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Abstract

Alice wants to query a database but she does not want the database to learn what she is
querying. She can ask for the entire database. Can she get her query answered with less
communication? One model of this problem is Private Information Retrieval, henceforth PIR.
We survey results obtained about the PIR model including partial answers to the following
questions. (1) What if there are k non-communicating copies of the database but they are
computationally unbounded? (2) What if there is only one copy of the database and it is
computationally bounded?

1 Introduction
Consider the following scenario. Alice wants to obtain information from a database but does not
want the database to learn which information she wanted. One solution is for Alice to ask for the
entire database. Can she obtain what she wants with less communication?

The earliest references for problems of this sort are Rivest et al. [55], Blakely [15] and Feigen-
baum [29]. The model in [29] was refined by Abadi et al. [1]. This refined model was the basis for
several later papers [7, 6].

We will consider a later formulation by Chor et al. [23]. We model a database as (1) an n-bit
string x = x1x2 · · · xn, together with (2) a computational agent that can do computations based on
both x and queries made to it. Alice wants to obtain xi such that the database does not learn i.
Actually Alice wants more than that– she wants the database to have absolutely no hint as to what
i is. For example, if the database knows that i , 98 then Alice will be unhappy. Alice can achieve
this level of privacy by asking for all n bits. Can she obtain xi with complete privacy by a scheme
that uses fewer than n bits of communication? We assume that the database knows Alice’s scheme
and can simulate it. This question has several answers.

1. If Alice uses a deterministic scheme then n bits are required. (This is folklore.) This holds
even if there are several non-communicating copies of the database. Hence, for the rest of the
paper, we assume Alice can flip coins. Despite this, we will require that she always obtains
the correct answer.
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2. If the database has unlimited computational power and there is only one copy of the database
then n bits are required [23].

3. Let k ≥ 2. Assume there are k non-communicating copies of the database. We also assume
that the databases have unlimited computational power. The following are known.

(a) Chor et al. [23] have a scheme that uses O((k lg k)n1/ lg k) bits.

(b) Chor et al. [23] have a scheme that probably uses O((k lg k)n1/(lg k+lg lg k)) bits. (The
status of the number of bits depends on some open problems in coding theory.)

(c) Chor et al. [22] have a scheme that uses O((k2 log k)n1/k) bits.

(d) Ambainis [2] have a scheme that uses O(2k2
n1/(2k−1)) bits.

(e) Ishai and Kushilevitz [39, 10] have a scheme that uses O(k3n1/(2k−1)) bits.

(f) Beimel et al. [12] have a scheme that uses nO(lg lg k/k lg k) bits.

The last result is currently the best known even for small k (see Table 1).

4. Chor and Gilboa [19] show that if there exists one-way functions then there exists a scheme
that uses two copies of the database and O(nε) bits where ε can be taken arbitrarily small.

5. Kushilevitz and Ostrovsky [46] show that if the database cannot solve the Quadratic Residue
problem (QR problem) then there is 1-DB scheme that uses O(nε) bits, where ε can be taken
arbitrarily small.

6. Cachin et al. [17] show that if the database cannot solve the φ-hiding problem then there
is a 1-DB probabilistic scheme that uses O((lg n)a) bits. where a depends on how hard the
φ-hiding problem is. (The φ-hiding problem was first defined in [17].)

7. Kushilevitz and Ostrovsky [47] show that if there exist one-way permutations with a trapdoor
then there is a 1-DB scheme that uses n − o(n)-bits.

8. Beimel et al. [11] showed that

9. Di-Crescenzo et al. [53] showed that if there is a sublinear 1-DB scheme then there exist an
oblivious transfer protocol.

Asonov [3] has a short survey of PIR results. Lin [48] has a survey of some of the information-
theoretic results, complete with many examples. Castner [18] has a survey of some of the schemes
based on number theory, complete with many examples. By the time you read this I will have a
website of PIR papers at www.cs.umd.edu/ g̃asarch. In addition I will have an extended version of
this paper, with more proofs added, at www.eccc.uni-tier.de/eccc/ in 2004.

To limit the survey the following topics are omitted.

1. Locally Decodable Codes [27, 42, 43].

2. PIR’s that are allowed to make errors but with low probability [42, 43].



3. Quantum PIR’s [43].

4. Attempts to make PIR practical [4, 44] in the real-real world.

5. The connection between current PIR work and some of the older papers on the same theme
such as [1, 7, 6].

Notation 1.1. Throughout this paper we assume that lg is log2 and returns an integer.

2 Definitions
The following definition is due to Chor et al. [23]. We present them informally.

Definition 2.1. [23] A 1-round k-DB Information Retrieval Scheme with x ∈ {0, 1}n and k databases
has the following form.

1. Alice wants to know xi. There are k copies of the database which all have x = x1 · · · xn. The
DB’s do not communicate with each other.

2. Alice flips coins and, based on the coin flips and i, computes (query) strings q1, . . . , qk. Alice
sends q j to database DB j.

3. For all j, 1 ≤ j ≤ k, DB j sends back a (answer) string ANS j(q j).

4. Using the value of i, the coin flips, and the ANS j(q j), Alice computes xi.

The complexity of the above PIR scheme is
∑k

j=1 |q j| + |ANS j(q j)|.

We define two types of privacy.

Definition 2.2. [23] A 1-round k-DB Private Information Retrieval Scheme with x ∈ {0, 1}n and k
databases is an information retrieval scheme such that, after the query is made and answered, the
database does not have any information about what i is. The database is assumed to be computa-
tionally unbounded. Hence we need to ensure that the database does not have enough information
to figure out anything about i. For these PIR schemes we will need multiple copies of the database.

Definition 2.3. [19] A 1-round k-DB Computationally Private Information Retrieval Scheme with
x ∈ {0, 1}n and k databases is an information retrieval scheme such that, assuming some limitations
on what the database can compute, after the query is made and answered, the database does not
have any information about what i is. Hence we need to ensure that computing anything about i is
beyond the computational limits of the database.

The definition is only for 1-round PIR schemes. This can be modified to allow more rounds;
however, no PIR scheme in the literature needs more than 1-round. (Some variants of the PIR
problem need multirounds- see Section 6.2.)



3 Information Theoretic PIR
Assume you have k ≥ 2 copies of the database. Then there are PIR schemes of complexity << n
which achieve complete information theoretic security. In this section we examine several of these
PIR schemes. For a summary of the known results see Table 1. The last row of the table is the best
known PIR scheme.

Tools Th Ref 2 DB 3 DB 4 DB k DB
kth root Th 3.2 [23] no PIR no PIR n1/2 k · n1/lg k

Cov. Codes Th 3.3 [23] n1/3 no PIR n1/4 (k lg k)n1/(lg k+lg lg k)?
poly inter. [22] n1/2 n1/3 n1/4 (k2 log k)n1/k

Rec Th 3.7 [2] n1/3 n1/5 n1/7 2k2
n1/(2k−1)

Linear Alg [40] n1/3 n1/5 n1/7 k!n1/(2k−1)

Linear Alg [39, 10] n1/3 n1/5 n1/7 k3n1/(2k−1)

poly-heavy [12] n1/3 n1/5.25 n1/7.87 nO(lg lg k/k lg k)

Table 1: Summary of Information Theoretic Schemes, up to a constant factor.

3.1 A k-DB, O(kn1/ lg k)-bit PIR Scheme
The PIR schemes in this section are from Chor et al. [23].

Definition 3.1. If σ is a string and i ≤ |σ| then σ ⊕ i is the string σ with the ith bit flipped.

Theorem 3.2. [23] For all k ∈ N there is a k-DB, O((k lg k)n1/ lg k)-bit PIR scheme.

KEY IDEA: View the database as a
√

n ×
√

n bit array and use properties of ⊕.

Proof. We do the k = 4 case and leave the generalization to the reader. Each index of the database
is represented as an ordered pair (i1, i2), where i1 and i2 are written in base d

√
ne. The databases

are labeled DB00, DB01, DB10 and DB11.
4-DB, O(

√
n)-bit, Information Theoretic PIR Scheme

1. Alice wants to know bit xi1,i2 .

2. Alice generates σ, τ ∈ {0, 1}
√

n.

3. Alice then generates two additional
√

n bits strings from the first two strings: σ′ = σ ⊕ i1

and τ′ = τ ⊕ i2.

4. Alice sends two strings to each database. DB00 receives σ, τ. DB01 receives σ and τ′. DB10

receives σ′ and τ. DB11 receives σ′ and τ′.



5. D00 sends ⊕σ( j1)=1,τ( j2)=1x j1, j2 . D01 sends ⊕σ( j1)=1,τ′( j2)=1x j1, j2 . D10 sends ⊕σ′( j1)=1,τ( j2)=1x j1, j2 .
D11 sends ⊕σ′( j1)=1,τ′( j2)=1x j1, j2 .

6. Alice XORs the four bits. Since xi1,i2 is the only bit that appeared an odd number of times,
the result is xi1,i2 .

Note that the number of bits sent is 8
√

n + 4. �

3.2 A k-DB, O((k lg k)n1/lg k+lg lg k)(?)-bit PIR Scheme
The PIR schemes in this section are from Chor et al. [23]. We show a 2-DB O(n1/3)-bit PIR scheme,
which contains most of the ideas. We will then sketch a k-DB case, which is similar but whose bit
complexity depends on open questions involving covering sets.

In the PIR scheme from Theorem 3.2, Alice sends many more bits than the database sends.
By making the databases send a comparable number of bits as Alice, the total number of bits
communicated between Alice and the databases can be reduced.

Theorem 3.3. [23] There is a a 2-DB O(n1/3)-bit PIR scheme.

KEY IDEA: Two databases can do the work of eight. Covering codes help to organize who
does what.

Proof. By the n = 8 case of Theorem 3.2 there is an 8-DB O(n1/3)-bit PIR scheme. We can
decrease the number of databases from eight to two by having two databases simulate the work
of eight databases. In particular, DBA simulates DB000, DB001, DB010, DB100; and DBB simulates
DB111, DB011, DB101 and DB110. The simulation is designed so that DBA (DBB) simulates databases
whose 3-bit labels are of Hamming distance ≤ 1 from 000 (111).

