
A Window Retrieval Algorithm for Spatial Databases Using QuadtreesWalid G. ArefMatsushita Information Technology LaboratoryPanasonic Technologies, Inc.2 Research Way,Princeton, NJ 08540Phone: 609-734-7349, Fax: 609-987-8827E-mail: aref@mitl.research.panasonic.com Hanan SametComputer Science Department andCenter for Automation Research andInstitute for Advanced Computer StudiesThe University of MarylandCollege Park, Maryland 20742Phone: 301-405-1755, Fax: 301-314-9115E-mail: hjs@cs.umd.eduAbstractAn algorithm is presented to answer window queries ina quadtree-based spatial database environment by retriev-ing the covering blocks in the underlying spatial database.It works by decomposing the window operation into sub-operations over smaller window partitions. These partitionsare the quadtree blocks corresponding to the window. Al-though a block b in the underlying spatial database maycover several of the smaller window partitions, b is only re-trieved once. As a result, the algorithm generates an opti-mal number of disk I/O requests to answer a window query(i.e., one request per covering block). The algorithm usesan auxiliary main-memory data structure, called the activeborder, which requires additional storage of O(n), for a win-dow query of size n� n. An analysis of the algorithm's ex-ecution time and space requirements are given, as are someexperimental results.1 IntroductionBecause of the large volume of spatial databases, spatial ac-cess methods are usually used to organize and speed up theretrieval of spatial objects. Several spatial access methodsmake use of a regular decomposition of space (such as thatinduced by a quadtree) in order to organize and store spa-tial data. We focus on a disjoint decomposition of space(i.e., features are not permitted to overlap). Some exam-ples of spatial databases with disjoint features include cropcoverage, road networks, topography, etc.The large volume of spatial data imposes the need tostore it in disk �les. However, indexing techniques basedon disjoint decomposition enables spatial features to be ac-cessed quickly without having to search the entire database.On the other hand, as a result of decomposing the under-lying space, a spatial feature gets partitioned into multiplesmaller pieces, which needs special treatment both from theview points of the indexing method and the spatial opera-tions. In this paper, our focus is on one of the very importantspatial operations, namely the window retrieval operation.

Usually, spatial features span a wide feature space. How-ever, users are more interested in viewing or querying onlyportions of the feature space instead of the whole space. Ex-tracting parts of the space to work with in subsequent oper-ations is done by windowing, where the query window canbe of any polygonal shape. Given a window w, some exam-ples of window-based queries are: report all features insidew, intersect feature f with feature b only inside w, deter-mine if feature f exists in w, etc. In this paper, we presenta new window retrieval algorithm that performs a minimalamount of disk reads to the underlying spatial database toanswer the window query.The rest of the paper is organized as follows. Section 2covers some background material. In Sections 3 and 4 wepresent our new window algorithm and analyze its perfor-mance. Section 5 gives empirical results of the performanceof our new algorithm in contrast to other window retrievalalgorithms. Section 6 contains concluding remarks.2 Background2.1 Alternative Data RepresentationsThere are many ways of representing and organizing spatialobjects inside a spatial database. One way is to represent aspatial object by only one entity inside the data structure,e.g., by a point in higher dimensions as in the case of repre-senting an n-dimensional polygon having k boundary pointsby a point in nk-dimensions and then store it in a point datastructure (e.g., the Grid File [26]), or by some conservativeapproximation of the object as in the case of representingthe same polygon by its minimum enclosing rectangle (e.g.,the R-tree [17]). An alternative way is to represent a spatialobject by more than one entity inside the data structure,e.g., by partitioning the spatial object into a collection ofconvex polygons (the cell tree [15]), a collection of squareblocks (the quadtree [21]), or a collection of rectangles (theR+-tree [12]). In some of these data structures a spatial ob-ject is represented by its internal region, i.e., based on thespatial occupancy of the object. Examples of data struc-tures that make use of this representation are the regionquadtree [21, 32], the bintree [22], and the Z-Order [28]. Inthis paper, we focus on the latter group of data structures.There are several advantages for using access methodsthat are based on spatial occupancy. Representations ofspatial data that are based on this method are very suitablefor a wide variety of data intensive applications (e.g., medi-cal imagery and geographical information systems). Several



