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Abstract

The reciprocal theorem is the following: for all but a finite number
of n there exists n distinct reciprocals that sum to 1. We give an
infinite number of proofs of this theorem. Twice.

1 Introduction

The following was problem number 2 (out of 5) on the The University of
Maryland High School Mathematics Competition in 2010.

(a) The equations 1
2
+ 1

3
+ 1

6
= 1 and 1

2
+ 1

3
+ 1

7
+ 1

42
= 1 express 1 as the

sum of three (respectively four) distinct positive integers. Find five distinct
positive integers a < b < c < d < e such that 1

a
+ 1

b
+ 1

c
+ 1

d
+ 1

e
= 1.

(b) Prove that for any integer m ≥ 3 there exists m positive integers d1 <
d2 < · · · < dm such that 1

d1
+ · · ·+ 1

dm
= 1.

The third author graded the 188 students who attempted this problem.
188 got Part a correct. We list all of those answer in the appendix. 160 got
Part b correct. There were four different correct solutions. We will present
their proofs in Section ??.
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Since the students came up with four proofs the question arises: how
many proofs are there? We use the following terminology:

Def 1.1 A nice n-sequence of natural numbers is a sequence d1 < · · · < dn
such that

∑n
i=1

1
di

= 1.

We consider the following weaker version which we refer to as The Recip-
rocal Theorem:
For all but a finite number of n there exists a nice n-sequence

We will sometimes need the following well known result (look up Egyptian
Fractions).

Lemma 1.2

1. If α ∈ Q>0 then there exists n and 2 ≤ a1 < . . . < an such that∑n
i=1

1
ai

= α

2. If x ∈ N then there exists a nice sequence where every element is divis-
ible by x. (This follows from Item 1 since you can multiply

∑n
i=1

1
ai

= x

by 1
x
.)

2 Four Correct Submitted Solutions

Theorem 2.1 Let P (n) be the statement: There exists a nice n-sequence.
Then (∀n ≥ 3)[P (n)].

Proof: We sketch the four correct solutions submitted. All were by in-
duction on n.

Let Base3 and Base4 be the following equations:

1
2
+ 1

3
+ 1

6
= 1

1
2
+ 1

3
+ 1

7
+ 1

42
= 1

They will be used as base cases.

SOLUTION ONE: Base3 is the base case. For n ≥ 4 use

1

d
=

1

d+ 1
+

1

d(d+ 1)
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to go from P (n− 1) to P (n).
133 students submitted this solution which was by far the most common.

SOLUTION TWO: Base3 and Base4 are the base cases. Use

1

d
=

1

2d
+

1

3d
+

1

6d

to go from P (n− 1) to P (n+ 1).
21 students submitted this solution.

SOLUTION THREE: Base3 is the base case. Load the induction hypoth-
esis with the additional assumption that dn is even.

Use
1

d
=

1

(3d/2)
+

1

3d

to go from P (n− 1) to P (n).
4 students submitted this solution.

SOLUTION FOUR: Base3 is the base case.
Use

1

d1
+ · · ·+ 1

dn−1

= 1 ⇒ 1

2
+

1

2d1
+ · · ·+ 1

2dn−1

= 1

to go from P (n− 1) to P (n).
4 students submitted this solution.

3 An Infinite Number of Proofs Based on SO-

LUTION ONE

We rewrite SOLUTION ONE with an eye towards modifying it. We call
this SOLUTION ONE-1. It will look a bit odd since some parts of it that
generalize are not strictly needed here.
SOLUTION ONE-1: We prove (∀n ≥ 3)[P (n)]. Base3 is the base case.

Let f1(x) = x(x−1)
1

. Load the induction hypothesis with the additional as-
sumptions that

• dn−1 ≡ 0 (mod 1) (this is always true).
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• dn−2 < dn−1 (this is always true)

• dn = f(dn−1).

• dn−1 ≥ 2.

