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Abstract

A one-pass algorithm is presented to perform region expansion in images that are
represented by quadtrees. The algorithm changes to BLACK those WHITE pixels within
a specified distance of any BLACK node in the image. This process is sometimes referred
to as polygon ezpansion or image dilation. The algorithm is especially well-suited to
images that are represented using a pointer-less representation such as the linear quad-
tree. The slgorithm yields a significant improvement over previous approaches by (1)
reducing the number of BLACK nodes that must be considered for expansion, and (2)
reducing the number of nodes that must be inserted as a result of the expansion. This is
achieved by the introduction of the concepts of a merging cluster and a vertex set,
Empirical tests show that the execution time of this algorithm generally decrenses as the
radius of expansion increases, whereas for previous approaches the execution time gen-
erally increases with the radius of expansion. The algorithm is an important component
of a graphics editor for applications in cartography, computer-sided design, and robotics.

*The support of the National Science Foundation under Grant DCR-86-05557 is gratefully ack-
nowledged. . '
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1. Introduction

This paper addresses the efficient computation of the region expansion operation,
This operation finds use in a number of applications related to graphics editing. It is
useful in computer-aided design when we want to find all objects near a cursor or near a
particular set of objects. It can also be used to simplify the process of planning a
collision-free path for a robot in a two-dimensional environment consisting of cbstacles,
In this case, & finite-width robot is treated as a point and the obstacles are expanded by
an amount equal to the size of the robot. This paper primarily sims at compuier cariog-
raphy applications where it is desirablz to provide graphic answers to queries such as
“Find all wheatfields within five miles of the floodplain’. Such an answer is computed
by expanding the Hoodplain region in the image and intersecting the result with another
image that represents the wheatfields,

The region expansion task is also known as polygon ezpansion and image dilafion,
In this paper we refer to it as the WITHIN function. From an implementation stand-
point, given a binary image M represented as an array, WITHIN generates a new image
which s BLACK at all pixels within & specified distance of the BLACK regions of M.
The BLACK pixels of M correspond to those pixels which are initially within the regions
of interest, while those pixels outside of such regions are defined as WHITE. In the case
of a multi-colored image, we say that the regions of interest are thoge that contain the
noh-WHITE pixels. In this case, the result of the WITHIN function is that all WHITE
pixels within a specified distance of a non-WHITE pixel are get t6 BLACK, -

Region expansion is often expensive since a large image requires a great deal of
computation as many pixels must be examined. Of course, the cost of this examination
process can be greatly reduced when the objects in the image are very well-defined - e.g,,
consisting of primitive instances of known shapes. However, we are interested in images
such as maps where the shapes of the regions are poorly defined. The algorithm
presented here executes this function on an image represented by a region quadiree
{Klinger, 1971, Samet, 1984a). The motivation behind the use of the region quadtree as
an image representation is a desire to take advantage of the homogeneity of the image. If
such homogeneity exists, then the space requirements can be reduced substantially by
aggregating similarly colored pixels into blocks. In particular, the quadtree has the pro-
perty that it acts as a dimension reducing device. For example, for a simple polygon the
storage requirements of its region quadtree are proportionsal to its perimeter (Hunter,
1979), whereas the storage requirements of its array representation are proportional to
its area. Even more important, the aggregation leads to a reduction in the execution
time of many primitive functions {e.g., set operations (Hunter, 1979)). In particuiar,
algorithms that use the quadtree representation have an execution time that is propor-
tional to the number of blocks in the image rather than to their individual sizes (e.g.,
connected component labeling (Samet, 1981)}.

Performing region expansion with a quadtree representation is not so simple. We
ean always simulate the algorithm for an array representation of the image by processing
each pixel in order and then rebuilding the quadtree. However, this is expeansive as it
requires that every pixel be visited twice. Instead, our goal is to reduce the number of
node operations so that the algorithm takes advantage of the aggregation in the image.
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Nevertheless, the amount of time necessary to build & quadtree from the array represea-
tation of the expanded image is = good yardstick for measuring the efficiency of any
algorithm that is proposed since at worst the quadtree could he converied to an array,
the array WITHIN operation performed, and the quadiree rebuilt all in time propor-
tional to the array-to-quadtree conversion step. Thus one of our goals is that as the
radius of expansion gets sufficiently large, the execution time of any reasonable algorithm
should start decreasing.

