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Abstract 

The spatial join is an operation that combines entities from 
two spatial data sets into a single entity whenever the combi- 
nation satisfies the spatial join condition (e.g., if they over- 
lap in space). Linear quadtrees and the Z-order are two 
widely-used data structures for organizing spatial databases. 
They are based on the concept of recursive decomposition 
of space. For spatial databases using recursive decomposi- 
tion, algorithms for performing spatial join already exist in 
the literature. For efficiency purposes, some of these algo- 
rithms require that the two input streams of the spatial join 
be indexed, while other algorithms require that the two in- 
put streams be sorted, but not necessarily indexed. These 
algorithms suffer from the fact that they produce spatially 
un-ordered output, i.e., their output is not sorted. As a re- 
sult, they cannot be used efficiently to answer complex spa- 
t.ial queries that involve cascading spatial join operations in 
t.heir query evaluation pipelines. A new optimization is pre- 
sented that can be applied for a wide variety of spatial join 
algorithms that would result in producing spatially ordered 
output, i.e., sorted. This optimization enhances the appli- 
cability of these algorithms significantly so t,hat they can 
be efficiently used to answer spatial database queries that 
involve. multiple cascading spatial join operations. 

1 Introduction 

One of the most useful tools for spat,ial query processing is 
the spatinl join. Generally speaking, the spatial join com- 
bines entities (e.g., tuples in a relational database manage- 
ment system and also termed elements here) from two sets 
(termed streams) into a single entity in a result.ing stream 
whenever the combined entity satisfies the spatial join con- 
dit,ion (e.g., if the two entities intersect each other). In the 
context of data representations where the spatial att.ribute 
is one that describes the space occupied by the entity (i.e., 
tuple), the spatial join primarily means that the two entities 
are joined ifl they overlap in space. For example, applying 
the spatial join to the two maps in Figures la and 1 b yields 
the object pairs (3,4), (3,5), and (3,6). 
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Figure 1: Two sample maps. 

Many algorithms for performing spatial join already ex- 
ist in the literature (e.g., [5, 4, 6, 7, 9, 16, 191). Our focus 
in this paper in on algorithms that assume that the under- 
lying spatial databae is organized based on recursive de- 
composition of space, e.g., quadtrees [8, 11, 201, and the 
Z-Order [17, 161. Orenstein and Manola [15, 161 present two 
algorithms for spatial join (overlap) using the Z-Order as 
their underlying organizat.ion of the spatial database. The 
first algorithm, termed the spatial merge, requires that the 
two input streams be sort,ed but does not necessarily require 
the presence of an index. The second algorithm, termed the 
spatial filter, is an optimization of the spatial merge. The 
spatial filter yields significant execution time speedups over 
t.he spatial merge at the added expense of requiring that 
both input streams be indexed (e.g., as a result of sorting 
on the basis of the spatial attribute so that random as well 
as sequential access to the element,s in eit.her stream is pos- 
sible). This is a very modest requirement given the st.atus 
of current database technology (e.g., a B-tree, ISAM, etc.). 
The speedups are a direct result of osing the index t.o di- 

rectly access the input streams. 
Aref and Samet [2] present two new spatial join algo- 

rithms that are optimizations over the spatkal merge and 
the spatial filter algorit,hms. The first algorithm, termecl 
the linear-scan spatial join algorithm, avoids processing ev- 
ery element in the two streams by just scanning the irrele- 
vant intervening element,s between corresponding positions 
in the two streams as it has no index. The second algorithm, 
termed the estimate-based spatial join algorithm, uses OII- 

line estimates of the input streams to decide whet,her t.o IISC 

the index for a direct access request or a linear scan. 
All the four spatial join algorithms (namely, the spatial 

merge, t.he spatial fiker, the linear-scan, and the est.imate- 



based algorit.hms), require that t.he input streams must be 
sorted (spatially ordered, e.g., according to the Z-order), 
while t,he output t,hey produce is not sorted. This is not a 
problem if t,he spatial join is only performed once. However, 
in most applications (e.g., in a geographic information sys- 
tem), it is usually the case that the spatial query requires 
the execution of a cascade of spatial join operat,ions (i.e., 
the output of one operat.ion serves s the input to the next 
operation). Thus, use of any one of these algorit.hms means 
that only the first spatial join is efficiently executed. All 
subsequent spatial joins wiII require eit,her to spat.ially sort 
their input (or build a temporary index) before performing 
them, or to use a nested loop join algorithm with a spatial 
intersection predicate, since none of the above spatial join 
algorithms works properly for unsorted input streams. 

In this Ipaper we present an algorithmic improvement. (or 
optimization) that works properly for all of the above four 
spatial join algorithms. When this new optimizat.ion is aug- 
mented to any of the four spatial join algorithms, the aug- 
mented algorithm will produce output tuples that are sorted 
spatially (e.g., using the Z-order sort order). Therfore, any 
of the modified spatial join algorithms can then be applica- 
ble in spatial query pipelines that involve multiple czcadecl 
spatial joins without the need to sort the output at each 
intermediat.e stage. 

