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1 This Issues Column!

This issue’s Open Problem Column is by William Gasarch and is Wanted: A Top Down Proof for
Circuit Lower Bounds on PARITYn.

2 Request for Columns!

I invite any reader who has knowledge of some area to contact me and arrange to write a column
about open problems in that area. That area can be (1) broad or narrow or anywhere inbetween,
and (2) really important or really unimportant or anywhere inbetween.

Wanted: A Top Down Proof for Circuit Lower Bounds on PARITYn

.
By William Gasarch

We discuss a well known open problem and a well known approach to it which we want to make
better known. The open problem is to find a top down proof for circuit lower bounds for PARITYn.
The approach is to use communication complexity.

3 Notation

We will use the following notations throughout this paper.

Notation 3.1 As usual the term circuit means family of circuits, one for each n. All circuits
will alternate AND and OR gates. There will be no NOT gates; however, both inputs and their
negations are available. The depth of a circuit is the longest path from input to output. The fan-in
of a circuit is the max number of inputs to a gate. The size of a circuits is the number of gates.
A (d, f, s)-circuit is a circuit of depth d, fan-in f , and size s. Note that f ≤ s so unbounded fanin
really means f = s. Note also that s ≤ fd. It is clear what it means for a circuit to compute a
function g : {0, 1}n → {0, 1}k.

Notation 3.2 As usual the term protocol means family of protocols, one for each n. All protocols
alternate who sends a message. The number of rounds in a protocol is the number of times someone
sends a message. The bits-per-round of a protocol is the max number of bits in a message. An
(r, b)-protocol is a protocol with r rounds and b bits-per-round. A protocol computes a relation
R ⊆ {0, 1}n × {0, 1}n × I if whenever Alice gets x and Bob gets y: (1) if there exists some i ∈ I
such that (x, y, i) ∈ R then at the end of the protocol they agree on one such i, (2) if there is no
such i then the protocol can do anything.
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Note 3.3 An (r, b)-protocol can be represented by a tree (which we call a protocol tree) where (1)
at the Alice nodes there are instructions on what to send, given her input and the prior messages
she got, and there are 2b outputs, one for each possible message, and (2) the Bob nodes are similar.
The depth of the tree is r.

In the defintions of circuit (protocol) we insist that the AND-OR gates (Alice and Bob) alternate.
This will not affect our point; however, there are cases where the constants can be improved by
allowing non-alternation.

4 PARITYn

Def 4.1 PARITYn is the function that, on input (x1, . . . , xn) ∈ {0, 1}n outputs
∑n

i=1 xi (mod 2).

How big a circuit do you need to computer PARITYn? The following are known:

• There is an (O(log n), 2, O(n)) circuit for PARITYn (easy).

• There is a (O(1), 2O(n), 2O(n)) circuit for PARITYn (easy).

• For all constants d there is a a (d,O(n(d−1)/(d−2)2n
1/(d−1)

), O(n(d−1)/(d−2)2n
1/(d−1)

)) circuit for
PARITYn (H̊astad [4, 5, 6].)

Furst, Saxe, Sipser [3] (henceforth FSS) and Ajtai [1] showed that, for all constants d, for all
polynomials s(n), PARITYn cannot be computed by a (d, s(n), s(n)) circuit. (The motivation of
FSS was to construct an oracle to separate PH from PSPACE; however, we do not consider that
here.) The proof went as follows: For d = 2 this is easy to show. Assume there is a (d, s(n), s(n))
circuit where s(n) is polynomial. Place a particular random restriction on the inputs where some
inputs are set to 0, some are set to 1, and n′ are left alone. With high probability the first two
levels, say and AND of OR’s, can be rewritten with only polynomial more gates as an OR of AND’s.
This collapses the two level of the circuit to one level. The result is a (d − 1, s′(n′), s′(n′)) circuit
for PARITYn′ . This is impossible inductively. A Lemma that says a random restriction leads to
being able to write an AND or ORs as and OR of ANDS (without too much increase in size) is
called a switching lemma.

