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Abstract

An algorithm is presented to answer window queries in
a quadtree-based spatial database environment by retriev-
ing the covering blocks in the underlying spatial database.
It works by decomposing the window operation into sub-
operations over smaller window partitions. These partitions
are the quadtree blocks corresponding to the window. Al-
though a block b in the underlying spatial database may
cover several of the smaller window partitions, b is only re-
trieved once. As a result, the algorithm generates an opti-
mal number of disk I/O requests to answer a window query
(i-e., one request per covering block). The algorithm uses
an auxiliary main-memory data structure, called the active
border, which requires additional storage of O(n), for a win-
dow query of size n X n. An analysis of the algorithm’s ex-
ecution time and space requirements are given, as are some
experimental results.

1 Introduction

Because of the large volume of spatial databases, spatial ac-
cess methods are usually used to organize and speed up the
retrieval of spatial objects. Several spatial access methods
make use of a regular decomposition of space (such as that
induced by a quadtree) in order to organize and store spa-
tial data. We focus on a disjoint decomposition of space
(i-e., features are not permitted to overlap). Some exam-
ples of spatial databases with disjoint features include crop
coverage, road networks, topography, etc.

The large volume of spatial data imposes the need to
store it in disk files. However, indexing techniques based
on disjoint decomposition enables spatial features to be ac-
cessed quickly without having to search the entire database.
On the other hand, as a result of decomposing the under-
lying space, a spatial feature gets partitioned into multiple
smaller pieces, which needs special treatment both from the
view points of the indexing method and the spatial opera-
tions. In this paper, our focus is on one of the very important
spatial operations, namely the window retrieval operation.
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Usually, spatial features span a wide feature space. How-
ever, users are more interested in viewing or querying only
portions of the feature space instead of the whole space. Ex-
tracting parts of the space to work with in subsequent oper-
ations is done by windowing, where the query window can
be of any polygonal shape. Given a window w, some exam-
ples of window-based queries are: report all features inside
w, intersect feature f with feature b only inside w, deter-
mine if feature f exists in w, etc. In this paper, we present
a new window retrieval algorithm that performs a minimal
amount of disk reads to the underlying spatial database to
answer the window query.

The rest of the paper is organized as follows. Section 2
covers some background material. In Sections 3 and 4 we
present our new window algorithm and analyze its perfor-
mance. Section 5 gives empirical results of the performance
of our new algorithm in contrast to other window retrieval
algorithms. Section 6 contains concluding remarks.

2 Background

2.1 Alternative Data Representations

There are many ways of representing and organizing spatial
objects inside a spatial database. One way is to represent a
spatial object by only one entity inside the data structure,
e.g., by a point in higher dimensions as in the case of repre-
senting an n-dimensional polygon having k& boundary points
by a point in nk-dimensions and then store it in a point data
structure (e.g., the Grid File [26]), or by some conservative
approximation of the object as in the case of representing
the same polygon by its minimum enclosing rectangle (e.g.,
the R-tree [17]). An alternative way is to represent a spatial
object by more than one entity inside the data structure,
e.g., by partitioning the spatial object into a collection of
convex polygons (the cell tree [15]), a collection of square
blocks (the quadtree [21]), or a collection of rectangles (the
R*-tree [12]). In some of these data structures a spatial ob-
ject is represented by its internal region, i.e., based on the
spatial occupancy of the object. Examples of data struc-
tures that make use of this representation are the region
quadtree [21, 32], the bintree [22], and the Z-Order [28]. In
this paper, we focus on the latter group of data structures.

There are several advantages for using access methods
that are based on spatial occupancy. Representations of
spatial data that are based on this method are very suitable
for a wide variety of data intensive applications (e.g., medi-
cal imagery and geographical information systems). Several



researchers have investigated the usage of these structures
inside a database environment (e.g., PROBE [27], SIRO-
DBMS [1], and SAND [3]). As pointed out in [13], it is
straightforward to implement these data structures in a
database system because they require common facilities that
are already present in almost all database systems (mainly
any access method that provides both sequential and direct
access, e.g., the B-Tree). In this paper, we use the linear
quadtree [13, 32] as the underlying representation of the ob-
jects in the spatial database. For a comparison of the differ-
ent data structures and the advantages and disadvantages
of each one, see [32].