The rest of this paper is organized LS follows. Section 3 
covers background material that is needed for the presenta- 
tion of the algorithms. Then, we present the new optimiza- 
tion that we propose in this paper and show how it is appli- 
cable to some of the existing spatial join algorithms, namely, 
the spatial merge (Section 3), the spatial filter (Section 4), 
and the linear-scan algorithm (Section 5). Section 6 sum- 
marizes our findings and draws some concluding remarks. 
The Appendix cont.ains detailed specifications of the new 
modified algorithms so that readers can understand the im- 
portant subtleties that are involved in their implementation. 

2 Background 

2.1 Spatial Data Representation 

Spatial data consists of objects which are permitt,cd to over- 
lap. In the Z-Order data structure, each object is repre- 
sented by a set of restricted rectangular elements (termed 
Z-elcmenfs) that collectively approximate (and cover) the 
object. The restricted rectangular elements result. from a 
recursive decomposition of the space into two cqu,al-sized 
blocks while cycling the splits through the different coor- 
dinat.e axes corresponding to the dimensions of the space.’ 
The decomposition is such that t.he space (i.e., the blocks) 
is recursively decomposed unt.il each block is totally covered 
by one or more objects or is not covered by any of the ob- 

jects. The Z-elements consist of the blocks that are covered 
by the objects and not the blocks that are empty. For exam- 
ple, Figures 2a and 3b are t.he Z-elements corresponding to 
the maps in Figures la and lb, respectively. In t.his exam- 
ple, we have cycled through the axes in the order zyty-... 
Note that it is impossible for a block corresponding 6o a Z- 
clement to be covered partially by one object and partially 
by another object. In other word., q block i is not considered 
to be totally covered if one half of the block is covered by 
object i a.nd one half by object k. 

‘The rewlt is a collection of blocks the length of whose sides arc 
either all wpal or differ by a factor of two; hence the use of the 

qualifier restrxted. 
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Figure 2: Result of decomposing the maps in Figure 1 int.0 
their Z-elements. 

The algorithms of Orenstein and Manola make IISC of 
what. is termed a Z-order [13] to order the Z-elements (i.e., 
the blocks that, cover the objects). The Z-order is a lineariza- 
tion of space where each of t.he blocks corresponding to t.hc 
Z-elements is represent.ed by a unique value which is then 
stored in a sorted list or some other data structure (po:ssi- 
bly with an indexing capability). In this case, the value is 
a funct.ion of two parameters: the c0ordinat.e values of the 
upper-left corner and the size of the restricted rectaugular 
region corresponding to the Z-element. III addit.ion, each 
Z-element has an object identifier that indicates the iden- 
tity of the object to which it, belongs. For more det,ails on 

how to construct t,he Z-order for a collection of objects and 
the performance issues related to redundancy and accuracy 
when using them t.o approximat,e the objects, see [14, 161. 

III our presentat.ion of the new optimization and the 
modified algorithms, we also make USC of a Z-order. For 
simplicity, we restrict our domain to two dimensions wit.h 
Z-elements whose corresponding blocks a.re square. ‘I’hesc 
Z-elements result from a recursive decomposition of the 
space int.o four square blocks (i.e., a quadtree-like decom- 
position PO]). The resulting elements are special case!; of 
Z-e1ement.s a-nd are termed Morton elements [l?]. For ex- 
ample, Figures 3a and 3b are the Z-elements corresponding 
t.o the maps in Figures la and lb, respectively. The Morton 
element,s are ordered on the basis of their :size and the result 
of mapping the point at the upper-left corner of each block 
into an int.eger. This is achieved by interleaving the bits 
that represent. t.he values of the z and 2/ coordinates of t.hc 
two-dimensional point. The result of the int.erleaving pro- 
cess is termed a Aforton code [I’L]. Note that the t.echuiques 
presented here apply direct.ly t,o arbit,rary Z-e1cment.s which 
can assume restricted rectangular shapes in two and higher 
dimensions. 

(a> (b) 
Figure 3: Result of decomposing the maps in Figure 1 into 
their Mort.on elements. 
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2.2 The Spatial loin Operation 

When computing the spatial join of Z-element (including 
Morton element) decompositions of two maps, we report, the 
pairs of overlapping blocks and then obtain the appr0priat.e 
object identifiers by use of lookup operations. For example, 
the spatial join of t,he Morton elements in Figures 3a and 3b 
consists of the block pairs (A,I), (F,J), (H,L), and (H,K) 
corresponding to the object pairs (3,4), (3,5), (3,6), and 
(3,5), respectively. Notice that because of the nat.ure of 
the Z-elements arid the recursive decomposition process by 
which they are constructed, any pair of corresponding Z- 
elements either in the input or output streams are either 
equal or are contained in oue another; however, they cannot 
overlap without one Z-element being totally contained in 
another Z-element. 

