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Abstract

Hilbert’s 10th problem, stated in modern terms, is
Find an algorithm that will, given p ∈ Z[x1, . . . , xn], determine if there exists

a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0.
Davis, Putnam, Robinson, and Matijasevič showed that there is no such algorithm.

We look at what happens (1) for fixed degree and number of variables, (2) for partic-
ular equations, and (3) for variants which reduce the number of variables needed for
undecidability results.

1 This Column’s Origin

This column is a short version of a long version of an article based on a blog. What? I give
the complete history.

1. On May 4, 2020 I wrote a blog about Hilbert’s 10th problem: This blog caught the
attention of Thomas Erlebach who invited me to write a full article for The Bulletin of
the European Association for Theoretical Computer Science (BEATCS) on this topic.

2. The article: Hilbert’s Tenth Problem for Fixed d and n appeared in the Bulletin of the
European Association for Theoretical Computer Science (BEATCS), Vol 133, February
2021.

3. After it appeared I made a few updates to my copy of the article, added a few whole
new sections, and posted this longer version on arxiv.

https://arxiv.org/abs/2104.07220

4. The article is (1) full of open problems so quite appropriate for this column, but (2)
over 20 pages long so not appropriate for this column. Hence I shortened it.

5. It is my intent that you read this and then, if you want further enlightenment, read
the long version on arxiv.

∗The University of Maryland at College Park, gasarch@umd.edu
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2 Hilbert’s Tenth Problem

In 1900 Hilbert proposed 23 problems for mathematicians to work on over the next 100 years
(or longer). The 10th problem, stated in modern terms, is

Find an algorithm that will, given p ∈ Z[x1, . . . , xn], determine if there exists
a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0.

Hilbert probably thought this would inspire much deep number theory, and it did inspire
some. But the work on this problem took a very different direction. Davis, Putnam, and
Robinson [DPR61] showed that determining if an exponential diophantine equation has
a solution in Z is undecidable. Their proof coded Turing machines into such equations.
Matijasevič [Mat70] extended their work by showing how to replace the exponentials with
polynomials. Hence the algorithm that Hilbert wanted is not possible. For a self contained
proof from soup to nuts see Davis’ exposition [Dav73]. For more about both the proof and
the implications of the result see the book of Matijasevič [Mat93].

In Section 3 we will relate the problem of seeking solutions in Z with the problem of
seeking solutions in N. In Section 4 we will look at what is known for fixed d, n both for
solutions over N and solutions in Z. In Section 5 we will discuss classes of polynomials with
other conditions added. In Section 6 we discuss variants of Hilbert’s 10th problem that lead
to getting undecidability results with polynomials in fewer variables. In Section 7 we will
briefly present Matijasevič’s discussion of what Hilbert really wanted in contrast to what
happened.

3 Definitions and Reconciling N with Z
The undecidability results are usually proven about solutions in N. The decidability results
are usually proven about solutions in Z. Hence we use the following notation to keep this
straight.

Notation 3.1

1. HZ(d, n) is the problem where the degree is ≤ d, the number of variables is ≤ n, and
we seek a solution in Z.

2. HN(d, n) is the problem where the degree is ≤ d, the number of variables is ≤ n, and
we seek a solution in N.

3. HZ(d, n) = D means that there is an algorithm to decide HZ(d, n).

4. HZ(d, n) = U means that there is no algorithm to decide HZ(d, n).

5. Similarly for HN(d, n) equal to D or U.

In the next section we summarize what is known about HN(d, n).
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4 What Happens for Fixed d, n?

The original motivation for my study of this issue was to obtain what is known for fixed d, n.
When I blogged about this I noted that there was no website on the question of particular
d, n.

Timothy Chow offered this speculation in an email to me: One reason there isn’t already a
website of the type you envision is that from a number-theoretic (or decidability) point of view,
parameterization by degree and number of variables is not as natural as it might seem at first
glance. The most fruitful lines of research have been geometric, and so geometric concepts
such as smoothness, dimension, and genus are more natural than, say, degree. A nice survey
by a number theorist is the book Rational Points on Varieties by Bjorn Poonen [Poo17].
Much of it is highly technical; however, reading the preface is very enlightening. Roughly
speaking, the current state of the art is that there is really only one known way to prove that
a system of Diophantine equations has no rational solution.