Yao [13] proved that, for all d, PARITYn cannot be computed by a (d,O(2n
1/4d

), O(2n
1/4d

))
circuit. H̊astad [4, 5, 6] obtained the optimal (up to polynomial factors) result: PARITYn cannot

be computed by a (d,O(2cdn
1/(d−1)

), O(2cdn
1/(d−1)

)) circuit where cd = (0.1)d/(d−1). H̊astad obtained
this result by refining the FSS-Ajtai’s switching lemma. His version has been widely used in many
contexts and, when the switching lemma is referred to, it means H̊astad’s. Razborov [11] obtained
a different proof of the switching lemma that used a simpler logic. Fortnow and Laplante [2] recast
Razborov’s proof in terms of Kolmogorov Complexity.

The proofs of FSS, Ajtai, Yao, and H̊astad are all probabilistic. Smolensky [12] had a completely
different proof. He showed that PARITYn could not be approximated by a low degree polynomial,
and that anything computed by a constant depth, small circuit could be. This leads to a lower
bound on the size of d-depth circuits for PARITYn of 2Ω(n1/2d). This type of proof is called algebraic.
Smolensky’s proof also shows that (1) for all constants d, for all primes p, if you allow MOD-p gates
then its still the case that any (d, s, s) circuits for PARITYn has exponential s, (2) similar for
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computing MOD-q with AND, OR, NOT, and MOD-p gates where p is prime and q is relatively
primes to p. All of these proofs are bottom up in that they begin at the input level.

Consider the case of d = 3. By H̊astad’s results:

• There is a (3, O(n22
√
n), O(n22

√
n)) circuit for PARITYn.

• There is no (3, O(20.0316...
√
n), O(20.0316...

√
n)) circuit for PARITYn. (The constant is really

(0.1)3/2.)

The lower bound was improved by H̊astad, Jukna, Pudlak [7]. They showed that there is no
(3, O(20.618...

√
n), O(20.618...

√
n)) circuit for PARITYn (the constant is really 1/(

√
2e ln 2)). This

proof was top down in that it began at the top gate. It is plausible that a top down proof of the
lower bound for unbounded fan-in constant depth circuits for PARITYn may lead to improved
lower bounds. In the next section we discuss a top down approach via communication complexity.

5 Lower Bounds on Circuits via Communication Complexity

Karchmer [8] (see also Karchmer-Wigderson [9]) found a link between the depth of a circuit for
a function g and the communication complexity of relation involving g. We present his theorem
that links the two. Our treatment is from the excellent book on Communication Complexity by
Kushilevitz and Nisan [10].

Def 5.1 Let g : {0, 1}n → {0, 1}. Let Rg ⊆ {0, 1}n × {0, 1}n × [n] be the set

{(x, y, i) : g(x) = 1 ∧ g(y) = 0 ∧ xi 6= yi}.

We need the following well known lemma.

Lemma 5.2 Let T be a (d, 1)-protocol in the form of a binary protocol tree. Let w be a node of
that tree. Let w1 and w2 be children of w.

1. There exists Aw, Bw ⊆ {0, 1}n such that the set of inputs (x, y) that end up using node w is
of the form Aw ×Bw.

2. Assume that w is a node where Alice sends a bit. Then there exists a partition Aw = Aw1∪Aw2

and Bw = Bw1 = Bw2.

3. Assume that w is a node where Bob sends a bit. Then there exists a partition Bw = Bw1∪Bw2

and Aw1 = Aw2 = A.

Theorem 5.3 Let g : {0, 1}n → {0, 1}. There is a (d, 2, 2d) circuit for g iff there is a (d, 1) protocol
for Rg.

Proof:
1) Assume there is a (d, 2, s) circuit for g. We use this to create a (d, 1)-protocol for D(Rg).

1. Alice takes x and runs the circuit on it. We assume she gets 1. Bob takes y and runs the
circuit on it. We assume he gets 0. Note that Alice and Bob “disagree” on what the final
output is.
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2. We assume the top gate is an OR (if its an AND the proof is similar). Alice sees that the
output when the circuit run on x is 1. Hence some input to that gate is 1. Alice sends Bob
0 if the left input is 1, and 1 if the right input is 1. Note that that input is the output of an
AND gate. Note that Alice and Bob “disagree” on what the output of that AND gate is.

3. Bob sees that the output to the AND gate is 0. Hence some input to that gate is 0. Bob
sends Alice 0 if the left input is 0, and 1 if the right input is 0. Note that that input is the
output of an OR gate. Note that Alice and Bob “disagree” on what the output of that OR
gate is.

