Efficient Regular Data Structures and Algorithms for Location and
Proximity Problems

Arnon Amir* Alon Efratt

Abstract

In this paper we investigate data-structures obtained
by a recursive partitioning of the input domain into
regions of equal size. One of the most well known ez-
amples of such a structure is the quadtree, used here
as a basis for more complex data structures; we also
provide multidimensional versions of the stratified tree
by van Emde Boas [24]. We show that under the as-
sumption that the input points have limited precision
(i.e. are drawn from the integer grid of size u) these
data structures yield efficient solutions to many impor-
tant problems. In particular, they allow us to achieve
O(loglogu) time per operation for dynamic approzi-
mate nearest neighbor (under insertions and deletions)
and exact on-line closest pair (under insertions only)
in any constant dimension. They allow O(loglogu)
point location in a given planar shape or in its expan-
sion (dilation by a ball of a given radius). Finally, we
provide a linear time (optimal) algorithm for comput-
ing the expansion of a shape represented by a quadtree.
This result shows that the spatial order imposed by this
regular data structure is sufficient to optimize the dila-
tion by a ball operation.

1 Introduction

In this paper we consider spatial data structures
which are based on (possibly recursive) decomposition
of a bounded region into blocks, where the resulting

*IBM Almaden Research Center, 650 Harry Rd., San Jose,
CA 95120. arnon@almaden.ibm.com

T Computer Science Department, Stanford
University, alon@cs.stanford.edu , whose work is supported in
part by Rothschild Fellowship and by NSF grant CCR-9623851

fComputer Science Department, Stanford University,
indyk@Qcs.stanford.edu

$ Computer Science Department, University of Maryland, Col-
lege Park, Maryland 20742. hjs@Qumiacs.umd.edu, whose work
is supported in part by the National Science Foundation under
grant IRI-92-16970 and the Department of Energy under Con-
tract DEFG0295ER25237.

Piotr Indyk? Hanan Samet$

blocks of each partition are of equal size; we call such
structures regular. One of the most popular examples
of such structures is the quadtree (e.g., [22, 23]), which
is based on a recursive decomposition of a square into
four quadrants; another example is the stratified tree
structure by van Emde Boas [24]. The quadtree data
structure and its numerous variants are one of the most
widely used data structures for spatial data processing,
computer graphics, GIS etc. Some of the reasons for
this state of art are:

e simplicity: the data structures and related algo-
rithms are relatively simple and easy to implement

e efficiency: they require much less storage to rep-
resent a shape than the full bit map

e versatility: many operations on such data struc-
tures can be done very efficiently (for example
computing the union/intersection or connected
component labeling [7, 23])

Despite their usefulness, however, regular data
structures for geometric problems have not been much
investigated from the theoretical point of view. One of
the main reasons is that in the widely adopted input
model where the points are allowed to have arbitrary
real coordinates, the depth and size of (say) a quadtree
could be unbounded, thus making worst-case analysis
of related algorithms impossible. On the other hand,
such a situation is rarely observed in practice. One
reason is that in many practical applications the coor-
dinates are represented with fixed precision, thus mak-
ing the unbounded size scenario impossible. Another
reason is that the regions encountered in practice are
not worst-case shapes; for example, they are often com-
posed of fat! objects. It is therefore important to study
such cases, for both theoretical and practical purposes.

In this paper we give a solid theoretical background
to these cases. First, we prove that if the input pre-
cision is limited to say b bits (or alternatively, the in-

1T ater in this paper we provide the mathematical definitions
for all following terms

put coordinates are integers from the interval [u] =
{0...u —1} where u = 2°), then by using regular data
structures several location and proximity problems can
be solved very efficiently. We also show that if the in-
put shapes are unions of fat objects, then the space
used by these data structures and their construction
time is small.

Our first sequence of results apply to problems on
sets of points. For this case, we use multidimen-
sional generalizations of stratified trees by van Emde
Boas [24]. The idea will be described, for clarity, for
the two-dimensional case, but extends to higher dimen-
sions. It starts by splitting [u]? into u equal squares of
side v/u. The non-empty squares are stored in a hash
array, so that we can verify if a given square is non-
empty in constant time. Then the construction is ap-
plied recursively inside each square of sufficiently large
(though still constant) complexity. Finally, an array A
of the size [/u]? of points is formed where each black
point corresponds to a non-empty square; the construc-
tion is then applied recursively on A.

The 1-dimensional version of this construction cited
above yields a dynamic data structure for nearest-
neighbor queries. The running time which it guaran-
tees (i.e. O(loglogu)) has been recently improved to
O(loglogu/logloglogu) [5]. We are not aware, how-
ever, of any prior work in which its multidimensional
version has been applied.

The first data structure allows us to achieve
O(loglogu) time per operation for dynamic approxi-
mate nearest neighbor (when insertions and deletions
of points are allowed) and exact on-line closest pair
(when insertions are allowed). Both results hold for
any fixed dimension (the dependence on d is exponen-
tial). The data structure is randomized and the bounds
hold in the expected sense.

The second data structure is deterministic and
static. It enables to answer approximate near-
est neighbor query in d-dimensions in time O(d +
loglog u) and d°81°8108 40 (1/€)n 1og®™) u-space. Re-
cently, Beame and Fich [5] showed a lower bound of
loglogu/logloglogu for the case d = 1, assuming
n®M storage?. Thus our algorithms is within factor
logloglogu from optimal as long as d = O(logn).

The remaining results apply to the case when the
input shape is a union of objects which are more com-
plex than points. In this case the stratified tree struc-
ture does not seem to suffice and therefore we resort
to quadtrees (occasionally we use stratified trees for
better running times).