2.2 The Linear Quadtree

We assume that the underlying spatial database is stored
in a disk-based linear quadtree. A quadtree is based on
the principle of recursive regular decomposition of space into
a maximal set of blocks whose sides are of size power of
two and are placed at predetermined positions. The spatial
objects are stored into the overlapping quadtree blocks. This
way, the quadtree serves as a spatial index for the objects
in the underlying spatial database.

The linear quadtree is constructed as follows. We start
with a T x T object array of unit squares (termed blocks)
where T is a power of 2, and successively subdivide the array
into quadrants. The subdivision process stops when blocks
are obtained that consist of homogeneous data, i.e., blocks
that are entirely contained in an object or entirely outside it.
One way of representing this process is by a tree of degree
4 in which the root node represents the entire object ar-
ray, non-leaf nodes correspond to non-homogeneous blocks
(partly inside and partly outside an object), and the leaf
nodes correspond to those blocks of the array for which no
further subdivision is necessary. Leaf nodes are said to be
black or white depending on whether their corresponding
blocks are entirely within or outside of an object, respec-
tively. All non-leaf nodes are said to be gray.

After decomposing the object into blocks using quadtree
decomposition, instead of representing an object by a tree
structure, an alternative way is to use the linear quadtree.
In the linear quadtree, we store only the non-empty (black)
leaf nodes. As a result, each object is represented by a set
of squares (termed Morton blocks [24]) that collectively ap-
proximate (and cover) the object. A one-dimensional key
value is assigned to each Morton block which maps the two-
dimensional Morton blocks into the one-dimensional space.
Then, one of the common one-dimensional indexing tech-
niques, e.g., the B-tree, is used to index the blocks. Morton
blocks are ordered by their key value which is a function of
two parameters: the coordinate values of one of its corners
and the size of the square region corresponding to the Mor-
ton block. In addition, each Morton block has an identifier
that indicates the object to which it belongs.

One way of performing the mapping of the n-dimensional
space into the one-dimensional space is by using space filling
curves, e.g., the Peano curve [29], or the Hilbert curve [18].
A space filling curve acts like a thread that passes through
every cell element (or pixel) in the n-dimensional space so
that every cell is visited only once. Thus, a space filling
curve imposes a linear order of the cells in the n-dimensional
space. The linear quadtree is based on the two-dimensional
Peano curve (also termed the Z- or N-order [28]). Many
studies have been conducted to compare the performance
of spatial operations for spatial databases adopting certain
space filling orders. The reader is referred to [2, 10, 14, 20].
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Figure 1: An example quadtree for storing line seg-
ments.

The linear quadtree can be used to store a variety of spa-
tial object types. For example, a quadtree data structure
for storing line segments [25] subdivides the feature space
successively into four equal-sized quadrants. If the space
contains more line segments than the capacity of a quad-
rant, then it is subdivided into quadrants, subquadrants,
and so on, until blocks are obtained that overlap with at
most a maximum number of line segments or that are en-
tirely empty. A sample quadtree for storing line segments is
given in Figure 1. For a comprehensive discussion of space
filling curves and quadtrees variants, see [31, 32].

2.3 Spatial Operations

We overview three very important operations for spatial
query processing, namely the nearest neighbor, the spatial
join, and the window retrieval operations. We use example
spatial databases for illustration. Figure 2 contains sample
schemas for the spatial databases and Figure 3 gives a road-
network database where roads are the database objects.

(a) road-network - name, type: char(30); left-zip-code,
right-zip-code: integer; coords: line-segment

(b) land-use - name, usage: char(30); zip-code: integer;

density: float; region: polygon

Figure 2: Sample schemas of the (a) road-network
database, and (b) the land-use database.

The “nearest_to” operation can be considered as an
aggregate function over the entire set of objects in the
database (e.g., the spatial equivalent of the aggregate func-
tion “min()”). In fact, nearest_to can be expressed as
min(distance(o,p)), where distance is a scalar function that
returns the distance between object o and a query point

Figure 3: Part of a map sheet of the city of Falls
Church, Virginia.
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Figure 4: (a) A simple land-use database, (b) a
simple road-network database, (c) the land-
use/road pairs that intersect each other.

p. o ranges over all the objects of the underlying database.
Efficient algorithms exist for evaluating the min(distance)
function that avoid scanning the entire database [11, 19].