Section 2 briefiy reviews the definitions of & quadtree and ako the implementa-
tion that we used to test our algorithms. Section 3 briefly describes three alternative
prier implementations of the WITHIN function, and outlines their strengths and
weaknesses. Section 4 presents o new algorithm that overcomes the shortcomings of the
methods described in Section 3. Section 5 analyzes the execution time of the new algo-
rithm and discusses how it is confirmed by empirical tests. Section B reviews the
differences between the algorithms.

2. A Linear Quadtree Implementation

The region quadtree decomposes an image into homogeneous blocks. II the image
is all one color, it is represented by = single block. If not, the image is decomposed into
quadrants, subquadraats, ..., until eack block is homogeneous. In order to simplify the
presentation; unless noted otherwise, we assume that the image is binary. Figure 1 illus-
trates the region quadtree. The region of Figure 1a is represented by a binary array in
Figure 1b. The resulting quadtree block decompesition is shown in Figure le, with the
tree structure represented in Figure 1d. When a quadtree is represented by means of
such a tree structure, it is referred to as s poinier-based guadiree, Although we have
defined a quadtree representation only for region data, it can be adapted easily to deal
with other types of data such as points and lines {e.g., (Nelson, 1986, Samet, 1985b)).

Often the volume of data is so high that it is preferable to store the quadtree in
disk fles. In such a case, 2 pointer-based representation may require many disk pages to
be accessed. Thus alternative representations such as the linear quadtree (Gargantini,
1882, Abel, 1983} are used. The linear quadtree represents an image 2s a collection of the
leaf nodes that comprise it. Each leaf node'is represented by jts locational code which
corresponds to a sequence of directional codes that locate the leal along a path from the
root of the tree. Assuming that the origin of the coordinate system of the image is
located at its upper left corner, then the locational code of a node is the same as the
result of interleaving the bits that comprise the z, ¥ coordinates of the upper left corner
of the node. In addition, the depth of the mode relative to the root must also be
recorded. The collection of nodes making up the linear quadtree is ususlly stored as a list
sorted in increasing order of the locational codes. Such an ordering is useful because it is
the order in which the lesf nodes of the quadtree are visited by 2 depth-first traversal of:

. the quadtree. This representation is employed in the QUILT system (Shaffer, 1987¢)

which was used to test the algorithms deseribed in this paper.

The algorithms that we describe ean be used {with appropriate modifications) in
both pointer-based and linear quadtrees. However, they are primarily designed for use
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(a) Region

Block decompaosi-
tion of the region
in {a). Blocks in
the region are
shaded.
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(<) Quadtree representation of the blocks in {b).

Figure 1. A region, its muimal blocks, and the corresponding quadtree.
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with the linear quadtree. This will not make a big difference in the algorithms; however,
it does mean that we can diseuss the algorithms in terms of node searches and insertions
into a sorted node list, rather than lower level tree manipulation functions.

All versions of the WITHIN algorithm use the Chessboard disfence metric
(Rosenfeld, 1982). It defines the distance between points (z),¥1) and (z5,y5) es
MAX (| o, fyr-yal)-

Al empirical tests were performed by implementing the different algorithms in
the QUILT system, a quadtree-based cartographic information system and cartographic
editor. Three 512X 512 images, named Center, ACC, and Pebble, were used to compare
the execution time of the four algorithms. These images are shown in Figures 2a, 2b, and
2¢. Center is & map of the 100 year flood plain in the Russian River Valley. ACCis n -
single landuse class from a landuse class map of the same area. Pebble is an image of
pebbles. They contain 4693, 3253, and 44950 leal nodes respectively. For Center and
ACG, expansions of 8 pixels are also shown. The algerithms are denoted as WITHIN:
{1<i<4). Figures 3s, 3b, and 3c show the execution times for these algorithms on the
three images using radius values that range from 1 to 32. They were executed on &
VAX11/785 running the 4.3BSD version of UNIX. In order to illustrate the relative vari

ation in the performance of the algorithms, we plot the natural logarithms of the execu-
tion times. .