2 Although their proof works for the ezact nearest neighbor,
we show it generalizes to the approzimate problem as well.

Before describing the results in more details, we need
the following definitions: The size of a quadtree is the
number of nodes in the tree. Among the many variants
of of quadtrees exist in the literature, we consider the
following types of quadtrees:

region quadtree (or just quadtree): obtained by re-
cursive subdivision of squares until each leaf is
black/white (i.e. is inside/outside the shape)

segment (or mized) quadtree: we allow the leafs to
contain shapes of constant complexity < (e.g. at
most & points).

compressed quadtree: a variant of either region
quadtree or mixed queadtree, at which all se-
quences of adjacent nodes along a path of the tree
having only one non-empty (i.e. which contain a
part of the shape) child are compressed into one
edge; note that the size of the resulting tree is at
most twice the number of its (non-empty) leaves.

Firstly, we address the issue of efficiency of a
quadtree as a planer shape representation. As men-
tioned earlier, in the worst case, the size N of the
quadtree could be much larger than the complexity
of the shape it represents. However, we show that
if the shape is consists only of collection of fat con-
vex objects (formally, is a union of n fat objects in
[u]?), then it can be represented as a segment quadtree
with N = O(M logu) leaves where M is the complexity
of the union (which is known to be almost linear [9]).
This gives O(M logu) bound for the size of compressed
quadtree and O(M log® u) for the size of uncompressed
one. The quadtree can be efficiently constructed given
the decomposition of the shape into a union of n dis-
Jjoint objects (not necessarily fat) Given such a union
we can compute the quadtree in time O(N loglogu),
where N is the size of the quadtree.

Next, we address the efficiency of operations on a
quadtree. It is easy to see that the tree has depth
O(logu) and thus point location can be performed
within this bound. However, by performing binary
search on levels of the tree, one can reduce this time to
O(loglogu), with preprocessing time and space linear
in N [25]. We show that the same query time holds for
compressed quadtree, with time/space multiplied only
by a factor of O(loglogu).

We show that given a region quadtree of size N and
a number r > 0, the dilation (Minkowski sum) of the
shape which is represented by the quadtree with a ball
of radius 7 can be computed in optimal time O(N).
Both point location and dilation are common and im-
portant operation in fields such as robotics, assem-
bly, geographic information systems (GIS), computer

vision and computer graphics. Thus having efficient
algorithms for these problems is of major practical im-
portance.

Most of the algorithmic problems above have
Q(logn) or Q(nlogn) lower bounds in standard alge-
braic tree model (assuming arbitrary precision input).
Thus by resorting to a fixed precision model we are able
to replace logn by loglogu in the running time bound.
Notice that in most situations this change yields an sig-
nificant improvement. For example, when the numbers
are represented using 32 bits then loglogu = 5 while
logn > 5 already for n > 32. Moreover the regular
data structures are usually much simpler than the cor-
responding solutions for the real data model, thus the
“big-O” constants are likely to be smaller. Thus we
expect our algorithms to yield better running times in
practice, especially for scenarios when the input size is
large.

There has been a number of papers discussing com-
putational geometry problems on a grid. Examples
include nearest neighbor searching using the L;-norm
[20], the point location problem [18] and orthogonal
range searching [19]; the solutions given in these pa-
per give static data structures for two-dimensional
data with query time O(loglogu). A number of off-
line problems has been also considered (see [19] for
more details). However, to our knowledge, there
are no dynamic data structures known for grid with
query/update times better than for arbitrary input; in
fact, this is one of the open problems posed in [19, page
273].

2 Dynamic multidimensional stratified
trees

In this section we present a dynamic data structure
for the approximate nearest neighbor problem in [u]?.
Let P C [u]? be a set of points, and let € > 0 be a pre-
determined parameter. Given a query point q € [u]d,
the data structure enables us to find an approximated
nearest neighbor p,,, € P to g¢; that is, a point such
that d(q, papp) < (14 €)d(g, Pnn), where pnn € P is the
(exact) closest neighbor to g (see, e.g. Arya et al, [4]).
The query time and the update time (inserting or delet-
ing a point) is O(1/e°@ loglogu) in [u]? (for d > 2).
By an easy reduction we also show how to maintain
ezact closest pair under insertions of new points in the
same time. We describe, for clarity, the algorithm in
two dimensions, but it can be easily extended to higher
dimensions.

We resort to a different space subdivision technique
called stratified trees proposed by van Emde Boas
[24]. The structure supports nearest neighbor query

in the 1-dimensional integer interval [u] in O(loglogu)
time. The structure is dynamic and each addition
or deletion of a point takes O(loglogu) time. Let n
denote the maximum number of points added to the
data structure, then O(n) space is used by the data
structure3. It is assumed that one can perform stan-
dard boolean and arithmetic operations on words of
size logu in constant time; some of our results require
this assumption. Here we present a multidimensional
extension of that data structure. To our knowledge no
extension of this data structure to multidimensional
spaces has been previously proposed.

The data structure supports the following four pro-
cedures: construct (which constructs a tree for a given
set of points), add and delete which enables addi-
tion/deletion of a point from the set and search, which
find an approximate nearest neighbor of a given point.
Below we give the description of construct (together
with the description of the data structure per se) and
search. The (nontrivial) implementation of the add and
delete are essentially the same as in the one dimensional
case, therefore the reader is referred to [16] for details.

The first procedure, construct, takes as an input a
set of points P from the universe [v]>. As the pro-
cedure is used recursively, v does not have to be equal
to u (but is its divisor). Therefore, the universe [v]?
does not in general coincide with [u])?; rather than that,
it contains sub-squares of [u]? of side u/v. This also
means that the set P C [v]? is not in general a subset
of the initial data set. Notice that for any p € P C [v]?
we can quickly retrieve (after some preprocessing) some
actual data set point belonging to the sub-square rep-
resented by p; we refer to such a point as an actual
point of p.