2.3.1 The Spatial Join Operation

Spatial join is a fundamental operation for answering queries
that involve spatial predicates. It combines entities from
two spatial databases into single entities whenever the com-
bination satisfies the spatial join condition (e.g., if they
overlap in space). For example, Figure 4c shows the re-
sult of joining a land-use database (Figure 4a) with a
road-network database (Figure 4b). The join condition
in this case is: landuse.region intersects road.coords
(the schemas for the road-network and land-use databases
are given in Figure 2).

As pointed out in [8], both the CPU and the disk read
costs of the spatial join operation are very significant. As
a result, extensive research has been conducted on alter-
native ways of processing the spatial join efficiently (e.g.,
see [6, 7, 8,16, 27, 30]). Becker [7], and Becker, Hinrichs, and
Finke [6] propose an algorithm for the efficient evaluation of
spatial join for databases of point objects. Ginther [16]
presents a hierarchical spatial join algorithm that applies
efficiently for a family of tree-based data structures, termed
the generalization tree. Brinkhoff, Kriegel, and Seeger [8]
apply a similar idea in the context of the R-tree [17]. In
addition, they present several techniques that reduce both
the disk read and CPU costs of the spatial join significantly.
Rotem [30], and later, Lu and Han [23], suggest precom-
puting the spatial object pairs satisfying a certain spatial
relationship and storing them in spatial join indices in order
to speed up the spatial join at query runtime. Orenstein and
Manola [27] present two algorithms for spatial join where the
underlying representation of spatial data is the Z-Order [28].

2.3.2 The Window Overlap and Containment Operations

Window overlap and containment are central operations in
spatial databases, and serve as building blocks for a number

Figure 5: Roads of the city of Falls Church that
are contained in window w. The origin of the space
is at the lower-left corner.
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Figure 6: The decomposition of (a) a 12 x 12
window, and (b) a 13 x 13 window into maximal
quadtree blocks.

of queries. A window can be in the form of a rectangle or
a polygon. For example, Figure 5 shows the roads in the
city of Falls Church that are contained in window w (with
corner values (100,100) and (300,300), respectively.) The
roads that qualify can be fed to other operations for closer
investigation.

Orenstein and Manola [27] give an algorithm for answer-
ing window queries where they treat a window query as a
special form of a spatial filter operation. They treat the spa-
tial database as the first input stream and the window as the
second input stream and apply their spatial filter algorithm.

Consider a window query which seeks to determine the
spatial objects that overlap window w on the spatial database
of line segments given in Figure 1. Owur approach is to
retrieve the set of blocks, say S., of the underlying spa-
tial database that overlap the set of quadtree blocks, say
W, that comprise the window. The rationale for using the
quadtree blocks of the window is to match the quadtree de-
composition of the underlying spatial database. This makes
it more straightforward to answer the window query since
there is a direct correspondence between each window block
and some overlapping quadtree block(s) in the underlying
spatial database. This approach is also the same as the one
n [27]. The answer to the window query is the union of all
the answers generated by querying the underlying spatial
database with the maximal quadtree blocks comprising the
window. We term this algorithm Algorithm-1. We briefly
describe Algorithm-1 below. A more detailed description is
given in [4].

Algorithm-1uses a quadtree window decomposition mech-
anism. Figure 6 shows the quadtree decomposition of two
windows. The decomposition can be achieved using a win-
dow decomposition algorithm given in [5]. It decomposes a
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Figure 7: Examples where more than one window
block retrieves the same block of the database.

two-dimensional window of size n X n in a feature space (e.g.,
an image) of size T x T into its maximal quadtree blocks in
O(nloglog T') time. Once the set W,, has been determined,
Algorithm-1 accesses the underlying spatial database for
each window block b in W,, and retrieves the database
blocks that intersect b.

The drawback of this algorithm is that many of the el-
ements of S, may be retrieved more than once. For ex-
ample, in Figure 7, the algorithm would retrieve block p of
the underlying spatial database four times (once for each
of the maximal window blocks 1, 4, 8, and 10). We assume
that the underlying spatial database is disk-resident, and we
often speak of the operation of retrieving a block of the un-
derlying spatial database as a disk I/O request. This means
that redundant disk I/O requests will result."

