Acta Informatica 30, 425-439 (1993) Antﬂ
Inl‘lll‘ma‘u:a

© Springer-Verlag 1993

Decomposing a window into maximal quadtree blocks *

Walid G. Aref and Hanan Samet

Computer Science Department and Center for Automation Research
and Institute for Advanced Computer Studies, The University of Maryland
College Park, MD 20742, USA

Received October 1, 1991/February 15, 1993

Abstract. Window operationis serve as the basis of a number of queries that
can be posed in a spatial database. Examples of window-based queries include
the exist query (i.e., determining whether or not a spatial feature exists inside
a window), the report query (i.e, report the identity of all the features that
exist inside a window), and the select query (i.e., determine the locations covered
by a given feature inside a window). Often spatial databases make use of a
quadtree decomposition, which yields a set of maximal blocks, to enable the
features to be accessed quickly without having to search the entire database.
One way to perform a window query is to decompose the window into its
maximal quadtree blocks. An algorithm is described for decomposing a two-
dimensional window into its maximal quadtree blocks in O(nloglog T) time
for a window of size nxn in a feature space (e.g., an image) of size Tx T (e.g,
pixel elements).

1 Introduction

A central operation in spatial databases is the window operation. A window
is the region specified by the cross-product of two closed intervals over the
integers. This operation serves as a building block for a number of queries
and ‘as a component of other queries. Usually, spatial features span a wide
feature space. However, users are more interested in viewing or querying only
portions of the feature space instead of the whole space. Extracting parts of
the space to work with in subsequent operations is done by windowing. Given
a window w, some examples of window-based queries are: report all features
inside w, intersect feature f with feature b only inside w, determine if feature
[exists in w, etc. {e.g., [1]).

There are numerous data structuring techniques in use for representing spa-
tial data. Of interest here is the quadtree data structure which is based on
the principle of recursive regular decomposition of space into a maximal set

* The support of the National Science Foundation under Grant IRI-9017393 is gratefully
acknowledged.

426 W.G. Aref and H. Samet

Underlying spatial database

Fig. 1. An example region quadtree

window w window w

al L1
7 LI
2 s

ikl

5 & H3
15}

HEIEI NS

s

Underlying spatial database Underlying spatial database
(a) {b)

Fig. 2a, b. Possible decompositions of a a 12 x 12 window, and b a 13 x 13 window into maximal
quadtree blocks

of blocks whose sides are of size power of two and are placed at predetermined
positions (for a comprehensive discussion of guadtrees and other hierarchical
data structures, see [4, 5]). For example, the region quadiree data structure
[3] is based on the successive subdivision of a bounded image array into four
equal-sized quadrants. If the array does not consist entirely of 1s or entirely
of 0s (i.e.,, the region does not cover the entire array), then it is subdivided
into quadrants, subquadrants, and so on, until blocks are obtained that consist
entirely of 1s or eatirely of 0Os; that is, each block is entirely contained in
the region or entirely disjoint from it. Figure 1 shows an example quadtree
decomposition of space for a given region.

Our strategy in answering window queries is to decompose the window
operation into sub-operations over smaller window partitions. These sub-opera-
tions should be easier to perform on the smaller partitions if the partitions
are chosen carefully. Since we are interested here in quadtree representations
of spatial features, one good window decomposition to consider is to partition
the window into quadtree blocks. For example, Fig. 2 shows possible quadtree

Decomposing a window into maximal quadtree blocks 427

RS RRARARE]

[] I LT TTTTTTT
(@) (b)

Fig. 3a, b. In a and b, maximal block A is accessed more than once by the smaller blocks
to its left and top, respectively

decompositions of two windows. Notice that the decomposition varies depending
on the location and size of the window.

In this paper, we concentrate on the efficient decomposition of a window
into its maximal blocks. This is useful in implementing the window operation
for use with a feature space that is represenied as a region quadtree. More
specifically, given a window, say w, we describe a bottom-up algorithm for
decomposing w’s internal region into maximal guadtree blocks. Any window
operation (e.g., retrieval, clipping, etc.) can be implemented on top of this window
decomposer which generates the maximal quadtree blocks inside the window.

