
•
&.

"" .. . fj •t _

FAST REGION EXPANSION FOR QUADTREES•

Chuan-Heng Ang
Hanan Samet

Computer Science Department and
Institute of Advanced Computer Studies and

Center for Automation Research
University-of Maryland

College Park, MD 20742

Clifford A. Shaffer

Department of Computer Science
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

Abstract

A one-pa.ss algorithm is presented to perform region expansion in images that are
represented by quadtrees. The algorithm changes to BLACK those WHITE pixels within
a specified distance of any BLACK node in the image. This process is sometimes referred
to as polygon expansion or image dilation, The algorithm is especially well-suited to
images that are.represented using a pointer-less representation such as the linear quad­
tree. The algorithm yields a significant improvement over previous approaches by (t)
reducing the number of BLACK nodes that must be considered for expansion, and (2)
reducing the number of nodes that must be inserted as a result of the expansion. This is
achieved by the introduction of the concepts of a merging cluster and a vertex set.
Empirical tests show that the execution time or this algorithm generally decreases as the
radius of expansion increases, whereas for previous approaches the execution time gen­
erally increases with the radius of expansion. The algorithm is an important component
of a graphics editor for applications in cartography, computer-aided design, and robotics.

•The support of the National Science-Foundation under Grant DCR-8&--05557 is gratefully ack·
nowledged.

19

1. Introduction

This paper addresses the efficient computation of the region expansion operatiop.,
This operation finds use in a number or applications related to graphics editing. It is
useful in computer-aided design when we want to find all objects near a cursor or near a
particular set or objects. It can also be used to simplify the process or plB.nning a
collision-free path for a robot in a two-dimensional. environment consisting or obstacles.
In this case, a finite-width robot is treated 88 a point and the obstacles are expanded by
an amount equal to the size or the robot. This paper primarily aims at computer cartog­
raphy applications where it is desirabl..? to provide graphic answers to queries such as
"Find all wheatfields within five miles or the floodplain". Such an answer is computed
by expB.nding the .floodplain region in the image and intersecting the result with another
image that represents the wheatfields.

The region expansion task is also known as polygon e::ipaMion and image dilation.
In this paper we refer to it as the WITHIN function. From an implementation stand­
point, given a binary image M represented as an array, WITHIN generates a new image
which is BLACK at all pixels within a specified di.stance or the BLACK regions or M.
The BLACK pixels of M correspond to those pixels which are initiB.lly within the regions
or interest, while those pixels outside of such regions are defined 88 WHITE. In the case
or a multi-colored image, we say that the regions or interest are those that contain the
non-WHITE pixels. In this case, the result of the WITHIN function is that ail WHITE
pixels within a specified di.stance of a non-WHITE pixel are set to BLACK.

Region expansion is often expensive since a large image requires a great deal of
computation as many pixels must be examined. Of course, the cost of this examination
process cB.n be greatly reduced when the objects in the image are very well-defined - e.g.,
consisting of primitive instances or known shapes. However, we are interested in images
such as maps where the shapes of the regions are poorly defined. The algorithm
presented here executes this function on an image represented by a region quadtree
(Klinger, 1971, Samet, 1984a). The motivB.tion behind the use or' the region quadtree as
an image representation is a desire to take advantage or the homogeneity of the image. If
such homogeneity exists, then the space requirements can be reduced substantially by
aggregating similarly colored pixels into blocks. In particular, the quadtree has the pro­
perty that it acts as a dimension reducing device. For example, for a simple polygon the
storage requirements of its region quadtree are proportional to its perimeter (Hunter,
1979), whereas the storage requirements or its array representation are proportional to
its area. Even more important, the aggregation leads to a reduction in the execution
time of many primitive functions (e.g., set operations (Hunter, 1979)). In particular,
algorithms that use the quadtree representation have an execution time that is propor­
tional to the number or blocks in the image rB.ther than to their individual sizes (e.g.,
connected component JB.beling (Samet, 1981)).

Performing region expansion with a quadtree representation is not so simple. We
can always simulate the algorithm for an arrB.y representation of the image by processing
each pixel in order and then rebuilding the quadtree. However, this is expensive as it
requires that every pixel be visited twice. Instead, our goal is to reduce the number of
node operations so that the algorithm takes advantage of the aggregation in the image.

20

Nevertheless, the amount or time necessary to build a quadtree from the array represen­
tation of the expanded image is a good yardstick for measuring the efficiency or any
algorithm that is proposed since at worst the quadtree could be converted to an array,
the array WITHIN operation performed, and the quadtree rebuilt all in time propor­
tional to the array-to-quadtree conversion step. Thus one of our goals is that as the
radius of expansion gets sufficiently large, the execution time or any reasonable algorithm
should start decreasing.