Use
1

dn−2

+
1

dn−1

+
1

f1(dn−1)
=

1

dn−2

+
1

dn−1

+
1

dn−1(dn−1 − 1) + 1
+

1

f1(dn−1(dn−1 − 1) + 1)

to go from P (n− 1) to P (n). Use dn−1 ≥ 2 to show

dn−1 < dn−1(dn−1 − 1) + 1

We now produce SOLUTION ONE-2:
SOLUTION ONE-2: We prove (∀n ≥ 4)[P (n)]. Base4 is the base case.

Let f2(x) = x(x−2)
2

. Load the induction hypothesis with the additional as-
sumptions that

• dn−1 ≡ 0 (mod 2),

• dn−2 < dn−1 − 1.

• dn = f(dn−1).

• dn−1 ≥ 3.

Use
1

dn−2

+
1

dn−1

+
1

f2(dn−1)
=

1

dn−2

+
1

dn−1 − 1
+

1

(dn−1 − 1)(dn−1 − 2) + 2
+

1

f2((dn−1 − 1)(dn−1 − 2) + 2)

to go from P (n− 1) to P (n). Use dn−1 ≥ 3 to prove

dn−1 − 1 < (dn−1 − 1)(dn−1 − 2) + 2.
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Def 3.1 Let a ∈ N. Let fa(x) =
x(x−a)

a
.

Lemma 3.2 Let a ≥ 1 and b, d, x ∈ N.

1.
1

d
+

1

fa(d)
=

1

d− a

2.
1

x
+

1

x(x− 1) + a
+

1

fa(x(x− 1) + a)
=

1

x− 1

3.

1

d− a+ 1
+

1

(d− a+ 1)(d− a) + a
+

1

fa((d− a+ 1)(d− a) + a)
=

1

d− a

(This follows from item 2 with x = d− a+ 1.)

4.
1

b
=

1

b+ 1
+

1

b(b+ 1) + a
+

1

fa(b(b+ 1) + a)

(This follows from item 2 with x = b + 1. We use b to be consistent
with a later use.)

5.

1

d
+

1

fa(d)
=

1

d− a+ 1
+

1

(d− a+ 1)(d− a) + a
+

1

fa((d− a+ 1)(d− a) + a)

(This follows from items 1 and 2)

Proof:
1)

1

d
+

a

d(d− a)
=

d− a

d(d− a)
+

a

d(d− a)
=

d

d(d− a)
=

1

d− a

2) We use the following:

1

fa(x(x− 1) + a)
=

a

(x(x− 1) + a)(x(x− 1)
=

1

x(x− 1)
− 1

x(x− 1) + a
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Note that

1

x
+

1

x(x− 1) + a
+

1

fa(x(x− 1) + a)
=

1

x
+

1

x(x− 1) + a
+

1

x(x− 1)
− 1

x(x− 1) + a
=

1

x
+

1

x(x− 1)
=

x− 1

x(x− 1)
+

1

x(x− 1)
=

x

x(x− 1)
=

1

x− 1
.

Def 3.3 Let a ≥ 1, n ≥ 3. A nice (n, a)-sequence is a nice n-sequence
(d1, . . . , dn) such that:

1. dn−1 ≡ 0 (mod a)

2. dn−2 < dn−1 − a+ 1

3. dn = fa(dn−1)

4. dn−1 ≥ a+ 1.

Lemma 3.4 Let a ≥ 1, n ≥ 3. If there exists a nice n-sequence (b1, . . . , bn)
such that bn ≡ 0 (mod a) and bn−1 ≥ a+1 then there exists a nice (n+3, a)-
sequence.