2 The algorithm

A window is stored implicity in a region quadtree [3, 5]. It can be conceptualized
as having black nodes in its interior and white nodes outside it. Note that
we do not need to store the window explicitly in a quadtree structure since
we can generate all the maximal quadtree blocks inside the window without
building the quadiree. The generation process only requires that the location
and size of the window be specified. It works for an arbitrary rectangular window
{ie, it need not be square although in this paper, for simplicity, we assume
it is square). This process is controlled by procedure WINDOW_GEN (given in
the Appendix). It represents each block by a record of type block containing
the coordinate values of its upper-left corner and its length.

Achieving a low execution time bound for the window generation process
is non-trivial. In particular, we want to visit and process each maximal quadtree
block only once. Also, we want to avoid generating non-maximal blocks (or
at least generate a bounded number of them as in the case of our algorithm),
since they introduce redundant work that can be avoided by processing only
the maximal blocks that contain them.' Also, it is preferable to process each
maximal block only once regardless of its size. Figure 3 illustrates some of the
aforementioned cases.

Procedure WINDOW_GEN scans the window row-by-row (in the block domain
rather than in the pixel domain), and visits the blocks within it that have not

I Note that there are 0(n?) non-maximal quadtree blocks inside an n x n window.

428 W.G. Aref and H, Samet

A[B]] o] E[Fla] A 1] ¥
(LN LR LR LT

M o |s |
K o

HNEEEEREN

Fig. 4. The neighboring blocks to the south of blocks A-J in a 10 x 10 window. Blocks I,
M, ¥, B qQ, R, and T are non-maximal, while blocks K, 0, and S are maximal

been visited in previous scans. During this process, for each block that is visited,
say B in row r, procedures GEN_SOUTHERN_MAXTMAT and MAX_BLOCK {given
in the Appendix) generate B’s maximal southern neighboring blocks. WINDOW -
GEN also ensures that any of the remaining columns of row r that lie within
B are skipped. For example, consider the 12x 12 window in Fig. 2a, where
six scans are needed to cover it with maximal quadtree blocks. The blocks
are labeled with numbers that correspond to the order in which they have
been visited. The first scan visits blocks 1, 2, and 3: the second scan visits
blocks 4, b, 6, and 7; the remaining scans visit blocks 8 and 9; 10 and 11;
12 and 13; and 14 and 15. Notice that once blocks 5 and 6 have been visited,
their columns (i.e., 2-5) have been completely processed.

Observe that we are always generating maximal neighboring blocks, or at
least a bounded number of non-maximal neighboring blocks. An example of
this situation arises when processing blocks A-J in the first row of the 10 x 10
window in Fig 4. Each of blocks B, C, D, ¥, &, H, and J can generate at most
one non-maximal neighboring block. Even though these non-maximal blocks
are generated, procedure WINDOW_GEN makes sure that they are skipped by
the next scan since they are subsumed (i.c., contained) in the previously processed
maximal block in the scan. For example, when scanning block K in Fig. 4,
blocks L, M, and ¥ are skipped since they are contained in it. This is easy
to detect because for each block we know the coordinate values of its upper-left
corner and its size.

Procedure WINDOW_GEN uses variable CurrentList to keep track of the
blocks comprising the row currently being processed. It also uses variable
NextList to keep track of the list of the blocks to be processed on .the next
scan (ie., the maximal southern neighbors) that it is constructing. Once a row
has been completely processed, CurrentList is set to NextList and the
next row is processed. WINDOW_GEN terminates whenever processing a row
does not result in any new entries in NextList (e, it is empty). ‘

When WINDOW_GEN processes block B in CurrentList, it checks if B
is contained in the most recently encountered maximal block, say M. If B is
contained in M, then B is non-maximal and is skipped. If B is not contained
in M, then it is maximal (see Lemma 6). In this case, B’s southern neighbors
are generated by GEN_SOUTHERN_MAXIMAL, and B replaces M as the last
maximal block encountered. Notice that the first block in CurrentList is
always maximal (see Lemma 5).