3. Three Polygon Expansion Algorithms

The simplest region expunsion algorithm, termed WITHINI (Samet, 1984c), visits
each node of the quadtree. Each BLACK node, say B, is expanded by R units and the
pew square (of width WIDTH(B}4-2-R ) is decomposed into quadtree blocks and inserted
into the output quadtres, The execution time of WITHINI increases directly with R
since the number of blocks in a quadtree is proportional to the total perimeter of the
regions that comprise it (Hunter, 1978). Althongh the algorithm that we have imple- -
mented aggregates the resulting blocks before inserting them into the output quadtree,
WITHIN1 still requires many duplicate insertions and subsequent mergings of BLACK
nodes. Note that the execution times for even values of R are generally smaller than -
those for odd values due to the effects of node aggregation which reduces the number of
blocks inserted into the output quadtree. In other words, a quadtree node expanded by -
an even number of pixels B can be represented with fewer quadtree blocks than one
expanded by R+1 pixels.

A second slgorithm, termed WITHINZ (Shafler, 1987b), tries to avoid the exces-
sive insertion and merging required by WITHINI by focusing the work on the WHITE
nodes of the quadtree instead of the BLACK nodes. Again, assume that R is the radius
of expansion. WHITE nodes of width less than or equal to (R +1)/2, as well as their
brothers, are inserted into the output quadtree as BLACK nocdes. WHITE nodes of
width greater than (R-+1)/2 have their distance from the closest BLACK node deter-
mined by use of a modified Chessboard distance transform (Samet, 1982). Those por- -
tions of these large WHITE nodes that lie within radius B of a nearby BLACK ncde are
output s BLACK nodes. The problem with this approach is that many nodes of the

23




(a)

(b)

[ -8
P

e 54

Figure 2. Three images: {a) Center, (b) ACC, {c} Pebble.
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input quadtree will be visited more than once while finding the distance lrom large
WHITE nodes to the nearby BLACK nodes. In addition, there are many redundaat node
insertions. Like WITHINI, the execution times of WITHIN2 for even values of R are
generally lower than those for the adjacent odd values of B because of the effects of
node aggregation.

A third algorithm, termed WITHING (Mason, 1987), uses an active border data
structure to facilitate two passes over the nodes in the linear quadiree’s node list. The
goal is to avoid making redundant insertions. The first pass processes the node list in
increasing order of locational codes. For each WHITE node, say W, it converts to
BLACK =ll portions of W that are within a distance B of 2 BLACK node that has been
encountered at a prior position in the list, The second pass is analogous except that the
list is processed in reverse order. This approach is similar to that used to execute the
WITHIN function on an array representation. However, the quadtree implementation
requires a substantial amount of computation to determine and maintain the appropriate
information about previously encountered BLACK nodes, and to split the WHITE nodes.
Moreover, its execution time increases directly with the radius of expansion since the
number of previously encountered BLACK nodes that must be examined increases.

4. The New Region Expansion Algorithm

Our new algorithm, termed WITHIN4, traverses the input quadtree in preorder
and writes the result of the expansion to an output quadtree. It takes no action for
large WHITE nedes, For large BLACK nodes and clusters of small nodes, the slgorithm
adjusts the vertex set (explained below) and performs a node expansion only when
enough information has been collected.

WITHIN4’s design stems from the observation that the execution times of algo-
rithms that operate on linear quadtrees are dominated by the number of nodes that are
inspected and inserted - in other words, by the 1/O time required to locate and update
the nodes in the node list. To improve the performance of such algorithms, we would
like to reduce both the number of nodes requiring inspection (e.g., in WITHINS and in
the distance transform computation step of WITHINZ), and the number of node inser-
tions (the dominant factor in WITHINI, and also important in WITHINZ). WITHIN4
achieves these goals by 1) reducing the number of input BLACK nodes that must be
considered for expansion, and 2) reducing the number of outpus BLACK nodes that
must be inserted as a result of the expamsion. These reductions vield an algorithm

whose execution time is relatively unafiected by the magnitude of the radius of expan-
sion.