One of the drawbacks of decomposing spatial objects int.o 
a collection of Z-elements is that the same pair of objects 
could be report.ed as overlapping many times. This wu the 
case in the spatial join of Morton element decompositions of 
the maps in Figures 3a and 3b where the object pair (3,s) 
was reported twice. In fact, if objects i and j are represent.ed 
by n; and nj Z-elements, respectively, then, depending on 
the extent of the overlap between the objects, the pair (i7 j) 
could be report.ed as often as ni + 7~~ - 1 times. This prob- 
lem of multiple reportings arises in the implementations of 
many other spatial operations as well. For example, sup- 
pose we want to retrieve all the objects in a given region. 
Clearly, each object should be reported once. Eliminating 
the multiply reported values using more efficient techniques 
than simply sorting the output is a serious issue (see [I, 3] 
for a discussion of how to deal with this problem when the 
spatial objects are line segments and rectangles). 

3 The Modified Spatial Merge Join Algorithm 

For brevity, we explain directly our modified version of the 
spatial merge algorithm of Orenstein and Manola [15, 161. 
In contrast to their algorithm, the modified spatial merge 
join algorithm produces sorted tuples based on some spatial 
order, which in our case is the Morton- or Z-Order. 

The modified spatial merge algorithm requires that the 
two input streams be sorted but not necessarily indexed. We 
present. quadtree variant.s of the algorithm as we assume that 
Z-elements are always Morton elements (i.e., square blocks 
in contrast t.o restricted rect,angular blocks as in the more 
general case of t.he Z-Order [13, 171). 

A Morton element B is represented by the Morton code 
of B’s upper-left. corner and its size.2 The key for sorting in 
each input stream is the Morton code [in ascending order) 
and size (in descending order) of each Morton element in the 
stream. The Z-order for the Morton elements is such t,hat 
Morton element. B appears in the stream before Morton ele- 
ment C if the Morton code of B is less than the Morton code 
of C. Furthermore, if two Morton element,s share the same 
upper-left corner, then the larger one appears first in t,he 
stream. For example, the Z-order for the Morton elements 
in Figure la is A, B, C, D, E, F, G, H. 

The modified spatial merge algorit.hm resembles a merge 
join algorit,hm. The difference is that, in the modified spa- 
tial merge algorithm e1ement.s of the same input stream rcp- 
resent two-dimensional intervals that can be contained in 
one another. The modified spatial merge algorithm is given 

‘IVe assume that the origin is at the upper-left corner of the space, 
that the positive z direction is to the right, and that the positive y 
direction is downwards. 

iu the Appendix using procedures Control, NextElement, 
EnterElement, ExitElement, and Advance. The basic clif- 
ference between the modified spatial merge algorithm and 
the spatial merge algorithm of Orenstein and Manola is iu 
the timing when an output tuple is reported by t.he algo- 
rithm. By selecting the proper timing for report.@ the out- 
put tuples during the proper execution of the algorithm, this 
results in the reported tuples being produced in so&d order 
without extra effort. 

In the following, we explain the necessary data struc- 
tures and the control structure of the algorithm. The COII- 

trol structure is particularly important as it is the same 
for all of the spatial join algorithms discussed in this pa- 
per. Procedures Control, NextElement, EnterElement, alld 

ExitElement make up the control st,ructure. Procedure 
Advance is used in conjunction with NextElement to ob- 
tain the next Morton elements from the input streams. It 
differs for each of the spatial join algorithms. In the case 
of the spatial merge algorithm, it simply produces the next 
Morton element in the stream corresponding to its first ar- 
gument. 

The control structure is responsible for maint.aining the 
state of the spatial join algorithm. This is done by using 
a stack for each input stream, and pointers to the current, 
Morton element in each stream. The top of each stack COII- 

tains the most recent Morton element for the correspond- 
ing stream, while the containing Morton elements (from the 
same stream) are stored deeper in the stack (G they are en- 
countered first according to our ordering which places thern 
earlier in the stream). The area of space spanned by each 
Morton element B ranges between the value of the Morton 
code of B’s upper-left corner, denoted by do(B), aud that 
of B’s lower-right corner, denoted by thi(B). 

In each iteration of the spatial join, the state of one 
stream is updat,ed. As Morton e1ement.s from the input 
streams are scanned during the merge, Morton e1ement.s are 
pushed (i.e., entered) into and popped (i.e., removed) from 
the stacks of the corresponding streams. The spatial join 
behaves like a plane-sweep [18] in the metric space of %lor- 
ton codes of the upper-left corners of the Morton elements 
(i.e., by their 220 values). Therefore, Morton e1ement.s from 
both streams that overlap are processed in consecutive iter- 
ations of t,he algorithm (since IMorton elements are ordered 
by their zlo values). 