The problem of Algorithm-1is that the process of gen-
erating the maximal blocks that comprise the window only
depends on the query window and not on the decomposi-
tion of space induced by the underlying spatial database.
We overcome this problem by generating and retrieving each
covering block in the database just once. This is achieved
by controlling the window decomposition procedure through
the use of information about blocks of the underlying spa-
tial database that have already been retrieved. We use an
approach based on active borders [33], at the expense of
some extra storage. A detailed description of our approach
is given in the next section.

It is important to note that we retrieve blocks in the
underlying spatial database by use of partial information
about their relationship to other blocks (e.g., containment
and overlap). We do not retrieve a block of the database by
its identifier. Instead, we are given the spatial description of
a window block, say b. The spatial description of b is used
to retrieve all the blocks of the database that are spatially
related to b (e.g., the blocks that contain, or are contained
in, b). Blocks in the database can be retrieved more than
once if they satisfy some spatial relationship with respect to
different window blocks.

L This problem may be alleviated via appropriate use of buffering
techniques. However, in this paper we show how to avoid the problem
entirely by retrieving each block of the underlying spatial database
just once without relying on buffering techniques.

3 The New Algorithm

In Algorithm-1, described in Section 2, when a block ¢ in
the underlying spatial database covers more than one max-
imal quadtree block in the window, g will be retrieved sev-
eral times. This could be overcome by avoiding the invoca-
tion of the retrieval step for some of the maximal quadtree
blocks. The issue then is how do we skip some of the maxi-
mal quadtree blocks in the window. In order to understand
this issue, we briefly focus on the relation between the max-
imal quadtree blocks of the window decomposition and the
quadtree blocks in the underlying spatial database.

Assume that b is a maximal window block that is gen-
erated by the window decomposition algorithm. Due to the
quadtree decomposition of both the window and the un-
derlying spatial database, b can either be contained in, or
contain, one or more quadtree blocks of the underlying spa-
tial database. In particular, there are three possible cases as
llustrated by Figure 7. Case 1 is demonstrated in the figure
by window block 2 which contains more than one quadtree
block of the underlying spatial database. All of these blocks
have to be retrieved (e.g., from the disk), and processed
by the algorithm (e.g., the spatial objects associated with
these blocks will be reported as intersecting the window).
The second case is illustrated by window block 9 of Fig-
ure 7. Block 9 contains exactly one block of the underlying
spatial database which will have to be retrieved (e.g., from
the disk) as well. The third case is demonstrated by window
blocks 1, 4, 8, and 10 of Figure 7 which all require retrieving
(e.g., from the disk) the same quadtree block (i.e., block p
of the underlying spatial database). Case 3 arises frequently
in any typical window query, as shown by the experiments
conducted in Section 5, thereby resulting in a large number
of redundant disk I/O requests.

Our new algorithm is based on the following observation
(its proof can be found in [4]):

Assume that a block, say b, is a maximal block
that lies inside the window w and overlaps with
a block of the underlying spatial database, say g.
If g is of greater size than b, then ¢ must intersect
with at least one of the boundaries of the window
w (refer to Figure 8 for illustration).

In other words, there cannot be database blocks that are big-
ger than the the intersecting window blocks which are in the
middle of the query window, These big database blocks have
to intersect the boundary of the query window. Owur win-
dow retrieval algorithm is based on this observation which
we illustrate further later in this section.

The new  algorithm  consists of  procedures
WINDOW RETRIEVE, GEN_SOUTHERN MAXIMAL, and MAX BLOCK.
It works for an arbitrary rectangular window (i.e., it need
not be square). We avoid generating non-maximal quadtree
blocks in the window (or at least generate a bounded num-
ber of them) by using the same technique as in [5], which
we outline below. Note that there are O(n?) non-maximal
blocks inside an n X n window. Also, each maximal quadtree
block in the window is processed only once (i.e., as a neigh-
bor of another node) regardless of its size.

We make use of an active border data structure [33] which
is a separator between the window regions that have already
been processed and the rest of the window. The active bor-
der serves as the spatial analog to the hash-table, that we
tailor to match the needs of this type of spatial retrieval.
The active border can also be viewed as simulating the spa-
tial equivalent of a sort-merge list of pages which is used
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Figure 8: Possible overlaps between blocks of the
database and the (a) northern, (b) western, (c)
eastern, and (d) southern borders of the window.

in database query processing when accessing data through
secondary indexes [9].