4.1. Reduction of the Number of Nodes to be Expanded

The keys to our new algorithm are the concepts of 2 merging cluster and a verfex
sel, These concepts allow us to consider a collection of BLACK nodes for expansion
instead of expanding each BLLACK node individually.
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Given an input quadtree, ¢, and a radius of expansion, R, let us look at a sub-
tree rooted at an internal node § which represents the largest block whose width is less
than or equal to R-+-1. Any WHITE leaf node in this subtree is within R pixels of a
BLACK leaf node in the subtree and therefore will be changed to BLACK after expan-
sion. § becomes a BLACK node as a result of the expansion. Therefore, we see that
instead of changing each WHITE node in the subtree rooted at 5 to a BLACK node and
then merging =il these small BLACK nodes into one big BLACK node (as done by
WITHINZ), we can just insert § as a single BLACK node. This motivates us to progess
collections of nodes, when possible, instead of examining the leaf nodes individually.

Define w(R) to be the largest integer that is a power of 2 2ad is less than or
equal to R+1, Le, w(R)=2"<R+1<2" for r 20. I M is a non-leafl node in @
whose corresponding block is of width w(R}, then M is a merging cluster of width
w(R). Merging cluster M consists of the set of leal nodes in the subtree rooted at M.
In the rest of this paper, whenever we speak of the width of a node, we mean the width
of the node’s correspording block.

Figure 4 is an example of a merging cluster with 13 leaf nodes when E==3. In
this case, w{R) is 4. In Figure 4, A, B, C, and D are the BLACK nodes in the merging
cluster. The corners of their blocks, termed vertices, are designated by using the
corresponding lower cese letter with a subscript that designates the vertex. For example,
agw is the SW vertex of node A. ’

The execution timé of WITHIN2 can be reduced by observing that there is no
need to individually insert each member of a merging cluster as & BLACK node.
Instead, we just insert & single BLACK node of width w{R). However, the main cost of
WITHINZ (i.e., processing those WHITE nodes of width greater than (R +1}/2) is not
reduced by this method. This is because the determination of how much of the expan-
sion will “spill over” the boundary of the BLACK node just c¢reated is much more
difficuit. We address this problem in the next section.

4.2. Computing the Vertex Set

Consider the expansion of the merging cluster in Figure 4 by 3 pixels. The result
is given in Figure 5 from which we make the lollowing cbservations:

(1) The node corresponding to the root of the merging cluster is now a BLACK node.

(2) The area expanded beyond the boundary of the merging cluster in the vertical
and horizontal directions always forms a rectangle. The size of each rectangle is
determined by the distance between the boundary and the nearest BLACK node.
For example, expansion in the western direction results in a rectangle of size 3
by 4 since a BLACK node appears on the western border of the merging cluster.
The sizes of the rectangles formed in the northern, eastern, and southern direc-
tions are 4 by 2, 3 by 4, and 4 by 3, respectively.
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(3)  The area of expansion of the merging cluster in a diagonal direction always forms
a gtaircase-like region. The extreme points of the staircase are those points which
can be obtained by translation of the vertices of some of the BLACK nodes in the
merging cluster. For example, in Figure 5, the area of expansion in the NW direc-
tion is the staircase marked by the points a'yy, blyw, snd ¢'w which are
obtained by translating the NW vertices By Dy 2nd Sy by the amount
(-3,-3). Similarly, the NE vertices tyg 3nd o are translated by (3,-3) into a'yg
and d'yg, the SW vertex ¢gyy is translated by {~3,3) into ¢/yw, and the SE vertex
dgg is translated by (3,3) into d'sg. The expansion in the direction of a vertex is
completely determined by a subset of the set of alf vertices in that direction,

Based on observation {3), we now focus on how to compute efficiently the
minimal subset, say V, of vertices of elements of the merging cluster. We know that the
expansion from the merging cluster is totally determined by this set. For example, the
merging cluster in Figure 4 has & minimal subset V={aw buw Crw Lo depr A
e} The set V is termed the verlez set of the merging cluster. The purpose of the

vertex set is to minimize the number of BLACK elements of the merging cluster requir-
ing expansion.

Let 4 be in {NW, NE, SW, SE}, Let OPQUAD(d) dencte the vertex direction
opposite to 4 (e.g,, OPQUAD{NW)=SE). The verter set {VS) of a merging cluster M
is defined to be the union of four vertex subsets V8;. Given BLACK node P in M, ver-
tex v of P is in VS, if v is the d vertex of P and v is not in the closed OPQUAD(d)
quadrant of any vertex of another BLACK node in M. For example, the vertex set .V of
the merging cluster in Figure 4 can be decomposed into VSNW={an,wa,ch},
Vive={apdyg), VSsw={cgy} and VSsp={dgg}. Each subset VS, has the property
that the expansion from VS in direction d subsumes the expansion in direction d from
alt the BLACK nodes in the merging cluster. In other words, vertex subset V5, com-
pletely determines the expansion from the merging cluster in direction d.