Section 2 briefiy reviews the definitions or a quadtree and also the implementa­
tion that we used to test our algorithms. Section 3 briefly describes three alternative
prior implementations or the WITHi.N function, and outlines their strengths and
weaknesses. Section 4 presents a new algorithm that overcomes the shortcomings or the
methods described in Section 3. Section 5 analyzes the execution time of the new algo­
rithm and discusses how it is confirmed by empirical tests. Section 6 reviews the
differences between the algorithms.

.2. A LineB.r Quadtree Implementation

The region quadtree decomposes an image into homogeneous blocks. If the image
is all one color, it is represented by a single block. Ir not, the image is decomposed into
quadrants, subquadrants, ... , until each block is homogeneous. In order to simplify the
presentation, unless noted otherwise, we assume that the image is binary. Figure 1 illus­
trates the region quadtree. The region of Figure la is represented by a binary array in
Figure Ib. The resulting qu'adtree block decomposition is shown in Figure le, with the
tree structure represented in Figure Id. When a quadtree is represented by means of
such a tree structure, it is referred to as a pointi;r-based quadtrei;. Although we have
defined a quadtree representation only for region data, it can be adapted easily to deal
with other types of data such 88 points and lines (e.g., (Nelson, 1986, Samet, 1985b)).

Often the volume of data is so high that it is preferable to store the quB.dtree in
disk files. In such a case, a pointer-based representation may require many disk pages to
be accessed. Thus alternative representations such as the linear quadtree (Gargantini,
1982, Abel, 1983) are used. The linear quad tree represents B.n image as a collection of the
leaf nodes that comprise it. Each leaf node'is represented by its locational code which
corresponds to a sequence or directional codes that locate the leaf along a path from the
root or the tree. Assuming that the origin of the coordinate system of the image is
located at its upper lert corner, then the locational code of a node is the same as the
result or interleaving the bits that comprise the ::i, y coordinates of the upper left corner
of the node. In addition, the depth of the node relative to the root must also be
recorded. The collection or nodes making up the linear quadtree is usually stored as a list
sorted in increasing order of the locational codes. Such an ordering is useful because it is
the order in which the leaf' nodes or the quadtree are visited by a depth~first traversal or
the quadtree. This representation is employed in the QUILT system (Shaffer, 1987c)
which was used to test the algorithms described in this paper.

The algorithms that we describe can be used (with appropriate modifications) in
both pointer-based and linear quadtrees. However, they are primarily designed for use

21

(a) Region

A

37 38 3940

F G

J

L

(b} Block decomposi·
tion or the region
in {a). Blocks in
the region are
shaded.

575859 60

(c) Quad.tree representation or the blocks in (b).

Figure 1. A re~ion, its maximal blocks, and the corresponding quadtree.

22

with the linear quadtree. This will not make a big difference in the algorithms; however,
it does mean that we can discuss the algorithms in terms of node searches and insertions
into a. sorted node list, rather than lower level tree manipulation functions.

All versions of the WITHIN algorithm use the Chessboard distance metric
(Rosenfeld, 1982). It defines the distance between points (z1ty1) and (z2,y2) as
MAX(Jz.-z,l,IY1-Y21l·

All empirical tests were performed by implementing the different algorithms in
the QUILT system, a quad.tree-based cartographic information system and cartographic
editor. Three 512X512 images, named Center, ACC, and Pebble, were used to compare
the execution time of the four algorithms. These images are shown in Figures 2a, 2b, and
2c. Center is a map of the 100 year Hood plain in the Russian River Valley. AOC is a
single landuse class from a landuse class map of the same area. Pebble is an image of
pebbles. They contain 4693, 3253, and 44950 leaf nodes respectively. For Center and
ACC, expansions of 8 pixels are also shown, The algorithms are denoted as WITHINi
(1::5i::54). Figures 3a, 3b, and 3c show the execution times for these algorithms on the
three images using radius values that range from 1 to 32. They were executed on a
V AXll/785 running the 4.3BSD version of UNIX. In order to illustrate the relative vari­
ation in the performance of the algorithms, we plot the natural logarithms of the execu·
tion times.

3. Three Polygon Expansion Algorithms

The simplest region expansion algorithm, termed WITHIN1 (Samet, 1984c), visits
each node of the quadtree. Each BLACK node, say B, is expanded by R units and the
new square (of width WIDTH(B)+2·R~. is decomposed into quadtree blocks and inserted
into the output quadtree. The executi0n time of WITHINl increases directly with R
since the number of blocks in a quadtree is proportional to the total perimeter or the
regions that comprise it (Hunter, 1978). Although the algorithm that we. have imple­
mented aggregates the resulting blocks before inserting them into the output quadtree,
WITHINl still requires many duplicate insertions and subsequent mergings 0£ BLACK
nodes. Note that the execution times for even values of R are generally smaller than
those for odd values due to the effects of node aggregation which reduces the number of
blocks inserted into the output quadtree. In other words, a quad tree node expanded by
an even number of pixels R can be represented with fewer quadtree blocks than one
expanded by R + 1 pixels.