Decomposing a window into maximal quadiree blocks 429

case 1 case 2 case 3 case 4
8
B B B
111 [
Ny Ny Niy—m= Ng NyNo Ng
(a) : {b) {) {d)

Fig. 5. a, b, and ¢ are possible block/southern-neighbor pairs; d cannot occur in a quadtree
decomposition

Procedure GEN SOUTHERN MAXIMAL generates the southern neighbors
(maximal blocks) N; through N, for each maximal block B in CurrentList
that is not contained in a previous maximal block. A number of cases are
possible as illustrated in Fig. 5. If m=1, then N, is greater than or equal to
B. Otherwise, the total width of blocks N; through N, is equal to that of B.
It is impossible for the total length to exceed that of B unless there is only
one neighbor (see Fig. 5b). Procedure MAX _BLOCK takes as its input a window
w and the values of the x and y coordinates of a pixel, say {col,row), and returns
the maximal block in w with {colrow) as its upper-leftmost corner. The resulting
block has width 2° where s is the maximum value of i (0Zi<log T, where Tx T
is the size of the image space) such that row mod 2'=col mod 2'=0 and the
point {row+2%, col+ 27 lies inside w. Notice that all coordinate values assume
that the origin is in the upper-left corner and that x and y increase towards
the right and downwards, respectively.

3 Correctness

By the definition of maximal quadtree blocks inside the window and by the
gquadtree decomposition rules, we know that maximal blocks inside a window
do not overlap. However, proving that the algorithm is correct involves showing
that the execution of the algorithm generates a list of maximal blocks that
lie entirely inside the window and that cover each point inside the window.
In other words, each point p inside window w is covered by one maximal block
that is generated through the execution of the algorithm. This is facilitated
by using the concept of a solid boundary. A solid boundary at point p is defined
to be a vertical or horizontal line segment passing through point p which is
part of a northern or western boundary of the window, or an eastern or southern
boundary of a maximal block. For example, consider Fig. 6a which shows two
solid boundaries passing through point p. Line segment b, is the northern bound-
ary of window w, while line segment b, is the eastern boundary of maximal
block B. Figure 6b shows point p cornered between two solid boundaries that
belong to maximal blocks B and C.

Lemma 1 If two perpendicular solid boundaries pass through point p inside window
w, then applying a maximal block computation at p generates a maximal block

of w.

430 W.G. Aref and H. Samet

b
.
p c
B by B D

{a) (b)

Fig. 6. a point p is the intersection of the window boundary and the side of 2 maximal block;
b point p is at the corner of the sides of two maximal blocks

solid boundary

SN \\ SONONANNND '\\Q\ AR Y
2:\ p) p
™ N B
= N
£\ N
3 .
O N N
2 N
O N 5
L7 N N
N N

(a) (b)

Fig. 7. a point p is the intersection of two solid boundaries; b cannot occur in a quadtree
decomposition

Proof. Consider point p inside w such that there are solid boundaries to the
north and west of p as shown in Fig. 7a. Applying a maximal block computation
at point p (ie., executing procedure MAX_BLOCK) generates a block, say B,
inside w. B is the largest block that can cover p. Otherwise, if p is covered
by another maximal block C of the same or bigger size than B (and C is not
the same as B), then C should interleave with the solid boundaries of p as
shown in Fig. 7b (otherwise, if C and B have the same upper-left corner but
C is bigger than B, then C should have been generated by the maximal block
computation initiated at p). The case of C interleaving with the solid boundaries
of p implies that either C lies partly outside the window (if one of the interleaved
solid boundaries is a window boundary) or that C overlaps with another maxi-
mal block (if one of the interleaved solid boundaries is a maximal block bound-
ary). However, both of the possibilities contradict the definition of a maximal
block (i.e., that it has to lie inside the window and that maximal blocks do
not overlap), and thus C and B cannot be different. Since B is generated by
a maximal block computatlon B must be the largest block inside w that can
cover point p. Therefore, B is maximal. [

Lemma 2 If two perpendicular solid boundaries pass through any point p inside
window w, then p is visited by the algorithm,

Proof. Since maximal blocks do not overlap, point p inside w can be bounded
by solid boundaries in one of five cases as illustrated in Fig. 8a—e. It is easy
to see that in each case point p is visited by the algorithm, and that a maximal