The main step in each iteration of the algorithm is a 
four-way comparison between the zlo values of the current 
Morton elements in each stream and the zhi values of the 
top Morton element,s in the stacks of the streams. The min- 
imum of these four values is used to control the a&on. In 
order for the comparisons to work, t,he stacks are initialized 
to contain MaxMortonElement which is a unit-sized Morton 
element whose Morton code is larger than the maximum pos- 
sible value (called MaxMortonCode in the code) in the space 
in which the spatial join is executed. MaxMortonElement also 
serves as the current value in each of t.he input streams once 
they have been exhausted (set by procedure NextElrment). 

We illustrate our explanation of the algorithm wit.11 the 
aid of Figure 4 which traces the st.eps of the modified spa- 
t.ial merge algorithm when used to compute the spatial 
join of the st.reams X and Y given by t.he Morton elerueuts 
in Figures 3a and 3b corresponding to t,he maps in Fig- 
ures la and lb, respectively. In the figure, the leftmost and 
rightmost values in the stack entries correspond t.o the 1.01~ 
and bottom, respectively, of the stack. The stacks arc ini- 
tialized t,o W which corresponds to MaxMortonElement. W 
is also used as the final Morton element once the input 
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st.reams have beeri exhausted. do(W) and zhi(W) art: set 
to MaxMortonCode+l. Figure 4 is organized in such a way 
that the ent.ry for st.ep i indicates the state resulting from 
taking the iaction indicated at this step. This action is based 
on t.he value produced by a four-way comparison using the 
current values of the t.wo input streams and the cont,ent,s of 
the top ent:ries in the st.acks that resulted from t.he execut.ion 
of step i- 1. 

Morton element R from stream i is entered (i.e., pushed) 
OIL the stack of stream i when the sweep encounters posi- 
tion do(R) such that. the four-way comparison yields An(R) 
as the minimum value. Note that. upon entering Morton 
element R on the stack of stream i we alreacly kuow that. 
hlorton element R is contained in Morton element S at t.he 
top of t.he stack of stream i since do(R) is less than zhi(5’) as 
a result of the minimum four-way comparison. Thus there 
is no need to remove any members of the st.ack of stream 
i at this point. Processing continues with the next -Morton 
element in stream i. For example, this is the c,ase when we 
push B on the stack of stream X in st,ep 2 in Figure 4. WC 
continue after advancing current(X) to C. 

A Morton element, is removed (i.e., popped) from the 
stack of stream i when the sweep encounters Morton ele- 
ments S and T at positions 210(S) and do(T) in streams i 
and j, respectively, such that the four-way comparison re- 
sults in the zhi value of lZlorton element CT at t,hc top of the 
stack of stream i being the minimurn value. This means that 
Morton element CT can be removed from the stack of strcarn 

i as Morton element S cannot be cont.ained in Morton ele- 
ment U. For example, this is the case where we encounter J 
as t.he current element of stream Y in step 5 in Figure 4 - 
t.hat is, we pop I from the stack of stream X. 

Upon i.nserting an element U into the stack of stream 
i, the algorithm checks if II overlaps with any of the Mor- 
t.on elements in t,he stack of stream j, and reports all t,he 
overlapping pairs that are found. These pairs const.itute 1,11e 
result of the spatial join. Processing continues with a new 
element at the top of the stack of stream i. Cont,inuing our 
example in. Figure 4, this means that in step 4 WC check if 
the pushedi element I overlaps with A, the only member of 
the stack of stream X that is in the space in which the spatial 
join is executed, aud find t,hat it does. We report. (A, I) as 

the overlapping pair and cont,inue. Note that we need not. 
check if Morton element U overlaps with Morton element 
T (the current, hlorton element of stream 1) because at this 
time, by vi.rt.ue of our minimum value four-way comparison. 
we already know that zhi(U)is less than do(T) (e.g., in st.ep 
4 in Figure 4 I need not be test.ed for overlap wit.h C). Recall 
that no overlap between two Morton elements V and iI’ is 
possible if hi(V) is less than z/o(W). 

4 The Modified Spatial Filter Algorithm 

The second algorithm is the modified spatial filter. It. is 
a modified version of the spatial filt.er join algorithm of 
Orenst,ein and L4anola [15, 161. It requires that. both input. 
streams be indexed (so t.hat random as well as sequent.ial 
access to the elements in either st.ream is possible). 