Proof: Assume there exists a nice n-sequence (b1, . . . , bn) such that bn ≡ 0
(mod a). Let k be such that bn = ak. Using this and Lemma ??.3: we have

1
bn

= 1
bn+1

+ 1
bn(bn+1)+a

= 1
bn+1

+ 1
ak(bn+1)+a

= 1
bn+1

+ 1
a(k(bn+1)+1)

+ 1
fa(a(k(bn+1)+1))

Hence

1

b1
+ · · ·+ 1

bn−1

+
1

bn + 1
+

1

a(k(bn + 1) + 1)
+

1

fa(a(k(bn + 1) + 1))
= 1

Take d1 = b1, . . ., dn−1 = bn−1, dn = bn + 1, dn+1 = a(k(bn + 1) + 1),
dn+2 = fa(a(k(bn + 1) + 1).

Conditions 1,3,4 are clearly true. Condition 2 holds by easy algebra
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Theorem 3.5 Let a ≥ 1, n ≥ 3. For all but a finite number of n there exists
a nice (n, a)-sequence

Proof: We prove this by induction on n. We do not know what the base
case is; however, one can use our proof of the base case to find it.
Base Case: By Lemma ??.2 there existsm ∈ N and a nicem-sequence where
the last term (in fact all terms, though we do no need that) are composite.
By Lemma ?? there exists a nice (m+ 3, a)-sequence.

Induction Step: Assume (d1, . . . , dn−1, dn) is a nice (n, a)-sequence. Let
dn−1 = d. Note that d ≡ 0 (mod a) and dn = f(d). By Lemma ??.5:

1

dn−2

+
1

dn−1

+
1

fa(dn−1)
=

1

dn−2

+
1

dn−1 − a+ 1
+

1

(dn−1 − a+ 1)(dn−1 − a) + a
+

1

fa((dn−1 − a+ 1)(dn−1 − a) + a)

We claim that

(d1, . . . , dn−2, dn−1−a+1, (dn−1−a+1)(dn−1−a)+a, fa((dn−1−a+1)(dn−1−a)+a))

is a nice (n+ 1, a)-sequence.
We first just prove that it’s a nice n-sequence. Clearly the sum of the

reciprocals adds to 1. Clearly d1 < · · · < dn−2 inductively. We have dn−2 <
dn−1 − a + 1 inductively since that is condition 2 for nice (n, a)-sequences.
By algebra

dn−1−a+1 < (dn−1−a+1)(dn−1−a)+a < fa((dn−1−a+1)(dn−1−a)+a))

We now prove the conditions for being a nice (n, a)-sequence. Since (the
old) dn−1 ≡ 0 (mod a), dn−1 − a ≡ 0 (mod a) and hence

(dn−1 − a+ 1)(dn−1 − a) + a ≡ 0 (mod a).

We need (dn−1 − a+ 1) < ((dn−1 − a+ 1)(dn−1 − a) + a)− a+ 1. This is
true by algebra.

We need dn+1 = f(dn). This is clearly true.
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The proof of Theorem ?? gives no bound on n0. The following alternative
proof does.

Theorem 3.6 Let a ∈ N. For all n ≥ aO(a) there exists a nice (n, a)-
sequence .

Proof:
We need to find a (a(a+o(1)a, n)-sequence for our base case. After that we

use the induction step as in the proof of Theorem ??.
Claim 1: For all primes p there exists a nice sequence of length ≤ pO(p) such
that p divides the last term.
Proof of Claim 1:

We define operations on nice sequences. These operations will do most
of the work for us.

1. Assume (c1, . . . , cn) and (d1, . . . , dm) are nice. We define

M(c1, . . . , cn, d1, . . . , dm) = (c1, . . . , cn−1, cnd1, cnd2, . . . , cndm).

It is easy to see that the output of M is a nice (n+m− 1)-sequence.

2. Assume (c1, . . . , cn) is n-nice. We define

E(c1, . . . , cn) = (c1, . . . , cn−1, cn + 1, cn(cn + 1)).

It is easy to see that the output of E is a nice (n+ 1)-sequence.