researchers have investigated the usage of these structuresinside a database environment (e.g., PROBE [27], SIRO-DBMS [1], and SAND [3]). As pointed out in [13], it isstraightforward to implement these data structures in adatabase system because they require common facilities thatare already present in almost all database systems (mainlyany access method that provides both sequential and directaccess, e.g., the B-Tree). In this paper, we use the linearquadtree [13, 32] as the underlying representation of the ob-jects in the spatial database. For a comparison of the di�er-ent data structures and the advantages and disadvantagesof each one, see [32].2.2 The Linear QuadtreeWe assume that the underlying spatial database is storedin a disk-based linear quadtree. A quadtree is based onthe principle of recursive regular decomposition of space intoa maximal set of blocks whose sides are of size power oftwo and are placed at predetermined positions. The spatialobjects are stored into the overlapping quadtree blocks. Thisway, the quadtree serves as a spatial index for the objectsin the underlying spatial database.The linear quadtree is constructed as follows. We startwith a T � T object array of unit squares (termed blocks)where T is a power of 2, and successively subdivide the arrayinto quadrants. The subdivision process stops when blocksare obtained that consist of homogeneous data, i.e., blocksthat are entirely contained in an object or entirely outside it.One way of representing this process is by a tree of degree4 in which the root node represents the entire object ar-ray, non-leaf nodes correspond to non-homogeneous blocks(partly inside and partly outside an object), and the leafnodes correspond to those blocks of the array for which nofurther subdivision is necessary. Leaf nodes are said to beblack or white depending on whether their correspondingblocks are entirely within or outside of an object, respec-tively. All non-leaf nodes are said to be gray.After decomposing the object into blocks using quadtreedecomposition, instead of representing an object by a treestructure, an alternative way is to use the linear quadtree.In the linear quadtree, we store only the non-empty (black)leaf nodes. As a result, each object is represented by a setof squares (termed Morton blocks [24]) that collectively ap-proximate (and cover) the object. A one-dimensional keyvalue is assigned to each Morton block which maps the two-dimensional Morton blocks into the one-dimensional space.Then, one of the common one-dimensional indexing tech-niques, e.g., the B-tree, is used to index the blocks. Mortonblocks are ordered by their key value which is a function oftwo parameters: the coordinate values of one of its cornersand the size of the square region corresponding to the Mor-ton block. In addition, each Morton block has an identi�erthat indicates the object to which it belongs.One way of performing the mapping of the n-dimensionalspace into the one-dimensional space is by using space �llingcurves, e.g., the Peano curve [29], or the Hilbert curve [18].A space �lling curve acts like a thread that passes throughevery cell element (or pixel) in the n-dimensional space sothat every cell is visited only once. Thus, a space �llingcurve imposes a linear order of the cells in the n-dimensionalspace. The linear quadtree is based on the two-dimensionalPeano curve (also termed the Z- or N-order [28]). Manystudies have been conducted to compare the performanceof spatial operations for spatial databases adopting certainspace �lling orders. The reader is referred to [2, 10, 14, 20].
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iFigure 1: An example quadtree for storing line seg-ments.The linear quadtree can be used to store a variety of spa-tial object types. For example, a quadtree data structurefor storing line segments [25] subdivides the feature spacesuccessively into four equal-sized quadrants. If the spacecontains more line segments than the capacity of a quad-rant, then it is subdivided into quadrants, subquadrants,and so on, until blocks are obtained that overlap with atmost a maximum number of line segments or that are en-tirely empty. A sample quadtree for storing line segments isgiven in Figure 1. For a comprehensive discussion of space�lling curves and quadtrees variants, see [31, 32].2.3 Spatial OperationsWe overview three very important operations for spatialquery processing, namely the nearest neighbor, the spatialjoin, and the window retrieval operations. We use examplespatial databases for illustration. Figure 2 contains sampleschemas for the spatial databases and Figure 3 gives a road-network database where roads are the database objects.(a) road-network - name, type: char(30); left-zip-code,right-zip-code: integer; coords: line-segment(b) land-use - name, usage: char(30); zip-code: integer;density: 
oat; region: polygonFigure 2: Sample schemas of the (a) road-networkdatabase, and (b) the land-use database.The \nearest to" operation can be considered as anaggregate function over the entire set of objects in thedatabase (e.g., the spatial equivalent of the aggregate func-tion \min()"). In fact, nearest to can be expressed asmin(distance(o;p)), where distance is a scalar function thatreturns the distance between object o and a query point
Figure 3: Part of a map sheet of the city of FallsChurch, Virginia.