As mentioned before, the key to the spat.ial merge al- 
gorithm is t,hat. procedure SpatialMergeAdvance processes 
the elements of t,he two streams in Z-order. ‘This coulcl 
be rather wasteful as t.he e1aborat.e control st.ruct.ure is in- 
voked for every element in t.he two strearns. In contrast,, 

t,he modified spat,ial filter algorithm, encoded by procedure 
SpatialFilterAdvance given in t.he Appendix: assumes the 
presence of an index for each of t.he two streams (e.g., a 

B-t.rec, B+-trr:e, ISXM. et.c.). 
We illust.rate our cxplanat.ion of t.he algorit.hm with the 

aid of Figure 5 which traces the steps of the modified spat. al 

filter algorithm when used to compute the spat,ial join of the 
st.reams X and Y given by t.he Morton elements in Figures 3a 
ant1 3b corresponding to the maps in Figures la and 1 b, 
respectively. It is interpreted in the same way a~ Figure 4. 
Not,e that alo~q, wit.11 each step in Figure 5 we also indic:at,e 

the corresponcling step in the t,race given in Figure 4. 
SpatialFilterAdvance dilTers from 

SpatialMergeAdvance in t.hat. instead of simply advancing 
to the next element in stream i and continuing processing 
from there, SpatialFilterAdvance advances to t.he next el- 
ement in stream i and uses information from st.ream j to 
directly access stream i (via the index OIL i) thereby skip- 
ping elements in stream i that do not overlap the cnrrent. 
element of st,ream j and t,hus cannot. contribute to t.he result 
of t.he spatial join operation. Figure 6 is an example where 
e1ement.s A and B in stream X are skipped while current (IX) 
is reset t,o C. This situation also occurs in steps 1: 5, and 7 
of Figure 5 where e1emcnt.s B, D and E, and G, respectively, 
are skipped. 

current(X) 

)1 
stream X 

r-u-7 l-l C 

stream Y L-J 
/ 

current (Y) 

Figure 6: Morton elements A and B are skipped after pro- 
cessing current(x) with processing resumed at C. 

It should be clear that. SpatialFilterAdvance cannot 
skii, any elements in stream i after executing t.he initial ad- 
vance in st.ream i if the current element of stream i start,5 at 
a point. beyond the current element of stream j or overlaps 
with it. For example, in Figure 5 st,ep 2 illustrat,es t.he case 
t,hat J, the current element of stream Y, starts at a p&it 
beyond C: the: current element of st.ream Y.. Continuing this 
example, st.eps 8 and 11 demonstrat,e t,he case t,hat t.11e cur- 
rent element of st.rearn Y (i.e, K and L, respectively) overlaps 
the current element of stream X (i.e., H). Also, at the same 
instance, IIO elements can be skipped if the current elelnent 
of stream i is on the stack of stream j or is contained in 1071~: 
of t.he elements of this stack. 

In t,he rest of the discussion of the modified spatial fi;tcr 
algorit,hm in this section, WC: consider the case that proce- 
dure SpatialFilterAdvance has just advanced the current 
element of stream i. This means that it. uses &, t.he current 
clement of stream j, to directly access st.rcam i to find the 
next element to be processecl in stream i. If & is not found in 
the inclex corresponding to stream i, then the element tt in 
st.ream i with t.he smallest indes value (i.e., do(R)) great.er 
than t.hat of Q (i.e., zIo(Q,) is returned as t.he new current. 
element of stream i. One problem that must be resolved by 
t,he modified spat.ial filter algorithm is that there may exist. 
some Morton elements in dream i that start at. a position 

t.tiat is past t.he curreut elemeut of strearn i and that conl,ain 
the current elenieut of stream j (hence contributing To the 
result of the spatial join) that. might be erroneously skipped 
if the algorithm uses orily the current. clement of st,ream j 

t.o direct.ly access the elen1ent.s in stream i. For example. in 
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push B on stack of X 
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push I on stack of Y and 
report pair (A,I) 
pop 1 from stack of Y 
pap A from stack of X 
push C on stack of X 
pop C from stack of X 
push D on stack of X 
pop D from stack of X 
push E on stack of X 
pop E from stack of X 
push F on stack of X 
push G on stack of X 
pop G from stack of X 
push J on stack of Y and 
report pair (F,J) 
pop F from stack of X 
pop J from stack of Y 
push K on stack of Y 
push H on stack of X and 
report pair (H,K) 
push L on stack of Y and 
report pair (H,L) 
pop H from stack of X 
X and its stack are empty 

Figure 4: Trace of the application of the spatial merge algorithm to the Morton elements in Figures 3a and 3b. 

Figure 5 step 5 illustrates the case that D, the current ele- 
ment of stream X, terminates at a point before J, the current 
element of stream Y, while F in stream X starts at a point 
past D and does contain J. 

In order to overcome this pro&m, the modified spatial 
filter algorithm generates all the possible ancestors (i.e., con- 
taining Morton elements) of the current element. of stream j 
t,hat lie between the current elements of streams i and j (i.e., 
Morton elements A in stream j such that zhi(current(i)) is 
less than .~lo(A)).~ Of course, not all the possible ancest.ors 
of the current element of stream jexist in strearn i. III fact, it 
could be that none of them may exist. For example, in Fig- 
ure 7 four possible ancestors of current(Y) are generated 
but only two of them are found in the stream. A similar 
situation occurs in step 5 of Figure 5 where F and an ele- 
ment analogous to J are generated for stream X with D as its 
current element, and of course only F is found in st.ream X. 