2-DB, O(n1/3), Information-Theoretic PIR Scheme

1. Alice views the database as a n1/3 × n1/3 × n1/3 grid. Alice wants xi1,i2,i3 . The database is x.

2. Alice generates σ, τ, η ∈ {0, 1}n
1/3

and creates σ′ = σ ⊕ i1, τ′ = τ ⊕ i2, η′ = η′ ⊕ i3.

3. Alice sends σ, τ, η to DBA. Clearly DBA can simulate DB000 (from the original PIR scheme)
and send back the needed single bit. Consider what DBA must do to simulate DB100. DBA

knows that DB100 would have received the following strings: σ′, τ, η. DBA already has two
of the three strings that DB100 has (namely, τ, η) but does not have σ′; however, it knows that
σ′ and σ (which it does have) differ by only one bit. DBA can create and use all n1/3 possible
values of σ′. Specifically, DBA generates σ⊕ i for 0 ≤ i < n1/3. Each of the strings generated
is a candidate for σ′. For each candidate DBA simulates what DB100 would have done. Note
that there are O(n1/3) candidates for σ′ and each one leads to a 1-bit answer. Hence DBA

sends O(n1/3) bits to simulate DB100. Similarly, it can simulate DB010 and DB001. The total
number of bits sent back is 3n1/3 + 1.



4. Alice sends σ′, τ′, η′ to DBB. Similar to the last step, DBB simulates DB111, DB110, DB101,
and DB011.

5. Alice XOR’s the relevant bits. That is, she ignores all of the bits send back except those cor-
responding to {σ, τ, η}, {σ, τ, η′}, {σ, τ′, η}, {σ′, τ, η}, (which DBA sends back) and {σ′, τ′, η′},
{σ, τ′, η′}, {σ′, τ, η′}, {σ′, τ′, η}, (which DBB sends back).

Alice sends 6n1/3 bits and each database sends back 3n1/3 + 1 bits, for a total of 12n1/3 + 2
bits. �

Note 3.4. Itoh [40] presents a slightly different PIR scheme yields 12n1/3. Beimel and Ishai [9, 10]
use a different approach which yields 7.27n1/3. Improving this constant may be important in that
the techniques employed may lead to a PIR scheme that uses << n1/3 bits.

The key to Theorem 3.3 is that we took an 8-DB, O(n1/3)-bit database and got two databases
to do the work of eight since there are two vectors ~v1,~v2 ∈ {0, 1}3 that cover {0, 1}3 in that every
~v is at most one bit away from either ~v1 or ~v2. This is called a covering set. From Theorem 3.2
we know there is a 2d-DB, O(n1/d)-bit PIR scheme. If we can find k vectors that cover {0, 1}d then
we can generalize the PIR scheme from the above theorem. The problem is that the status of k,
called the problem of covering numbers, is not resolved (see [24, 25, 36, 58]). Even so, we have
the following theorem and speculation.

Theorem 3.5. [23]

1. Assume there are k vectors in {0, 1}d that cover {0, 1}d. Then there is a k-DB, O(n1/d)-bit PIR
scheme.

2. There is a 4-DB, O(n1/4)-bit PIR scheme.

3. This technique can lead to, at best, a k-DB, O(k lg k)n1/(lg k+lg lg k))-bit PIR scheme.

Proof sketch:
1) This is similar to the proof of Theorem 3.3
2) This follows from part a using the vectors {0000, 1000, 0111, 1111}
3) This follows from the volume bound of Gallager [31], though it is not hard to prove. �

We tend to think that the lower bound on covering sets is equal to the upper bound; hence, we
think there is a k-DB, O(k lg k)n1/(lg k+lg lg k))-bit PIR scheme. However, this is unknown as of this
time. It is also not important for PIR since, as we will see in the next section, there exist much
better PIR schemes.



3.3 A k-DB O(2k2
n1/2k−1)-bit PIR Scheme

The PIR scheme in this section is by Ambainis [2]. The main new idea is to use recursion; however,
to set up the recursion we need a lopsided protocol.

Lemma 3.6. [2] There is a 2-DB PIR scheme where the following hold.

1. Both databases receive O(kn1/2k−1) bits.

2. One of the databases sends back O(kn1/2k−1) bits.

3. The other database sends back O(22kn2k−3/2k−1) bits.

4. Alice only needs k + 1 = Θ(k) of the bits sent back by DBA and 22k−1 − k − 1 = Θ(22k) bits
send back by DBB.

Proof. We will be simulating the 22k−1-DB O(n1/2k−1)-bit PIR Scheme of Theorem 3.2 with two
databases. Hence we will be viewing the database as a 2k − 1-dimensional array of 0’s and 1’s.
DBA will simulate the 2k databases that are of Hamming distance ≤ 1 from 00 · · · 0 DBB will
simulate the remaining 22k−1 − k − 1 databases.
2-DB, Lopsided Information-Theoretic PIR Scheme

1. Alice wants bit xi1,...,i2k−1 .

2. Alice generates σ1, σ2, . . . , σ2k−1 ∈ {0, 1}n
1/2k−1

.

3. For 1 ≤ j ≤ 2k − 1 Alice forms σ′j = σ j ⊕ i j.

4. Alice sends σ1, . . . , σ2k−1 to DBA. Alice sends σ′1, . . . , σ
′
2k−1 to DBB.

5. DBA simulates DB0···0 and all databases of Hamming distance of one from DB0···0 (using the
n1/2k−1 PIR scheme described in Section 3.2). This takes O(k × n1/(2k−1)) bits (similar to the
proof of Theorem 3.3). Alice only uses the 2k bits corresponding to the correct guesses as to
the queries that would have been asked.

6. DBB simulates DB1···1 and all databases with index Hamming distance less than or equal to
2k − 3 from 1 · · · 1, which means that it simulates the rest of the databases that DBA does not
simulate. A database of Hamming distance h transmits O(nh/2k−1) bits. The number of such
databases is bounded by 2h. Hence there will be at most O(2hnh/2k−1) bits transmitted from
these databases back to Alice. Alice only uses the 22k−3−2k bits corresponding to the correct
guesses as to the queries that would have been asked.

�

We use the lopsided PIR scheme to build a PIR scheme of the desired complexity.

Theorem 3.7. [2] For all k there is a k-DB O(2k2
n1/2k−1)-bit scheme.



KEY IDEAS: The k databases simulate the two databases from the lopsides scheme. Since
Alice only needs one bit of what the database is going to send her, apply the PIR scheme
recursively to get that bit.

Proof. We build the PIR scheme by induction. The base case is the 2-DB O(n1/3)-bit PIR scheme
from Theorem 3.3. Assume inductively that there is a k − 1-DB, O(2(k−1)2

n1/(2k−3))-bit scheme.

k-DB, O(2k2
n1/2k−1) Information-Theoretic PIR Scheme

1. Alice has i and wants xi.

2. Alice begins to simulate the lopsided protocol by generating σ1, σ2, . . . , σ2k−1 ∈ {0, 1}n
1/2k−1

.
and forming, for 1 ≤ j ≤ 2k − 1, σ′j = σ j ⊕ i j.

3. Alice sends σ1, . . . , σ2k−1 to DB1 (who will simulate DBA) and σ′1, . . . , σ
′
2k−1 to all of

DB2, . . . ,DBk (who will collectively simulate DBB. σ1, . . . , σ2k−1 ∈ to DB1. (Alice sends a
total of O(k2n1/2k−1) bits.)

4. DB1 runs the lopsided PIR scheme as DBA and hence sends Alice O(kn1/(2k−1)) bits.

5. Each of these databases DB2, . . . ,DBk runs the lopsided PIR scheme playing the role of DBB,
and computes O(22kn(2k−3)/(2k−1)) bits. These bits are not sent back to Alice, but are left at the
database.

6. Alice and DB2, . . . ,DBk treat the O(22kn(2k−3)/(2k−1)) bits as a new database. Alice privately
retrieves the Θ(22k) bits from the new database, using the (k−1)-DB PIR scheme inductively.
This takes

O(22k × 2(k−1)2
(n(2k−3)/(2k−1))1/2k−3) = O(22k+k2−2k+1n1/2k−1) = O(2k2

n1/2k−1)

bits.

This PIR scheme may appear to take more than two rounds. But note that the bits Alice sends in
each round do not depend on previous rounds; hence the PIR scheme can be done in one round. �

Note 3.8. Note that the dependence on k is large since the PIR scheme takes O(2k2
n1/2k−1) bits.

Itoh [40] has a different protocol that has constant k!. Ishai and Kushilevitz use an entirely different
technique (without recursion) and reduce it to O(k3n1/2k−1) bits. These improvements are important
since the new techniques they used evenutally lead to an PIR scheme using << n1/2k−1 bits.



3.4 A k-DB nO(lg lg k/k lg k)-bit PIR Scheme
The PIR scheme in this chapter is from Beimel et al. [12].
KEY IDEA: View the database as a polynomial.

Let x ∈ {0, 1}n, the database. x is x1 · · · xn. We find a polynomial Px that codes x. How does
it do this? The polynomial will have m variables (m to be picked later). There will be n vectors
E(1), . . . , E(n) ∈ {0, 1}m such that

(∀i)[Px(E(i)) = xi].

Formally we proceed as follows

Definition 3.9. Let x ∈ {0, 1}n. We denote x as x1x2 · · · xn. Note that xi is the ith bit of x. Let d,m
be such that

(
m
d

)
≥ n. Hence m ≥ dn1/d.

1. For all i ∈ [n], let E(i) be the ith element of {0, 1}m that has exactly d ones. We view E(i) as
a vector of length m. For example if E(i) = 00110 we view it as (0, 0, 1, 1, 0) and hence can
plug it into a polynomial on 5 variables.

2. Let Px(z1, . . . , zm) be the polynomial in Z2 of degree d such that (∀i)[Px(E(i)) = xi]. This is
constructed as follows. Note that the expression∏

E(i) j=1

z j

is 1 if (z1, z2, . . . , zm) = E(i), and 0 if (z1, . . . , zm) is any other E(i′). Hence the expression

xi

∏
E(i) j=1

z j

is xi if (z1, z2, . . . , zm) = E(i), and 0 if (z1, . . . , zm) is any other E(i′). We will sum these
expressions to obtain an polynomial that, on input E(i), only one term is nonzero, and that
term has coefficient xi. Formally Px(z1, . . . , zm) =

∑n
i=1 xi

∏
E(i) j=1 z j.