Now, let us consider expansion in direction D where D is in {N, W, 5, E}. Let
COMMON_EDGE{Q 1,02} indicate the boundary of the block containing quadrants Q1
and @2 that is common to both of them; e.g., COMMON_EDGE{NW,NE)=N. For
each D there exists 2 pair of vertex directions d; and dy. such that
COMMON_EDGE(d |, dy}=D. Given a merging cluster P, it can be shown that there
exist wo vertices v, and v, that are elements of VS,‘ and V5, , respectively, such that
vy and vy are at the same distance from the boundary of P's block in direction D', For
example, in Figure 5, vertices Sy it VSyw and ayp in V8yp are both closest to the
northern boundary of the merging cluster. We can always choose one of these two ver-
tices to determine the extent of the expanded rectangle in direction D. Thus we see

that the vertex set completely determines the expansion from the merging cluster in each
of the eight directions.

It can be shown that the four vertex subsets are disjoint {Ang, 1988). This means
that they can be constructed independently or even in parallel. This allows us to sim-
plify the following discussion by describing how to construct  single vertex subset VScg
of merging cluster M using a preorder traversal of the nodes comprising the merging
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Figure 4. Example of & merging cluster.

Figure 5. Result of expanding the merging cluster in Figure 4 by 3 pixels.
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cluster. The other vertex sets are constructed in an analogous fashion.

Initially, VSgp is empty. The SE vertex of the first BLACK node of M is
inserted. For each subsequent BLACK node in M, say P, the position of the SE vertex
of P, sey v, is compnred with the vertices currently in the set. If v is in the opposite
guadrant (i.e., NW} with respect to any vertex in the set, say v, then the expansion of v
in the SE direction is subsumed by u and hence v is excluded from VSgg. Otherwise,

insert v into V3gg after removing all vertices currently in VSgg that are in the NW qua-
drant of v.

Table I shows the changes to each vertex subset during the process of building
the vertex set for the merging cluster in Figure 4. For example, the construction of
VSgp is a3 follows. Assume that the BLACK nodes are processed in the order AB,CD.
When node A is processed, VSgp is empty and hence agp is inserted into V8gg. For node
B, by, is inserted into V8, because by is not in the NW quadrant of 255 DOt is B, e,
the current contents of VSSE) in the NW quadrant of be.. Similarly, we insert Cgg into
V8 for node C. However, node I resuits in the placement of dgp in VS, and the

removal of #gp, bgp 2nd Cep from V8gp, since they are in the NW quadrant of dgg. At

the end of the process, VS = {d._}.

When the vertices in each VS, are arranged in ascending order of the values of

their z coordinates, the values of their corresponding y coordinates are in the following
order: VSyy is descending; VSup is ascending; VSsw is ascending; VS is descending;

It is easy to see that no two vertices in V5 can have the same 2 coordinate
value. Thus the number of vertices in any V5, is at most w{R). Therelore, the size of
the vertex set is less than or equal to 4-w{R). In fact, we can tighten the bound as fol-
lows. Let us say that two vertex subsets V’.‘S‘d1 and VS" are adfacent if
COMMON_EDGE(d,,d,) 340,

Theorem: The size of the urion of any two adjacent vertex subsets V5,, and V8y, is
less than or equal to w{R)+1, and this bound is attainzble.