A second algorithm, termed lVITHIN£ (Shaffer, 1987b), tries to avoid the exces­
sive insertion and merging required by WITHINl by focusing the work on the WHITE
nodes of the quadtree instead of the BLACK nodes. Again, assume that R is the radius
of expansion. WHITE nodes of width less than or equal to (R+l)/2, as well as their
brothers, are inserted into the output quadtree as BLACK nodes. WHITE nodes of
width greater than (R+l)/2 have their distance from the closest BLACK node deter­
mined by use of a modified Chessboard distance transrorm (Samet, 1982). Those por·
tions of these large WHITE nodes that lie within radius R of a nearby BLACK node are
output as BLACK nodes. The problem with this approach is that many nodes of the

23

(a)

(bJ

(c)

~r
w

~~@J
• . "

Figure 2. Three images: {a) Center, (b) ACC, {c) Pebble.

24

(a)

(b)

(c)

.
" c
0
u
:
c
= ..
E
i= c
~

;;

" c
0
u
~
c
= ..
E
i= c
~

;;

" c
8 • •
c
=

l
5

WITHIN3

WITHlN1

WITHIN2

WITHIN4

' " " "
R..:fi11S (in pixels]

WITHIN1

WITHIN2

3

~WITHIN4
' " " " ..

Radius (in pixels)

•~WITHIN2
WITHIN4

' " " ..
Radius (in pixels}

Figure 3. Execution times: (a) Center, (b) ACC, (c) Pebble.

25

'I
I

input quadtree will be visited more than once while finding the distance from large
WHITE nodes to the nearby BLACK nodes. In addition, there are many redundant node
insertions. Like WITHIN!, the execution times of WITHIN2 for even values of R are
generally lower than those for the adjacent odd values of R because of the effects of
node aggregation.

A third algorithm, termed WITHINS (Mason, 1987), uses an active border data
structure to facilitate two passes over the nodes in the linear quadtree's node list. The
goal is to avoid making redundant insertions. The first pass processes the node list in
increasing order of locational codes. For each WHITE node, say W, it converts to
BLACK all portions of W that are within a distance R of a BLACK node that has been
encountered at a prior position in the list. The second pass is analogous except that the
list is processed in reverse order. This approach is similar to that used to execute the
WITHIN function on an array representation, However, the quadtree implementation
requires a substantial amount of computation to determine and maintain the appropriate
inrormation about previously encountered BLACK nodes, and to split the WHITE nodes,
Moreover, its execution time increases directly with the radius of expansion since the
number of previously encountered BLACK nodes that must be examined increases.

4. The New Region Expansion Algorithra

Our new algorithm, termed WITHIN4, traverses the input quadtree in preorder
and writes the result of the expansion to an output quadtree, It takes no action for
large WHITE nodes, For large BLACK nodes and clusters of small nodes, the algorithm
adjusts the vertex set {explained below) and performs a node expansion only when
enough information has been collected.

WITHIN4's design stems Crom the observation that the execution times of algo­
rithms that operate on linear quad.trees are dominated by the number of nodes that are
inspected and inserted - in other words, by the 1/0 time required to locate and update
the nodes in the node list. To improve the performance of such algorithms, we would
like to reduce both the number of nodes requiring inspection (e.g., in WITHIN3 and in
the distance transform computation step of WITHIN2), and the number of node inser­
tions (the dominant factor in WITHIN!, and also important in WITHIN2). WITHIN4
aehieves these goals by 1) reducing the number of input BLACK nodes that must be
considered for expansion, and 2) reducing the number of output BLACK nodes that
rriust be inserted as a result of the expansion. These reductions yield an algorithm
whose execution time is r~latively unaffected by the magnitude of the radius or expan­
sion.

4.1. Reduction of the Number or Nodes to be Expanded

The keys to our new algorithm are the concepts or a merging cluster and a vertex
set. These concepts allow us to consider a collection of BLACK nodes for expansion
instead or expanding each BLACK node individually.

26

Given an input quad_ tree, Q, and a radius ·of expansion, R, let us look at a sub­
tree rooted at an internal node S which represents the largest block whose width is less
than or equal to R +1. Any WHITE leaf node in this subtree is within R pixels of a
BLACK leaf node in the subtree and therefore will be changed to BLACK after expan­
sion. S becomes a BLACK node as a result of the expansion. Therefore, we see that
instead of changing each WHITE node in the subtree rooted at S to a BLACK node and
then merging all these small BLACK nodes into one big BLACK node (as done by
WITIIlN2), we can just insert S as a single BLACK node. This motivates us to process
collections or nodes, when possible, instead of examining the leaf nodes individually.

Define w(R) to be the largest integer that is a power of 2 and is less than or
equal to R+l, i.e., w(R)=2rSR+1<2r+l for r~O. If Mis a non-leaf node in Q
whose corresponding block is of width w(R), then M is a merging cluster of width
w(R). Merging cluster M consists of the set of leaf nodes in the subtree rooted at M.
In the rest of this paper, whenever we speak of the width of a node, we mean the width
of the node's corresponding block.