3. Let (z1, . . . , zm) = (
∑k

j=1 y1, j, . . . ,
∑k

j=1 ym, j). Let

Qx({y j,h}, 1 ≤ j ≤ k, 1 ≤ h ≤ m) = Px(
k∑

j=1

y1, j, . . . ,

k∑
j=1

ym, j).

For each j ∈ [k] let V j = {y1, j, . . . , ym, j}.

The PIR problem is equivalent to the following problem:

1. Alice has E(i).

2. The k databases have Px.



3. Alice wants to know Px(E(i)) without the databases knowing anything about i.

We present the first few steps of a PIR scheme for this and then restate the problem.
Partial PIR Scheme

1. Alice has E(i).

2. Alice generates Y1, . . . ,Yk−1 ∈ {0, 1}m and then forms Yk such that
∑k

j=1 Y j = E(i).

3. For all j ∈ [k], Alice sends {Y1, . . . ,Yk} − Y j to DB j. Hence Alice sends O(km) bits to each
database, O(k2m) bits total.

Each database has all but m variables of Qx. Can they send Alice information so that she can
evaluate Qx({y j,h}, 1 ≤ j ≤ k, 1 ≤ h ≤ m)?

We use this reformulation to obtain a O(k3n1/2k−1) PIR scheme. Alas, it is not the case that all
of the key ideas are contained here. We will discuss how to modify it to obtain the desired PIR
scheme.

Theorem 3.10. [9, 39, 10, 12] For all k, there is a k-DB O(k3n1/2k−1)-bit scheme.

Proof. Let d = 2k − 1. Let m = Θ(kn1/d) be such that
(

m
d

)
≥ n. Let Qx,V1, . . . ,Vk be as in

Definition 3.9. We assign to each monomial M of Qx the database that can best evaluate it. This is
done before the PIR scheme begins.

1. If there exists j0 ∈ [k] such that no variable of M is in V j0 then assign M to DB j0 . Note that
DB j0 will be able to evaluate M.

2. Assume for all j ∈ [k] some variable of V j is in M. If there exists j0 ∈ [k] such that only one
variable of V j0 is in M, then assign M to DB j0 .

3. Assume for all j ∈ [k] two variables of V j are in M. Then M has 2k > d variables. Since Qx

is of degree d this cannot occur.

Let p j be the sum of all the monomials assigned to DB j. Note that once the y j′,h for j′ , j are
known, p j is linear in {y j,1, . . . , y j,m}. Hence p j can be represented by an element of {0, 1}m, and is
m bits long.
k-DB O(k3n1/2k−1) PIR Scheme

1. Alice has E(i).

2. Alice generates Y1, . . . ,Yk−1 ∈ {0, 1}m and then forms Yk such that
∑k

j=1 Y j = E(i).

3. For all j ∈ [k] Alice sends {Y1, . . . ,Yk} − Y j to DB j. Hence Alice sends O(k2m) bits.

4. For each j ∈ [k] DB j finds p j and sends it back to Alice. Each database is sending m bits, so
this is O(km) bits total.



5. Alice can evaluate all of the p j that are sent and XOR them. This is the answer.

This takes O(k2m) = O(k3n1/d) = O(k3n1/2k−1) bits. �

To extend this proof to general k we will need to take d ≥ 2k. However, if d ≥ 2k and we assign
monomials to the database best able to compute it, the polynomial that a DB has been assigned
may be quadratic in m variables and hence requires m2 = n2d bits to communicate. We sketch the
ideas that are needed.

1. Let k′, λ be parameters to be chosen carefully. The polynomial Px(~z) is broken up into several
pieces, some of which use ~z and some of which use the y’s. In particular, for each V ⊆ [k]
such that |V | ≥ k′ we have a polynomial PV(z1, . . . , zm), and we have linear polynomials
p j(y∗, j) such that

(a) Px(z1, . . . , zm) = Px(
∑k

j=1 y1, j, . . . ,
∑k

j=1 ym, j) =∑
V⊆[k],|V |≥k′ PV(z1, . . . , zm) +

∑k
j=1 p j(y1, j, . . . , ym, j).

(b) PV and p j both take m variables.

(c) The degree of PV is ≤ λ|V |.

(d) The degree of p j is one (so p j is linear).

(e) Note that Px(E(i)) =
∑

V⊆[k],|V |≥k′ PV(E(i)) +
∑k

j=1 p j(y1, j, . . . , ym, j).

2. For each V ⊆ [k], |V | = k′, the databases in V will be able to evaluate PV(E(i)). Alice cannot
give them E(i); however, it will turn out that there are not that many coefficients of PV that
Alice needs and she will be able to get these by a recursive call to the PIR scheme.

4 Conjectures that Imply sublinear PIR
In Section 3, we examined PIR schemes where the databases had unlimited computing power;
hence we needed to replicate the database to achieve sublinear communication complexity. In this
section we will look at sublinear PIR’s where the database has computational limits.

4.1 Number Theoretic Conjectures
The Quadratic Residue Problem (see Definition 4.1) is thought to be hard. Kushilevitz and Os-
trovsky [46] show that, assuming QR is hard, there is a 1-DB O(nε)-bit PIR scheme where ε can
be taken to be aribrarily small. We present that PIR scheme. Cachin et al. [17] assume that the
Φ-Hiding Problem is hard and, from that, obtain a polylog PIR scheme. (The Φ-hiding problem is
defined in| [17].) We do not formalize or prove that theorem.

Definition 4.1. Let z,m ∈ N. Assume z is relatively prime to m. The number z is a Quadratic
Residue mod m if there exists a number a such that a2 ≡ z (mod m). The Quadratic Residue
Problem is, given (z,m), determine if z is a quadratic residue mod m.



We state the next theorem informally and only present the PIR scheme, not the proof that it is
correct or private.

Definition 4.2. Z∗n is the group of integers with underlying set {x | gcd(x,n)=1} and the operation
of multiplication mod n.

Theorem 4.3. [46] Assume that the quadratic residue problem is ‘hard’ for m the product of two
primes and |m| ≥ nδ (|m| is the length of m, not its absolute value). Then there exists a 1-DB,
O(n1/2+δ)-bit PIR scheme.

KEY IDEA: View the database as a
√

n ×
√

n array. A new database is formed which relates
to QR.
Proof sketch: The database is viewed as a

√
n ×
√

n array of bits.
1-DB PIR Scheme

1. Alice wants bit xi, j.

2. Alice generates two primes p1, p2 of the same length such that m = p1 p2 has length nδ.

3. Alice generates
√

n elements of Z∗m which we call r1, . . . , r√n. Alice makes sure that all of
them are quadratic residues except ri. Make sure that ri has Jacobi symbol 1 (i.e., it is a
non-square modulo both p1 and p2.)

4. Alice sends m, r1, . . . , r√n to the database. Note that this takes O(nδ
√

n) = O(n1/2+δ) bits.

5. The database computes the following matrix.

(a) ca,b = r2
b if xab = 1,

(b) ca,b = rb if xab = 0.

6. The database computes the products of the rows. In particular, for 1 ≤ a ≤
√

n the database
computes ra =

∏√
n

b=1 ca,b.

7. The database sends over r1, . . . , r√n. This takes O(n1/2+δ) bits.

8. Alice sees if r j is a QR. If it is then xi, j = 1, otherwise xi, j = 0.

We leave the proof that this is correct to the reader. The proof that this is private depends on a
careful definition of what it means for the QR problem to be hard. �

In the last step of the PIR scheme Alice receives n1/2+δ bits but only uses nδ of them. Hence
we can do the last step recursively. In the PIR schemes current form this does not help; however,
if we start with different dimensions and use the n1/2+δ protocol as a base case we can obtain a PIR
scheme which takes n1/4+ f (δ) bits. By repeating this we can obtain a PIR scheme with nε+ fε (δ) bits.
We leave this to the reader.

Note 4.4. The PIR scheme above uses that Z∗m is a group. Yamamur and Saito have generalized this
scheme to any group in [59]. Mann [49] has a similar scheme that is based on general assumptions.



4.2 One-way Functions Imply O(nε) 2-DB PIRs
Chor and Gilboa [19] show that if one-way functions exist then there is a 2-DB O(nε)-bit PIR
scheme. Having a one-way function is equivalent to having a pseudorandom generator. We phrase
the theorem in those terms and prove a scaled down version of it.

Theorem 4.5. [19] Let 1 ≤ m ≤ n. Assume there is a function G : {0, 1}lg n → {0, 1}(n/m)1/3
such that

Alice and the databases can compute G but the databases cannot deduce anything about z from
G(z). Then there is a 2-DB O((n/m)1/3 + m lg n)-bit PIR scheme. By taking m = n1/4 we obtain an
O(n1/4 lg n) PIR scheme.

KEY IDEA: Alice does the O(n1/3)-bit PIR scheme from theorem 3.3 on each row, but she
sends short seed instead of long message.

Proof. We view the database as an m × n/m bit matrix. We will determine m later.
2-DB O((n/m)1/3 + m lg n)-bit PIR scheme

1. Alice wants bit xi, j.

2. Alice generates σ ∈ {0, 1}m and lets σ′ = σ ⊕ i.

3. Alice acts as though she is going to run the PIR scheme in Theorem 3.3 on the ith row to get
the j bit. Alice prepares the queries q1, q2 of length (n/m)1/3 that she would send to DB1 and
DB2 but does not send them.

4. For each column index b, 1 ≤ b ≤ n/m, Alice generates sb ∈ {0, 1}lg n.

5. Alice finds M1,M2 ∈ {0, 1}(n/m)1/3
such that G(s j) ⊕ M1 = q1 and G(s j) ⊕ M2 = q2. (This is

not a typo- it really is G(s j) both times.)

6. Alice sends to DB1 the following: σ,M1,M2, s1, s2, . . . , sm. Alice sends to DB2 the follow-
ing: σ′,M1,M2, s1, s2, . . . , sm. (The total is O(m + (n/m)1/3 + m lg n) = O((n/m)1/3 + m lg n).)