3. Assume c⃗ is nice and ends with t. Assume p does not divide t. Let

d⃗ = E(c⃗)

c⃗2 = M(c⃗, d⃗)

(∀i ≥ 3)[⃗ci = M(c⃗i−1, c⃗)].

Let F (c⃗) = c⃗p−1. It is easy to see that F (c⃗) is a nice (p(n− 1)−n+3)-
sequence (we will later just bound this by pn). The last term of F (c⃗)
is tp−1(t+1). Since p does not divide t, by Fermat’s little theorem, the
last term is ≡ t+ 1 (mod p).
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4. Assume c⃗ is nice and ends with a number that is ≡ t (mod p). As-
sume p does not divide t. Then F (i)(c⃗) is a nice ≤ (pn)i-sequence whose
last term is ≡ t+ i (mod p).

If p = 2 or p = 3 then we use the sequence (2, 3, 6). Assume p ≥ 5.
Let c⃗ = (2, 3, 6). Let t be such that 6 ≡ t (mod p). Then F (p−t)(c⃗) is a
nice (3p)p−t-sequence with last term ≡ t+ (p− t) ≡ 0 (mod p). Note that
(3p)p−t ≤ pO(p).
End of Proof of Claim 1

Let a = pe11 · · · peLL . By Claim 1 we can create, for each 1 ≤ i ≤ L, a nice
(pi)

O(pi)-sequence.
c⃗i whose last term is divisible by pi.
If c⃗ is a nice n1-sequence with last term ≡ 0 (mod p) and d⃗ is a nice

n2-sequence with last term ≡ 0 (mod q) then M(p⃗, q⃗) is a nice (n1+n2−1)-
sequence with last term ≡ 0 (mod pq). Hence

M(c⃗1, c⃗1, . . . , c⃗1, c⃗2, . . . , c⃗2, . . . , c⃗n)

(where we take each ci ei times) is a nice sequence of length

L∑
i=1

ei(pi)
O(pi)

Since ei ≤ log a, L ≤ log a, and pi ≤ a, this sum is

≤ (log a)2aO(a) ≤ aO(a).

The last term is divisible by a. Since aO(a) + 3 ≤ aO(a) by Lemma ??, we
have a nice aO(a)-sequence.

The proof of Theorem ?? gives the bound n0 ≤ aO(a), a. In the appendix
we give empirical evidence that indicates n0 ≤ O(log a).

4 Another Infinite Number of Proofs

We first give two proofs that a high school student taking the exam could
have given but just happened not to.

Theorem 4.1 For all n ≥ 3, P (n) holds.

9



Proof: We use base3 for the base case. We load the induction hypothesis
with the assumption that dn ≡ 0 (mod 6).

SOLUTION FIVE-a: Assume (d1, . . . , dn) is a nice sequence. Assume
dn = 6d. Then since 1

6d
= 1

9d
+ 1

18d
(d1, . . . , dn−1, 9d, 18d) is a nice sequence.

SOLUTION FIVE-b: Assume (d1, . . . , dn) is a nice sequence. Assume
dn = 6d. Then since 1

6d
= 1

8d
+ 1

24d
(d1, . . . , dn−1, 8d, 24d) is a nice sequence.

The next theorem generates an infinite number of proofs using the idea
of Theorem ??.

Theorem 4.2

1. If there exists a nice sequence of length n0 with its last term composite
then, for all n ≥ n0, P (n).

2. There exists an infinite number of nice sequence of last term composite.

Proof:
1) Let (c1, . . . , cn0) be the nice sequence with last term composite. Let e be
a nontrivial factor of cn0 . Note that:

• 1
cn0

= 1
cn0 (e+1)/e

+ 1
cn0 (e+1)

(note that since e divides cn0 we are writing
1

cn0
as the sum of two reciprocals), and

• cn0(e+ 1)/e < cn0(e+ 1).