Note that the active border in our case differs from that
in [33] (which looks like a staircase) because of the nature
of the block traversal process. In particular, we traverse the
blocks in the window in a row-by-row manner rather than
in quadrant order (i.e., NW, NE, SW, SE).

Figure 9 represents the first five steps of the execution of
the algorithm for the query window w. The heavy lines in
Figure 9a represents the active border for window w at the
initial stage of the algorithm. In generating a new block,
the window decomposer has to consult the active border in
order to avoid generating a disk I/O request for a window
region that has already been processed by a block of the
underlying spatial database that has already been retrieved.

The active border is maintained as follows. First, a
window block, say b, is generated by the window decom-
poser and a disk I/O request is issued to access the region
of the underlying spatial database corresponding to b. As-
sume that b overlaps in space with block % in the database.
Therefore, u is retrieved as a result of the disk I/O request
corresponding to b. The spatial objects inside u are pro-
cessed and thus there is no need to retrieve u again. As
a result, the active border needs to be updated by block b
or 4 depending on which one provides more coverage of the
window region. Figure 9 illustrates the updating process of
the active border. If u has a larger overlap with the unpro-
cessed portion of the window than b (e.g. window block 1
and block p of the underlying spatial database in Figure 9a,
as well as window block 3 and block q of the database), then
the active border is expanded using u’s region (Figure 9b).
If » is contained in b (e.g., window block 2 and block r of
the database in Figure 9a), then all the other blocks in the
database have to be retrieved as well, and the active border
is expanded by b’s region (Figure 9c). If the sizes of b and
u are the same (e.g., window block 12 and block s of the
database in Figure 9a), then the active border is expanded
by either one of them (Figure 9e). Notice that, if we were
using Algorithm-1, window blocks 4, 8, 10, and 7 would
still be processed and hence would generate four redundant
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Figure 9: The active border at (a) the initial stage.
The active border after processing (b) window
block 1, (c) window block 2, (d) window block
3, (e) window block 12.

disk I/O requests to retrieve blocks p and q.

Up to this point, we have not mentioned how we generate
the maximal quadtree blocks inside a given window. This
process is controlled by procedure WINDOW RETRIEVE. Proce-
dure WINDOW RETRIEVE scans the window row-by-row (in the
block domain rather than in the pixel domain), and visits
the blocks within it that have not been visited in previous
scans?. For each visited window block, say b, the underly-
ing spatial database is queried and a corresponding quadtree
block, say g, is retrieved from the database. According to the
three cases presented in earlier in this section, that relate the
location and size of both b and ¢ with respect to the query
window, procedures GEN_SOUTHERN MAXIMAL and MAX BLOCK
generate b’s or ¢’s maximal southern neighboring blocks (in
fact, only the portion of ¢ that lies inside the window will be
used). WINDOW RETRIEVE also makes sure that any of the re-
maining columns of row r that lie within b or ¢ are skipped.
For example, consider Figure 7, where five scans are needed
to cover the 12 x 12 window with maximal blocks. The first
scan visits blocks 1, 2, and 3; the second scan visits blocks

2Observe that we could have chosen to scan the window in a
column-by-column fashion instead of row-by-row. The result is un-
changed as long as the data structures for keeping track of the active
border are reoriented appropriately.
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Figure 10: (a), (b), and (c) are examples of possi-
ble block/southern-neighbor pairs; (d) cannot oc-
cur in a quadtree decomposition.

12, 5, 6, and 9; the remaining scans visit blocks 14 and
11; 13; and 15. Notice that once blocks 5 and 6 have been
visited, their columns (i.e., 2-5) have been completely pro-
cessed. Also, observe that when block 1 is generated, block
p of the underlying spatial database, which overlaps with
block 1, is retrieved. As a result, window blocks, 4, 8, and
10 are skipped. This way, the algorithm can avoid reaccess-
ing p by skipping all the window blocks that overlap with
p- As a consequence, the southern neighbors of p (and not
those of block 1) are generated by the algorithm.