7. DB1 sends back U1 = ⊕σ(a)=1ANS 1(M1 ⊕G(sa)) and U2 = ⊕σ(a)=0ANS 2(M1 ⊕G(sa)). This is
of length O((n/m)1/3). (Recall that ANS 1(q) is the answer that DB1 gives when sent question
q.)

8. DB2 sends back V1 = ⊕σ′(a)=1ANS 2(M1 ⊕G(sa) and V2 = ⊕σ′(a)=0ANS 2(M1 ⊕G(sa). This is
of length O((n/m)1/3).

9. Note that the PIR scheme in Theorem 3.3 that we are using has the following important
property: if you give the two databases the same query, they will return the same answer.
Hence we have, for all a, ANS 1(M1 ⊕G(sa)) = ANS 2(M1 ⊕G(sa)) and ANS 1(M2 ⊕G(sa)) =

ANS 2(M2 ⊕G(sa)). Assume σ(i) = 1 (the other case is similar). Hence U1 ⊕ V1 will mostly
cancel out just leaving ANS 1(M1 ⊕G(s j)) = ANS 1(q j), and U2 ⊕ V2 will mostly cancel out
just leaving ANS 2(M2 ⊕G(s j)) = ANS 2(q j), From these Alice can complete the simulation
and recover xi.



�

The following theorem follows from the proof of Theorem 4.5. (A result that follows from a
Theorem is called a Corollary. A result that follows from a proof is called a Porism.)

Porism 4.6. Assume that α(n) is a function and 1 ≤ m ≤ n. Assume that P is a 2-DB α(n)-bit PIR
scheme (possibly based on computational limits on the databases) where, for all queries q that that
Alice could make, ANS 1(q) = ANS 2(q). Assume there is a function G : {0, 1}lg n → {0, 1}α(n/m)

such that Alice and the databases can compute G but the databases cannot deduce anything about
z from G(z). Then there is a 2-DB O(α(n/m) + m lg n) PIR scheme (based on the same limits as
the of the original scheme plus the limits about G). Applying this to the 2-DB O(n1/4 lg n)-bit PIR
scheme from Theorem 4.5, with m = n1/5, yields a 2-DB O(n1/5 lg n)-bit PIR scheme.

Corollary 4.7. Assume that, for all δ < 1, there exists G : {0, 1}n
δ
→ {0, 1}n such that Alice and the

databases can compute G but the databases cannot deduce anything about z from G(z). Then, for
all ε, there is a 2-DB, O(nε)-bit PIR scheme.

If 1-DB PIR’s are desired then a stronger assumption is needed. In particular, the following are
known:

1. Stern [57] and Mann [49] have shown that any homomorphic encryption scheme implies nε

(any ε > 0) 1-DB PIR schemes exist.

2. Kushilevitz and Ostrovsky [47] show that if there exists a One-way Trapdoor Permutation
then there is an n − o(n) 1-DB PIR scheme.

3. Certain assumptions about oblivious transfer imply 1-DB polylog-bits PIR schemes [45].
(Added at last minute- this Scheme has recently been broken. Details will appear.)

5 What Do 1-DB Sublinear PIRs Imply?
In this section we sketch a proof that 1-DB Sublinear PIR Implies OneWay Functions Exist and
then summarize what else is known.

5.1 1-DB Sublinear PIR Implies OneWay Functions Exist
In Section 4 we show that one-way functions imply sublinear 2-DB PIR schemes exist. We also
noted that some conjectures imply 1-DB sublinear PIR schemes exist. The question arises as to
what primitives are necessary. Beimel et al. [11] show that if 1-DB sublinear PIR’s exist then one-
way functions exist. It is known that bit-commit (see [34]) implies one-way functions [37]. We
sketch a weak version of ‘sublinear 1-DB PIR’s imply one-way’ by showing the following.

Theorem 5.1. [11] If there is a 1-DB (n/2)-bit PIR scheme then there is a weak bit-commitment
scheme.



Proof sketch:
Recall that IP(x, y) is the inner product mod 2 of x and y.
We will have Carol committing to a bit and David be the one she commits to (we do not use

Alice and Bob since Alice is being used in another capacity throughout this paper.)
Assume that there is 1-DB (n/2)-bit PIR scheme P. We use it to build the following bit-commit

scheme.
PHASE ONE: Carol commits to bit b.

1. Carol has bit b.

2. Carol generates x, y ∈ {0, 1}n. David generates i ∈ [n].

3. Carol and David exercise the PIR scheme P with Carol having database x and David having
index i. Note that at the end David knows xi and Carol does not know i.

4. Carol sends David y and IP(x, y) ⊕ b.

Before giving phase two we claim that David cannot possibly deduce anything about b after
Phase one. Assume that he could. Then the following is a communication protocol (no privacy
involved) for the IP problem where Carol has x, David has y, and at the end of the protocol they
both know something about IP(x, y). The protocol takes n/2 bits, which violates the lower bound
on the randomized communication complexity of IP of Chor and Goldreich [21].

1. Carol has x, David has y.

2. David generates i ∈ [n].

3. Carol and David exercise the PIR scheme P with Carol having database x and David having
index i. Note that at the end David knows xi and Carol does not know i.

4. David generates c ∈ {0, 1} (independent of everything else) and uses it as the bit sent from
Carol at step 4 of the Commit protocol.

5. Using the above together with y, David outputs his prediction b′ for b as we are assuming he
can.

6. David computes b′ ⊕ c as a prediction for IP(x, y) and transmits this prediction to Carol.
(Since Carols choice of b in the commit protocol is uniformly distributed, Davids view here
is identical to his view in the commit protocol. Hence c conveys just as much information as
b ⊕ IP(x, y) did.)

We now exhibit
PHASE TWO

1. Carol has x, y ∈ {0, 1}n and b ∈ {0, 1}. David has i, xi, y, and IP(x, y) ⊕ b .



2. Carol sends David x.

3. David verifies that xi is what it should be. (Carol did not know i so she must give David the
correct x.)

4. David computes IP(x, y) and can then deduce b easily.

�

5.2 Summary of What is Known about Computational PIR

Notation 5.2.

1. One-Way means there exists a one-way function. This is known to be equivalent to the
existence of pseudorandom generators.

2. One-Way-Perm-Trap means that there exists a one-way permutation with a trapdoor. Intu-
itively this means that if you know the trapdoor (e.g., the factors of a number) then you can
compute the inverse.

3. HES means that there exists a homomorphic encryption scheme.

4. OT is oblivious transfer. It is known that 1-out-of-2 OT and 1-out-of-n OT are equiva-
lent [26]. It is clear that 1-out-of-n sublinear OT and SPIR (see Section 7.2) are equivalent.

The following summarizes what is known about assumptions for sublinear 1-DB PIR.
One-Way-Perm-Trap =⇒ 1-DB (n − o(n))-bit PIR [47]
(n − o(n))-bit PIR =⇒ OT [53]
OT =⇒ One-Way
One-Way =⇒ 2-DB o(n)-bit PIR [19]

HES =⇒ 1-DB nε-bit PIR [49, 57]

Impaglizzo and Rudich [38] show that a proof that OT can be implemented using one-way
functions only (without trapdoor), which does not relativize, would, roughly speaking, lead to a
proof that P , NP that does not relativize. They consider this evidence that proving such a result
is going to be difficult. Since OT is equivalent to SPIR, and SPIR is close to PIR, it is unlikely that
we can obtain sublinear PIR from one-way functions.



6 Retrieving Different Types of Data

6.1 PIR by Blocks
In the standard model Alice only wants one bit. It is more realistic that Alice wants a block of bits.
What if the data is partitioned into blocks of m each and Alice wants an entire block. She could
invoke a PIR scheme m times. Can she do better? This question was raised by Chor et al. [23].

Definition 6.1. [23] Let `, n, k, n ∈ N. The PIR(`, n, k) problem is as follows: There are k
databases each with the same x ∈ {0, 1}n. The x is broken up into n/` blocks of ` each. Alice
wants to privately retrieve ` consecutive bits. Note that PIR(`, n, k) problem can be solved by `
iterations of a k-DB PIR scheme.

The following theorem appeared in [23]. We give a different proof, from [41], which we will
need in Section 8

Theorem 6.2. [23, 41] The PIR(`, n, 2) problem can be solved with O(n/` + `) bits.

KEY IDEA: Use ⊕ on blocks

Proof. The database consists of n/` blocks of ` bits each. View it as an n/` by ` array. We denote
the blocks B1, . . . , Bn/`.
PIR(`, n, 2) Scheme

1. Alice wants the ith row.

2. Alice generates σ ∈ {0, 1}n/`. Alice sets σ′ = σ ⊕ i. Alice sends σ to DB1 and σ′ to DB2.
(Alice sends O(n/` + `) bits.)

3. DB1 returns τ = ⊕σ( j)=1B j. DB2 returns η = ⊕σ′( j)=1B j. (The databases send O(`) bits.

4. Alice computes Bi = τ ⊕ η.

The number of bits communicated is O(n/` + `). �

Note 6.3. If ` = nδ then the above PIR scheme takes O(nmax{δ,1−δ}). Contrast this to using the
O(n1/3)-bit PIR scheme (Theorem 3.3) nδ times which results in a O(n1/2+δ)-bit PIR scheme, which
is clearly worse.

The proof can be generalized to obtain the following.

Theorem 6.4. [23, 20]

1. For any constant k ≥ 2, and for any `, ` ≥ n1/k−1, there exists an O(`)-bit PIR(`, n, k)
scheme.

2. For any constant k ≥ 2, and for any `, there exists an O(n1/2k−1`k/2k−1)-bit PIR(`, n, k) PIR
scheme.



6.2 PIR by Keyword
What if the database is a list of good stocks to buy and Alice just wants to know if BEATCS Inc.
is a good stock? This does not fit our framework since she does not know exactly where in the
database that information would be. This problem was considered by Chor and Gilboa [20].

Definition 6.5. [20] Let `,N, k ∈ N. The PrivatE Retrieval by KeYwords problem with parameters,
(henceforth PERKY(`,N, k)) is as follows. There are k databases and they each have the same list
of N strings of length `. Alice has a string w ∈ {0, 1}`. Alice wants to determine if w is on the list
without the databases knowing anything about w.