We prove that, for all n ≥ n0, there exists a nice sequence of length n
with last term divisible by cn0 .
Base Case: Use (c1, . . . , cn0).
Induction Step: Assume that there is a nice sequence of length n, (d1, . . . , dn)
with dn ≡ 0 (mod cn0). Let dn = cn0x. Then 1

dn
= 1

cn0x
= 1

cn0x(e+1)/e
+

1
cn0x(e+1)

. Hence (d1, . . . , dn−1, cn0x(cn0+1)/e, cn0x(cn0+1)) is a nice sequence

of length n+ 1 with last term divisible by cn0 .

2) This follows from by Lemma ??.2.
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In the proof of Theorem ?? we write 1
cn0

, with the aid of a divisor e, as
1
x
+ 1

y
, where y divides cn0 . In the table below we show what this sum looks

like for 4 ≤ cn0 ≤ 12 and possible e.

cn0 e e+ 1 y =
cn0 (e+1)

e
1

cn0
= 1

cn0 (e+1)/e
+ 1

cn0 (e+1)

4 2 3 6 1
4
= 1

6
+ 1

12

6 2 3 9 1
6
= 1

9
+ 1

18

6 3 4 8 1
6
= 1

8
+ 1

24

8 2 3 12 1
8
= 1

12
+ 1

24

8 4 5 10 1
8
= 1

10
+ 1

40

9 3 4 12 1
9
= 1

12
+ 1

36

10 2 3 15 1
10

= 1
15

+ 1
30

10 5 6 12 1
10

= 1
12

+ 1
60

12 2 3 18 1
12

= 1
18

+ 1
36

12 3 4 16 1
12

= 1
16

+ 1
48

12 4 5 15 1
12

= 1
15

+ 1
60

12 6 7 14 1
12

= 1
14

+ 1
84

A The Students Answers to Part a

The students submitted 32 correct solutions to Part a. We list all correct sub-
mitted solutions in lexicographic order, along with how many students sub-
mitted each one. We also note which of SOLUTION ONE, TWO, THREE,
FOUR, FIVE-a, FIVE-b would lead to the answer they gave. For example,
since we gave (2, 3, 6) and (2, 3, 7, 42) as solutions, and SOLUTION ONE
takes (2, 3, 7, 42) and produces (2, 3, 7, 43, 1886), that solution to Part a is
linked to SOLUTION ONE to Part b.
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Solution Numb Comment
(2,3,7,43,1806) 91 Linked to SOLUTION ONE.
(2,3,7,48,336) 3
(2,3,7,56,168) 1
(2,3,7,63,126) 6 Linked to SOLUTION THREE.
(2,3,7,70,105) 1
(2,3,8,25,600) 1
(2,3,8,30,120) 1
(2,3,8,32,96) 6 Linked to SOLUTION FIVE-b
(2,3,8,36,72) 5
(2,3,8,42,56) 11
(2,3,9,21,126) 2
(2,3,9,24,72) 4
(2,3,9,27,54) 3 Linked to SOLUTION FIVE-a
(2,3,10,20,60) 5
(2,3,11,22,33) 1
(2,3,12,15,60) 1
(2,3,12,16,48) 1
(2,3,12,14,84) 2 Linked to SOLUTION FOUR.
(2,3,12,18,36) 12 Linked to SOLUTION TWO.
(2,4,5,25,100) 3
(2,4,5,30,60) 1
(2,4,6,14,84) 3
(2,4,6,16,48) 1
(2,4,6,18,36) 2
(2,4,6,20,30) 1
(2,4,7,12,42) 4
(2,4,7,14,28) 2
(2,4,8,12,24) 6
(2,4,8,10,40) 2
(2,5,6,10,30) 1
(2,5,6,12,20) 2
(3,4,5,6,20) 3
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B For 1 ≤ a ≤ 149 What is Smallest n0?

In Theorem ?? and ?? we did, for each a, find an n0 and a proof that for all
n ≥ n0 there is a nice n-sequence. In Theorem ?? no bound on n0 was given
(though one could probably be derived), and in Theorem ?? we obtained
n0 ≤ 2aa(1+o(1))a.