Figure 4 is an example of a merging cluster with 13 leaf nodes when R =3. In
this case, w(R) is 4. In Figure 4, A, B, C, and D are the BLACK nodes in the merging
cluster. The corners of their blocks, termed vertices, are designated by using the
corresponding lower case letter with a subscript that designates the vertex. For example,
11.sw is the SW vertex of node A.

The execution time of WITI:IIN2 can be reduced by observing that there is no
need to individually insert ea.ch member or a. merging cluster as a BLACK node.
Instead, we just insert a single BLACK node of width w(R). However, the main cost of
WITHIN2 (i.e., processing those WHITE nodes of width greater than (R+I)/2} is not
reduced by this method. This is because the determination of how much of the expan­
sion will "spill over" the boundary of the BLACK node just created is much more
difficult. We address this problem in the next section.

4.2. Computi!!_g_lii_~-.Y.~rtex Set

Consider the expansion of the merging cluster in Figure 4 by 3 pixels. The result
is given in Figure 5 from which we make the following observations:

(I) The node correspondiag to the root of the merging cluster is now a BLACK node.

(2) The area expanded beyond the boundary of the merging cluster in the vertical
and horizontal directions always forms a rectangle. The size of each rectangle is
determined by the distance between the boundary and the nearest BLACK node.
For example, expansion in the western direction results in a rectangle of size 3
by 4 since a BLACK node appears on the western border of the merging cluster.
The sizes of the rectangles formed in the northern, eastern, and southern direc­
tions are 4 by 2, 3 by 4, and 4 by 3, respectively.

27

(3) The area of expansion of the merging cluster in a diagonal direction always forms
a staircase-like region. The extreme points of the staircase are those points which
can be obtained by translation of the vertices of some of the BLACK nodes in the
merging cluster. For example, in Figure 5, the area of expansion in the NW direc­
tion is the staircase marked by the points a'NW, b'NW• and c'NW which are
obtained by translating the NW vertices !lmv• bNW, and cNW by the amount
(-3,-3). Similarly, the NE vertices 8NE and dNE are translated by (3,-3} into a'NE
and d'NE, the SW vertex c5w is translated by {-3,3} into c'sw, and the SE vertex
d5E is translated by (3,3} into d'sE· The expansion in the direction of a vertex is
completely determined by a subset of the set of all vertices in that direction.

Based on observation (3), we now focus on how to compute efficiently the
minimal subset, say V, of vertices of elements of the merging cluster. We know that the
expansion from the merging cluster is totally determined by this set. For example, the
merging cluster in Figure 4 has a minimal subset V={~ ,bNW ,cNW ,c

5
w ,d

5
E, dNE

,~}. The set V is termed the vertex set of the merging cluster. The purpose of the
vertex set is to m.inimize the number of BLACK elements of the merging cluster requir­
ing expansion.

Let d be in {NW, NE, SW, SE}. Let OPQUAD(d) denote the vertex direction
opposite to d (e.g., OPQUAD(NW)=SE). The vertex set (VS) of a merging cluster M
is defined to be the union of four vertex subsets VS,. Given BLACK node P in M, ver­
tex v of P is in VS, if v is the d vertex of P and v is not in the c!OO:ed OPQUAD{d)
quadrant of any vertex of another BLACK node in M. For example, the vertex set V of
the merging cluster in Figure 4 can be decomposed into VSNw={~,bNW,cNW},
VSNE={8Ng,dNE}, VSsw={c5w} and VSsE={d5E}. Each subset VS, has the property
that the expansion from VS1 in direction d subsumes the expansion in direction d from
all the BLACK nodes in the merging cluster. In other words, vertex subset VS, com­
pletely determines the expansion from the merging cluster in direction d.

Now, let us consider expansion in direction D where D is in {N, W, S, E}. Let
COM?vl:ON_EDGE(Q 1,Q 2} indicate the boundary of the block containing quadrants Q 1
and Q2 that is common to both of them; e.g., COMM:ON_EDGE(NW,NE}=N. For
each D there exists a pair of vertex directions d1 and d

2
such that

COMM.ON_EDGE(di.d2)=D. Given a merging cluster P, it can be shown that there
exist two Vertices VI and V2 that are elements Of VS,

1
and VS,

2
, respectively, SUCh that

v1 and v2 are at the same distance £rom the boundary of P's block in direction D. For
example, in Figure 5, vertices ~ in VSNw and ~in VSNE are both closest to the
northern boundary of the merging cluster. We can always choose one of these two ver·
tices to determine the extent of the expanded rectangle in direction D. Thus we see
that the vertex set completely determines the expansion from the merging cluster in each
of the eight directions.

It can be shown that the four vertex subsets are disjoint {Ang, 1988). This means
that they can be constructed independently or even in parallel. This allows us· to sim­
plify the following discussion by describing how _to construct a single vertex subset VSsE
of merging cluster M using a preorder traversal of the nodes comprising the merging

28

Figure 4. Example of a merging cluster.