Decomposing a window into maximal quadtree blocks 431

window
boundary window
boundary .
P SO :
= 5 p >N
8E B E2Y e
£3 EER
. EEN
p
AN ~

(a) b) {c)

¢ |8 B
3 B
(d) (e)

Fig. 8. a Two window boundaries border point p; b, ¢ one window boundary and a side
of a maximal block border p; d, and e sides of two maximal blecks border p

) -l- .I-E-I- -Iol-lo

Fig. 9. Marked points are bounded by two solid boundaries and are visited by the algorithm.
Each point corresponds to a maximal block

block computation is applied in each case (thereby generating a maximal block
cornered at p as shown in Lemma 1). In cases a and b, p is visited in the
first iteration of the main loop of WINDOW_GEN (i.e., while processing the first
row of the window where we generate the southern necighbors of the fictitious
block having a width equal to that of the window). In cases c-¢, p is visited
when generating the southern neighbors of the maximal block B (in cases ¢
and d, p is visited when generating the first southern neighbor of B, while
in case e p is visited when generating the block to the right of block C to
the south of B). [}

Theorem 1 Each point inside a window is covered by one and only one maximal
block generated by the algorithm.

Proof.-Given a window w and its decomposition into maximal blocks (e.g.,
Fig. 9), then all the points at the upper-left corner of the maximal blocks inside
w correspond to points with two perpendicular solid boundaries. We know

432 W.G. Aref and H. Samet

CoC1 C2 Ca C4 Ro
Ri
Rz
Ra
(a) (b)
a column of
maximal blocks
Co Ct C2 Ca C4 Ciﬁ(Ca Ca Ca
Ro : Ro
Zeo| Zio Za20 Z30
R1 Ral]
Zoi| Z11 221 Z31]|
Re Rz
A3 Zozf 212 22 Zaz Ra | T [

a row of maximal blocks

(c) (d)
Fig. 10. a The window is divided into vertical strips; b horizontal sirips; ¢ maximal zones,
d the relation between maximal blocks and maximal zones

from Lemma 2 that all these points are visited by the algorithm. Moreover,
from Lemma 1 we know that maximal blocks are generated at each of these
points. Therefore, all the maximal blocks inside the window are visited and
generated by the algorithm. Now, making use of the fact that maximal blocks
cover the whole window and that they do not overlap, we have that every
point inside the window is covered by one and only one maximal block. [

Theorem 1 is not sufficient to prove the algorithm’s correctness. It remains
to show that non-maximal blocks are handled properly by the algorithm. In
particular, we need to show that first block in each scan of the algorithm is
a maximal block and that non-maximal blocks are processed by the algorithm
immediately after the maximal blocks that contain them and nowhere else. In
this case, the way the algorithm detects and suppresses non-maximal blocks
would be correct.

In order to carry out the proofs, we first introduce the following concepts
and definitions. Assume a window having (c, #} as the coordinate values of its
upper-left corner with height w, (ic, in the y direction) and width w,, (ie,
in the x direction). First, let us look at the x direction. Processing along the
width w,,, we subdivide the window into p vertical strips with (¢;, 1) (0Zi<p)
as coordinate values of their upper-left corner where cy=c, and ¢;=¢;_, +2f
such that ¢;-;mod2'=0 and ¢;_;mod2*'+0 and ¢;_,+2'Zc+w,. p is
defined so that ¢,=c+w,. An example of such a decomposition into vertlcaE
strips is shown in F1g 10a.

Decomposing a window inte maximal quadiree blocks 433

A

IEREENUNIINNENE

|
|

| B!AIC

Fig. 11. Blocks B and C are in the same row of a maximal zone. There are five blocks between
each of B and € and the northern border of the window

We now subdivide the window into horizontal strips in the same way. In
particular, we have g horizontal strips with (c, r;), (0=<i=<gq) as the coordinate
values of their upper-left corner where ro=r and r,=r,_;+2’ such that
rioymod2'=0and r;_;mod 2140 and r; ,+2/<r+w,. ¢ is defined so that
F,=r+w, An example of such a decomposition into horizontal strips is shown
in Fig. 10b.