Theorem 6.6. [20] There exists an O((N + `)(lg N))-bit PERKY(`,N, k) scheme.;

KEY IDEA: The words are sorted. Alice uses block PIR and binary search

Proof. The databases store the strings in lexicographic order. Both Alice and the database can
view the set of strings as one string of length N`. Alice will first retrieve the middle string on
the list using the PIR-block scheme of Theorem 6.2. (This takes O(N + `) bits.) If the string is
retrieved is lexicographically less than w then Alice knows that w is in the second half. If the string
is retrieved is lexicographically more than w then Alice knows that w is in the second half. If the
string is retrieved is w then Alice knows that w is in the list but cannot stop here or else the database
will know what she was looking for (so she flips a coin to decide to go right or left). In all three
cases Alice proceeds on either a real or fake binary search to determine if w is in the database. The
entire process takes O((N/` + `)(lg N)) bits. �

Note 6.7. Using perfect hash functions PERKY(`,N, k) can be solved in O(N + `) bits [20].

7 Variants of PIR and CPIR

7.1 Robust PIR Schemes
In the standard PIR model the databases never break down (return no answer) and are never Byzan-
tine (return a false answer). Beimel and Stahl [14] consider what can be done if some of the
databases break down or return false answers.

Definition 7.1. [14] A k-out-of-m PIR scheme is an m-DB PIR scheme that works even if only k of
the databases send back answers (the rest return nothing). Note that a standard k-DB PIR scheme
is a k-out-of-k database PIR scheme. Note also that if there is a k-DB b(n)-bit PIR scheme then
there is an easy

(
m
k

)
b(n)-bit k-out-of-m PIR scheme (have each k-sized subset of the m databases

execute the original PIR scheme). Note also that the following 2-round solution works: in the first
round send one bit to each DB and ask it to return that bit, which suffices to see which DB’s are
functioning. In this section we only consider 1-round solutions.



Theorem 7.2. [14] If there is a 2-DB 1-round b(n)-bits PIR scheme then there is a 2-out-of-
m databases O(b(n)m lg m)-bit PIR scheme. Hence, using Theorem 3.3, there is a 2-out-of-m
O(n1/3m lg m)-bit PIR scheme.

Proof. We assume m is a power of 2. Number the databases DBσ as σ ∈ {0, 1}lg m.

1. Alice wants xi.

2. Alice generates questions for two databases as though she is going to execute the 2-DB PIR
scheme. Repeat this (lg m) − 1 times. Now Alice has lg m query pairs (Q j[0],Q j[1]) as
j = 1, . . . , lg m. Note that Alice has not sent anything yet.

3. For each σ Alice sends database DBσ one query from the pair (Q j[0],Q1[1]) by sending

Q1[σ(1)]Q2[σ(2)] · · ·Qlg m[σ(lg m)].

This takes O(b(n)m lg m) bits.

4. Each DBσ sends back the answers it would send back to those queries. This takes O(b(n)m lg m)
bits.

Note that, for all σ and j, database DBσ does not get both a Q j[0] and Q j[1]. Hence this is
private. Also note that even if only two databases DBσ and DBτ respond, and if j is such that
σ( j) , τ( j), then these two databases will give you some pair of queries (Q j[0],Q1[1]). This will
suffice to find xi. �

Note 7.3. There is an alternative proof of Theorem 7.2 that uses Shamir’s secret sharing [56].

For the general case perfect hash families are used to obtain the following.

Theorem 7.4. [14] There is a k-out-of-m 2Õ(k)n2 lg lg k/k lg km lg m-bit PIR scheme.

We now look at the case where some databases can answer with the wrong information.

Definition 7.5. [14] Let b, k,m ∈ N. A b-Byzantine k-out-of-m PIR scheme is an m-DB PIR
scheme that works even if only k of the PIR schemes return answers and ≤ b of them return
incorrect answers. (Note that the b bad databases do not collude.)

Theorem 7.6. [14] There is a k/3-Byzantine robust k-out-of-m O(kn1/(bk/3cm lg m)-bit PIR scheme.

What if the b bad databases collude? In this case we will allow any b databases to collude and
hence we can use the terminology of Section 7.4.

Theorem 7.7. [14] Assume b < k/3. There is a b-private b-Byzantine k-out-of-m
O( k

3bn1/b(k−1)/3tcm lg m)-bit PIR scheme.

These last two theorems use polynomial interpolation.



7.2 Symmetric PIR Schemes
In the standard model Alice may end up learning more than the one bit she is curious about. Gertner
et al. [33] considered the the question of preventing Alice from learning any more than xi.

Definition 7.8. [33] A Symmetric PIR scheme (henceforth SPIR) is a PIR scheme where, at the
end, Alice learns nothing more than xi. We will allow the databases to share a common random
string; however, the length of that string will be one of our parameters. There are two types of
SPIR:

1. Those where Alice is honest-but-curious (she will follow the PIR scheme but will try to use
the information gathered to find out more information).

2. Those where Alice is dishonest (she may choose to not follow the PIR scheme in order to
find out some information).

We will need to look at the complexity of a PIR scheme slightly differently than usual to state
the next theorem.

Definition 7.9. A 1-round (α(n), β(n))-bit PIR scheme is a PIR scheme where Alice sends a string
of length α(n) and then receives, from each database, a string of length β(n).

Theorem 7.10. [33] Let k ≥ 2. Assume there existsP, a k-DB 1-round (α(n), β(n))-bit PIR scheme.
Then there exists a 1-round (k + 1)-DB (α(n) + (k + 1)

⌈
lg n

⌉
, β(n) + 1)-bit SPIR scheme P′ that uses

a shared random string of length n. P′ works in the honest-but-curious model. We obtain, using
Theorem 3.3, a 3-DB O(n1/3)-bit SPIR scheme.

Proof sketch:
We prove the k = 2 case; the extension is obvious. We do not include the proofs of security. The

databases are DB0,DB1,DB2 and all have x ∈ {0, 1}n as well as a shared random string r ∈ {0, 1}n.
It will turn out that DB0 does not need r.

1. Alice has i. We take i ∈ {0, . . . , n − 1} since we will be using mod n arithmetic. Alice sends
queries to DB1 and DB2 as she would in PIR scheme P (this takes 2α(n) bits). She then
generates 4 ∈ {0, . . . , n− 1}. Alice sends 4 to DB1 and DB2, and sends i′ ≡ i−4 (mod n) to
DB0 (this takes lg n bits).

2. DB1 and DB2 compute r′ which is r shifted cyclically 4 places to the right. Then DB1 and
DB2 compute x′ = x⊕r′. DB1 and DB2 answer the query Alice sent to them as if the database
was x′. (This takes β(n) bits.)

3. DB0 sends ri′ . (This takes one bit.)

4. Alice reconstructs x′i and then computes xi = x′i ⊕ ri′ . (Note that x′i = xi ⊕ ri′ so x′i ⊕ ri′ =

xi ⊕ ri′ ⊕ ri′ = xi.)



�
For the case where Alice is dishonest a new primitive is introduced called Conditional Disclo-

sure of Secrets which is a generalization of t-out-of-m secrets sharing [56]. It is used to obtain the
following results.

Theorem 7.11. [33] Assume there exists P, a 1-round k-DB (α(n), β(n))-bit PIR scheme. Then
there exists a 1-round (k + 1)-DB (α(n) + (k + 1)

⌈
lg n

⌉
, 2β(n))-bit SPIR scheme P′ that uses a

shared random string of length O(n + β(n)). P′ and works when Alice is dishonest. We obtain,
using Theorem 3.3, a 3-DB O(n1/3)-bit SPIR scheme.

The above theorems are very general in that they take any PIR schemes and modify them to
form a SPIR scheme. The next theorem is proven by taking a particular PIR scheme, the one from
Theorem 3.7, and modifying it.

Theorem 7.12. [33] For every constant k ≥ 2 there exists a k-DB SPIR scheme with communica-
tion complexity and shared randomness O(n1/2k−1) which works when Alice is dishonest.

Theorem 7.13. [33] There exists a
⌈
lg n + 1

⌉
database O(lg2 n lg lg n)-bit SPIR scheme with com-

munication complexity and shared randomness O(lg2 n lg lg n) which works when Alice is dishon-
est.

The notion of SPIR has also been looked at in the context of computational PIR by Mishra and
Sarkar [50, 51]. Their main result assumes that both quadratic residue (see Definition 4.1) is hard,
and the XOR assumption (to be defined below) is true. The XOR assumption was first articulated
in [50]. They claim to have theoretical results and simulations as evidence for it.

Definition 7.14. [50, 51] The following is the XOR assumption. Let N be the product of two
primes that are roughly the same length. Let x, y be picked from {0, . . . ,N} at random. Let z = x⊕y.
Then

Prob(x ∈ QR ∧ y ∈ QR | z) = 1/4
Prob(x ∈ QR ∧ y < QR | z) = 1/4
Prob(x < QR ∧ y ∈ QR | z) = 1/4
Prob(x < QR ∧ y < QR | z) = 1/4

We state the following informally.

Theorem 7.15. [50, 51] If the quadratic residue problem is hard and the XOR assumption is
true then there is a 1-DB SPIR of complexity O(nε) where ε depends on the particular hardness
assumption for quadratic residue problem. This scheme works when Alice is dishonest.

The above Theorem follows more generally (and under weaker assumptions) from a gen-
eral PIR to SPIR transformation by Naor and Pinkas [52]. This transformation takes any PIR
scheme and, using a logarithmic number of oblivious transfers, turns it into a (computational)
SPIR scheme. Since PIR implies OT, we get that in the computational setting PIR implies SPIR
with no further assumptions and with a minor increase to the communication complexity. (NOTE-
the above paragraph is quoted word for word from an email from Yuval Ishai.)



7.3 Information-Theoretic PIR without Replication
In the standard model there are several copies of the database, which may be a security risk. This
problem was addressed by Gertner et al. [32]. Ideally we would like the databases themselves to
not be able to (separately) deduce anything about x. Even more ideal– we want no t databases to
be able to collude to find out anything about x.