-

1--

I
Figure 5. Result of expanding the merging cluster in Figure 4 by 3 pixels.

29

·r.
;

cluster. The other vertex sets are constructed in aii. analogous fashion.

Initially, VSsE is empty. The SE vertex of the first BLACK node of M is
inserted. For each subsequent BLACK node in M, say P, the position of the SE vertex
of P, say t1, is compared with the vertices currently in the set. If t1 is in the opposite
quadrant (i.e., NW} with respect to any vertex in the set, say u, then the expansion of t1

in the SE direction is subsumed by u and hence v is excluded from VSsE· Otherwise,
insert v into VSsE after removing all vertices currently in VSsE that are in the NW qua­
drant or ti.

Table 1 shows the changes to each vertex subset during the process of building
the vertex set for the merging cluster in Figure 4. For example, the construction of
VSSE is as follows. Assume that the BLACK nodes are processed in the order A,B,C,D.
When node A is processed, VSSE is empty and hence a5E is inserted into VS . For node
B, b5E is inserted into VSSE be~ause b5E is not in the NW quadrant of aSE n~~ is aSE (i.e.,
the current contents of VSSE) m the NW quadrant of bsE· Similarly, we insert cSE into
VSSE for node C. However, node D results in the placement of dSE in VSSE and the
removal of aSE• bsE and cSE from VSSE since they are in the NW quadrant of dSE' At
the end of the process, VS5E = {dsE}.

When the vertices in each VS, are arranged in ascending order of the values of
their x coordinates, the values of their corresponding y coordinates are in the following
order: VSNw is descending; VSNE is ascending; VSsw is ascending; VSSE is descending;

It is easy to see that nO two vertices in VS, can have the same x coordinate
value. Thus the number of vertices in any VS, is at most w(R). Therefore, the size of
the vertex set is less than or equal to 4·w(R). In fact, we can tighten the bound as fol­
lows. Let US say that tWO Vertex SUbsets VS,

1
and VS,

2
are adjacent if

COMMON_EDGE(d1,d2) 7'0.

Theorem: The size of the union of any two adjacent vertex subsets VS,
1

and vs,
2

is
less than or equal to w(R}+I, and this bound is attainable.
Proof: The proof is simplified by looking at the different cases individually. For exam­
ple, consider the case of VSNw an~ VSNE· Since all the points (pixels) in the SW

Table I. Building vertex subsets for Figure 4.

nodo VS
A {'mv} {•swl
B {'mv,bNW) {bswl
c {'mv,bNW,cNW) l•swl
D { ,b } {c }

30

quadrant with respect to the last vertex v in VSNw will not be in VSNE• the vertices in
VSNE can only be taken from the region containing points with :r coordinate values
greater than that of ti. Therefore, all vertices in VSNW and VSNE have different x coor­
dinate values. Within a block of width w(R), there can be at most w(R)+I different. :r
coordinate values. Thus there can be no more than w(R)+l vertices. Similar reasoning
can be applied to any pair of adjacent vertex subsets VS,

1
and VS,

2
• The bound is

attained when the only BLACK pixels in the merging cluster are those on either major
diagonal of a merging cluster (e.g., Figure 6). •

If a node P is the only BLACK node in merging cluster M which is closest to
the boundary of M in a given direction (e.g., nodes A, C and Din Figure 4), then P will
contribute two vertices to the vertex set. Otherwise, a given node will contribute at
most one vertex. Therefore, the number of the vertices in a vertex set is bounded by 4
plus the number of BLACK nodes in M. This bound is attainable as shown in Figure 7.
Thus we have proved the following corollary:

Corollary: The size of the vertex set of merging cluster M is bounded by the minimum
of 2·w(R }+2 and 4 + the number of BLACK nodes in M, The bound is attainable.

4.3. Node E!P..!nsion

Now that we have de6ned the concepts of a merging clustei and a vertex set, we
describe the generation of the region within R pixels of the vertex set. The expansions
of a merging cluster in the eight directions can be decomposed into two groups, namely
those that deal with directions {NW, NE, SW, SE} and those that deal with directions
{N, W, S, E}. We shall describe one expansion from each group.

To expand in the NW direction from a merging cluster, only the elements of
VSNw need to be considered. The result of the expansion is a staircase-shaped region
formed in the NW direction with the steps of the staircase marked by the vertices in
VSNw which have been translated by (-R ,-R); i.e., they are obtained by subtracting R
from the coordinates of each vertex in VSuw· To insert all the nodes that are com­
ponents of the staircase, find the sip.allest quadtree block which covers the staircase.
Blocks which are completely within (or outside} the staircase are inserted as BLACK {or
WHITE}. Blocks which partially overlap the staircase a.re decomposed into four equal·
sized blocks which are processed recursively.