4. They keep going in this matter until they find the original input they disagree on.

It is easy to see that this is a (d, 1)-protocol.
2) Assume there is a (d, 1) protocol for Rg. Show there is a (d, 2, s) circuit for g.

Take the protocol for Rg. Formally it is a binary protocol tree (since its a (d, 1) protocol). We’ll
assume Alice sends first.

Take the tree and do the following to form a circuit:

1. Look at a node representing Alice sending a bit. In the protocol the node is thought of as
Alice knows her input and knows what Bob has send her and based on that sends a 0 or a 1.
As such it is a node with two edges coming out of it (going to Bob-nodes). We reverse that:
we make this node into an AND gate and the edges are now the inputs.

2. Similarly, replace every Bob-node with an OR gate.

3. Let L be a leaf of the protocol. Associated to L is i ∈ [n] such that, if the protocol gets to
that leaf then Alice and Bob agree that xi 6= yi. Since the set of ordered pairs that goes to L
is of the form AL × BL either: (1) every ordered pair that goes to L has xi = 1 and yi = 0,
or (2) every ordered pair that goes to L has xi = 0 and yi = 1. If (1) replace L by input zi,
if (2) replace L by input zi.

We view every node in two ways: as a node in the protocol tree and as a gate in the circuit.
For every node w let gw be the function the circuit computes if it stopped at w. For every note w
let Aw, Bw be as in Lemma 5.2.

By the definition of how we replace leaves with inputs, for all leaves L,

z ∈ AL =⇒ gL(z) = 1

z ∈ BL =⇒ gL(z) = 0

By induction, using Lemma 5.2, one can show that, for every node w

z ∈ Aw =⇒ gw(z) = 1

z ∈ Bw =⇒ gw(z) = 0

Note that for the top gate w, Aw = g−1(1) and Bw− g−1(0). Hence the circuit computes g.
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Before this result the following thoughts had currency:

• We’ve made very little progress in proving lower bounds on circuits.

• We’ve made a lot of progress in proving lower bounds on communication protocols.

So the hope was that Theorem 5.3 would allow progress on lower bounds on circuits. Did it?
Yes and mostly No. There were many results about monotone circuits that used this framework.
But alas, very few on general circuits.

A proof of a circuit lower bounds that used Theorem 5.3 would almost surely be a top down
proof.

6 What about Known Circuit Results?

Could there be a communication complexity proof that any constant depth, unbounded fan-in
circuit for PARITYn requires exponential size? Theorem 5.3 is about fan-in 2 circuits. We need a
version for unbounded fan-in circuits.

Theorem 6.1 Let g : {0, 1}n → {0, 1}. There is a (d, s, s) circuit for g iff there is a (d, dlg(s)e)
protocol for Rg.

Proof:
All lg(s) in this proof are really dlg(s)e.

1) Assume there is a (d, s, s) circuit g. The (d, lg(s)) protocol for Rg is similar to the (d, 1) protocol
in the proof of Theorem 5.3.1. except that, for Alice (Bob) to specify which input was 1 (0) takes
lg(s) bits. It is easy to see that this is a (d, lg(s))-protocol.
2) Assume there is a (d, lg(s)) protocol for Rg. The (d, s, s) circuit for g is similar to the circuit in
the proof of Theorem 5.3.2.

7 Open Problem

Theorem 6.1 points to a possible alternative method to get lower bounds on the size of constant
depth circuits for PARITYn:

Conjecture 7.1 Fix d, a constant. If there is a (d, b) protocol for RPARITYn then b is Ω(2n
1/(d−1)

).

There is one thing wrong with this conjecture. It is already known to be true! Just use
Theorem 6.1.2 and use the known lower bounds on PARITYn. So what are we really looking for?
Open Problem: Give a communication complexity proof for any of the following. Fix d, a
constant.

1. If there is a (d, b) protocol for RPARITYn then b is superpolynomial.

2. If there is a (d, b) protocol for RPARITYn then b is Ω(2n
1/(d−1)

) (or replace 2n
1/(d−1)

with a
smaller superpolynomial function).

Such a proof would give another way to obtain lower bounds on PARITYn. While this is a
good end in itself, we note that it might also lead to better lower bounds.
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