Procedure SpatialFilterAdvance must set bhe current 
element of stream i to point at t.lie largest ancestor of the 
current. element of stream j that is found in stream i past 
the current element. of stream i (e.g., in step 5 of Figure 5 F 

is the largest ancestor in stream X of J, the current element 
of stream Y, that is past D, the current element of st.rcam 
X). If no such anccst.or exists, then the current element of 
stream i is set to the first element in stream i that over- 
laps with or lies past the current element. of stream j (i.e., 
zio(current(i)) 2 zlo(current(j))). For example, in st.ep 7 of 
Figure 5 current(X) is set to H as no ancestor of current(Y) 
(i.e.: J) exists past the previous value of current(X) (,i.e., 
c). Comput,ing the set of possible ancestors of the current 
element of stream j does not require any accesses to the in- 
dex u this process only involves the calculation of Morton 
codes of the ancest.ors. 

“Wr: could have also used the less restrictive test “zlo(current(t)) 
< zlo(Aj”. However, we make use of the fact that no ancestor of 
cut.r.ent(~) can start between zlo(current(r)) and zht(current(t)J to 
restrict the search, and thus compare tht(current(r)) with rlo(A) in 
the code. 

possible ancestors 
between current(X) and current(Y) 

current(X) ; 4 \\ --___- _-_ _ _________ 
stream X 

nn r-d 
t -__, 0 

' I ! 

stream Y 

/ T 

current(Y) 

direct direct 
access #l access #2 

El 
ancestor exists in stream X 

,---, 
:---: ancestor does not exist in stream X 

Figure 7: Possible ancestors between current(X) and cur- 
rent(Y). 

Once the possible ancest.ors of the current ele- 
111e1it. of stream j have been computed, procedure 
SpatialFilterAdvance directly accesses stream i searching 
for the largest ancestor of the current element. of stream j 
one-by-one. In the worst case, this requires a number of di- 
rect accesses to stream i equal to the number of compukcl 
anccst.ors between zhi(current(i)) and zlo(current(j)). As 
soon as the algorithm finds the largest ancestor in st.ream i, 
it can stop the search and return. For example, in Figure 7: 
SpatialFilterAdvance returns after direct.ly accessing t.hc 
second largest possible ancestor of current(Y) in stream X 
as the largest possible ancestor was directly accessed but 
was not. found. 
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pop H from stack of X 
X and its stack are empty - 

Figure 5: Trace of the application of the spatial filter algorithm to the Morton elements in Figures 3a and 3b. Step numbers within 

parentheses correspond to the step numbers in the trace of the spatial merge algorithm in Figure 4. 

5 The Modified Linear-Scan Spatial Join Algorithm 

Similarly, the modified linear-scan spatial join is an enhance- 
ment over the linear-scan spatial join of Aref and Sunet [‘I: 

where the modified linear-scan algorithm guarantees t,hat 
the output of the join is spatially sorted according to the 
Mort.on- or the Z-order. 

The spa&l filter algorithm results in significant. speedups 
over the spatial merge algorithm. Unfortunately, it rcquircs 
that the two st.reams be indexed while producing UI out,put 

that is not indexed. This is problematic in a pipelined archi- 
t.ecture for query processing (e.g., [IO: 211) where the query 
is answered by a pipeline composed of a cascade of one or 
more operations. The first operation in the pipeline oper- 
ates on the original input stream and its result is passed to 
the second operat.ion in the pipeline using common buffers. 
Thus in such an environment t.he underlying indexing ca- 
pabilities are effect.ive only for the first operations in t.he 
pipeline. Subsequent operations in the pipeline Inlist. oper- 
ate on non-indexed spatial data unless temporary indexes 
are built, which is expensive. 

In other words, if the input st.reams are indexed: then 
o111y the first operation in the pipeline can benefit from t.he 
index. This makes it difficult to apply t.he spatial filter al- 
gorithm at. latter stages in the query pipeline, unless we are 
willing to rebuild t.he index after each operat,ion. Moreover, 
since the output of the spat.ial filter is not sorted, we cannot 
even use the spatial merge join algorithm at the latter stages 
in t.he query pipeline. AlternaPively, we can use the modified 
spatial filter algorit.hm just. for the first spatial join, and t.hru 
use t,he modified spatial merge algorithm for all subsequent 
spaCal joins in the cascade. 

Building temporary spatial indexes during query process- 
ing has its t,radeoffs. On the one hand, building temporary 
indexes to organize intermediate results helps speed-up t.he 
execut,ion of the spatial operations since they operate on 

st.nrctured dat.a (inside the temporary index) rat.hcr t.han 
on an unorganized collection of data items. ‘On the Iot,lier 
hand, the cost. of building the temporary index may exceed 
its benefits. 

III t.his section, we present. a new algorithm, termed /he 
modified li7~ear-scu7z sputiul join algorithm, which is an cn- 
hancement of an algorithm, termed linear-scan spat,ial join: 
t.hat is proposed by the aut,hors in [?I. In addition t,:, the 
savings in execution time resulting from the linear-scan spa- 
tial join, the modified linear-scan spat.ial join produces it.s 
output in spatial order (i.e., sortedj, and hence t.he same 
algorithm can be applied progressively in further st.+;es of 
a query pipeline. 