To expand in the W direction, we use the vertex t1 in VSNw which is closest to
the western boundary of the merging cluster since the expansion from t1 in direction W
subsumes the expansions from all other vertices. Alternatively, we can also use the
western-most vertex in VSsw which has the same x coordinate value. Note that the
result of the expansion in directions N, E, S, W which is outside the block, say B,
corresponding to the merging cluster is a rectangle, say T. This is a direct consequence
of the size of the merging cluster's block being limited to at most R+l. In the case of
expansion in direction W, rectangle Tis adjacent to the west side of B, has height equal
to that of B, and width R-dw Where dw is the distance from ti to the W edge of B.

31

--·--··--··--·-----~~--.t::-------------------

II
~.
ij:

\

So far we have described how to process the nodes of size (R+l}/2 or less by
combining them into merging clusters, All WHITE nodes are ignored because they do
not require any a.ction. Our algorithm is completed by describing how to process la.rge
BLACK nodes (i.e., of size greater than (R+l)/2). For such a node B of width W, B
will simply be expanded as in algorithm WITHIN!. In other words, the area correspond­
ing to a square of size W +2R centered on B is decomposed into quadtree nodes which
are inserted into the output tree.

A further reduction in processing time c11.n be achieved by taking advantage of
the interactions between the blocks of neighboring merging clusters. For example, in
Figure S, a merging cluster P needs to be expanded in direction SW only if Q, the block
that is adjacent to it only at its SW ver_tex, is WHITE and of size greater than or equal
to w(R). If Q is BLACK or Q is an element of a merging cluster, then P need not be
expanded in the SW direction. Otherwise, those pixels of Q that are within R pixels of
the vertex set of P are inserted and the nodes labeled ~. Q1, and ~ may also need to
be visited. Note that we check the colors of nodes Q, ~. Q

1
, and Q

2
before P is

expanded in direction SW. This check has to be d~:me not only for efficiency reasons, but
also to prevent the corruption of the output tree since the merging cluster of Q may
have been processed before the merging cluster of P. By 'corrupt', we mean that we do
not want to overwrite with the value BLACK a node which had another value in the ori­
ginal (multicolored) input tree.

As Figure 3 demonstrates, the execution time of WITHIN4 generally increases at
a much slower rate and even decreases with increasing R. WITHIN4 usually outper­
forms the other algorithms. This is a result of the interaction between two factors which
have opposite effects. The first, and most important, factor is the number of merging
clusters, while the second factor is the radius of expansion. AB the radius of expansion
increases, the size of the merging cluster also increases. This means that there are fewer
merging clusters and thus the execution time should decrease since there is less need for
expansion. On the other hand, as the radius of expansion increases, there is an increase
in the number of nodes that must be inserted as a result of expanding from thC merging
cluster's vertex set. This has been explained in the discussion of WITHIN! in Section 2.
Al; the data in Figure 2 shows, these two competing factors tend to cancel each other
out.

The data of Figure 3 also confirms the following more detailed analysis of the
effect of the radius of expansion. Assume an image or size 2" X2 11

• Clearly, when
R 2'.: 211 -1 only one node needs to be inserted into the output quadtree. In the more
general case, as R increases from 2r-2 to 2'-1, w(R) is doubled, thereby significantly
reducing the number of nodes to be expanded, and the time required to expand them is
less than that for R = 2r -2. w(R) is constant (i.e., 2r} when R is between 2' -1 and
2•+1-2, and the execution time increases slowly (but linearly - recall the analysis of

32

Figure 6. Example merging cluster where the upper bound on the size of two adjacent
vertex subsets is attained.

figure 7. Example merging cluster where the upper bound on the size of the vertex set

is attained.

Figun~ 8. Example merging cluster ronfiguration.

33

WITHINl) as R increases since more nodes will be inserted. The execution times for odd
values of R show a cyclical behavior which is chara.cterized by a slow increase as R
increases from 2' -1 to 2•+

1
-2, followed by a drop back to nearly the lowest execution

time for 2•+
1
-1. The behavior for even values of R generally follows the same pattern

although, as mentioned in Section 2, the execution times are reduced due to the effect.a of
node aggregation which result.a in fewer nodes.

The oscillatory pattern of execution times of WITHIN4 for odd and even values
of R is analogous to those of WITHINl and WITHIN2. The only difference occurs when
!l increases from 2•+l_3 to 2•+1-1: In this case, the execution time of WITHINl
increases as there are more nodes of size 1 to be inserted, whereas the execution times of
w_JTHIN2 and W!THIN4. decrease. For WITHIN2, the decrease is caused by the dou­
bling of the maximum size of the WHITE nodes which are automatically inserted as
BLAC!K nodes. For WITHIN~, the analogous result is that w(R) is doubled, thereby
reducing the number of merging clusters. In particular this means that at most four
merging clusters P1, Pz, P 3, and P4 of size 2'" are merg;d into one merging cluster p of
size 2•+

1
• Therefore, at most eight expansions in the directions of a corner can be

avo!ded depending on whether the surrounding nodes are WHITE or not. For example it
P1 ts a NW son of P, then it is possible to avoid the NE and SW expansions from p' it
there are large WHITE nodes in those directions Four insertions of p p p and 1p