Proofl: The prool is simplified by looking at the different cases individually. For exam-
ple, consider the case of VSyy and VSyg. Since all the points {pixels) in the SW

Table 1. Building vertex subsets for Figure 4.

mods | Voo Voo | Vo | Vo
A {2w} {ae) {agw} {2}
B {2pewsPrewt (g} {bgw} {25p:bgg}
C 1 {eanbyw St {an) {egw} | {aepbspeee}
D {amv-bNWJcm} {H’P{E'_qj:m}_ {eqw} E&El__._
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quadrant with respect to the last vertex v in VSyy will not be i'n VSng, thF vertices in
VSuyg can only be taken {rom the region containing points with = coc:rdlnate valuea_
greater than that of v. Therefore, all vertices in VSyy and VSyp have dlﬂeren.t. z tooT-
dinate values. Within a block of width w(R ), there can be at most w(R)+1 different =
coordinate values. Thus there can be no more than w({R )41 vertices. Similar reasoning
can be applied to sny pair of adjacent vertex subsets VS; and VS, The bound is
attained when the only BLACK pixels in the merging cluster are those on either major

diagona! of a merging cluster {e.g., Figure 6). o

If a node P is the only BLACK nede in merging cluster M which is closest to
the boundary of M in a given direction {e.g., nodes A, C and D in Figure 4), then P will
contribute two vertices to the vertex set. Otherwise, o given node will contribute at
most one vertex. Therefore, the number of the vertices in a vertex set is bounded by 4
plus the number of BLACK nodes in M. This bound is attainable as shown ia Figure 7.
Thus we have proved the following corollary:

Corollary: The size of the vertex set of merging cluster A is bounded by the minimem
of 2-w{R)+2 and 4 + the number of BLACK nodes in M. The bound is attainable.

4.3. Node Expansion

Now that we have defined the concepts of a merging cluster and a vertex set, we
describe the generation of the region within B pixels of the vertex set, The expansions
of a merging cluster in the eight directions can be decomposed into two groups, narfiely
those that deal with directions {NW, NE, SW, SE} and those that deal with directions
{N, W, S, E}. We shall describe one expansion from each group.

To expand in the NW direction [rom a merging cluster, only the elements-ol'
VSuw need to be considered. The result of the expansion is a staircase-shaped region
forimed in the NW direction with the steps of the staircase marked by the vertices in
VSuyw which have been translated by (R ,—); i.e., they are obtained by subtracting R
from the coordinates of each vertex in VSupy. To insert all the nodes that are com-
ponents of the staircase, find the smallest quadiree block which covers the staircase. -
Blocks which are completely within {or outside} the staircase are inserted as BLACK (or .
WHITE). Blocks which partially overlap the staircase are decomposed into four equal-
sized blocks which are processed recursively. .

To expand in the W direction, we use the vertex v in VSyy which is closest to .
the western boundary of the merging cluster since the expansion from v in direction W
subsumes the expansions from all other vertices. Alternatively, we can also use the
western-most vertex in VSgy which has the same z coordinate value. Note that the
result of the expansion in directions N, E, 8, W which is outside the block, say B, -
corresponding to the merging cluster is a rectangle, say T. This is a direct consequence -
of the size of the merging cluster’s block being limited to at most B+1. In the case of
expansion in direction W, rectangle T is adjacent to the west side of B, has height equal
to that of B, and width R-dy where dyy is the distance from v to the W edge of 8.
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So far we have described how to process the nodes of size (it 4+1)/2 or less by
combining them into merging clusters. All WHITE nodes are ignored because they do
not require any action. Our algerithm is completed by describing how to process large
BLACK nodes (i.e., of sire greater than {Z-+1)/2). For such a node B of width W, B
will simply be expanded as in algorithm WITHINI, In other words, the area correspond-
ing to a square of size W+2R centered on B is decomposed into quadtree nodes which
are inserted into the output tree.

4.4. Further Reduction of Node Insertions

A further reduction in processing time can be achieved by taking advantage of
the interactions between the blocks of neighboring merging clusters. For example, in
Figure B, & merging cluster P needs to be expanded in direction SW only if Q, the block
that is adjacent to it only at its SW vertex, is WHITE and of size greater than or equal
to w(R). Il Q is BLACK or Q is an element of a merging cluster, then P need not be
expanded in the SW direction. Otherwise, those pixels of Q that are within R pixels of
the vertex set of P are inserted and the nodes labeled Q, Q,, and Q, mny also need to
be visited. Note that we check the colors of modes Q, Q,, Q,, and Q, before P is
expanded in direction SW. Thias check has to be done not only for efficiency reasons, but
also to prevent the corruption of the output tree since the merging cluster of Q may
have been processed before the merging cluster of P. By ‘corrupt’, we mean that we do
not want to overwrite with the value BLACK a node which had another value in the ori-
ginal {multicolored) input tree. ‘