The construct procedure is described in Figure 1.
Before we apply the procedure, we shift the set of
points by a random vector from [v]?; this expands the
universe from [v]? to [2v]?, therefore we assign 2v to v
before running the procedure.

During the preprocessing we also precompute cer-
tain lookup information used during the search proce-
dure. The information consists of roughly O(log5/ * w)
bits and can be computed in the same time. The
precomputation procedure is as follows. Let A =
1/e - log*u and let vy = A8, Consider any point
q € [-1/€-vo,1/€ - v]? and any integer r such that
B.(q) (a ball of radius r centered at g), intersects but
does not contain [vg]?. For each such a pair q,r we
compute a binary matrix M,(q) of size vy X vg. The

3The original paper by van Emde Boas gives a space bound of
O(u), but this can be easily reduced to O(n) by using randomized
dynamic hashing; in this case the time bounds are in the expected
sense.

CONSTRUCT([v]?, P):
Let A\=1/e-log?u , vo =A%
Case 0. |P| = 1: store the point p from P.

Case 1. |P| > 1 and v > vo:
1. split [v]? into v square blocks Bij, 4,5 = 0...y/v — 1,
each of size /v X \/v
2. recursively build data structures D;; with parameters
(Bij, PN Bij)
3. if A < \/v then for each Bj;:
(a) split B;; into A% square blocks Cy;, k,1 =0... A—
1
(b) compute a set S;; = {(k,l) : Cu NP # 0}
(c) recursively build a data structure E;; with pa-
rameters ([A]2, Si;)
4. compute a set H = {(,j) : B;; N P # 0}
5. recursively construct a data structure F' with param-
eters ([v/v]?, H)
Case 2. |P| > 1 and v < vg (we assume v = vp):
1. compute the matrix M of size v x v such that for every
i,j=0...v—1 we have Mi; = 1iff (i, j) € P
2. store the concatenated rows of the matrix M as one

bit vector W of length v? (notice that v> = O(v/Tog)
and so W fits into one word)

Figure 1. The construct procedure builds the
data structure for approximate nearest neigh-
bor queries.

matrix has 1’s at points p such that d(p,q) € [r,r + 1)
and 0’s otherwise. Then we concatenate the rows of
M,(q) forming a bit vector A,.(q). Finally, we con-
catenate A, (q) for all r’s into A(q) and create a table
mapping g to A(q).

The procedure for finding an approximate nearest
neighbor is described in Figure 1 and Figure 3. To
avoid rounding details and to simplify the description
we assume that both the input and output points are
members of [u]? rather than [v]?.

This completes the description of the procedures.
Now we proceed with the proofs. Due to the lack of
space we present only the proof of correctness.

Correctness. The correctness of the search procedure
will be proved in two steps. First, we prove that the
data structures E;; return approximate nearest neigh-
bor, i.e. there is a constant ¢ such that the returned

SEARCH(q):
Case 0. |P| = 1: trivial.

Case 1. |P| > 1 and v > vo:
1. check if S = (), where S is a set of (at most 1/€?) non-
empty blocks B;; within distance at most \/v/e from
q.
2. if § = 0, then call the data structure H with p as a
parameter and return the result

3. otherwise (if S # @)

(a) let B be the block in S closest to p and let r be
its distance to p

(b) choose the set S’ containing all blocks from S
with distance from q in [r,r + v/2/2]

(c) if E;;’s exist then for each block B;; € S’ call
the data structure E;; with ¢ as a parameter and
let ' be the distance to the closest actual point
returned (say p); otherwise, assign R = S’ and
go directly to step (e.ii.)

(@) if ' > 1/6@, return p
(e) otherwise

i. let R denote all (at most 4) blocks B;; such
the distance from g to B;; is at most r’

ii. for all B;; € R run the data structures D;;
with parameters ¢ and output the closest
point returned.

Case 2. |P| > 1 and v = vo: call procedure bitmap.

Figure 2. The search procedure for approxi-
mate nearest neighbor.

point ¢ is within the distance (1 + ce) times the near-
est neighbor distance. In the second step (and by using
similar technique) we prove the correctness of the whole
procedure.

The correctness of the data structures E;; is shown
as follows. First observe that none of these data struc-
tures contains any other E;; structure (as v = A and
therefore A > \/v). Therefore, each recursive call in-
vokes either data structures D;; (step (3.e.ii) or H (step
(2)). For simplicity we can assume that in step (3.e.ii)
the algorithm invokes only this D;; which contains the
closest point to p among all other data structures; since
the actual algorithm invokes all D;;’s, the above as-
sumption does not influence the output. Due to this
assumption we can represent the search procedure as
a sequence of recursive calls of length 3; each call in-

BITMAP(q):
1. if ¢ ¢ [~1/e-vo, 1/€ - vo)? then output any point from
P

2. otherwise

(a) construct a word W' by concatenating O(wo)
copies of W (by using one multiplication); no-
tice that W’ has length v,®

(b) compute A=W’ AND A(q), where A(q) is word
(prepared during the preprocessing) which is a
concatenation of O(vo) words A,, where each A,,
forr =1...0(wo), is a “sliced” (as in case of W)
bitmap of a ball centered at ¢ with radius r

(c) find the first bit in A set to 1 and return the
point p corresponding to that bit

Figure 3. The Bitmap procedure (case 2, Fig-
ure 2)

vokes either H or D;;. Calling H might clearly result
in an additive error of size bounded by the diameter of
blocks B;; (in the units of the universe [u]?); however,
the distance to nearest neighbor is at least 1/e times
this quantity. On the other hand, calling D;; involves
no error at all. Let e ... e, denote the additive errors
incurred as above. As after each call of H the side of
B;; grows by a factor at least 2, we can assume that the
sum of e;’s is smaller than 2e;. On the other hand, we
know that the distance to the actual nearest neighbor
is at least 1/e - ex. Therefore, the multiplicative error
incurred is at most (1 + 2¢).