We wrote a program that would for 0 ≤ a ≤ 149, find the first n0 that
works, and found how many nice (n0, a)-sequences there are. In the table
below we list the results. We include the sequence itself. We separate out the
last three terms of each sequence since that is where the conditions apply.

Based on the data it looks like a bound of n0 ≤ O(log n) may be true.
This quite far from our current theoretical bounds.

I HAVE COMMENTED OUT THE GRAPH FOR NOW SINCE I HAD
A HARD TIME INTERFACING WITH IT AND YOU WILL BE CHANG-
ING IT ANYWAY.

The above graph depicts the actual values of n0 (minimum number of
terms needed to have a base case in Theorem 3.6). The green curve is a
graph of 5 + log(a + 1); the orange curve represents 4 + log(a) and gives a
tighter bound. Note that the minimum number of terms for a = 136 has not
yet been found, but is expected to be 8.
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a n0 # distinct base cases d1, . . . , dn0−3 dn0−2 dn0−1 dn0

0 3 1 2 3 6
1 4 2 2 3 8 24

4 6 12
2 4 1 2 3 9 18
3 5 5 2, 3 8 28 168

2, 3 12 16 48
2, 4 5 24 120
2, 4 6 16 48
2, 4 8 12 24

4 5 2 2, 3 10 20 60
2, 4 5 25 100

5 5 5 2, 3 7 48 336
2, 3 8 30 120
2, 3 9 24 72
2, 3 12 18 36
2, 4 6 18 36

6 5 1 2, 3 7 49 294
7 5 1 2, 3 8 32 96
8 5 1 2, 3 9 27 54
9 5 1 2, 4 5 30 60
10 6 7 2, 3, 7 44 935 78540

2, 3, 8 33 99 792
2, 3, 9 22 110 990
2, 3, 11 14 242 5082
2, 3, 11 15 121 1210
2, 3, 11 22 44 132
2, 4, 5 22 231 4620

11 5 1 2, 3 8 36 72
12 6 4 2, 3, 7 78 104 728

4 2, 3, 8 26 325 7800
4 2, 3, 12 13 169 2028
4 2, 4, 6 13 169 2028

13 5 1 2, 3, 7 43 1820 234780
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a n0 # distinct base cases d1, . . . , dn0−3 dn0−2 dn0−1 dn0

14 6 22 2, 3, 7 45 645 27090
2, 3, 7 70 120 840
2, 3, 8 25 615 24600
2, 3, 8 30 135 1080

15 6 6 2, 3, 7 48 352 7392
16 6 1 2, 3, 7 51 255 3570
17 6 15 2, 3, 7 45 648 22680
18 6 1 2, 3, 9 19 361 6498
19 6 19 2, 3, 7 45 650 20475
20 5 1 2, 3 7 63 126
21 6 4 2, 3, 7 44 946 39732
22 6 1 2, 3, 7 46 506 10626
23 6 17 2, 3, 7 44 948 36498
24 6 2 2, 3, 8 25 625 15000
25 6 4 2, 3, 7 91 104 312
26 5 3 2, 3, 7 45 657 15330
27 6 11 2, 3, 7 44 952 31416
28 7 63 2, 3, 7, 43 1827 157151 851444118
29 6 14 2, 3, 7 45 660 13860
30 7 55 2, 3, 7, 43 1953 24025 18595350
31 6 1 2, 3, 7 48 368 3864
32 6 3 2, 3, 8 32 128 384
33 6 1 2, 3, 7 51 272 1904
34 5 6 2, 3, 7 45 665 11970
35 6 5 2, 3, 8 27 252 1512
36 7 34 2, 3, 7, 43 1813 467791 5913813822
37 5 1 2, 3 9 380 3420
38 6 4 2, 3, 7 91 117 234
39 6 5 2, 3, 8 25 640 9600
40 7 28 2, 3, 7, 45 738 4346 456330
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a n0 # distinct base cases d1, . . . , dn0−3 dn0−2 dn0−1 dn0