5. Analysis_

As Figure 3 demonstrates, the execution tirne of WITHING generally increases at
a much slower rate and even decreases with increasing K. WITHIN4 usually outper-
forms the other algorithms. This is a result of the interaction between two factors which
have opposite effects. The first, and most important, factor is the number of merging
clusters, while the second factor is the radius of expansion. As the radius of expansion

increases, the size of the merging cluster also increases, This means that there are fewer -

merging clusters and thus the execution time should decrease since there is less need for
expansion, On the other band, as the radius of expansion increases, there is an increase
in the number of nodes that must be inserted as a result of expanding from the merging
cluster’s vertex set. This has been explained in the discussion of WITHIN1 in Section 2.
As the data in Figure 2 shows, these two competing factors tend to cancel each other

~out.

The data of Figure 3 also confirms the following more detailed analysis of the
effect of the radius of expansion. Assume an image of size 2" X2". Clearly, when
B> 2"-1 only one node needs to be inserted into the output quadtree. In the more
general case, as B increases from 2°-2 to 27—, w(R) is doubled, thereby significantly
reducing the number of nodes to be expanded, and the time required to expand them is
less than that for B = 27-2. w(R) is constant (ie., 27) wher R is between 2"—1 and
27+1.2 and the execution time increases slowly (but linearly - recall the analysis of
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Figure 6. Example merging cluster where the upper bound on the size of two adjacent
vertex subsets is attained. ‘

anw  One

dSW dSE

Figure 7. Example rnerg;lng cluster where the upper bound on the size of the vertex set
is attatned.

o

Qi Q
Qo| Q2

Figure 8. Example merging cluster configuration.
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WITHINI) as B increases since more nodes will b
values of B show a cyclical behavior which is characterized by & slow increase as R
increases from 27-1 to 2"t 2 followed by a drop back to nearly the lowest execution
time for 27+_1. The behavior for even values of R generally follows the same pattern

although, as mentioned in Section 2, the execution times are reduced due to the eflects of
node aggregation which results in fewer nodes,

¢ inserted. The execution times for odd

The oscillatory pattern of execution times of WITHING for odd and even values
of R is analogous to those of WITHINI and WITHIN2. The only difference occurs when
R increases from 27*-3 1o 9"+1. In this case, the execution time of WITHIN1
increases as there are more nodes of size 1 to be inserted, whereas the execution times of
WITHINZ and WITHIN4 decrease. For WITHINZ, the decrease is caused by the dou-
bling of the maximum size of the WHITE nodes which are automatically inserted as
BLACK nodes. For WITHINY, the analogous result is that w(R) is doubled, thereby
reducing the number of merging clusters. In particular, this means that at most four
merging clusters Py, Py, Py, and P of size 27 are merged into one merging cluster P of
size 2°*1. Therefore, at most eight expansions in the directions of a corner can he
avoided depending on whether the surrounding nodes are WHITE or not, For example, if
Py is a NWson of P, then it is possible to avoid the NE and §W expansions from P if
there are large WHITE nodes in those directions. Four insertions of Py Py Py, and P,
as BLACK nodes are now replaced by one insertion of P regardless of whether FP;isa
merging cluster or a WHITE node. All these savings result

in 2 reduction of the exacu-
tion time., This is confirmed by the results shown in Table 2.

Table 2, Execution times({seconds) of WITHIN4 for large radii
Radius Center ACC
64 115 12.6
128 11.1 10.9
2586 8.6 6.0
512 5.1 3.9

In general, the complexity of the re
plexity of the image in the sense that as ¢
expanded image) increases, so will the ex
a8 the radius of expansion increases past
expanded image will have a significantly s
the expansion algorithm should run fas
efficiently (e.g., WITHINZ and WITHIN4).
and WITHINS as their execution times m
node size. This is borne out by the Pebb
times of both WITHIN4 and WITHIN? s
contrast, for the much smaller Center an
times of WITHIN4 are relatively constant
images the WHITE area is sufficiently la
started to dominate.

gion expansion process depends on the com-
he number of nodes in the image (especially the
ecution time for small radius values, However,
4 certain value, for many complex images the
maller number of nodes due to merging. Thus
ter for algorithms that process small nodes
This reduces the attractiveness of WITHINI
ust increase when R increases regardless of
le image, where it is seen that the execution
how a steady decrease with increasing R. In
d ACC images, as R increases, the execution
while those for WITHIN? increase. For these
rge that the amount of merging has not yet