We can now proceed with the whole data structure.
The recursive calls of the algorithm can be modelled
in the similar way as above; however the algorithm
has an additional option of stopping in step (3d). The
latter case can incur an additive error bounded by the
diameter of blocks Cy;; as the distance to the nearest
neighbor is lower bounded by 1/e times the side of Cy;,
the multiplicative error is at most (1 +1/2¢). It is easy
to verify that the remaining cases are exactly as in case
of Ekl .

In this way we proved the following lemma.

Lemma 2.1 The distance from p to the point q re-
turned by the algorithm is at most (1+ O(e)) times the
distance from p to its nearest neighbor.

Closest pair under insertions. The closest pair
maintenance under insertions can be reduced to dy-
namic approximate nearest neighbor (say with € = 1)
as follows. First observe, that for any k we can retrieve

k approximate nearest neighbors in time O(k loglogu).
To this end we retrieve one neighbor, temporarily
delete it, retrieve the second one and so on, until &
points are retrieved; at the end we add all deleted
points back to the point-set. Next, observe that if we
allow point insertions only, then the closest pair dis-
tance (call it D) can only decrease with time. The lat-
ter happens only if the distance of the new point p to
its nearest neighbor is smaller than D. To check if this
event indeed happened, we retrieve k¥ = O(1) approx-
imate nearest neighbors of p and check their distance
to p. If any of the point’s distance is smaller than D,
we update D.

To prove the correctness of this procedure it is suf-
ficient to assume that the distance from p to its closest
neighbor (say q) is less than D. Note that in this case
there is at most a constant number of 1-nearest neigh-
bors of ¢ (as all such points have to lie within distance
2D of p but have pairwise distance at least D). There-
fore one of the points retrieved will be the exact nearest
neighbor of p, and thus D will be updated correctly

3 Stratified trees for higher dimensions

In this section we present a multidimensional vari-
ant of stratified trees solving the approximate near-
est neighbor problem in time O(d + loglogu + log 1/¢)
under the assumption that d < logn. The data
structure is deterministic and static. We first de-
scribe a simple variant of the data structure which uses
d°el8 v ()(1/e)4n?logu storage; we then comment on
how to reduce it to d'°&!°81°8%((1/e)n logu.

The main component of the algorithm is a data
structure which finds a d?-approximate nearest neigh-
bor in the /o, norm. Having a rough approximation
of the nearest neighbor distance (call it R), we refine
it by using the techniques of [15] to obtain a (1 + €)-
approximation in the following way. During the pre-
processing, for r = 1,(1 +€),(1 + €)*... (ie. for
O((logwu)/e) different values of r) and for each database
point p we build a data structure which for any query
g checks (approximately) if ¢ is within distance r from
any database point which lies within I, distance of
O(dr) from p (denote the set of such points by N.(p))
The rough idea of the data structure is to impose a reg-
ular grid of side length r/ v/d on the space surrounding
g and store each grid cell within the distance of (ap-
proximately) r from N,.(p) in the hash table (see [15]
for details). The data structure uses nO(1/e)? storage
for each r and p. The time needed to perform the query
is essentially equal to the time needed to find the grid
cell containing the query point g and compute the value
of hash function applied to the sequence of all coordi-

nates of that cell. In order to bound this time notice
that after finding the d?-approximate nearest neigh-
bor of ¢ we can represent (in time d) ¢’s coordinates
using logd/e bits per coordinate. Therefore, all coor-
dinates of ¢ can be represented using O(dlog d/e) bits.
Since we are allowed to perform arithmetic operations
on words consisting of d < logw bits in constant time,
it is easy to implement the hashing procedure using
O(log d/¢€) operations.

In order to find a (1 + €)-approximate nearest neigh-
bor of g, we perform a binary search on log, , . d values
of r as described in [15]; this takes O(log(logd)/e) -
O(logd/€) operations, which negligible compared to
O(d).

Therefore, it is sufficient to find quickly a d?-
approximate neighbor of ¢q. In order to do this, we
apply a variant of multidimensional stratified trees de-
scribed in previous section. Since the techniques are
similar, we only give the sketch. The idea is to split
the universe into squares of side dv/u (instead of \/u),
as long as d®> < y/u. Moreover, instead of using only
one square grid as before, we use d of them, such that
the ith grid is obtained from the first one by trans-
lating it by vector (iy/u,...,iy/u). The reason for it is
that for any point ¢ there is at least one i such that the
distance from g to the boundary of the cell it belongs
to is at least 4/u/2; thus the correctness argument of
the previous section goes through. Also notice that
the depth of the data structure does not change (as
in each step the universe size goes down by a factor
of Ju/d > u'/*. However, the storage requirements
are now multiplied by d!°81°8% since at each level we
multiply the storage by O(d).

In order to bound the running time, we observe that
during each recursive step the value of logu is reduced
by a constant factor. Therefore, the description size of
g (which is initially dlogw bits long) is reduced by a
constant factor (say c) as well, which means (by above
arguments) that the i-step takes roughly O(d/c?) op-
erations, as long as d > ¢'. Thus, the total time is
O(d + loglog u).

In order to reduce the storage overhead from d'°8 108
to d°glosloe v notice that the above analysis contains
a slack - the time needed for the rough approxima-
tion is much larger than the time needed for the re-
finement. One can observe however that if during the
refinement step each coordinate can be represented us-
ing logu/loglogu bits, its running time is still O(d).
Therefore, we can stop the first phase as soon as log of
the universe size drops below logu/loglogu, ie. after
first logloglog u steps.