Now we define the term maximal zones as follows. A maximal zone, say
Z;;, is the region between the vertical strips having ¢; and ¢; ., as the x-coordinate
values of their upper-left corner and the horizontal strips having r; and ;.
as the y-coordinate values of their upper-left corner where 0<i<p and 0<j<q.
The result is a decomposition of the window into a two-dimensional grid of
maximal zones. An example of a decomposition into maximal zones is shown
in Fig. 10c.

In the interest of brevity, we give below some properties of maximal zones
without proving them. They are illustrated in Fig, 10d.

Property 1 Each maximal block inside the window is entirely contained in one
and only one maximal zone.

Property 2 All the maximal blocks inside a maximal zone are of the same size.

Property 3 A maximal zone contains either one maximal block, or one row of
maximal blocks, or one column of maximal blocks.

Property 4 All the southern neighbors of a block lie in one maximal zone.

Lemma 4 Al the maximal blocks arranged in a row inside a maximal zone are
processed in the same iteration of the main loop of procedure WINDOW_GEN.

Proof. To prove this we need to show that any two maximal blocks, say B
and C, lying in the same row inside a maximal zone, say z, have the same
number of neighboring norithern maximal blocks if we start counting from the
northern boundary of the window and descend in the southern direction until
we reach B or C. For example, consider Fig. 11 where blocks B and C lie
in the same row inside a maximal zone and there are five northern maximal
blocks between each of B and C and the northern boundary of the window.
Assume that there are | maximal zones between the northern boundary of the

434 W.G. Aref and H. Samet

o
~ [

[o2]
e
[

[
~ | D

4| 5) 12 P
18

8| ol10] 11 14] 15190

- Fig, 12. Block 14 is the first in the list in the fourth traversal, while block 17 is the first
in the list in the {ifth traversal

window and maximal zone z. By Property 4, the southern neighbors of any
of the blocks inside the ! zones can only be inside one of these I zones. Also,
recall from Property 3 that a maximal zone may contain either one maximal
block, or one row of maximal blocks, or one column of maximal blocks. Each
one of the [zones to the north of z falls into any one of these three cases.
It is easy to sec that no matter how each maximal zone of the ! zones is filled
with maximal! blocks, blocks B and C will always have the same number of
neighboring northern maximal blocks when we start counting from the northern
boundary of the window. Now, since blocks B and C have the same number
of northern blocks above them, each execution of the main loop of procedure
WINDOW_GEN will process one level of these northern neighbors of B and C
and will generate the southern blocks in the following level until blocks B and
C are reached. Therefore, blocks B and C will also be processed by the same .
iteration of the main loop of procedure WINDOW_GEN, and thus they will be
processed in one scan. [}

Lemma 5 The first element in the current scan (i.e., the first block in Current-
List) is always a maximal block.

Proof. When processing the first row, both boundaries of the first block, say
B, are window boundaries and hence are solid boundaries. Therefore, B is maxi-
mal. The first southern neighbor of B that is generated (and hence the first
element in CurrentList of the next scan), say C, is also maximal since it
is cornered by two perpendicular solid boundaries (.., the western boundary
of the window and southern boundary B which is maximal). This is true for -
all southern neighboring blocks that are gencrated and that have the western
boundary of the window as one of their solid boundaries. One more case that
has to be considered arises when the first several vertical strips are completely
processed (e.g., Fig. 12). From Lemma 4 we know that a row of maximal blocks
inside a maximal zone is always processed at the same time. Therefore, the
first element in CurrentList is always the lefi-most block in a maximal zone
{(which is always maximal since its upper and left boundaries are solid). []

Lemma 6 Non-maximal blocks appear in CurrentList immediately following
the maximal blocks that contain them and nowhere else.