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(c)Figure 4: (a) A simple land-use database, (b) asimple road-network database, (c) the land-use/road pairs that intersect each other.p. o ranges over all the objects of the underlying database.E�cient algorithms exist for evaluating the min(distance)function that avoid scanning the entire database [11, 19].2.3.1 The Spatial Join OperationSpatial join is a fundamental operation for answering queriesthat involve spatial predicates. It combines entities fromtwo spatial databases into single entities whenever the com-bination satis�es the spatial join condition (e.g., if theyoverlap in space). For example, Figure 4c shows the re-sult of joining a land-use database (Figure 4a) with aroad-network database (Figure 4b). The join conditionin this case is: landuse.region intersects road.coords(the schemas for the road-network and land-use databasesare given in Figure 2).As pointed out in [8], both the CPU and the disk readcosts of the spatial join operation are very signi�cant. Asa result, extensive research has been conducted on alter-native ways of processing the spatial join e�ciently (e.g.,see [6, 7, 8, 16, 27, 30]). Becker [7], and Becker, Hinrichs, andFinke [6] propose an algorithm for the e�cient evaluation ofspatial join for databases of point objects. G�unther [16]presents a hierarchical spatial join algorithm that appliese�ciently for a family of tree-based data structures, termedthe generalization tree. Brinkho�, Kriegel, and Seeger [8]apply a similar idea in the context of the R-tree [17]. Inaddition, they present several techniques that reduce boththe disk read and CPU costs of the spatial join signi�cantly.Rotem [30], and later, Lu and Han [23], suggest precom-puting the spatial object pairs satisfying a certain spatialrelationship and storing them in spatial join indices in orderto speed up the spatial join at query runtime. Orenstein andManola [27] present two algorithms for spatial join where theunderlying representation of spatial data is the Z-Order [28].2.3.2 The Window Overlap and Containment OperationsWindow overlap and containment are central operations inspatial databases, and serve as building blocks for a number

wFigure 5: Roads of the city of Falls Church thatare contained in window w. The origin of the spaceis at the lower-left corner.
window w window w

underlying spatial database underlying spatial databaseFigure 6: The decomposition of (a) a 12 � 12window, and (b) a 13 � 13 window into maximalquadtree blocks.of queries. A window can be in the form of a rectangle ora polygon. For example, Figure 5 shows the roads in thecity of Falls Church that are contained in window w (withcorner values (100,100) and (300,300), respectively.) Theroads that qualify can be fed to other operations for closerinvestigation.Orenstein and Manola [27] give an algorithm for answer-ing window queries where they treat a window query as aspecial form of a spatial �lter operation. They treat the spa-tial database as the �rst input stream and the window as thesecond input stream and apply their spatial �lter algorithm.Consider a window query which seeks to determine thespatial objects that overlap window w on the spatial databaseof line segments given in Figure 1. Our approach is toretrieve the set of blocks, say Sw, of the underlying spa-tial database that overlap the set of quadtree blocks, sayWw, that comprise the window. The rationale for using thequadtree blocks of the window is to match the quadtree de-composition of the underlying spatial database. This makesit more straightforward to answer the window query sincethere is a direct correspondence between each window blockand some overlapping quadtree block(s) in the underlyingspatial database. This approach is also the same as the onein [27]. The answer to the window query is the union of allthe answers generated by querying the underlying spatialdatabase with the maximal quadtree blocks comprising thewindow. We term this algorithm Algorithm-1. We brie
ydescribe Algorithm-1 below. A more detailed description isgiven in [4].Algorithm-1uses a quadtree window decomposition mech-anism. Figure 6 shows the quadtree decomposition of twowindows. The decomposition can be achieved using a win-dow decomposition algorithm given in [5]. It decomposes a