The storage size dependence on n can be reduced
to linear by using the covering technique of [15]. More

specifically, we can merge those neighborhoods N,.(p)
which have very large overlap in such a way that that
the total size of all neighborhoods is only linear and
the diameter of merged neighborhoods gets multiplied
by at most O(logn). We defer the description to the
full version of this paper.

4 Complexity of Segment Quadtree

Fat objects. A planar convex object ¢ is a-fat if the
ratio between the radii of the balls s~ and s* is at
least «, where st is the smallest ball containing ¢ and
s~ is a largest ball that is contained in ¢ (for fat, non-
convex objects, the definition is more involved. Here
we consider only convex fat shapes). Let C be a col-
lection of n convex a-fat objects in the plane, for a
constant «, such that the combinatorial complexity of
each of them is bounded by a constant so. Let As(n) de-
note the maximal length of (n, s)-Davenport-Schinzel
sequences (see [2]). It is known that As;(n) is almost
linear in n for any constant s. It is shown in [9], (see
also [12]), that the number N of vertices of UC is only
O(Xs(n) log® nloglogn), for an appropriate constant s.

Theorem 4.1 Let T be a segment quadtree, con-
structed for the union of C. Then the number of leaves
in T is O(N logu), provided that k, the mazimal num-
ber of arcs and vertices of U C stored at each leaf of
T is a large enough constant, that depends on «.

Proof: The idea of the proof is to charge each leaf of
T to a vertex v of 0UC, in a way that v is not charged
“too many” times. The details of the proof appear in
the full version of the paper. |

For the rest of the discussion on quadtrees we use the
following notation. Let [u] denote the integer interval
{0...u—1}. Let S denote a shape consisting of a union
of cells of the grid [u]?. Let D(S) = S @ B, denote the
dilation of S with a ball B, of radius r > 0 (note that
D(S) is not necessarily a shape in [u]?). Let T = T(S)
denote the quadtree representing S.

It is known that since S consists of < n disjoint con-
vex objects, then 0D(S) contains O(n) vertices. See
[17]. Combining this bound with the fact that the di-
lation of a black block of T is always a fat region, we
can show the following lemma, using exactly the same
technique as in the proof of Theorem 4.1.

Lemma 4.2 Let T be a segment quadiree constructed

for dD(S). Then the number of leaves in T is
O(nlogu).

The above discussion shows that the dilated shape
can be stored efficiently in a quadtree. The size of

an un-compressed segment quadtree is logu times the
number of its leafs, while the size of the compressed
quadtree is linear with the number of leafs. In Sec-
tion 6 we show how the dilated shape can be computed
in a (optimal) linear time, with respect to the input
region quadtree. We later employ this algorithm in
order to store the result in a convenient form, e.g. a
segment, quadtree (this requires only a slightly higher
complexity).

5 A point-location data structure

Theorem 5.1 Let S be a planar shape consisting of
union of cells of the integer grid [u]?, and given as
an uncompressed quadtree T, consisting of n nodes.
Then in time O(n) we can construct a data structure
of size O(n), such that given an integer query point q,
we can determine whether q lies inside S in (expected)
time O(loglogu). If T is a compressed quadtree, then
we can construct the data structure in time and space
O(nloglogu) and expected query time O(loglogu).

Proof: We store the nodes of T" in a hash table. In case
when T is an uncompressed quadtree, the key of each
node v is the binary representation of the path from the
root of T' to v, which is merely the position in [u]? of
the block v. Using a binary search on the height of the
tree, checking for each level probed, if there is a node
of T at that level which lies on the path leading to ¢,
we can find a block containing ¢, or determine that no
such block exists, in expected time O(loglogu). This
idea has appeared in literature [25].

In case when T is a compressed tree, the analysis
is a bit more complicated. This is due to the fact
that simple replication of the previous approach would
seemingly require hashing all the paths in the tree,
which would imply O(nt) storage requirement, where
t = O(logu) is the depth of the tree. However the fol-
lowing observation allows us to reduce the storage to
O(nloglogu). Call an interval {i...j} C [t] a primi-
tive interval if ¢ = k2P and j = (k + 1)2? for some k
and p. Each such interval corresponds to a subtree of a
binary tree decomposition of the interval [¢t]. One can
observe that any interval I can be decomposed into
O(logt) primitive intervals in a tree-like fashion, by
finding the largest primitive interval J in I, removing
it from I and recursing on I'\ J. One can observe that
such a decomposition is unique.

The algorithm proceeds as follows. Each compressed
edge is split into O(log t) primitive intervals. Instead of
hashing all paths, the algorithm hashes only the paths
with endpoints at primitive intervals. The following
claim, whose proof is trivial and omitted, shows that

this restriction does not influence the behaviour of bi-
nary search procedure, and thus concludes the proof of
Theorem 5.1. O

Claim 5.2 Let e be a compressed edge in the quadtree
from level i to level j > i and let | be any level probed
during the binary search for any point q. Then | has
to be an endpoint of one of O(log(j — i+ 1)) primitive
intervals from the decomposition of the interval [i . . . j].

6 Quadtree Dilation in Linear Time

Given a shape S stored as a region quadtree, T' =
T(S) as in Section 4, We present algorithm for com-
puting D(S) in O(n) time. The algorithm consists of
the two major parts. First it dilates blocks of certain
size, denoted as atom blocks and then it merges the re-
sults in a DFS, bottom-up fashion. During the merging
process, the algorithm computes and reports the ver-
tices of D(S). Each of these parts consists of several
steps which are briefly described bellow. The complete
details can be found in the full paper [1].