• .. 'l• 3• 4
as BLACK nodes are now replaced by one insertion of P regardless of whether p. is a
merging cluster or a WHITE node. All these savings result in a reduction of the e

0
xecu­

tion time, This is confirmed by the results shown in Table 2

Table 2. Execution times(seconds' of WITHIN4 for larp;e radii
Radius Center ACC

64 11.5 12.6
128 11.l 10.9
256 8.6 6.0
512 5.1 3.9

. In gen~ral, t~e complexity of the region expansion process depends on the com­
plexity of ~he 1ma~e m the sense that as the number of nodes in the image (especially the
expanded image) mcreases, so will the execution time for small radius values. However
as the radius of expansion increases past a certain· value, for many complex images th;
expanded i~age will .have a signi6cantly smaller number of nodes due to merging. Thus
th~ . expansion algorithm should run faster for algorithms that process small nodes
efficiently (e.g.,WITHIN2 and WITHIN4}. This reduces the attractiveness of WITHINl
and WITHIN3 as their execution times must increase when R increases regardless of
node size. This is borne out by the Pebble image, where it is seen that the execution
times of both WITHIN4 and WITHIN2 show a steady decrease with increasing R. In
contrast, for the much smaller Center and ACC images, as R increases, the execution
times of WITHIN4 are relatively constant while those for WITHIN2 increase. For these
images the WHITE area is sufficiently large that the amount of merging has not yet
started to dominate. .

Although the complexity of the image is an important factor in determining the
complexity of the region expansion process, it is overshadowed by the size of the merging

34

cluster. The effect of the size of the merging cluster on WITHIN4 has atr;ady bee~ d~
cussed. It also has an indirect effect on WITHIN2. Recall that WITHIN2 s work hes m
processing WHITE nodes. As R increases, "."e kno~ that more WHITE nodes .can
automatically be inserted as BLACK nodes - m particular, all WHITE nodes of width
less than or equal to (R+l)/2. For example, WITHIN2's execu.ti?~ time~ for the Cent~r
image exceed those for the ACC image by about 30% for the m1t1al .r~~1us values. Th!S
correlates well with the ratio of their total node counts. Although m1t1ally Center has
more nodes than ACC, for R>16, ACC contains more WHITE nodes of size> 8X.8
than Center and thus more work will be required to expand ACC than Center. This
imbalance increases as R increases and is reflected by Figures 2a and 2b which show
that the execution time of expanding ACC (79.3 sec.) exceeds that for Center (61.6 sec.)
by about 30% for R=32.

In Section 1 we mentioned that a good yardstick for measuring the performance
of a region expansion algorithm is the amount of time necessary to build the expanded
quadtree from an array representation. Using the QUILT system, building quadtrees for
the Center and Pebble images took approximately 16 and 110 seconds (Shaffer, 1987a),
respectively. Recall that these images contain 4693 and 44950 nodes respectively. The
building algorithm has the property that its execution time is directly proporti~nal to
the number of nodes in the image. For R > 15, the expanded Center and Pebble images
contain approximately 8000 and 46000 nodes, respectively. Fot R =32 expanding them
by '\VITHIN4 took 12 and 76 seconds, respectively, "."'hich mea~s .that build.ing them
from an array representation is not as fast as expandmg and butldm~ them s1multane~
ously. By this measure, WITHIN! and WITHIN3 a~e not attractive. Of course, .a
different implementation may yield different execution times (e.g., for WITHIN3), but we
believe that our qualitative explanations of the algorithms are appropriate. Now, let us
compare WITHIN2 and WITHIN4 more closely.

(1)

(2)

(3)

In WITHIN2, every BLACK node in a merging cluster is individua!ly inser~ed
while in WITHIN4 only one insertion must be performed for the entire mergmg
cluster. However, WITHIN2 can be modified to avoid this shortcoming.

In WITHIN4, no repeated insertions are caused by the BLACK nodes ';ithin a
merging cluster. Only a different merging cluster can cause a node to be mserted
repeatedly. Moreover, a node c~n be inserted at most eight times s~nce there are
at most eight neighboring mergmg clusters. In WITHIN2, a n~e m the output
tree say B may be repeatedly inserted as a result of the expans10n of each of the
BLACK nodes in the i11put tree which are within radius R of B.

In WITHIN4 nodes are expanded using the merging cluster's block as the hub for
the expansio~ process. This approach is similar to the expansion based on a
BLACK node in WITHINI. '\VITHIN4 stores the vertex set as an array sorted by
the value of the x coordinate. Some of the operations on the vertex set require a
sequential search. The data that we gathered revealed that, on the average, for
radius values up to 32 each vertex subset VS.i contained about two vertices.

35

I
1
i

I

,'

-'r

I
/I

I

'-:~~~ltY,,·0i
~Uij;~; __ tb·e_·performance of WITHIN4 is unlikely to be improved by using a more
rD."J>JeX:data structure to organize the vertex set.