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Figure 7: Examples where more than one windowblock retrieves the same block of the database.two-dimensional window of size n�n in a feature space (e.g.,an image) of size T � T into its maximal quadtree blocks inO(n log log T ) time. Once the set Ww has been determined,Algorithm-1 accesses the underlying spatial database foreach window block b in Ww , and retrieves the databaseblocks that intersect b.The drawback of this algorithm is that many of the el-ements of Sw may be retrieved more than once. For ex-ample, in Figure 7, the algorithm would retrieve block p ofthe underlying spatial database four times (once for eachof the maximal window blocks 1, 4, 8, and 10). We assumethat the underlying spatial database is disk-resident, and weoften speak of the operation of retrieving a block of the un-derlying spatial database as a disk I/O request. This meansthat redundant disk I/O requests will result.1The problem of Algorithm-1 is that the process of gen-erating the maximal blocks that comprise the window onlydepends on the query window and not on the decomposi-tion of space induced by the underlying spatial database.We overcome this problem by generating and retrieving eachcovering block in the database just once. This is achievedby controlling the window decomposition procedure throughthe use of information about blocks of the underlying spa-tial database that have already been retrieved. We use anapproach based on active borders [33], at the expense ofsome extra storage. A detailed description of our approachis given in the next section.It is important to note that we retrieve blocks in theunderlying spatial database by use of partial informationabout their relationship to other blocks (e.g., containmentand overlap). We do not retrieve a block of the database byits identi�er. Instead, we are given the spatial description ofa window block, say b. The spatial description of b is usedto retrieve all the blocks of the database that are spatiallyrelated to b (e.g., the blocks that contain, or are containedin, b). Blocks in the database can be retrieved more thanonce if they satisfy some spatial relationship with respect todi�erent window blocks.1This problem may be alleviated via appropriate use of bu�eringtechniques. However, in this paper we show how to avoid the problementirely by retrieving each block of the underlying spatial databasejust once without relying on bu�ering techniques.

3 The New AlgorithmIn Algorithm-1, described in Section 2, when a block q inthe underlying spatial database covers more than one max-imal quadtree block in the window, q will be retrieved sev-eral times. This could be overcome by avoiding the invoca-tion of the retrieval step for some of the maximal quadtreeblocks. The issue then is how do we skip some of the maxi-mal quadtree blocks in the window. In order to understandthis issue, we brie
y focus on the relation between the max-imal quadtree blocks of the window decomposition and thequadtree blocks in the underlying spatial database.Assume that b is a maximal window block that is gen-erated by the window decomposition algorithm. Due to thequadtree decomposition of both the window and the un-derlying spatial database, b can either be contained in, orcontain, one or more quadtree blocks of the underlying spa-tial database. In particular, there are three possible cases asillustrated by Figure 7. Case 1 is demonstrated in the �gureby window block 2 which contains more than one quadtreeblock of the underlying spatial database. All of these blockshave to be retrieved (e.g., from the disk), and processedby the algorithm (e.g., the spatial objects associated withthese blocks will be reported as intersecting the window).The second case is illustrated by window block 9 of Fig-ure 7. Block 9 contains exactly one block of the underlyingspatial database which will have to be retrieved (e.g., fromthe disk) as well. The third case is demonstrated by windowblocks 1, 4, 8, and 10 of Figure 7 which all require retrieving(e.g., from the disk) the same quadtree block (i.e., block pof the underlying spatial database). Case 3 arises frequentlyin any typical window query, as shown by the experimentsconducted in Section 5, thereby resulting in a large numberof redundant disk I/O requests.Our new algorithm is based on the following observation(its proof can be found in [4]):Assume that a block, say b, is a maximal blockthat lies inside the window w and overlaps witha block of the underlying spatial database, say q.If q is of greater size than b, then q must intersectwith at least one of the boundaries of the windoww (refer to Figure 8 for illustration).In other words, there cannot be database blocks that are big-ger than the the intersecting window blocks which are in themiddle of the query window, These big database blocks haveto intersect the boundary of the query window. Our win-dow retrieval algorithm is based on this observation whichwe illustrate further later in this section.The new algorithm consists of proceduresWINDOW RETRIEVE, GEN SOUTHERN MAXIMAL, and MAX BLOCK.It works for an arbitrary rectangular window (i.e., it neednot be square). We avoid generating non-maximal quadtreeblocks in the window (or at least generate a bounded num-ber of them) by using the same technique as in [5], whichwe outline below. Note that there are O(n2) non-maximalblocks inside an n�n window. Also, each maximal quadtreeblock in the window is processed only once (i.e., as a neigh-bor of another node) regardless of its size.We make use of an active border data structure [33] whichis a separator between the window regions that have alreadybeen processed and the rest of the window. The active bor-der serves as the spatial analog to the hash-table, that wetailor to match the needs of this type of spatial retrieval.The active border can also be viewed as simulating the spa-tial equivalent of a sort-merge list of pages which is used
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(b)Figure 8: Possible overlaps between blocks of thedatabase and the (a) northern, (b) western, (c)eastern, and (d) southern borders of the window.in database query processing when accessing data throughsecondary indexes [9].Note that the active border in our case di�ers from thatin [33] (which looks like a staircase) because of the natureof the block traversal process. In particular, we traverse theblocks in the window in a row-by-row manner rather thanin quadrant order (i.e., NW, NE, SW, SE).Figure 9 represents the �rst �ve steps of the execution ofthe algorithm for the query window w. The heavy lines inFigure 9a represents the active border for window w at theinitial stage of the algorithm. In generating a new block,the window decomposer has to consult the active border inorder to avoid generating a disk I/O request for a windowregion that has already been processed by a block of theunderlying spatial database that has already been retrieved.The active border is maintained as follows. First, awindow block, say b, is generated by the window decom-poser and a disk I/O request is issued to access the regionof the underlying spatial database corresponding to b. As-sume that b overlaps in space with block u in the database.Therefore, u is retrieved as a result of the disk I/O requestcorresponding to b. The spatial objects inside u are pro-cessed and thus there is no need to retrieve u again. Asa result, the active border needs to be updated by block bor u depending on which one provides more coverage of thewindow region. Figure 9 illustrates the updating process ofthe active border. If u has a larger overlap with the unpro-cessed portion of the window than b (e.g. window block 1and block p of the underlying spatial database in Figure 9a,as well as window block 3 and block q of the database), thenthe active border is expanded using u's region (Figure 9b).If u is contained in b (e.g., window block 2 and block r ofthe database in Figure 9a), then all the other blocks in thedatabase have to be retrieved as well, and the active borderis expanded by b's region (Figure 9c). If the sizes of b andu are the same (e.g., window block 12 and block s of thedatabase in Figure 9a), then the active border is expandedby either one of them (Figure 9e). Notice that, if we wereusing Algorithm-1, window blocks 4, 8, 10, and 7 wouldstill be processed and hence would generate four redundant
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(e)Figure 9: The active border at (a) the initial stage.The active border after processing (b) windowblock 1, (c) window block 2, (d) window block3, (e) window block 12.disk I/O requests to retrieve blocks p and q.Up to this point, we have not mentioned how we generatethe maximal quadtree blocks inside a given window. Thisprocess is controlled by procedure WINDOW RETRIEVE. Proce-dure WINDOW RETRIEVE scans the window row-by-row (in theblock domain rather than in the pixel domain), and visitsthe blocks within it that have not been visited in previousscans2. For each visited window block, say b, the underly-ing spatial database is queried and a corresponding quadtreeblock, say q, is retrieved from the database. According to thethree cases presented in earlier in this section, that relate thelocation and size of both b and q with respect to the querywindow, procedures GEN SOUTHERN MAXIMAL and MAX BLOCKgenerate b's or q's maximal southern neighboring blocks (infact, only the portion of q that lies inside the window will beused). WINDOW RETRIEVE also makes sure that any of the re-maining columns of row r that lie within b or q are skipped.For example, consider Figure 7, where �ve scans are neededto cover the 12� 12 window with maximal blocks. The �rstscan visits blocks 1, 2, and 3; the second scan visits blocks2Observe that we could have chosen to scan the window in acolumn-by-column fashion instead of row-by-row. The result is un-changed as long as the data structures for keeping track of the activeborder are reoriented appropriately.