We will use the following notations: let R(T) de-
note the axis-parallel bounding square of the region
occupied by T'. For a node v of T, let T3, denote the
subtree rooted at v, and let R, = R(T,). Sometimes
we refer to v (and its region R,) as the block v. We
say that v is a grey block if R, contains both white (i.e.
empty) and black (i.e. full) regions. Let d denote a
direction, d € {up, down, left, right}, and let I = egoun
and zg € I denote the lower edge of R and a point on
it'. Let £,, denote the vertical line passing through z.
We define the envelope point of S with respect to R at
zo in the down-direction, denoted env(R,down)(z¢),
as the lowest point of £,, NRN S, if £, NRNS # 0 and
the distance of this point from egoyy is at most r (oth-
erwise env(R, down)(zg) is not defined). We define the
(partially defined) function env(R, down)(z), which is
a polygonal z-monotone path(s) (see Figure 4). We de-
fine the outer-path of S in the down-direction, denoted
by op(R,down), as the collection of vertically-lowest
points in egown U D(S N R) that lies below the line con-
taining I. (see Figure 4). Observe that op(R, down) is
also a z-monotone path(s), consists of circular arcs of
radius r, and of straight horizontal segments.

The next lemma, whose proof is easy and thus omit-
ted, shows the importance of the envelope of a shape
term.

Lemma 6.1 Let v and u be vertices of T, such that
R, and R, are interior disjoint, then

D(S,) N Ry = D(env(Ry,d)) N R,

4the same apply to all other three directions

op(Sy ,down)

Figure 4. Left: the envelope env(R,, down) of
the shape S, is marked by the dashed line,
and its dilation under the down-edge (hence
its outer-path, op(R,, down)) is filled in black.

where d is the direction at which R, refers to R,. That
is, only env(R,,d) counts in terms of influencing R,
by the dilation of S,,.

Let 79 = 2*, for an integer k such that v/2rq <
r < 2v/2ry . We say that a block v € T is an atom
block if the side of R, is exactly 9. Clearly, for a gray
atom block v (which may contain as many as ro? black
and white blocks) D(S,) is a simply connected region
that include R,; one can observe that rq¢ is the side
of the largest tree block having this property. A large
block/leaf is any tree block/leaf larger in size than an
atom block.

A crucial observation is that if ¢ is a point in the
plane, then there is only a constant number of atom
blocks and large (black) leafs in the vicinity of ¢ the
dilation of which intersect ¢ (no more than three atom
blocks away at any given direction, or 32 blocks all
around). We call the set of these blocks the effective
neighborhood of v. Also, observe that all atom blocks
and large leafs are interior disjoint, and their union
covers [u]?. The dilation algorithm first dilates each of
these elementary regions by directly computing their
outer paths, and then it computes the union of these
dilated shapes in a bottom-up fashion. We will show
how to compute D(S,) for an atom block v in a linear
time, and then use these observations to compute the
union in a linear time. These observations are the basis
for the efficiency of our dilation algorithm.
Computing the Dilation of an Atom Block

Recall that the dilation of a gray atom block (of size
To X To) is a simply-connected region. Therefore, it can
be represented by one list of the arcs and straight lines
along its boundary, denoted as the outer path of v. The
outer path at each direction d € {up, down, left, right}
can be computed separately. By Lemma 6.1, the outer
path at direction d can be computed from the envelope
env(R,,d) alone. The algorithm scan the envelope and

calculate its (local) expansion. The new arc/line seg-
ment is then added to the current outer path by search-
ing for the intersection between the two, then adding
the new outer segment and deleting the segment /s cov-
ered by it, if any. The detailed linear time algorithm
for this step is given in the full paper.

To compute env(R,, down) we first compute a par-
tition of I, = egown(Ry) into intervals, and then we
compute the y-location associated with each interval
and construct the envelope as a list. To find the parti-
tion of I, we project T, the sub-quadtree rooted at v,
into a binary tree, T}, as follows: Let the node w' € T}
denote the projection of w € T,,. The path from ' to
w' in T is derived from the path from v to w in Ty
by following the horizontal branches (and ignoring the
vertical ones).

The algorithm traverses T, in a DFS order, and si-
multaneously constructs (and traverses) T,. This is
called a projection algorithm, as all the nodes v; hav-
ing (1) the same depth, and (2) the same supporting
z-interval, I,, = I, are being projected to a single
node w' € T}, associated with this interval. The parti-
tion of I, is provided by the intervals associated with
the leafs of T). During the projection process, each
node w' € T! maintains ym,in(w') - the smallest y value
(down-edge) among all black leafs projected to it (if
any). The associated y location at the interval corre-
sponds to a leaf w’ is given by the smallest y,,,;n, value
stored in the nodes along the path from the root v’
down-to to the leaf w'.

The Merging (Zipping) Process

To explain the dilation merging algorithm we will
need the following definition: For any large block v, let
sff’)d denote the i-th corridor of R, at direction d, for
i = 0,1,2. This is a maximal length, ro-wide rectangle
contained in R,, that lie along the d-edge of R, at a
distance irg from that edge (see Figure 5). A corridor
is represented by a double-linked list of all the atom
blocks it contains and the large leafs it intersects, in
their appearance order along the corridor. Corridors
play a central part in our algorithms, and are called
the corridors associated with v.

Each block v which is an atom block or larger main-
tains its corridors and their envelopes.

The dilation merging process takes place in large
gray blocks. First, the block, v, builds its data struc-
ture using its child’s data structures. Then it processes
the active zipper area - those parts of its sons’ corridors
which are not included in its own corridors. These cor-
ridor parts are found near the edges shared by two sons
(see Figure 5). It is easy to see that this region, de-
noted as the active (or the zipper) region in the figure,
is disjoint from the dilated area of any part of S which

is out of R,. Moreover, all the effective neighborhood
of this area is either in corridors or in interior regions
(for which D(S) has already been computed).