Assume t,hat the spat.ial filter algorithm has just atl- 
vanced the current element of stream i. In t.his case, \\c ob- 
serve that the odv time procedure Spa-tialFilterAd>rance 
makes use of the -index is when it tries to set f,he c~:rrcnt, 
clement of stream i to the largest ancestor of the ccrrent 
element of stream j that is found in stream i. 01 course. 
this process is speeded up by use of the iudex. Hoviever, 
WC could also avoid the need for t.he index by using a .:inear 
scui of stream i start.ing at t.he currelit element. of sl.ream 
i. Recall, that. computing the set of possible ancestors dots 
not require 115x of the index. 

The above observation is used as t.he basis of the ::llodi- 
lied linear-scanspatial join algorithm encoded by procedure 
LinearScanAdvance, given in the Appendix. b17r: illustrate 
our explanation of the algorithm with the aid of Figure 8 
which traces the st.eps of t.he modified linear-scan algorithm 
when used to con1put.e the spatial join of the streams X and 
Y given by the Morton elemcnt,s in Figures 3a atIt1 3b corre- 
sponding t,o t.he maps in Figures la and lb, respectively. It 
is interprct.cd in the same way as Figure 5. Note that. a1011g 
with each ::t,rp in Figure 5 we also indicat.e the corrcspond- 
ing step in t,he trace given in Figure 4. Figure 8 is almost. 



unchanged from Figure 5. The only changes occur in steps 
1, 5, and 7 where current(X) is set to t.he appropriat,e next 
element. by use of a linear scan in Figure 8 while this is clone 
with a random access in Figure 5. 

There are two differences between LinearScanAdvance 
and SpatialFilterAdvance. Again, assume t.hat the algo- 
rithms have just advanced the current element of st.ream i. 
The first is the absence of the use of the index in determin- 
ing the largest ancestor in st.rcam i of the current element 
of stream j (e.g., in steps 1, 5, and 7 in Figure 8). Recall, 
that in SpatialFilterAdvance a random access was used 
to check if the possible ancestors of the current element of 
stream j, in decreasing order of Morton element block size, 
are present in stream i. As soon as one was found, say A, 
procedure SpatialFilterAdvance sets the current element. 
of stream i to .4 and exits. 

Procedure LinearScanAdvance also scans the possible 
ancestors of the current element of stream j in decreasing 
order of Morton element block size. In addition, it also 
simultaneously scans the Mort,on e1ement.s in stream i in in- 
creasing order, each time resetting the value of the current 
element of st.ream i, while testing if a particular ancestor of 
the current element of stream j is present (e.g., in st,ep s in 
Figure 8 when checking stream X for the presence of ancestor 
F of J in stream Y, current(X) is advanced from D to E and 
from E to F). The scan continues for a particular ancestor A 
as long as the Morton code value of the current element of 
stream i (i.e., z/o(currerrt(i))) I IS ess than A’s Morton code 
value (i.e., 210(A)). Whenever this test fails (i.e., A is not 
found in stream i), the scan continues with the next. smaller 
ancest.or of the current element of stream j. 

The second difference is that if none of the possible an- 
cest.ors of the current element. of stream jis found in stream 
i at. a position past the current element of stream i, then the 
scan of stream i must be continued until encount.ering t.he 
first element. in st.ream i that lies past. the current element. 
of stream j (i.e., zlo(current(i)) > slo(current(j))). For cx- 
ample, this is the case in steps 1 and 7 in Figure 8 where 
WC scan stream X to C and H which are past I and 3, the 
respective current elements of stream Y. 

The number of disk page read operations for the modificcl 
linear-scan algorithm is the same as for the modified spatial 
merge algorithm. The modified linear-scan algorithm has 
superior performance because t.he spatial merge algorithm 
must process each element in a stream (i.e., enter it. into 
the stream’s stack and remove it from t.he stack) even when 
it does not contribute to any output tuples of t.he spat.ial 
join. Instead, the modified linear-scan algorithm det.ects 
these element,s and excludes them by sequentially scanning 
and skipping each one of them so that they will not get pro- 
cessed by t.he controlling loop of the algorit.hm (i.e., entered 
and removed from the stack’s of each stream by procedure 
Control). The performance gain and a comparison between 
the algorifhms can be found in [2]. Notice that it is difficult 
to compare the number of disk page read operat.ions be- 
tween the linear-scan and the spatial filter algorithms. The 
reason is that they will differ depending on the struct.ure 
of the data. In particular, they depend on the separation 
between the current. elements of the two streams. For more 
details, see [2]. However, the contribution here is that bot,h 
algorithms are now adjusted so that t.hey produce spat,ially 
sorted blocks, ant1 hence the algorithms can be used any- 
where in a query pipeline. 