Proof. Maximal zones mean that non-maximal blocks can be generated only
when a zone contains a row of maximal blocks, say B, ... B, and each of them

Decomposing a window into maximal quadtree blocks 435

row of maximal blocks

[~
HEEEEE
(@) Ba By
row of maximal biocks Bg
(b) (c)

Fig. 13. a All southern neighbors are of smaller size (all are maximal); b southern neighbors
are of the same size (all are maximal); ¢ B,, By, and B, are non-maximal. The southern
neighbor B, is maximal and contains B,, B;, and B,

generates its southern neighbors. Some of these southern neighbors can be non-
maximal. In this case, all blocks except B, can generate non-maximal blocks
since from Lemma 1 we have that B,’s southern neighbor(s) is(are) always maxi-
mal. From Lemma 4 we know that blocks B, through B, are added to Cur-
rentList at the same time and in the same relative order (since scanning
and processing is from left to right). For each block B;(I<i=<l) one of the
three cases illustrated in Fig. 13 can occur. In each case, the positions of the
non-maximal blocks in CurrentList immediately follow the maximal blocks
that contain them. [

Lemma 6 is important because it means that non-maximal blocks appear
immediately adjacent to the maximal blocks. We can detect their presence, and
eliminate them without wasting work in generating their southern neighbots.
Also, since they are adjacent, we only need to store one maximal block (the
current one) and compare it with the blocks next to it in the list, possibly
the non-maximal ones, until another maximal block is encountered. This enables
us to detect non-maximality in constant time.

From the above lemmas we have the following theorem.

Theorem 2 The window decomposition algorithm (WINDOW_GEN) generates all
the maximal blocks inside the window, and only maximal blocks, and hence is
correct. []

4 Complexity analysis of the window decomposition algorithm

In this section we derive the worst case execution time complexity of the window
decomposition algorithm. Our analysis assumes that the window is square.

It is known that in the worst case, the number of maximal quadtree blocks
inside a square window of size n xn is N=3(2n—logn)—5 [2]. What remains
to be done is to compute the cost of determining the maximal blocks comprising
the window. This consists of the work, say T, to gencrate a maximal block,
say B, and the work that is wasted, say T, in generating southern neighboring

436 W.G. Aref and H. Samet

blocks of B that are non-maximal. Therefore, the total execution time of the
window decomposition algorithm is N (T, + T,).

Given a point (x, y) in a Tx T space, there can be at most log T+ 1 different
blocks of size 2 (0<i <log T) with (x, y) as their upper-left corner. We use binary
search through this set of blocks to determine the maximal block inside the
window. Thus T,, is O(loglog T).

To compute T,,, we need to show that each maximal block inside the window
is generated once, and that only a limited number of non-maximal blocks are
generated. We say that the work required to generate blocks that are not maxi-
mal with respect to a particular window is wasted. Such blocks are ignored
(ie., bypassed) in subsequent processing. For example, the work in generating
the southern neighbors of blocks B, C, D, ¥, @, H, and J (ie, I, M, N, B Q,
R, and T, respectively) in Fig. 4 is wasted. This is formulated and proved in
the following two Lemmas.

Lemma 7 Each maximal block inside window w is generated only once.

Progf. In Theorem 1, we proved that every maximal block inside window w
is generated by the algorithm. To show that it is generated only once we observe
that each block processed by the algorithm generates only its southern neighbors.
The facts that non-maximal blocks are bypassed by the algorithm, and that
maximal blocks do not overlap, mean that each maximal block is generated
as the southern neigbor of only one other maximal block. [:

Lemma 8 Each block visited by the algorithm can waste at most O{loglog T)
work.

Proof. Assume that the visited block B generates wasted work. We show that
this work takes O(loglog T) time. B can generate neighboring southern maximal
blocks that are either smaller or larger. When the size of the neighboring block
is greater than or equal to the size of B, then the algorithm takes O{loglog T)
time regardless of whether or not it is wasted and the Lemma holds. When
more than one southern block is generated (this number can be of the same
order as the size of B), we need to show that all the generated southern blocks
are maximal, and cannot be bypassed, ie., they are not wasted work. We shail
prove this by contradiction. Assume that B generates more than one southern
block and that all of them are bypassed (not visited) in subsequent processing.
It should be clear that due to the nature of the quadtree decomposition of
space, either all of them are visited, or all are bypassed. Our assumption means
that there exists a block C whose width is greater than the total width of
B’s southern neighbors. Let (B,, B,) and (C,, C,) be the locations of the upper-
leftmost pixels of blocks B and C, respectively. Also, let B, and C, be the widths
of blocks B and C, respectively. It is easy to ses that the fact that B and C
are maximal blocks that are southern neighbors of other visited maximal blocks
means that C,=B,+ B,. The fact that C,> B, means that the lower-rightmost
pixel of C is at (C,+C,—1, C,+ C,—1) which is in the window. Therefore,
(B;+B,—1,B,+ B,— 1) which is the lower-rightmost pixel of B’s southern neighbor
of equal size, say D, is also in the window. This means that D is B’s neighboring