Even so, I am still curious. Hence we proceed.

4.1 When is HN(d, n) = U? HZ(d, n) = U?

In 1980 Jones [Jon80] announced 16 pairs (d, n) for which HN(d, n) = U. In 1982 Jones [Jon82]
provided proofs for 13 of these pairs (12 in Theorem 4 and 1 in Section 3). I emailed Jones
about the other three and he emailed back the following:

• Those with d < 2668 have proofs similar to the (4, 58) case. This was carried out by
Dr. Hideo Wada. (No reference is given.)

• The pair with a very large value of d can be obtained using many relation-combining
theorems, like the one at the end of the 1982 paper, which allow one to define two
squares with one unknown.

In the theorem below we present all 16 statements from the Jones-1980 paper along with
a result by Sun [Sun20] from 2020. We note (1) which three do not have proofs in Jones-1982
(though based on Jones’s email we are sure the results are true), and (2) the result of Sun.
We state the results of the form HN(d, n) = U and then apply known theorems (which can
be found in the arxiv version of this column) to obtain results of the form HZ(d′, n′) = U
(except for Sun’s result which is already about HZ).

The proofs involve very clever use of elementary number theory to get the degrees and
number-of-variables reduced.

In some of the results there are absurdly large numbers like 4.6×1044. These are probably
upper bounds that might be able to be lowered with a careful examination of the proofs.
These large numbers only occur as d since the main concern was to get the number of
variables down.

Theorem 4.1

1. HN(4, 58) = U hence HZ(8, 174) = U.

2. HN(8, 38) = U hence HZ(16, 114) = U.
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3. HN(12, 32) = U hence HZ(24, 96) = U.

4. HN(16, 29) = U hence HZ(32, 87) = U. (Not proven in Jones-1982.)

5. HN(20, 28) = U hence HZ(40, 84) = U.

6. HN(24, 26) = U hence HZ(48, 78) = U.

7. HN(28, 25) = U hence HZ(56, 75) = U.

8. HN(36, 24) = U hence HZ(72, 72) = U. (Not proven in Jones-1982.)

9. HN(96, 21) = U hence HZ(192, 63) = U.

10. HN(2668, 19) = U hence HZ(5336, 57) = U.

11. HN(200000, 14) = U hence

HZ(400000, 42) = U and HZ(31× 214, 30) = U.

12. HN(6.6× 1043, 13) = U hence HZ(13.2× 1043, 28) = U. (Not proven in Jones-1982.)

13. HN(1.3× 1044, 12) = U hence HZ(2.6× 1044, 36) = U.

14. HN(4.6× 1044, 11) = U hence HZ(9.2× 1044, 24) = U.

15. HN(8.6× 1044, 10) = U hence HZ(17.2× 1044, 22) = U.

16. HN(1.6× 1045, 9) = U hence HZ(3.2× 1045, 20) = U. (Jones’ 1982 paper presents the
proof of this result and credits it to Matijasevič.)

17. HZ(d, 11) = U for some d. The number d is not stated. (This is due to Sun [Sun20].)

4.2 When is HZ(d, n) = D? HN(d, n) = D?

We present statements of the few cases where we know HZ = D or HN = D. See the arxiv
version for details and references.

Theorem 4.2

1. For all d, HZ(d, 1) = D and HN(d, 1) = D. There is an algorithm that finds all of the
integer roots (which may be the empty set).

2. For all n, HZ(1, n) = D.

3. For all n, HN(1, n) = D.

4. HZ(2, 2) = D.

5. HN(2, 2) = D.

6. For all n, HZ(2, n) = D and HN(2, n) = D.
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4.3 The Curious Case of HZ(3, 2)
We give evidence that HZ(3, 2) = D; however, this is still open.

Def 4.3 An element of Q[x1, . . . , xn] is absolutely irreducible if it is irreducible over C. For
example,

x2 + y2 − 1 is absolutely irreducible, but
x2 + y2 = (x+ iy)(x− iy) is not.