21andQ
S\/(,rigar?t)

Corridorslinking \& \& \&

\ (0)
£ =P

2 =-Svup

V2

0,1and2)

S\/(Iefft

by

Mol | A - Sv(,&own

)
l

D(9 had bam#K Active Zipper area

Figure 5. Two large blocks are shown, during
their merging (zipping) process.

The main invariant of the algorithm is the following:
when the algorithm exits a vertex v towards its parent,
all vertices of D(S,) (the algorithm output) whose dis-
tance to the boundary of R, is at least 3r¢ have already
been reported (see Figure 5). More precisely, before
leaving v it computes the vertices of D(S,) which lie in
those parts of the corridors of its four sons that do not
intersect with its own corridors (note that v’s corridors
are a subset of the union of its sons’ corridors). It also
updates relevant data structures required for further
steps of the algorithm. This process is called merging
or zipping of blocks.

7 Storing the dilated
quadtree

shape as a

In this section we show that it is convenient to store
the output of the dilation algorithm of Section 6 as a
segment quadtree.

Theorem 7.1 Let S be a planar shape given as a
quadtree T' consists on n nodes, all defined on the inte-
ger grid [u]?, and let r be a given radius. We can con-
struct a segment quadtree T that stores D(S) in time
and space O(nlog® u).

Proof: The constructive proof requires the following
definitions: A balanced quad tree is a quadtree, with
the additional property that if v; and vs are nodes in
the tree such that R,, and R,, shares an edge or a
portion of an edge, then the depth of v; differs by at

most 1 from the depth of vs. A quadtree of size n
can be balanced by adding O(n) additional nodes ([6,
Theorem 14.4]). A netted quadtree is a quadtree at
which, if R,, and R,, are neighboring squares, then
there exists a pointer, called a net pointer from v; to
ve and from vy to vy [22]. The combination of both
attributes guarantees that only a constant number of
net pointers are attached to each node.

We can now describe the algorithm. We start with
an empty output tree 7. We maintain 7' both net-
ted and balanced, and all its nodes are stored in a
hash table H. We run the dilation algorithm of Sec-
tion 6, whose output can be arranged (that is, directly
reported) as a collection of closed curves of 8D(S) -
the boundary of D(S). The segment quadtree repre-
sentation is being built in two phases.

First, we perform the following procedure for each
of the closed curves. Let C' be such a curve. We pick
an arbitrary point g of C, and find the leaf-cell v of
T containing g. We start to insert the arcs of C' into
v, by the order they appear along C. If at some point
the number of arcs in v exceeds the threshold & of T,
then we split v, while updating the hash table, the net
pointers, and keeping the tree balanced (which may re-
quire further splits, but, as quoted above, it sums up
to a linear number of additional nodes). On the other
hand, if an arc y of C intersects with the boundary of
R, and ‘leaves’ this node, then we use the net pointers
to find the neighbor leaf to which v ‘enters’, and con-
tinue the process in that block. As noted, each node
has only a constant number of neighbors to keep track
of.

Second, we have to label all the empty nodes in the
tree. Up to this point, any empty node, which does not
contain any line segment or arc, does not know if it is
inside or outside D(S). This can easily be found using
an algorithm similar to connected-component-labeling.
It traverses the tree, while adding all the non-empty
leafs to a queue. Then, it pops one leaf at a time, uses
it to label its (yet unlabelled) empty neighbors, and
adds only those newly-labelled nodes to the queue.

When bounding the running time of this algorithm,
it is clear that phase two takes only a linear time. For
phase one, we first have to calculate the time needed
to perform all the single point-location operations, one
per each boundary path of D(S). Their number can-
not exceed O(n) (and is assuringly much smaller). Us-
ing the technique from Theorem 5.1, each one takes
O(loglogu) time, or a total of O(nloglogu). The re-
maining running time is proportional (since no vertex
is ever deleted) to the number of nodes created in T,
which we denote by m. By Lemma 4.2 we know that
m = O(nlog® u), we thus have proven Theorem 7.1. O

The size bound of the resulting quadtree can be
improved by a factor of logu/loglogn by using com-
pressed quadtree (as in this case the size is proportional
to the number of leaves). The following lemma, shows
that in this case the running time is improved by al-
most the same factor.

Lemma 7.2 Given n disjoint objects, a compressed
quadtree representation of their union can be computed
in time O(N loglogu), where N is the size of the re-
sulted quadtree.

For proof see [1]. By applying the technique from
the above Lemma to Theorem 7.1 we obtain an algo-
rithm for computing a compressed quadtree of dilated
shape in O(N'loglogu) time, where N’ is the size of
the quadtree.

Finally, we address the probelm of point location in
dilated shape. It is shown that in order to efficiently
answer such queries we do not even need to calculate
the dilated shape.

Theorem 7.3 Let S be a planar shape given as a re-
gion quadtree T consisting of n nodes defined on the
integer grid [u]?, and let v be a given radius. Then
in time O(n) we can construct a data structure of size
O(n), such that given an integer query point q, we can
determine whether q lies inside D(S) in expected time
O(loglogu).

Proof: Only a brief proof is give. The data structure
consists of two basic parts. The goal of the first part is
to find whether q lies in S itself, for which we use the
structure of Theorem 5.1. If the query point is not in
S, then we need to check if it falls in the dilated region.
The second part encodes the outer paths from the dila-
tion, using the corridors structure. The algorithm uses
an additional hash table to allow fast access to the cor-
responding atom block, and a van Emde Boas tree is
used to find if the point is inside the region defined by
the outer path inside the atom block.

O

For proof see [1].