Decomposing a window into maximal quadtree blocks 437

Average CPU-time {(in miliseconds)

New Algorithm
0ld Algorithm

.25
.20
.15
.10
.05

.00
.95 //
9 0 "-. ..‘-

.85

[R = B I = T S G WO

10.00 15.00 lecg2{Map Size)

Fig. 14. Comparison of our bottom-up algorithm and a top-down window decomposition
algorithm [6] using 10000 random rectangles

southern maximal block. However, this contradicts the existence of more than
one such block. Thus the assumption that all of the southern neighboring blocks
of B are bypassed is invalid. Therefore, no work is wasted in generating B’s
southern neighbors in this case, and the Lemma holds. []

Because there are at most O(n) visited blocks, the total time wasted is
T,=0{nloglog T). Combining the results for T, and T, means that we have
proved the following theorem.

Theorem 3 Given an nxn window in a Tx T image, the worst case execution
time for the window decomposition algorithm is O(nloglog T). [J

5 Empirical results

The algorithm has been implemented on a Sun workstation (Sparc I). We com-
pared it experimentally with an alternative top-down approach [6]. We random-
ly generated 10000 rectangles of a given window area and computed the average
CPU time to decompose each rectangle using the two approaches. Figure 14
shows the result of the comparison. Our new algorithm proved to be practical
and faster than the approach in [6].

6 Conclusions

A bottom-up algorithm for decomposing a window into maximal quadtree
blocks has been presented. The algorithm serves as the underlying mechanism
on top of which query answering algorithms can be built. We plan to investigate
the algorithm’s usage for answering window queries in a disk-based spatial
database environment where the algorithm’s I/O behavior is of greater concern.

438 W.G. Aref and H. Samet

7 Appendix
Pseudo code for the window decomposition routine

pointer list procedure WENDOW_GEN(W);

/* Generate and return the maximal blocks that comprise window W. The window is represented by
a record of type window with four fields ROW, COL, WIDTH, and HEIGHT corresponding to the y
coordinate value of its upper-leftmost pixel, the x coordimate value of its upper-leftmost
pixel, ite width, and its height, respectively. The blocks are added by repeatedly finding
southern neighbors and keeping them in a linked list whose first and last elements are
pointed at by NextList and EndNextList, respectively. The bleck currently being processed
is pointed at by CurrentList. CurrentList is initialized to contain one block of length
WIDTH with an upper-leftmost pixel at (COL,RON~WIDTH). */

begin

value pointer window W; /* declaration of arguments to WINDOW_GEN %/
pointer list MaxBlockList,EndMaxBlockList; /# contains the resulting blocks #/
pointer list CurrentlList,NextList,EndNextList; /# local variable definitions */
peinter block CurrentBlock;
NextList:=NIL;
CurrentBlock:=create(block);
ROW (CurrentBlock) :=ROW (W) -WIDTH{W) ;
COL(CurrentBlock) :=COL{W};
LEN (CurrentBlock) :=WIDTH{W) ;
GEN_SOUTHERN_MAXIMAL(NextList,CurrentBlock,W,EndNextList);
if null(RextList) then return(NIL)
else
begin
MaxBlockList:=EndMaxBlockList:=create(list);
DATA(MaxBlockList) :=DATA(NextList);
NEXT (MaxBlockList) :=NIL;
NextList:=NEXT(NextList);
do
begin
CurrentList:=NextList;
NextList:=EndNextList:=NIL;
while not{null{CurrentlList)} do
begin
CurrentBlock:=DATA(CurrentList};
HEXT(EndMaxBlockList):=create(list);
EndMaxBlockList :=NEXT(EndMaxBlockList);
DATA(EndMaxBlockList}:=CurrentBlock;
CurrentList:=NEXT{CurrentList);
while not{null{CurrentList)} and CONTAINED(DATA(CurrentList},CurrentBlock} do
Currenthist :=NEXT(CurrentList); /# CONTAINED is not given here. */
GEN_SOUTHERN_MAXIMAL(NextList,CurrentBleck,¥,EndNextlist);
end;
end
until null{NextList);
return{MaxBlockList};
end;
end;