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(d)Figure 10: (a), (b), and (c) are examples of possi-ble block/southern-neighbor pairs; (d) cannot oc-cur in a quadtree decomposition.12, 5, 6, and 9; the remaining scans visit blocks 14 and11; 13; and 15. Notice that once blocks 5 and 6 have beenvisited, their columns (i.e., 2-5) have been completely pro-cessed. Also, observe that when block 1 is generated, blockp of the underlying spatial database, which overlaps withblock 1, is retrieved. As a result, window blocks, 4, 8, and10 are skipped. This way, the algorithm can avoid reaccess-ing p by skipping all the window blocks that overlap withp. As a consequence, the southern neighbors of p (and notthose of block 1) are generated by the algorithm.Procedure GEN SOUTHERN MAXIMAL generates the south-ern neighbors (maximal blocks) N1 through Nm for eachmaximal block B generated by WINDOW RETRIEVE and thatis not contained in another maximal block. There are a num-ber of possible cases illustrated in Figure 10. Ifm = 1, thenN1 is greater than or equal to B. Otherwise, the total widthof blocks N1 through Nm is equal to that of B. It is impos-sible for the total length to exceed that of B unless there isonly one neighbor (see Figure 10b). Procedure MAX BLOCKtakes as its input a window, say w, and the values of thex and y coordinates of a pixel, say (col,row), and returnsthe maximal block in w with (col,row) as its upper-leftmostcorner. The resulting block has width 2s, where s is themaximum value of i (0 � i � log T , where T � T is the sizeof the image space) such that row mod 2i = col mod 2i = 0and the point (row +2i, col +2i) lies inside w.A detailed proof in [4] suggests that the active borderdoes not contain any holes, and hence it is enough to de-scribe it by its boundary. Moreover, since there are no holesin the active border, when a block of the underlying spatialdatabase, say q, is retrieved and the algorithm checks its sizeagainst the corresponding window block, say b, if q's size islarger than that of b, then the algorithm knows that q hasto intersect one of the window's boundaries. We make useof this property here. Figure 8 shows the four possible caseswhere the block retrieved from the underlying database in-tersects one of the window boundaries. Each of the fourcases must be treated separately by the algorithm.There is no need to maintain any data structures to ex-plicitly store the northern portion of the active border sinceWINDOW RETRIEVE can handle this portion directly. Duringthe �rst row-by-row scan of the window by WINDOW RETRIEVE,if a block of the underlying spatial database, say q, is re-trieved that happens to intersect the northern boundary ofthe window (Figure 8a), then WINDOW RETRIEVE skips thewindow blocks in the current row scan that overlap with q.The portion of the southern boundary of q that lies insidethe window is used to generate the southern neighboringblocks to be processed in the next scan.When block q of the underlying spatial database inter-sects only the southern boundary of the window (Figure 8d),then it also su�ces for WINDOW RETRIEVE to skip all the win-
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(a) (b)Figure 11: (a) Example of a window (heavy line)and the pockets (heavy lines) along the west andeast boundary induced by the database, and (b)the representation of the WestList and EastListdata structures corresponding to the active border.dow blocks that are adjacent to the window block that ini-tiated q's retrieval. Although this seems intuitive, it is notstraightforward to see that all of the processing of blockq by WINDOW RETRIEVE is localized in one part of the algo-rithm. In particular, although true (for a proof, see [4]), itis not directly obvious that all the blocks that overlap withq will be processed by WINDOW RETRIEVE at the same time sothat they can be skipped. Thus as a result of this localizedprocessing, there is no need to maintain any explicit datastructures in this case either. If q intersects the western oreastern boundaries (Figures 8b and 8c), its overlap with thewindow creates a pocket-like region that needs to be storedin two separate lists, WestList or EastList, respectively.Each time a window block is generated, it is checked againstthe active border to make sure that the block is not coveredby a previously retrieved block of the database. Below, weshow how to perform this check in constant time.To facilitate our presentation, we represent both WestListand EastList as two one-dimensional arrays, each of lengthequal to the height of the window: WestList[r : r + n� 1]and EastList[r : r+ n� 1], where the height of the windowis n and (r; c) corresponds to the x and y coordinate valuesof its upper-left corner. Figure 11b shows the border repre-sented by each of the two arrays as a result of extracting an8� 12 window from the database in Figure 11a. Let (rq ; cq)be the location of the upper-left corner of q. If q intersectsthe west boundary of the window, then WestList[rq] is setto the pair < cq + sq; sq > where the �rst component ofthe pair denotes the x coordinate value of q's east boundarywhile the second component (i.e., sq) denotes the size of q.The pair < cq + sq; sq > represents the pocket-like regionresulting from the intersection of q with w. Similarly, if q in-tersects the east boundary of the window, then EastList[rq]is set to the pair < cq; sq >. Each time a window block isgenerated it is checked against the active border to makesure that the block is not covered by a previously retrievedblock of the database. Notice that updating the active bor-der only requires one array access (either updating WestListor EastList depending on whether q intersects the west oreast boundaries of the window, respectively), while checkinga window block against the active border takes only two ar-ray accesses (one access to each of WestList and EastList).Therefore, maintaining the active border, whether updatingor checking, takes O(1) time.