A combination of results by Baker and Cohen [BC70], Poulakis [Pou93], and Poulakis [Pou02]
imply the following theorem:

Theorem 4.4 There is an algorithm which, given any absolutely irreducible polynomial
P (x, y) ∈ Z[x, y] of degree 3, determines all integer solutions of the equation P (x, y) = 0.
(See Poulakis [Pou02] for a more precise definition of “determines all integer solutions” in
the case that there are an infinite number of them.)

The original algorithm (from Baker and Coates) is not practical; however, Pethő et
al. [PZGH70] and Stroker-Tzankis [ST03] have practical algorithms. There is also an algo-
rithm for solving a large class of cubic equations implemented in SageMath.

So why isn’t HZ(3, 2) = D? Because the case where P (x, y) has degree 3 but is not
absolutely irreducible is still open.

5 Particular Equations

5.1 If the Variables Are Separated. . .

Ibarra and Dang [ID06] proved the following.

Def 5.1 P (z1, . . . , zn) is a Presburger Relation if it can be expressed with Z, =,+, <, and
the usual logical symbols. For example

(z1 + z2 < z3 + 12) ∧ (z1 + z4 = 17) is a Presburger formula, but
z1z2 = 13 is not.

Theorem 5.2 The following is decidable:
Instance
(1) For 1 ≤ i ≤ k, polynomials pi(y) ∈ Z[y], and linear functions Fi(x⃗), Gi(x⃗) ∈ Z[x1, . . . , xn],
and (2) a Presburger relation R(z1, . . . , zk).
Question Does there exist y, x⃗ such that

R(p1(y)F1(x⃗) +G1(x⃗), . . . , pk(y)Fk(x⃗) +Gk(x⃗) )

holds?
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5.2 The Curious Case of x3 + y3 + z3 = k

Rather than looking at HZ(d, n) let’s focus on one equation that has gotten a lot of attention:

x3 + y3 + z3 = k.

It is easy to show that, for k ≡ 4, 5 (mod 9), there is no solution in Z. What about for
k ̸≡ 4, 5 (mod 9)?

1. Heath-Brown [HB92] conjectured that there are an infinite number of k ̸≡ 4, 5 (mod 9)
for which there is a solution in Z. Others think that, for all k ̸≡ 4, 5 (mod 9), x3 +
y3 + zk = k has a solution in Z.

2. Elkies [Elk00] devised an efficient algorithm to find solutions to

x3 + y3 + z3 = k if there is a bound on x, y, z.

3. Elsehans and Jahnel [EJ09] modified and implemented Elkies algorithm and deter-
mined the following: The only k ≤ 1000, k ̸≡ 4, 5 mod 9, where they did not find a
solution were

33, 42, 74, 114, 165, 390, 579, 627, 633, 732, 795, 906, 921, and 975.

Their work, and the work of all the items below, required hard mathematics, clever
computer science, and massive computer time.

4. Huisman [Hui16] found a solution for k = 74. For many other values of k where there
were solutions, Huisman found additional solutions.

5. Booker [Boo19] found a solution for k = 33.

6. Booker found solutions for k = 42 and k = 795. These have not been formally published
yet; however, the x, y, z can be found on the Wikipedia site:

https://en.wikipedia.org/wiki/Sums_of_three_cubes

7. As of April 2021 (when this article was written) the only k ≤ 1000, k ̸≡ 4, 5 mod 9,
where no solution is known are:

114, 165, 390, 579, 627, 633, 732, 906, 921, and 975.

Consider the function that, on input k, determines if x3 + y3 + z3 = k has a solution in
Z. Is this function computable?

1. I suspect the function is computable. Why? What would a proof that this function is
not computable look like? It would have to code a Turing machine computation into
a very restricted equation. This seems unlikely to me. Note also that it may be the
case the equation has a solution for every k ̸≡ 4, 5 (mod 9), in which case the decision
problem is not just decidable—it’s regular!

2. Daniel Varga has suggested there may be a proof that does not go through Turing ma-
chines. Perhaps some other undecidable problem? Also, there may be new techniques
we just have not thought of yet.
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6 Variants that Use Fewer Variables

Hilbert’s 10th problem, and the restrictions on it in this article, are about the solvability of
the following problem: Given p(x1, . . . , xn) ∈ Z[x1, . . . , xn], is the following true over Z:

(∃x1) · · · (∃xn)[p(x1, . . . , xn) = 0].