Theorem 7.16. [32] Assume there exists a k-DB α(n)-bit PIR scheme. Assume further that the
only queries that Alice asks are of the form “give me ⊕a∈T xa” Then there is a (t + 1)k-DB 2α(n)-bit
PIR scheme such that if any t databases collude they still cannot deduce anything about x.

Proof sketch: We will do the t = 2 case; the generalization is obvious. The databases will be
called DB1

1,DB1
2,DB2

1,DB2
2,DB3

1,DB3
2, . . . ,DBk

1,DBk
2. For 1 ≤ j ≤ k the database DB j

1 will have
a random string r j

1 ∈ {0, 1}
n and DB j

2 will have r j
2 such that r j

1 ⊕ r j
2 = x. Note that none of the

databases have any information about x.

1. Alice has i.

2. Alice simulates the PIR scheme P as follows: if she wants to make the query ⊕a∈T xa of
database j, she makes it to both DB j

1 and DB j
2. She gets back bits b1 and b2. The bit

b = b1 ⊕ b2 is the answer to her query. Note that this takes 2α(n) bits.

�
The paper also considers the case where one of the databases has x but the others, even if they

work together, cannot obtain any information about x. This is called “total independence”

Theorem 7.17. [32] Assume there exists P k-DB α(n)-bit PIR scheme. Then there is a 2k + 1-DB
α(n) lg n-bit SPIR scheme such that one of the database has x and all the rest, even if they collude,
cannot learn anything about x.

7.4 t-private PIR Schemes
In the basic model we assumed that none of the databases talk to each other. Chor et al. raised the
question of what happens if some of the databases talk to each other. A PIR scheme is t-private [22]
if no subset of t of them can determine anything about i. Note that standard PIR schemes are 1-
private.

Let k, t ∈ N.

1. Chor et al. [22] show that there is a t-private, k-DB, O(tnt/k) PIR scheme [22]. This paper
uses polynomial interpolation.

2. Ishai and Kushilevitz [39, 10] have shown the following. Let d be such that

k = min
{ ⌊

dt −
d + t − 3

2

⌋
, dt − t + 1 − (d mod 2)

}
.



Then there is a t-private, k-DB, O(k2
(

k
t

)
n1/d)-bit PIR scheme. This paper uses linear algebra

and secret sharing [56].

3. Beimel and Ishai [9, 10] show that there is a t-private, k-DB, O(n1/b(2k−1)/tc)-bit PIR scheme.
This papers uses polynomials in a manner similar to that of Theorem 3.10, combined with
secret sharing [56]. The technique can be seen as a precursor to the proof of Theorem 3.10.

4. Blundo et al [16] show that there is a t-private, k-DB, O(k
√

n)-bit PIR scheme. This uses
blocks of bits and XOR. The result is of interest when t > k/2.

7.5 PIR’s with Preprocessing
In all of the PIR schemes discussed in the prior sections the database has to do O(n) work, usually
taking the XOR of n bits. Can the amount of work the database does be cut down? This question
was raised and partially answered by Beimel et al. [13]. The key is that some XORs of blocks of
bits are precomputed and prestored. This requires additional space. The following are known and
are proven in [13].

Let k ≥ 2 and 0 < ε < 1.

1. There is a k-DB, O(k3n1/(2k−1))-bit PIR scheme where the databases does O(n/ε(lg n)2k−2)
work and use O(n1+ε) additional storage. This is a variant of the PIR scheme in [10, 39]. It
is possible that a variant of Theorem 3.10 yields better results.

2. If there is a k-DB PIR scheme in which the length of the query sent to each database is α
and the length of the answer of each database is β, then there is a k-DB PIR scheme with kβ
work, k(α + β) communication, and k2α extra bits to store.

3. There is a k-DB, O(n1/(k+ε))-bit PIR scheme where the databases do O(n1/(k+ε)) work and use
O(nO(1)) additional storage. This follows from Item 2 and a construction from [9, 10].

4. Suppose that homomorphic encryption exists. Then there exists a k-DB CPIR scheme with
polynomially many extra bits, O(nε) communication, and O(n1/k+ε) work. This follows from
Item 2 and a generalization of the PIR scheme from Theorem 4.3.

7.6 Commodity Based PIR
In the standard model of PIR there is a lot of communication between Alice and the databases.
Beaver [5] began a line of research which aimed at minimizing direct communication between
parties in cryptographic schemes. The main ideas was that a third party would be able to help
facilitate the scheme but would not learn anything (e.g., the third party might just supply random
bits to all parties). DiCrescenzo [28] applied this approach to PIR’s.

In the results below the third party gives to Alice and the databases a random string. The length
of that string is called the Commodity Complexity. We want the number of bits communicated
between Alice and the databases to be low and we are willing to make the commodity complexity
high to obtain that (though we also want to keep it low).



Theorem 7.18. [5] Let k ∈ N. There is a k-DB PIR scheme where (1) The bits sent between Alice
and the databases is O(lg n), and (2) the commodity complexity is O(n1/k−1).

Theorem 7.19. [5] Assume the Quadratic Residue problem is hard (see Definition 4.1). Let κ be
a security parameter. There is a 1-DB PIR scheme where (1) The bits send between Alice and the
databases is O(lg n + poly(κ)), and (2) the commodity complexity is O(κn).

8 Lower Bounds

Lower bounds on Private Information Retrieval Protocols have been hard to obtain. Lower bounds
are (mostly) only known for 2-DB protocols with one round and restrictions on the number of bits
returned by the database. Even then, prior to Kerenidis and de Wolf [43] all lower bounds had
restrictions on the type of answers the database could return.

8.1 Lower Bounds For 2-DB 1-Round PIR Schemes

The following list summarizes lower bounds results for 2-DB 1-round PIR schemes.

1. Assume only linear answers are allowed. (That is, the answer is an XOR of some of the bits
of the database). Goldreich et al. [35] show that if the database sends back a query of length
a then Alice must send a query of length Ω( n

2a ). This proof uses the equivalence between
PIR’s and locally decodable codes.

2. Assume only linear queries are allowed. Chor et al. [23] show that if the database sends back
an answer of length one then each database must get a query of length at least n − 1 bits.
This matches an upper bound also in [23].

3. (No restrictions on the query.) Kerenidis and de Wolf [43] show that if Alice only uses a of
the bits send back then Alice must send a query of length at least Ω(n/26a). In the case a = 1
at least (1−H(11/14))n− 4 ∼ 0.25n bits are required. Their proof first converts a 2-DB PIR
scheme to a 1-DB quantum PIR scheme and then they show lower bounds on the quantum
PIR scheme.

4. (No restrictions on the query.) Beigel et al. [8] show that if the database sends back a query
of length one then Alice must send a query of length least n − 2, which nearly matches an
n − 1 upper bound (upper bound in [23]). The lower bound proof avoids quantum tech-
niques of [43]. Rather it builds on classical tools developed by Yao [60] and Fortnow and
Szegedy [30] for studying locally-random reductions, a complexity-theoretic tool for infor-
mation hiding that predates private information retrieval.



8.2 Other Lower Bounds
If privacy was not a concern, then Alice could obtain the bit she wants in lg n communication.
Hence the next result, by Mann [49], is important in that it shows that privacy does increase the
costs. It is also the only bound that holds for multi-round and one of the few bounds (the only other
one is later in this section) that holds for k databases instead of just two.

Theorem 8.1. [49] Let k ≥ 2 and ε > 0. Every k-DB α(n)-bit PIR scheme where every database
receives the same number of bits has α(n) ≥ ( k2

k−1 − ε) lg n. In particular, taking k = 2 and ε = 1/2,
any 2-DB PIR scheme where every database receives the same number of bits has complexity at
least 3.5 lg n.

Itoh [41] proves lower bounds on certain types of PIR schemes.

Definition 8.2. Let k, n ∈ N. Let ((q1, . . . , qk), (ANS 1, . . . , ANS k), φ) be a k-DB 1-round r-random
bit PIR for databases of size n with m-bit queries and a-bit answers.

1. The PIR scheme is linear if, for all j, 1 ≤ j ≤ k, the function ANS j, viewed as a function
from Zm

2 to Za
2 is linear in each variable. That is, if b1, . . . , bp−1, b, c, bp+1, . . . , bm ∈ {0, 1} then

ANS j(b1, . . . , bp−1, b + c, bp+1, . . . , bm) = ANS j(b1, . . . , bp−1, b, bp+1, . . . , bm)
+ ANS j(b1, . . . , bp−1, c, bp+1, . . . , bm)

2. Let ` ∈ N. The PIR scheme is `-multilinear if, for all j, 1 ≤ j ≤ k, the function ANS j,
viewed as a function from ((Z2)`)m/` to Za

2 is linear in each variable. That is, if

b1, . . . , bp−1, b, c, bp+1, . . . , bm/` ∈ {0, 1}` then

ANS j(b1, . . . , bp−1, b + c, bp+1, . . . , bm/`) = ANS j(b1, . . . , bp−1, b, bp+1, . . . , bm/`)
+ ANS j(b1, . . . , bp−1, c, bp+1, . . . , bm/`)

3. Let ` ∈ N. The PIR scheme is `-affine if, for all j, 1 ≤ j ≤ k, the function ANS j, viewed
as a function from ((Z2)`)m/` to Za

2 is affine with constant 0` in each variable. That is, if
b1, . . . , bp−1, b, c, bp+1, . . . , bm/` ∈ {0, 1}` then

ANS j(b1, . . . , bp−1, b + c, bp+1, . . . , bm/`) = ANS j(b1, . . . , bp−1, b, bp+1, . . . , bm/`)
+ANS j(b1, . . . , bp−1, c, bp+1, . . . , bm/`)
+ANS j(b1, . . . , bp−1, 0`, bp+1, . . . , bm/`).

Note 8.3. There is a k-DB O(k3n1/k)-bit PIR scheme from [39, 10, Section 3.2] is `-multilinear with
` = (k − 1)2. There is a k-DB O(k3n1/2k−1)-bit PIR scheme from [39, 10, Section 3.3] is `-affine
with ` = (2k − 1)(k − 1).

We prove a weak version of a theorem in [41] and then state several other theorems from [41].
The following is an information-theoretic argument that we leave to the reader.