procedure GEN_SUUTHERH_HAXIHAL(NextList,B,H,EndNextLiat);

/* Find the maximal blocks to the south of block B in window W and add them to the end
of the list having fields DATA and BEXT which starts at NextList and ends at EndNextList.
If NextList is NIL, then set it to the first block that is added. All blocks are represented
by records of type block with three fields ROW, COL, LEN corresponding to the y coordinate
value of its upper-leftmost pixel, the x coordinate value of its upper-leftmosti pixel,

Decomposing a window into maximal guadtree blocks 439

and its length, respectively. */

begin

reference pointer list NextList,EndNextList; /* declaration of arguments %/
value pointer block B;
value pointer window W;
pointer bleck T; /+ local variable */
integer LEFT,RIGHT;
T:=MAX_BLOCK (ROW(B}+LEN(B),COL(B)},%); /% Allocate first block. */
if null(T) then return
else
begin /#* Allocate first bleck and initialize start of NextList. #/
if null{NextList) then NextList:=EndNextList:=create(list)
else EndNextList:=NEAT{EndNextList):=create(list};
DATA(EndNextList):=T;
LEFT:=COL(B)+LEN(T);
RIGHT :=COL{B)+LEN(B);
while LEFT < RIGHT do /# Generate rest of blocks. %/
begin
EndNextList :=NEXT (EndNextList) :=create(list);
DATA(EndNextList) :=MAX_BLOCK(ROW{B)+LEN{B) ,LEFT,W);
LEFT:=LEFT+LEN (DATA(EndNextList));
end;
NEXT(EndNextList):=NIL; /# Set pointer at the end of the list to NIL. */
end;

end;

pointer block procedure MAX_BLOCK{ROW,CODL,W);
/* Find the largest square block inside window W for which (ROW,COL) is the first

(upper-leftmost) pixel. The length of the side of the block is a power of 2. */

begin

value integer ROW,COL;

value pointer window W;

integer I;

pointer block b;

I:=0;

while IN_WINDOW(ROW+2#*I-1,COL+2%%I-1,W) and ({ROW mod 2%*I)=0) and ((COL mod 2%%I)=0)
do I:=I+1; /% IN_WINDOW is not given here. */

if I=0 then return(NIL) /* No maximal block exists. %/

else
begin
B:=create{block);
ROW(B) :=RON;
COL(B) :=COL;
LEN{B} :=24%(I~1};
return(d);
end;
end;
References

A

. Aref, W.G., Samet, H.: Efficient processing of window queries in the pyramid data structure.

In Proceedings of the 9th. ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS), pp. 265-272, Nashville, TN, April 1990

. Dyer, C.R.: The space efficiency of quadtrees. Comput. Graph. Image Process. 19(4), 335-348

(1982)

. Klinger, A.: Patterns and search statistics. In: Rustagi, J.S. (ed.) Optimizing methods in

statistics, pp. 303-337. New York: Academic Press 1971

. Samet, H.: Applications of spatial data structures: computer graphics, image processing,

and GIS. Reading, MA: Addison-Wesley 1990

Samet, H.: The design and analysis of spatial data structures. Reading, MA: Addison-Wesley
1990

Samet, H., Rosenfeld, A., Shaffer, C., Nelson, R.,, Huang, Y., Fujimura, K.: Application
of hierarchical data structures to geographical information systems: Phase IV. Technical
Report CS-1578, University of Maryland, College Park, MD, December 1985

