let

 $A' = \{ Dbcr + k_1 : r \in A \} \cup \{ Dacr + k_2 : r \in A \} \cup \{ Dabr + k_3 : r \in A \}.$

3. Run the abcSUM algorithm on A'. If it says YES, output YES. If it says NO, then output NO.

This algorithm is clearly in $O(n^{2-\epsilon})$ time. We show that it is correct.

If alg says YES then there is a triple in A that sums to 0.

Assume that there is an $x, y, z \in A'$ such that ax + by + cz = 0. Let $x = DXr_1 + k'$. $y = DYr_2 + k''$. $z = DZr_3 + k'''$. where $X, Y, Z \in \{bc, ac, ab\}$ and $k', k'', k''' \in \{k_1, k_2, k_3\}$. In both cases repeats are allowed.

Take the equation $ax + by + cz = 0 \mod D$ to get

$$ak' + bk'' + ck''' \equiv 0 \pmod{D}.$$

Since D, k_1, k_2, k_3 are cool we have that $k' = k_1, k'' = k_2$, and $k''' = k_3$. Hence we may assume that X = bc, Y = ac, and Z = ab. So

 $x = Dbcr_1 + k_1$ $y = Dacr_2 + k_2$ $z = Dabr_3 + k_3.$ Since ax + by + cz = 0 we have

$$(Dabcr_1 + ak_1) + (Dabcr_2 + bk_2) + (Dabcr_3 + ck_3) = 0$$

$$Dabc(r_1 + r_2 + r_3) + (ak_1 + bk_2 + ck_3) = 0$$

Since D, k_1, k_2, k_3 is cool, $ak_1 + bk_2 + ck_3 = 0$. Hence

$$r_1 + r_2 + r_3 = 0.$$

So we have a triple in A that sums to 0.

If there is triple in A that sums to 0 then alg says YES.

If $r_1, r_2, r_3 \in A$ and $r_1 + r_2 + r_3 = 0$ then $x = Dbcr_1 + k_1$ $y = Dacr_2 + k_2$ $z = Dabr_3 + k_3$. are all in A' and

 $ax + by + cz = Dabc(r_1 + r_2 + r_3) + ak_1 + bk_2 + ck_3 = 0.$

Hence the algorithm will output YES.

5 Open Questions

If a + b + c = 0 then (a, b, c) is not cool (we leave this proof to the reader). Hence Theorem 4.2 will not cover all (a, b, c).

- 1. Show that for all (a, b, c) with a + b + c = 0, 3SUM \leq abcSUM.
- 2. Show that if $abc \neq 0$ and (a, b, c) is not cool then a + b + c = 0?
- 3. Disproof either of the above.

References

- [GO12] Anka Gajentaan and Mark H. Overmars. On a class of O(n²) problems in computational geometry. Computational Geometry, 45(4):140-152, 2012.
 https://doi.org/10.1016/j.comgeo.2011.11.006.
- [Kin20] James King. A survey of 3SUM-hard problems, 2020. https://www.cs.mcgill.ca/~jking/papers/3sumhard.pdf.
- [SEO03] Michael A. Soss, Jeff Erickson, and Mark H. Overmars. Preprocessing chains for fast dihedral rotations is hard or even impossible. *Computational Geometry*, 26(3):235–246, 2003. https://doi.org/10.1016/S0925-7721(02)00156-6.