(Undecidability results were usually about truth over N.)
There has been much work in getting the number of variables needed for an undecidability

result to be small. As we saw in Theorem 4.1, HN(1.6×1045, 9) = U. As of April 2021 (when
this was written) 9 is the lowest n such that there is known to be a d with HN(d, n) = U.
The result of 9 was proven by Matijasevič in the early 1980’s (it appears in Jones [Jon82]
and credited to Matijasevič ). Hence the 9 has not been improved in 29 years. I doubt it
will be improved between writing this paper and the appearance of this paper. As we saw in
Theorem 4.1, there is a d such that HZ(d, 11) = U. This was proven in 2020 so it is plausible
to be improved in the near future.

We explore some variants of H10 where the number of variables needed is smaller than 9
(for N) and 11 (for Z).

6.1 Different Quantifier Prefixes

Let Q1 · · ·Qn be a string of quantifiers. Consider the following problem. Given p(x1, . . . , xn)
is

(Q1x1) · · · (Qnxn)[p(x1, . . . , xn) = 0]

true over Z? Over N?

Notation 6.1

1. Let Q1 · · ·Qn be a string of quantifiers. Q1 · · ·Qn is undecidable over N if the above
problem is undecidable over N. Similar for Z.

2. A quantifier is bound if there is an explicit upper and lower bound on it which is a
polynomial in the prior variables.

Recall from Theorem 4.1 that ∃9 is undecidable over N and that this is the best known.
Matijasevič [Mat72] showed that ∃∀∃2, with ∀ bounded, over N, is undecidable. From

this result one can obtain undecidability with polynomials of four variables. This is much
better than nine. See Sun [Sun21] for more of history, references, and results about quantifier
prefixes and undecidability over N.

Recall from Theorem 4.1 that ∃11 is undecidable over Z and that this is the best known.
Sun [Sun21] proved the following.

1. These are undecidable over Z: ∀∃7, ∀2∃4, ∃∀∃4, ∃∀2∃3, ∃2∀∃3, ∀∃∀∃3, ∀∃2∀2∃2, ∀2∃∀2∃2,
∀∃∀3∃2, ∃2∀3∃2, ∃∀∃∀2∃2, ∃∀6∃2. Note that the shortest prefixes only use 6 variables
which is much better than 11.
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2. These are undecidable if the ∀ are bounded: ∃∀∃3, ∃∀2∃3, ∃2∀2∃3, ∃2∀2∃2, ∃2∀∃∀∃2,
∃∀5∃2. Note that the shortest prefixes only use 5 variables which is much better than
11.

6.2 Sets of Polynomials

Matijasevič and Robinson [MR96] (see also Matijasevič [Mat72]) prove the following (All
quantifiers are over N). Let A be an r.e. set.

1. There exist 3n polynomials

{Pi(x1, x2, x3)}ni=1, {Qi(x1, x2, x3)}ni=1, {Ri(x1, x2, x3)}ni=1 such that

a ∈ A iff

(∃b, c)
n∧

i=1

(∃d)[Pi(a, b, c) < Qi(a, b, c)× d < Ri(a, b, c)].

From this result one can obtain a problem with polynomials in 3 variables that is
undecidable.

2. There exist polynomials

P (x1, x2, x3) and Q(x1, x2, x3, x4) such that

a ∈ A iff

(∃b, c)(∀f)[(f ≤ P (a, b, c)) =⇒ (Q(a, b, c, f) > 0)]

From this result one can obtain a problem with polynomials in 3 variables that is
undecidable.

7 What Would Hilbert Do?

Def 7.1 HQ(d, n) is the problem where the degree is ≤ d, the number of variables is ≤ n,
and we seek a solution in Q.

Matijasevič [Mat] (Page 18) gives good reasons why Hilbert might have actually wanted
to solve HQ. Hilbert stated the tenth problem as HZ; however, if HZ is solvable then HQ is
solvable. He might have thought that the best way to solve HQ is to solve HZ.

What is the status of HQ now? It is an open question to determine if HQ is decidable.
Hence the problem Hilbert plausibly intended to ask is still open and may yet lead to number
theory of interest, which was his intent.
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