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QFigure 12: The neighboring blocks to the south ofblocks A-J in a 10�10 window. Blocks L, M, N,P, Q, R, and T are non-maximal, while blocks K,O, and S are maximal.Observe that WINDOW RETRIEVE always generates max-imal neighboring blocks, and a bounded number of non-maximal blocks. We refer to Figure 12 for illustration.When processing the �rst row of the window, each of blocksB, C, D, F, G, H, and J can generate at most one non-maximal neighboring block. Even though these non-maximalblocks are generated, procedure WINDOW RETRIEVE skips themin the next scan since they are contained in the previouslyprocessed maximal block in the scan. For example, whenscanning block K, blocks L, M, and N are skipped since theyare contained in it. This is easy to detect because for eachblock we know the x and y coordinate values of its upper-left corner and its size. A pseudo-code listing and a proof ofcorrectness of the algorithm can be found in [4].4 Complexity AnalysisBased on the observation in Section 3, that relates the size ofthe query window blocks and their relation with the blocksin the underlying database, we are able to restrict the size ofthe active border to a worst-case space complexity of O(n),instead of O(n2) for an n� n query window.The CPU time complexity of the algorithm is a�ected bytwo factors: window decomposition, and the maintenance ofthe active border. In [5], we show that the worst-case CPUtime for window decomposition is O(n log log T ). In Sec-tion 3, we have shown that by simultaneously traversing theactive border while generating and traversing the windowblocks inside the query window, we can perform all of theactive border maintenance operations in O(1) time, i.e., con-stant time. As a result, the overall CPU time for the windowretrieval algorithm is O(n log log T ).Assume that the number of output quadtree blocks is Mdatabase blocks. As a result of the indexing technique (e.g.,a B+-tree) used for organizing the linear quadtree that rep-resents the spatial database, each access to retrieve one ofthe M blocks results in a search into the B+-tree. If thespatial database is represented by N linear quadtree blocksthat are stored in the B+-tree, then the overall I/O execu-tion time of the window retrieval algorithm is O(M logN).5 Empirical ResultsFigure 13 shows the results of experiments comparing thenumber of disk I/O requests (i.e., blocks retrieved) to an-swer a window query using Algorithm-1 (described in Sec-tion 2.3.2) with the number of disk I/O requests generatedby WINDOW RETRIEVE (the algorithm described in this pa-per). Our data consists of maps of the road network of the
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Figure 13: Results of an experiment to comparethe disk I/O performance of the new and old win-dow retrieval algorithms.US provided by the Bureau of the Census. A sample mapcontaining line segments is given in Figure 3. The mapsare represented using the PMR quadtree [32], a variant of aquadtree for storing vector data.The x-axis corresponds to the ratio between the windowarea and the area of the underlying spatial database. Exper-iments were run for the ratios .01, .001, .0001, and .00001.For each such ratio, a set of 500 randomly positioned rectan-gles were generated. A window query is processed for eachrectangle using both algorithms. The y-axis corresponds tothe log of the average of the disk I/O requests for each setof rectangles. The result of using WINDOW RETRIEVE is a re-duction in disk I/O requests varying from 25%-92%. Noticethat the window decomposition part of the two algorithmshave the same worst-case execution time complexity (i.e.,O(n log log T )) as shown in Section 4.6 ConclusionsAn algorithm was presented for retrieving the blocks in aquadtree-based spatial database that overlap a given win-dow. It is based on decomposing a window into its maximalquadtree blocks, and performing simpler sub-queries to theunderlying spatial database. Each block in the database isonly retrieved once. The algorithm is proven (analyticallyand experimentally) to have an improvement in disk I/Operformance. The algorithm requires some extra space (onthe order of the width of the window), to store the activeborder. It remains to consider how the algorithm can beadapted to handle databases with non-disjoint objects.7 AcknowledgementsThe second author gratefully acknowledges the support ofthe National Science Foundation under Grant IRI-92-16970.References[1] D. J. Abel. SIRO-DBMS: A database tool-kit for geo-graphical information systems. Intl. J. of GeographicalInformation Systems, 3(2):103{116, Apr.{Jun. 1989.
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