Theorem 8.4. [23] In a 1-DB PIR scheme the complexity is at least n.

Theorem 8.5. [41] Any k-DB linear PIR scheme has complexity at least
√ n

2k .

Proof. Assume, by way of contradiction, that there is a k-DB linear PIR scheme
KEY IDEAS: Using linearity Alice can reconstruct the answers to any queries she wants.
This enables her to obtain a 1-DB sublinear PIR scheme, which contradicts Theorem 8.4.
((q1, . . . , qk), (ANS 1, . . . , ANS k), φ) with complexity

√ n
2k . We will assume that q j returns a string

of length m j and that ANS j returns a string of length a j. We will use this to build a 1-DB PIR
scheme of complexity < n, which contradicts Theorem 8.4.
1-DB PIR Scheme

1. Alice has i. The database has x. Alice generates ρ at random and forms the queries

q1(i, ρ), q2(i, ρ), . . . , qk(i, ρ). Alice does not send anything!

2. The database returns the following:

(a) ANS 1(x, 10m1−1), ANS 1(x, 010m1−2), ANS 1(x, 0010m1−3), . . ., ANS 1(x, 0m1−11),

(b) ANS 2(x, 10m2−1), ANS 2(x, 010m2−2), ANS 2(x, 0010m2−3), . . ., ANS 2(x, 0m2−11).

(c) etc until ANS k(x, 10m2), ANS k(x, 010m2−1), ANS k(x, 0010m2−2), . . ., ANS k(x, 0m2−11).

3. (This is the real key.) Since the PIR scheme is linear Alice can, for every j 1 ≤ j ≤ k, deduce
ANS j(x, q j(i, ρ)).

4. Alice can easily compute φ and hence xi.

This PIR scheme sends a total of m1a1 + m2a2 + · · · + mkak bits. Hence we are interested in the
maximum value

∑k
j=1 m ja j can take on. We know that

∑k
j=1(mk + ak) ≤

√ n
2k . One can show that

the maximum value that m1a1 + m2a2 + · · · + mkak, given
∑k

j=1(mk + ak) ≤
√ n

2k , occurs when, for
all j, 1 ≤ j ≤ k, a j = m j =

√ n
4k2 . In this case we get

m1a1 + m2a2 + · · · + mkak = k(n/4k) = n/4 < n.
This is a contradiction. �

Theorem 8.5 is tight since Theorem 6.2 has a 2-DB O(
√

n)-bit PIR linear scheme.
In Theorem 8.5 the k can be replaced by an k − 1 by allowing the first query to be sent and

answered. Using this, and generalizing the proof, one can prove the following.

Theorem 8.6. [41] Let k, ` ∈ N. Let ε > 0. Let P be any k-DB `-multilinear PIR scheme. Let α(n)
be its complexity. For almost all n, α(n) ≥ (1/(k − 1)1/`+1 − ε)n1/`+1.

Theorem 8.6 is not tight. There is an (k − 1)2- multilinear PIR scheme in [39, 10, Section 3.2]
that has complexity O(k3n1/k). The lower bound implied by Theorem 8.6 is( 1

(k − 1)1/(k−1)2+1
− ε

)
n1/(k−1)2+1.

The proof can be further generalized to show the following.



Theorem 8.7. [41] Let k, ` ∈ N. Let ε > 0. Let P be any k-DB `-affine PIR scheme. Let α(n) be its
complexity. For almost all n α(n) ≥ ( 1

(k−1)1/`+1 − ε)n1/`+1.

Theorem 8.6 is not tight. There is an (2k− 1)(k− 1)- affine PIR scheme in [39, 10, Section 3.3]
that has complexity O(k3n1/k). The lower bound implied by Theorem 8.6 is( 1

(k − 1)1/(2k−1)(k−1)+1 − ε
)
n1/(2k−1)(k−1)2+1.

9 Open Problems
1. Find a k-DB PIR scheme that uses less than nO(lg lg k/k lg k) bits. The authors of [12] claim that

their method, properly formalized, might yield a k-DB nO(1/k2) scheme; however, it cannot
be pushed further than that. Hence one plausible goal is to use their method (or others) to
obtain a k-DB nO(1/k2) scheme. We conjecture that this can be done.

2. The only lower bounds known are on fairly restrictive models. It is open to prove any bounds
on an unrestricted model. We conjecture that nΘ(1/k2) is both an upper and lower bound.

3. All known PIR schemes are 1-round. We conjecture that if there is a k-DB, nα(k)-bit PIR
scheme then there is a 1-round k-DB, nO(α(k))-bit PIR scheme. It may even be that there is a
1-round k-DB nα(k)-bit PIR.

4. What conjecture (e.g., the existence of 1-way functions) is equivalent to 1-DB o(n)-bit PIR?
1-DB (n − o(n))-bit PIR? 1-DB (n − c)-bit PIR? We conjecture that these questions do not
have nice answers.

The biggest frustration about PIR’s is the lack of good lower bounds. This is particularly
striking since we are dealing with communication complexity where lower bounds are possible and
plentiful (see [54]). We also note that hard results from Communication Complexity are not used
that much in PIR (the only exception known to the author is Theorem 5.1 which uses randomized
lower bounds for IP). Perhaps a more extensive use of these techniques would help; however many
people work in both fields so it’s not as though those results are unknown to the researchers.

10 Commentary
I have been asked “Having read 27 papers on PIR what do you think of the field?” Well the word
‘read’ may be overly generous; however, I do have the following impressions:
(1) Some of the results are simple enough to present in an undergraduate cryptography class. I
have taught Theorems 3.3 and 4.3. towards the end of such a course (after the mandatory material
was covered) and it worked well.
(2) PIR is interesting in that it is a simple model and yet proving things about it seems to require
knowing material from other fields. Communication Complexity, Computational Number Theory,



Complexity Theory, Cryptography, Combinatorics, all play a role. Hence a course on it would be
an excellent and motivated way to get into these other subjects.
(3) How interesting is PIR? A field is interesting if it answers a fundamental question, or connects
to other fields that are interesting, or uses techniques of interest. While I don’t see PIR as being
fundamental, I do see it as both connecting to fields of interest and using interesting techniques.

11 Acknowledgements
I would like to thank Clyde Kruskal and Charles Lin for proofreading. I would also like to thank
Eyal Kushilevitz for useful email exchanges and for writing a constant fraction of the papers on
PIR. In addition I would like to thank Amos Beimel, Yuval Ishai, and Eyal Kusilevitz, for proof-
reading and catching some subtle errors.

References
[1] M. Abadi, J. Feigenbaum, and J. Killian. On hiding information from an oracle. Journal of Computer

and System Sciences, 39, 1989.

[2] A. Ambainis. Upper bound on the communication complexity of private information retrieval. In
Proceedings of the 24th International Colloquium on Automata, Languages and Programming ICALP
1997, Bologna, Italy, pages 401–407, 1997.

[3] D. Asonov. Private information retrieval. In GI Jahrestagung (2), pages 889–894, 2001.

[4] D. Asonov and J.-C. Freytag. Almost optimal private information retrieval. In 2nd Workshop on
Privacy Enhancing Technologies (PET2002), 2002. Lecture Notes in Computer Science 2482.

[5] D. Beaver. Commodity-based cryptography. In Proceedings of the Twenty-ninth Annual ACM Sympo-
sium on the Theory of Computing, El Paso TX, pages 446–455, New York, 1997. ACM.

[6] D. Beaver and J. Feigenbaum. Hiding instances in multi-oracle queries. In Proc. of the 7th Sym. on
Theoretical Aspects of Computer Science, volume 415 of Lecture Notes in Computer Science, pages
37–48, New York, 1990. Springer-Verlag. http://www.springerlink.com.

[7] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Locally random reductions: improvements and
applications. Journal of Cryptology, 10, 1997. Earlier version in 1990 CRYPTO.

[8] R. Beigel, L. Fortnow, and W. Gasarch. A nearly tight lower bound for restricted private information
retrieval protocols. Computational Complexity, 15(1):82–91, 2006. Also a 2003 TR03-087 at www.
ecc.uni-trier.de/eccc/ or http://dx.doi.org/10.1007/s00037-006-0208-3.

[9] A. Beimel and Y. Ishai. Information retrieval private information retrieval: A unified construc-
tion. In ICALP01, 2001. Also in ECCCTR, 2001. Was later subsumed by General constructions
for information-theoretic private information retrieval by Beimel, Ishai, and Kushilevitz, http:
//www.springerlink.com.

[10] A. Beimel, Y. Ishai, and E. Kushilevitz. General constructions for information-theoretic private in-
formation retrieval, 2003. Unpublished manuscript available at www.cs.bgu.ac.il/~beimel/pub.

http://www.springerlink.com
www.ecc.uni-trier.de/eccc/
www.ecc.uni-trier.de/eccc/
http://dx.doi.org/10.1007/s00037-006-0208-3
http://www.springerlink.com
http://www.springerlink.com
www.cs.bgu.ac.il/~beimel/pub.html


html. Has results from both Improved upper bounds on information-theoretic private information re-
trieval by Ishai and Kushilevitz and Information Retrieval Private Information Retrieval: A Unified
Construction by Beimel and Ishai.

[11] A. Beimel, Y. Ishai, E. Kushilevitz, and T. Malkin. One-way functions are essential for single-server
private information retrieval. In Proceedings of the Thirty-first Annual ACM Symposium on the Theory
of Computing, Atlanta GA, New York, 1999. ACM.

[12] A. Beimel, Y. Ishai, E. Kushilevitz, and J.-F. Rayomnd. Breaking the o(n1/(2k−1)) barrier for
information-theoretic private information retrieval. In Proceedings of the 43nd Annual IEEE Sym-
posium on Foundations of Computer Science, Vancouver, Canada, pages 261–270, 2002.

[13] A. Beimel, Y. Ishai, and T. Malkin. Reducing the servers’ computation in private information retrieval:
Pir with preprocessing. Journal of Cryptology, 20, 2000. Prelim version was in CRYPTO00.

[14] A. Beimel and Y. Stahl. Robust information-theoretic private information retrieval. In Proceedings of
the 3rd conference on security in Communications networks, pages 326–341, 2002.