Procedure GEN_SOUTHERN MAXIMAL generates the south-
ern neighbors (maximal blocks) N; through N,, for each
maximal block B generated by WINDOW RETRIEVE and that
is not contained in another maximal block. There are a num-
ber of possible cases illustrated in Figure 10. If m = 1, then
N, is greater than or equal to B. Otherwise, the total width
of blocks N; through N,, is equal to that of B. It is impos-
sible for the total length to exceed that of B unless there is
only one neighbor (see Figure 10b). Procedure MAX_BLOCK
takes as its input a window, say w, and the values of the
z and y coordinates of a pixel, say (col,row), and returns
the maximal block in w with (col,row) as its upper-leftmost
corner. The resulting block has width 2°, where s is the
maximum value of ¢ (0 < 7 <log T, where T x T is the size
of the image space) such that row mod 2" = col mod 2° =0
and the point (row —|—2i, col —|—2i) lies inside w.

A detailed proof in [4] suggests that the active border
does not contain any holes, and hence it is enough to de-
scribe it by its boundary. Moreover, since there are no holes
in the active border, when a block of the underlying spatial
database, say g, is retrieved and the algorithm checks its size
against the corresponding window block, say b, if ¢’s size is
larger than that of b, then the algorithm knows that ¢ has
to intersect one of the window’s boundaries. We make use
of this property here. Figure 8 shows the four possible cases
where the block retrieved from the underlying database in-
tersects one of the window boundaries. Each of the four
cases must be treated separately by the algorithm.

There is no need to maintain any data structures to ex-
plicitly store the northern portion of the active border since
WINDOW RETRIEVE can handle this portion directly. During
the first row-by-row scan of the window by WINDOW RETRIEVE,
if a block of the underlying spatial database, say g, is re-
trieved that happens to intersect the northern boundary of
the window (Figure 8a), then WINDOWRETRIEVE skips the
window blocks in the current row scan that overlap with g.
The portion of the southern boundary of ¢ that lies inside
the window is used to generate the southern neighboring
blocks to be processed in the next scan.

When block ¢ of the underlying spatial database inter-
sects only the southern boundary of the window (Figure 8d),
then it also suffices for WINDOW RETRIEVE to skip all the win-
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Figure 11: (a) Example of a window (heavy line)
and the pockets (heavy lines) along the west and
east boundary induced by the database, and (b)
the representation of the WestList and EastList
data structures corresponding to the active border.

dow blocks that are adjacent to the window block that ini-
tiated ¢’s retrieval. Although this seems intuitive, it is not
straightforward to see that all of the processing of block
g by WINDOW RETRIEVE is localized in one part of the algo-
rithm. In particular, although true (for a proof, see [4]), it
is not directly obvious that all the blocks that overlap with
g will be processed by WINDOW RETRIEVE at the same time so
that they can be skipped. Thus as a result of this localized
processing, there is no need to maintain any explicit data
structures in this case either. If ¢ intersects the western or
eastern boundaries (Figures 8b and 8c), its overlap with the
window creates a pocket-like region that needs to be stored
in two separate lists, WestList or EastList, respectively.
Each time a window block is generated, it is checked against
the active border to make sure that the block is not covered
by a previously retrieved block of the database. Below, we
show how to perform this check in constant time.

To facilitate our presentation, we represent both WestList
and EastList as two one-dimensional arrays, each of length
equal to the height of the window: WestList[r:r 4+ n — 1]
and EastList[r: 7+ n — 1], where the height of the window
is » and (r, ¢) corresponds to the z and y coordinate values
of its upper-left corner. Figure 11b shows the border repre-
sented by each of the two arrays as a result of extracting an
8 x 12 window from the database in Figure 11a. Let (74, ¢q)
be the location of the upper-left corner of q. If ¢ intersects
the west boundary of the window, then WestList[r,] is set
to the pair < ¢4 + 84,84 > where the first component of
the pair denotes the z coordinate value of ¢’s east boundary
while the second component (i.e., s4) denotes the size of g.
The pair < ¢q + 84,84 > represents the pocket-like region
resulting from the intersection of ¢ with w. Similarly, if g in-
tersects the east boundary of the window, then EastList[ry]
is set to the pair < c¢q4,54 >. Each time a window block is
generated it is checked against the active border to make
sure that the block is not covered by a previously retrieved
block of the database. Notice that updating the active bor-
der only requires one array access (either updating WestList
or EastList depending on whether ¢ intersects the west or
east boundaries of the window, respectively), while checking
a window block against the active border takes only two ar-
ray accesses (one access to each of WestList and EastList).
Therefore, maintaining the active border, whether updating
or checking, takes O(1) time.