~t~i;fi~:,~-,~Q{ ·'/

... :Tlie-fatio' Of the execution time of WITHIN2 to that of WITHIN4 increases with
.)R.'·,The magnitude of the ratio {6 for Center and ACC and 5 for Pebble) depends 1

·:'on the complexity of the expanded image. If the image does not have large
WHITE nodes (e.g., Pebble), then the ril.tio is small since most 'of WITHIN2's
time is devoted to processing large WHITE nodes.

Abel, D.J. and Smith, J.L., 1983, A data structure and algorithm based on a linear key
for a rectangle retrieval problem, Computer Vision, Graphics, and Image Processing 2,/,
!{October 1983), 1-13.

Ang, C.H., Samet, H., and Shaffer, C.A., 1988, A fast polygon expansion algorithm for
linear quadtrees, Computer Science Technical Report, University of Maryland, College
Park, MD, to appear.

Gargantini, I., 1982, An effective way to represent quadtrees, Communications of the
ACM 25, 12{December 1982), 905-910.

Hunter, G.M., 1978, Efficient computation and data structures for graphics, Ph.D. disser­
tation, Department of Electrical Engineering and Computer Science, Princeton Univer­
sity, Princeton, NJ, 1978,

Hunter, G.M., 1979, Operations on images using quad trees, IEEE Transactions on Pat­
tern Analysis and Machine Intelligence 1, 2(April 1979), 145-153.

Klinger, A., 1971, Patterns and search statistics, in Optimin'ng Methods in Statistics, J.S.
Rustagi, Ed., Academic Press, New York, 1971, 303-337.

Mason, D.C., 1987, Dilation algorithm for a linear quadtree, Image and Vision Comput­
ing 5, !(February 1987), 11-20. ·

Nelson, R.C. and Samet, H., 1986, A consistent hierarchical representation for vector
data, Computer Graphics 20, 4(August 1986), 197-206 (also Proceedings of the SIG­
GRAPH'86 Conferenc~, Dallas, August 1986).

Rosenfeld, A. and Kak, A.C., 1982, D1'gital Pi'cture Processing, Second Edition,
Academic Press, New York, 1982.

Samet, H., 1981, Connected component labeling using quad.trees, Journal of the ACM 28,
3(July 1981), 487-501.

Samet, H., 1982, A distance transform for images represented by quadtrees, IEEE Tran­
sactions on Pattern Analysis and Machine Intelligence,/, 3(May 1982), 298-303.

36

. ----·- .. ___________ --·-- ·-- -- --- - .. __ _

\'·:H 1984a ACM Computing Surveys 16, 2(June 1984), 187-260.

.;-_·:· ., ' d W bb r RE 1984b A geographic informa-. · A Sh ff CA an e e, · ., '
t;· H., Rosenfeld, " a er, 'R., '!'on 11 6{1984) 647-656.

system using quadtrees, Pattern ecogn1 i ' ' .

;-; , Nelson, R.C., and Huang, Y.G., 1984c, Apphca­
t, H., Rosenfeld, A., Shaffer, C.A., h'cal information systems, Phase Ill, Com­
of hierarchical data st~uct~res to geog:apd 1 College Park 1ID, November 1984.

er Science TR-1457' Un1vers1ty of Mary an ' '

;-,~ . N 1 RC Huang Y.G., and Fujimura, K., ~~~et, H., Ros:nfeld, ~ .. Sh~~er{ dC-~.,str:c:~~s k, ~eographical information systems :
1985a Application of h1erarc ica a U . 't f Maryland College Park, MD,
.Phase' IV, Computer Science TR-1578, n1vers1 y o '
December 1985.

¥t~/\,' W bb RE 1985b Storing a collection of polygons using quadtrees,
Samet, H. and e er, · " ' 85) 182 222
'ACM Transactions on Graphics,/, 3(July 19 ' - .

j:-;1~--) .. - ' timal uadtree construction algorithms, Computer
'Shaffer, C.A. and Samet, H., ~Sra, ~p

91
a(Marcb 1987), 402-419.

\Vision, Graphics, and Image rocess1ng '

_.,, : A I orithm to expand regions represented by
halfer, C.A. and Samet, H.'. I987;R..1~4~ gUniversity of Maryland, College Park, MD,

linear quadtrees, Computer Science . . ' ulin
::_May 1987, to appear in Image and Vts1on Comp g. .

:;f.;Jt_ 1 RC 1987c QUILT: A geographic information
·.;Shaffer, C.A., Samet, H., and Ne son, S ; " TR-i885 University of Maryland, College
: system based on quadtrees, Computer c1ence •
Park, MD, July 1987.

37

PROCEEDINGS

THIRD
INTERNATIONAL SYMPOSIUM ON

SPATIAL DATA HANDLING

. . . .
········-·········· ···- ..

. . .

August 17 - 19, 1988

Sydney, Australia