[15] G. Blakely and C. Meadows. A database encryption scheme which allows computation of statistics
using encrypted data. In Proceedings of the Symposium on Security and Privacy, pages 116–122,
1985.

[16] C. Blundo, P. DArco, and A. DeSantis. A t-private k-database information retrieval scheme. Interna-
tional Journal of Information Security, 1(1):64–68, 2001.

[17] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with polylog
communication. In EUROCRYPT99, pages 402–414, 1999. http://www.springerlink.com.

[18] A. Castner. Survey of single database private information retrieval systems, 2002. Available at www.
cs.umd.edu/~gasarch/papers under Undergraduate Students.

[19] B. Chor and N. Gilboa. Computationally private information retrieval. In Proceedings of the Twenty-
ninth Annual ACM Symposium on the Theory of Computing, El Paso TX, pages 304–313, New York,
1997. ACM.

[20] B. Chor, N. Gilboa, and M. Naor. Private information retrieval by keywords, 1998. Unpublished
manuscript available at www.cs.technion.ac.il/~gilboa.

[21] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic commu-
nication complexity. SIAM Journal on Computing, 17, 1988. Prior version in IEEE Sym on Found. of
Comp. Sci., 1985 (FOCS).

[22] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval. In Proceedings of
the 36th Annual IEEE Symposium on Foundations of Computer Science, Milwaukee WI, pages 41–50,
1995. We are using the conference version since the item referenced did not appear in the journal
version.

[23] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval. Journal of the
ACM, 45:965–981, 1998. Earlier version in FOCS 95.

[24] G. Cohen, M. Karpovsky, and H. Mattson. Covering radius — survey and recent results. IEEE Trans.
Inform. Theory, IT-31:338–343, 1985.

[25] G. Cohen, A. Lobstein, and N. Sloane. Further results on the covering radius of codes. IEEE Trans.
Inform. Theory, IT-32:680–694, 1986.

www.cs.bgu.ac.il/~beimel/pub.html
http://www.springerlink.com
www.cs.umd.edu/~gasarch/papers
www.cs.umd.edu/~gasarch/papers
www.cs.technion.ac.il/~gilboa


[26] C. Crepeau. Equivalent between two flavors of oblivious transfers. In Advances in Cryptology: Pro-
ceedings of CRYPTO ’88, Santa Barbara CA, 1988.

[27] Deshpande, Jain, Kavitha, Lokam, and Radhakrishnan. Better lower bounds for locally decodable
codes. In Proceedings of the 17th IEEE Conference on Complexity Theory, Montreal, Canada. IEEE
Computer Society Press, 2002.

[28] G. DiCrescenzo, Y. Ishai, and R. Ostrovsky. Universal service-providers for private information re-
trieval. Journal of Cryptology, 14(1), 2001. Earlier Version in PODS 1998.

[29] J. Feigenbaum. Encrypting problem instances, or, ... can you take advantage of someone without
having to trust him? In Advances in Cryptology: Proceedings of CRYPTO ’85, Santa Barbara CA,
pages 477–488, 1985.

[30] L. Fortnow and M. Szegedy. On the power of two-local random reductions. Information Processing
Letters, 44:303–306, 1992.

[31] P. E. Gallager. Information Theory and Reliable Communication. Wiley, New York, 1968.

[32] Y. Gertner, S. Goldwasser, and T. Malkin. A random server model for private information retrieval or
information theoretic pir avoiding database replication. In Proc. of the 2nd RANDOM, 1998. LNCS
1518.

[33] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in private information
retrieval schemes. Journal of Computer and System Sciences, 60, 2000. Prelimary version in STOC98.

[34] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001. Frag-
ments of this are at the Electronic Colloquium on Computational Complexity, 1995, under mono-
graphs.

[35] O. Goldreich, H. Karloff, L. Schulman, and L. Trevisan. Lower bounds for linear local decodable codes
and private information retrieval systems. In Proceedings of the 17th IEEE Conference on Complexity
Theory, Montreal, Canada, pages 175–183. IEEE Computer Society Press, 2002. Updated version on
Goldreich’s website.

[36] I. Honkala. Modified bounds for covering codes. IEEE Trans. Inform. Theory, IT-37:351–365, 1991.

[37] R. Impagliazo and M. Luby. One-way functions are essential for cryptography. In Proceedings of
the 30th Annual IEEE Symposium on Foundations of Computer Science, Research Triangle Park NC,
pages 230–235. IEEE Computer Society Press, 1989.

[38] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permutations. In
Proceedings of the Twenty-first Annual ACM Symposium on the Theory of Computing, Seattle WA,
pages 44–61, 1989.

[39] Y. Ishai and E. Kushilevitz. Improved upper bounds on information-theoretic private information
retrieval. In Proceedings of the Thirty-first Annual ACM Symposium on the Theory of Computing,
Atlanta GA, New York, 1999. ACM. Part of the paper General constructions for information-theoretic
private information retrieval by Beimel, Ishai, and Kushilevitz.

[40] T. Itoh. Efficient private information retrieval. IEICE Trans. Fundamentals, ES2-A(1), 1999.

[41] T. Itoh. On lower bounds for the communication complexity of private information retrieval. IE-
ICE Trans. Fundamentals, ES4-A(1), 2001. This journal is at http://search.ieice.org/2001/
index.htm.

http://search.ieice.org/2001/index.htm
http://search.ieice.org/2001/index.htm


[42] J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-correcting codes. In
Proceedings of the Thirty-second Annual ACM Symposium on the Theory of Computing, Portland OR,
New York, 2000. ACM.

[43] I. Kerenidis and R. de Wolf. Exponential lower bound for 2-query locally decodable codes. Journal of
Computer and System Sciences, pages 395–420, 2004. Earlier version in STOC03. Electronic version
at http://arxiv.org/abs/quant-ph/0208062.

[44] D. Kesdogan, M. Borning, and M. Schmeink. Unobservable surfind on the world wide web: is pri-
vate information retrieval an alternative to the MIX based approach? In 2nd Workshop on Privacy
Enhancing Technologies (PET2002), 2002. Lecture Notes in Computer Science 2482.

[45] A. Kiayias and M. Yung. Secure games with polynomial expressions. In ICALP01, 2001.
[46] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database, computationally-private

information retrieval (extended abstract). In Proceedings of the 38th Annual IEEE Symposium on
Foundations of Computer Science, Miami Beach FL, pages 364–373, 1997.

[47] E. Kushilevitz and R. Ostrovsky. One-way trapdoor permutations are sufficient for non-trivial single-
server private information retrieval. In EUROCRYPT00, 2000. http://www.springerlink.com.

[48] C. Lin. Survey of private information retrieval systems, 2001. Available at www.cs.umd.edu/
~gasarch/papers under Masters Students.

[49] E. Mann. Private access to distributed information. Masters Thesis from Technion – Israel Institute of
Technology, Haifa, 1998.

[50] S. Mishra. Symmetrically private information retrieval. Available at citeseer.nj.nec.com/
kumarmishra00symmetrically.html.

[51] S. Mishra and P. Sarkar. Symmetrically private information retrieval. In Proc. of the 1st INDOCRYPT
(LNCS 1977), 2000. http://www.springerlink.com.

[52] M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. Proceedings of the Thirty-first
Annual ACM Symposium on the Theory of Computing, Atlanta GA, 1999.

[53] M. Naor and B. Pinkas. Oblivious transfer with adaptive queries. Advances in Cryptology: Proceedings
of CRYPTO ’99, Santa Barbara CA, 1999.

[54] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and System Sciences,
49:149–167, 1994. Prior version in FOCS88. Full Version at http://www.math.ias.edu/~avi/
PUBLICATIONS/.

[55] R. Rivest, L. Adelman, and M. Dertouzos. On databanks and privacy homomorphism. In D. et al,
editor, Foundations of secure computation, pages 168–177, 1978.

[56] A. Shamir. How to share a secret. Communications of the ACM, 22, 1979.
[57] J. Stern. A new and efficient all-or-nothing disclosure of secrets protocol. In Asia Crypt 1998 (LNCS

1514)), pages 357–371, 1998. http://www.springerlink.com.
[58] G. V. Wee. Improved sphere bounds on the covering radius of codes. IEEE Trans. Inform. Theory,

IT-34:237–245, 1988.
[59] A. Yamamura and T. Saito. Private information retrieval based on subgroup membership problem. In

Proc. of the 6th Australasian Conf., ACISP 2001, 2001. Lecture Notes in Computer Science 2119.
[60] A. Yao. An application of communication complexity to cryptography, 1990. Lecture given at DI-

MACS Workshop on Structural Complexity and Cryptography.

http://arxiv.org/abs/quant-ph/0208062
http://www.springerlink.com
www.cs.umd.edu/~gasarch/papers
www.cs.umd.edu/~gasarch/papers
citeseer.nj.nec.com/kumarmishra00symmetrically.html
citeseer.nj.nec.com/kumarmishra00symmetrically.html
http://www.springerlink.com
http://www.math.ias.edu/~avi/PUBLICATIONS/
http://www.math.ias.edu/~avi/PUBLICATIONS/
http://www.springerlink.com

	Introduction
	Definitions
	Information Theoretic PIR
	A k-DB, O(kn1/lgk)-bit PIR Scheme
	A k-DB, O((klgk)n1/lgk+lglgk)(?)-bit PIR Scheme
	A k-DB O(2k2n1/2k-1)-bit PIR Scheme
	A k-DB nO(lglgk/klgk)-bit PIR Scheme

	Conjectures that Imply sublinear PIR
	Number Theoretic Conjectures
	One-way Functions Imply O(n) 2-DB PIRs

	What Do 1-DB Sublinear PIRs Imply?
	1-DB Sublinear PIR Implies OneWay Functions Exist
	Summary of What is Known about Computational PIR

	Retrieving Different Types of Data
	PIR by Blocks
	PIR by Keyword

	Variants of PIR and CPIR
	Robust PIR Schemes
	Symmetric PIR Schemes
	Information-Theoretic PIR without Replication
	t-private PIR Schemes
	PIR's with Preprocessing
	Commodity Based PIR

	Lower Bounds
	Lower Bounds For 2-DB 1-Round PIR Schemes
	Other Lower Bounds

	Open Problems
	Commentary
	Acknowledgements