8 Discussion

The techniques developed for the linear time di-
lation computation can be extended to show that
segment quadtree representing the dilated shape in
grid [u]? has size O(N log® u) and can be constructed
in O(Nlog®u) time; a compressed version of this
quadtree has size O(N logu) and can be constructed
in O(Nloguloglogwu) time. Thus given a shape rep-
resented by a quadtree and a parameter r, we can

10

build a data structure of size O(Nlogu) in time
O(N loguloglogu) which in O(loglogu) time checks
if a given point is within distance r from the shape.

References

[1] AMIR, A., EFraT, A., INDYK, P., SAMET, H.
Efficient regular data structures and algorithms
for location and proximity problems. manuscript
(www.graphics.stanford.edu/ ~alon/regdata.html).

AGARWAL, P., AND SHARIR, M. Davenport-
Schinzel sequences and their geometric applica-
tions. In Handbook of Computational Geome-
try, J-R. Sack and J. Urrutia, Eds. Elsevier Sci-
ence Publishers B.V. North-Holland, Amsterdam,
1998.

AnNg, C. H., SAMET, H., AND SHAFFER, C. A. A
new region expansion for quadtrees. IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence 12, 7 (July 1990), 682-686. (also Proceedings
of the Third International Symposium on Spatial
Data Handling, Sydney, Australia, August 1988,
19-37).

[3]

ARrya, S., MouNT, D. M., NETANYAHU, N. S|
SILVERMAN, R., AND WU, A. Y. An optimal al-
gorithm for approximate nearest neighbor search-
ing. In Proc. of the Fifth Annual ACM-SIAM
Symp. on Discrete Algorthms (1994), pp. 573-582.

P. Beame, F. Fich, ”Optimal Bounds for the Pre-
decessor Problem”, STOC’99, to appear.

DE BERG, M., vAN KREVELD, M., OVERMARS,
M., AND SCHWARZKOPF, O. Computational Ge-
ometry: Algorithms and Applications. Springer-
Verlag, Berlin, 1997.

DIiLLENCOURT, M. B.; SAMET, H., AND TAM-
MINEN, M. A general approach to connected—
component labeling for arbitrary image represen-
tations. Journal of the ACM 89, 2 (April 1992),
253-280.

EDELSBRUNNER, H., GuiBas, L. J., AND
SHARIR, M. The complexity and construction
of many faces in arrangements of lines and of

segments. Discrete Computational Geometry 5
(1990), 161-196.

EFRrAT, A. The complexity of the union of («, 3)-
covered objects. 1998. Proceedings 15 Annual
Symposium on Computational Geometry, 1999, to
appear.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

ErFrAT, A., AND ITAI, A. Improvements on
bottleneck matching and related problems using
geometry. In Proceedings of the Twelfth An-
nual ACM Symposium on Computational Geom-
etry (Philadelphia, May 1996), pp. 301-310.

ErraT, A., KaTzZ, M. J., NIELSEN, F.; AND
SHARIR, M. Dynamic data structures for fat ob-
jects and their applications. In Proceedings of the
5th Workshop on Algorithms and Data Structures
(1997), pp. 297-396.

EFRAT, A., AND SHARIR, M. On the complexity
of the union of fat objects in the pl ane. In Proc.
13th Annu. ACM Sympos. Comput. Geom. (1997),
pp. 104-112.

FreDMAN, M. L., AND WILLARD, D. E.
BLASTING through the information theoretic
barrier with FUSION TREES. In Proceedings of
the Twenty Second Annual ACM Symposium on
Theory of Computing (Baltimore, Maryland, 14—
16 May 1990), pp. 1-7.

HaAr-PELED, S., CHAN, T. M., ArONOV, B.,
HALPERIN, D., AND SNOEYINK, J. The complex-
ity of a single face of a Minkowski sum. In Proceed-
ings of the Seventh Canadian Conference on Com-
putational Geometry (Quebec City, August 1995),
pp- 91-96.

P. Indyk, R. Motwani, “Approximate Nearest
Neighbors: Towards Removing the Curse of Di-
mensionality”, STOC’98, pp. 604-613.

JOHNSON, D. B. A priority queue in which initial-
ization and queue operations take O(log(log(D))
time. Mathematical Systems Theory 15 (1982),
295-309.

KeDpEM, K., LIVNE, R., PACH, J., AND SHARIR,
M. On the union of Jordan regions and collision-
free translational motion amidst polygonal obsta-
cles. Discrete Computational Geometry 1 (1986),
59-71.

MULLER, H. Rastered point locations. In Pro-
ceedings of Workshop on Graphtheoretic Concepts
in Computer Science (1985), pp. 281-293.

OVERMARS, M. H. Range searching on a grid.
Journal of Algorithms 9 (1988), 254-275.

R. G. KARLSSON, J. I. M. Proximity on a grid. In
Proceedings of the Second Symposium on Theoret-
ical Aspects of Computer Science (1985), pp. 187—
196.

11

[21]

[22]

[23]

[24]

[25]

[26]

RAMKUMAR, G. D. An algorithm to compute the
Minkowski sum outer-face of two simple polygons.
In Proceedings of the Twelfth Annual ACM Sym-
posium on Computational Geometry (Philadel-
phia, May 1996), pp. 234-241.

SAMET, H. Applications of Spatial Data Struc-

tures: Computer Graphics, Image Processing, and
GIS. Addison-Wesley, Reading, MA, 1990.

SAMET, H. The Design and Analysis of Spatial
Data Structures. Addison-Wesley, Reading, MA,
1990.

VAN EMDE Boas, P. Preserving order in a forest
in less than logarithmic time. Information Pro-
cesing Letters 6 (1977), 80-82.

WILLARD, D. Log-logarithmic worst-case range
queries are possible in space 8(n). Information
Procesing Letters 17 (1983), 81-84.

YANG, H.-T., AND LEE, S.-J. Optimal decom-
position of morphological structuring elements. In
Proceedings of the International Conference on
Image Processing (1996), pp. 1-4.