41 6 13 2, 3, 7 43 1848 79464
42 6 1 2, 3, 7 43 1849 77658
43 6 4 2, 3, 7 44 968 20328
44 6 3 2, 3, 7 45 675 9450
45 7 83 2, 3, 7, 43 1932 27738 16698276
46 7 27 2, 3, 7, 44 940 54332 62753460
47 6 3 2, 3, 7 48 384 2688
48 6 1 2, 3, 7 49 343 2058
49 6 2 2, 3, 8 25 650 7800

2, 4, 5 25 150 300
50 7 127 2, 3, 7, 43 1904 35139 24175632
51 6 3 2, 3, 8 26 364 2184
52 7 18 2, 3, 7, 43 1855 68423 88265670
53 6 1 2, 3, 8 27 270 1080
54 6 2 2, 3, 11 15 165 330

2, 4, 5 22 275 1100
55 6 3 2, 3, 7 48 392 2352

2, 3, 7 56 224 672
2, 3, 8 28 224 672

56 6 1 2, 3, 9 19 399 2394
57 7 52 2, 3, 7, 43 1827 157180 425800620
58 7 11 2, 3, 7, 45 826 2714 122130
59 6 7 2, 3, 8 25 660 6600
60 7 15 2, 3, 7, 44 1708 2074 68442
61 7 52 2, 3, 7, 43 1953 24056 9309672
62 6 4 2, 3, 7 45 693 6930
63 7 48 2, 3, 7, 43 2688 5568 478848
64 7 124 2, 3, 7, 43 1820 234845 848260140
65 6 1 2, 3, 7 44 990 13860
66 7 6 2, 3, 7, 43 1809 1089085 17701987590
67 7 100 2, 3, 7, 43 1904 35156 18140496
68 6 1 2, 3, 7 46 552 3864
69 6 4 2, 3, 7 45 700 6300
70 7 6 2, 3, 7, 45 639 44801 28224630
71 6 1 2, 3, 8 27 288 864
72 7 11 2, 3, 7, 44 1022 9709 1281588
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a n0 # distinct base cases d1, . . . , dn0−3 dn0−2 dn0−1 dn0

73 7 28 2, 3, 7, 43 1813 467828 2957140788
74 6 1 2, 3, 8 25 675 5400
75 7 72 2, 3, 7, 43 1824 183084 440866272
76 6 2 2, 3, 7 44 1001 12012

2, 3, 11 14 308 924
77 6 3 2, 3, 8 26 390 1560
78 7 10 2, 3, 7, 44 948 36577 16898574
79 6 1 2, 3, 10 16 320 960
80 7 24 2, 3, 7, 44 972 18792 4340952
81 7 23 2, 3, 7, 46 492 26486 8528492
82 7 4 2, 3, 7, 44 996 12865 1981210
83 6 5 2, 3, 7 44 1008 11088
84 7 70 2, 3, 7, 43 3570 3740 160820
85 6 1 2, 3, 7 43 1892 39732
86 7 43 2, 3, 7, 43 1827 157209 283919454
87 7 116 2, 3, 7, 43 1848 79552 71835456
88 7 6 2, 3, 7, 43 1869 53667 32307534
89 6 2 2, 3, 7 45 720 5040

2, 3, 9 20 270 540
90 7 100 2, 3, 7, 43 1807 3263553 117036820446
91 7 50 2, 3, 7, 43 1932 27784 8362984
92 7 39 2, 3, 7, 43 1953 24087 6214446
93 7 19 2, 3, 7, 44 987 14570 2243780
94 7 47 2, 3, 7, 44 1045 8075 678300
95 7 90 2, 3, 7, 44 928 214464 478898112
96 7 2 2, 3, 7, 45 679 8827 794430