Figure 12: The neighboring blocks to the south of
blocks A-Jin a 10 x 10 window. Blocks L., M, N,
P, Q, R, and T are non-maximal, while blocks K,
0, and S are maximal.

Observe that WINDOW RETRIEVE always generates max-
imal neighboring blocks, and a bounded number of non-
maximal blocks. We refer to Figure 12 for illustration.
When processing the first row of the window, each of blocks
B, ¢, D, F, G, H, and J can generate at most one non-
maximal neighboring block. Even though these non-maximal
blocks are generated, procedure WINDOW RETRIEVE skips them
in the next scan since they are contained in the previously
processed maximal block in the scan. For example, when
scanning block K, blocks L, M, and N are skipped since they
are contained in it. This is easy to detect because for each
block we know the z and y coordinate values of its upper-
left corner and its size. A pseudo-code listing and a proof of
correctness of the algorithm can be found in [4].

4 Complexity Analysis

Based on the observation in Section 3, that relates the size of
the query window blocks and their relation with the blocks
in the underlying database, we are able to restrict the size of
the active border to a worst-case space complexity of O(n),
instead of O(n?) for an n x n query window.

The CPU time complexity of the algorithm is affected by
two factors: window decomposition, and the maintenance of
the active border. In [5], we show that the worst-case CPU
time for window decomposition is O(nloglogT). In Sec-
tion 3, we have shown that by simultaneously traversing the
active border while generating and traversing the window
blocks inside the query window, we can perform all of the
active border maintenance operations in O(1) time, i.e., con-
stant time. As a result, the overall CPU time for the window
retrieval algorithm is O(nloglog T').

Assume that the number of output quadtree blocks is M
database blocks. As a result of the indexing technique (e.g.,
a B+-tree) used for organizing the linear quadtree that rep-
resents the spatial database, each access to retrieve one of
the M blocks results in a search into the B-+-tree. If the
spatial database is represented by N linear quadtree blocks
that are stored in the B+-tree, then the overall I/O execu-
tion time of the window retrieval algorithm is O(M log N).

5 Empirical Results

Figure 13 shows the results of experiments comparing the
number of disk I/O requests (i.e., blocks retrieved) to an-
swer a window query using Algorithm-1 (described in Sec-
tion 2.3.2) with the number of disk I/O requests generated
by WINDOWRETRIEVE (the algorithm described in this pa-
per). Our data consists of maps of the road network of the
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Figure 13: Results of an experiment to compare
the disk 1/O performance of the new and old win-
dow retrieval algorithms.

US provided by the Bureau of the Census. A sample map
containing line segments is given in Figure 3. The maps
are represented using the PMR quadtree [32], a variant of a
quadtree for storing vector data.

The z-axis corresponds to the ratio between the window
area and the area of the underlying spatial database. Exper-
iments were run for the ratios .01, .001, .0001, and .00001.
For each such ratio, a set of 500 randomly positioned rectan-
gles were generated. A window query is processed for each
rectangle using both algorithms. The y-axis corresponds to
the log of the average of the disk I/O requests for each set
of rectangles. The result of using WINDOW RETRIEVE is a re-
duction in disk I/O requests varying from 25%-92%. Notice
that the window decomposition part of the two algorithms
have the same worst-case execution time complexity (i.e.,
O(nloglog T')) as shown in Section 4.

6 Conclusions

An algorithm was presented for retrieving the blocks in a
quadtree-based spatial database that overlap a given win-
dow. It is based on decomposing a window into its maximal
quadtree blocks, and performing simpler sub-queries to the
underlying spatial database. Each block in the database is
only retrieved once. The algorithm is proven (analytically
and experimentally) to have an improvement in disk I/O
performance. The algorithm requires some extra space (on
the order of the width of the window), to store the active
border. It remains to consider how the algorithm can be
adapted to handle databases with non-disjoint objects.
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