Although the complexity of the image is an important factor in determining the
complexity of the region expansion process, it is overshadowed by the size of the merging
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i i 4 has alrendy been dis-
. The effect of the size of the merging cluster on WITHIN ; n dis
‘:L“:SZZ"- It :Isi: icas an indirect effect on WITHINZ. Recall that WITHIN®'s work lies in

" processing WHITE nodes. As R increases, we koow that more WHITE nodes can

i i i ITE nodes of width

jeally be inserted as BLACK nodes - in particular, all 'WH.
?el;to:xl;:;lc:r j;queallto (R +1)/2. For example, WITHIN2’s execution times for the Cente:r
image exceed those for the ACC image by about 30% for the initial radius values. This.

- correlates well with the ratio of their total node counts. Although initially Center has

more nodes than ACC, for B >16, ACC contains more WHITE nodes of size > leS

than Center and thus more work will be required to expand ACC t:;a;bCe:Pe}rl. Ehls

i i i i Figeres 2a an which show
1 ncreases as  Increases and is reflected by

;?:tat;?(;x:acution time of expanding ACC (79.3 sec.) exceeds that for Center (61.6 sec.)

by about 30% for R —32.

i we mentioned that a good yardstick for measuring_the performance
of a reg];f:it};z?lsgon ea»lgorii;hm is the amount of time necessary to .bufld the ;xpandred
quadtree from an array representation. Using the QUILT system, building quadtrees for
the Center and Pebble images took approximately 16 and 110 seconds (Shaﬂ_er, 198;':]3;).
respectively. Recall that these images cont.ain 4693 ?,nd ?4959 no'des respeqt.welly. 1 _te
building algorithm has the property that its execution time is directly proportional to
the number of nodes in the image. For K >15, the e:fpanded Cfnter and Pebb!e lm;ges ‘
contain approximately 8000 and 46000 nodes, re.spectlvel]f. For R=32 expa_nd'mg them
by WITHIN4 took 12 and 76 seconds, respectively, \_.vhlch means .t.hat build.mg lt. en?
from an array representation is not as fast as expanding and building them[mmu tane-
ously, By this measure, WITHINL and \NITHil\_w are not attractive. ON cm.ll)rs:, a
different implementation may yield different executmn. times {e.g., for W.I'I'Hl 3), ;1 we
believe that our qualitative explanations of the algorithms are appropriate. Now, let us
compare WITHIN2 and WITHIN4 more closely.

i i is individually inserted
In WITHINZ, every BLACK node in 2 merging cluster is in ! t
2 \:hile in WITHIN4 only one insertion must be performe_d for the eptlre merging
cluster. However, WITHIN2 can be medified to avoid this shortcoming. -

{2) In WITHIN4, no repeated insertions are caused by the BLACK nodes v}r:(_:hu: :
merging cluster. Only a different mer;ing claster can cause a‘node to be ;lnser e
repeatedly. Moteover, a node can be inserted at most eight times slmceht, ere ari
at most eight neighboring merging clusters. In WITHINZ, a no_de in ¢ ehout!:]::
tree, say B, may be repeatedly inserted as a.reﬁulb of‘ the expansion of each of the
BLACK nodes in the input tree which are within radius B of B.

{3} In WITHIN4, nodes are expanded using ?he l:ne‘rging cluster’s blocl‘c a.sI:he gub for
the expansion process. This approach is similar to the expansion base tz{nba
BLACK node in WITHINL. WITHIN{ stores the \:ertex set as an array sorted by
the value of the = coordinate. Some of the operations on the vertex set reqmr; a
sequential search. The data that we gathered revealed .trhat, on the average, for
radius values up to 32 each vertex subset V5; contained about two vertices.
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ikely to be improved by using a more
ex sef,

tio of the execution time of WITHIN2 to that of WITHIN4 increnses with
-‘The magnitude of the ratio {8 for Center and ACC and 5§ for Pebble) depends
on the complexity of the expanded image. If the image does not have large
WHITE nodes (e.g., Pebble), then the ratio is small since most of WITHINZ's
time is devoted to processing large WHITE nodes, :
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