2, 3, 8, 32 97 9409 903264
97 6 1 2, 3, 7 49 392 1176
98 7 87 2, 3, 7, 44 927 285615 823713660
99 6 1 2, 3, 8 25 700 4200
100 7 5 2, 3, 7, 43 1818 273710 741480390
101 7 95 2, 3, 7, 43 1904 35190 12105360
102 7 2 2, 3, 7, 44 927 285619 791735868

2, 3, 8, 25 618 20703 4140600
103 6 1 2, 3, 8 26 416 1248
104 6 2 2, 3, 7 45 745 4410

2, 4, 5 21 525 2100
105 7 14 2, 3, 7, 43 1855 68476 44167020
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a n0 # distinct base cases d1, . . . , dn0−3 dn0−2 dn0−1 dn0

106 7 4 2, 3, 7, 43 2247 9309 800574
107 6 1 2, 3, 8 27 324 648
108 7 2 2, 3, 8, 27 218 23653 5109048

2, 4, 5, 21 436 11554 1213170
109 6 1 2, 4, 5 22 330 660
110 7 26 2, 3, 7, 43 1813 467865 1971583110
111 6 1 2, 3, 7 48 448 1344
112 7 2 2, 3, 7, 43 1813 467865 1971583110

2, 3, 7, 48 339 38081 12795216
113 6 1 2, 3, 9 19 456 1368
114 7 50 2, 3, 7, 45 644 29095 7331940
115 7 44 2, 3, 7, 44 928 214484 396366432
116 7 69 2, 3, 7, 44 936 72189 44468424
117 7 6 2, 3, 7, 48 354 6726 376656
118 6 1 2, 3, 7 51 357 714
119 6 2 2, 3, 8 25 720 3600

2, 3, 10 16 360 720
120 7 14 2, 3, 7, 43 1815 364331 1096636310
121 7 14 2, 3, 7, 61 135 115412 109064340
122 7 18 2, 3, 7, 45 738 4428 154980
123 7 36 2, 3, 7, 44 930 143344 165562320
124 7 11 2, 3, 7, 45 875 2375 42750
125 6 1 2, 3, 7 45 756 3780
126 7 3 2, 3, 7, 45 635 80137 50486310
127 7 16 2, 3, 7, 43 2688 5632 242176
128 6 1 2, 3, 7 43 1935 27090
129 7 90 2, 3, 7, 43 1820 234910 424247460
130 7 2 2, 3, 7, 43 1834 118424 106936872

2, 3, 7, 45 655 16637 20962
131 6 1 2, 3, 7 44 1056 7392
132 7 48 2, 3, 7, 43 1824 183141 252002016
133 7 4 2, 3, 7, 43 1809 1089152 8851538304
134 7 67 2, 3, 7, 43 1890 40770 12271770
135 7 41 2, 3, 7, 43 1904 35224 9087792
136 8+
137 7 42 2, 3, 7, 44 966 21390 3294060
138 7 2 2, 3, 7, 43 1807 3263581 76622354718

2, 3, 7, 44 973 18487 2440284
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a n0 # distinct base cases d1, . . . , dn0−3 dn0−2 dn0−1 dn0

139 6 1 2, 4, 5 21 560 1680
140 7 18 2, 3, 7, 44 940 54426 20954010
141 7 6 2, 3, 7, 45 639 44872 14134680
142 7 27 2, 3, 7, 43 2002 18590 2398110
143 7 67 2, 3, 7, 44 1008 11232 864864
144 7 14 2, 3, 7, 45 1218 1450 13050
145 7 9 2, 3, 7, 44 1022 9782 645612
146 6 1 2, 3, 7 49 441 882
147 7 18 2, 3, 7, 44 925 854848 4936747200
148 7 1 2, 3, 7, 49 298 22052 3241644
149 6 1 2, 3, 8 25 750 3000
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