6 Conclusions 

Providing sorted output. for the spat.ial join operation is of 
significant importance to spatial query processing of com- 
plex spatial queries. Since the modified spatial join algo- 
rithms, presented in t.his paper, produce spatially sorted out- 
put, t,hey can be used in an environment where t.he queries 
are cascaded without the need to sort the output, aft.cr every 
intermediate operation ‘as is the case when using t,he spat.ial 
merge algorithm. 

Spatial join algorithms have a variety of requirements 
and characteristics. Some need indexed input and produce 
unindexed unsorted output, while others need only sort.ed 
input but produce sorted output, et,c. We plan to model 
and study the cost of alternative query evaluation plans t,hat 
contain cascaded spatial joins arrd study the effect of the 
characteristics and requirement,s of the various spat.ial join 
algorithms on the overall cost of the plans. 
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8 Appendix: Detailed Implementationsof the Spatial loin 

Algorithms 

Each spat.ial join algorit,hm is give:n by t.hc c-:,llcc- 
tion of procedures Control, NextElement, EnterElement, 
ExitElement. and Advance. Procedures Control: 
NextElement. EnterElement. and ExitElement are the s11ne 

for each of the algorit.hma that. wc de.jcribe. The ciiff’er- 
encc: is in r.he encoding of procedure Advance which pro- 
duces the next clernents in the input st.re;rms. We differ- 
entiat.e between the different algorithnls through the IIPF: of 
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procedures SpatialMergeAdvance, SpatialFilterAdvance, 
ScanCascadeAdvance, and EstimateBasedAdvance. 

The spat.ial join algorithms make use of the following 
data types. The principal data type is a Morton element ele- 
ment represent,ed by a record of type element. Stateof Input 
identifies the stat.e of each input stream and is a record of 
t.hree fields: sequence, nest, and current. sequence is 
a list of Morton clement elements. nest is a stack of 
Mort.on elements. current is the current. Morton element. 
output is a list of pairs of elements (corresponding 1.0 over- 
lapping Morton elements) consisting of fields element1 and 
element2 which are point.ers to records of type element. 

procedure Control(LefcSeq”ence, RightSequence, Result); 
/’ Perform the spatial join operation by “sing a variant of merge join. 

The two input streams are assumed to be sorted but not necessarily 
indexed. A stack is used to maintain information about the nest- 

ing of 
Morton blocks in each input stream. */ 

begin 
reference pointer list LeftSequence, RightSequence; 
reference pointer output Result; 
pointer StateOflnput L,R; 
integer event; 
global pointer element MaxMortonElement; 
/* Initialize the left and right streams and their state variables. 

MaxMortonCode is the maximum possible value for the 
Morton code in the space in which the spatial join is executed. 
MaKMortonElcmrIlt is a constant unit-sized Morton element that 
lies outside the space in which the spatial join is executed. 
The stacks are initialized to contain this element, and it is 
also the last element in each stream. ‘/ 

Max~lo~tonElernent:=create(element); 
zlo(klaxMortonElement):=MaxMortonCode+l; 
zhi(.,~axMortonElement):=Max,~ortonCode+l; 
L:=creatr(StateOfInput); 
R:=crrate(StateOfInput); 
srqucnce( L):=LeftSrquence; 
clear(,nrst(L)); 
push(nrst(L),MaxMortonElement); 

CLII.T~.llf(L).=firSt(Seq”ence(L)); /* A. ssume scquencc is non-empty ‘/ 
scquence(:R):=RightSequrnce~ 
clear(nest(R)); 
push(nest(R),MaxhlortonElement); 

currerlt(R):=first(sequence(R)); /‘A sbumr sequence is non-empty + / 
while not(current(L)=MaxMortonElemerrt and 

top(nest(L))=Max~lortonElement) and 
not(current(R)=MaxMortonElement and 

top(nest(R))=~laxMortol~Element) do 
begin 

/* The main loop of spatial join scans each element of both 
streams. zlo(F3) returns the Morton code of the upper-left 
corner of B. zhi(R) returns the Morton code of the lower- 
right corner of B. iI 

event:=min(zlo(current(L)), zhi(top(nest(L)j), 
zlo(current(R)), ahi(top(nest(R)))); 

/’ depending on the minimum event, perform the appropriate 
action. */ 

if rvrnt=zlo(c11rrent(L)‘) then /’ enter current(L) into L’s * / 
EntcrElrment(L,R,Result) /‘stack and advance to next element 

else if event=zlo(current(R)) then /’ enter current(R) into R’s ‘/ 
~nterElrmrnt(R,L,Rrs!rlt) / * stack and advance to next element.*/ 

else if evrnt=zhi(top(nest(L))) then /* delete elements from L’s stack */ 
ExitElement(L,H,Result) /* and produce the output pairs. */ 

else if ev&nt=zhi(top(nest(R))) then /* delete elements from L’s stack ‘/ 
ExitElmmcnt(R,L,Result); /* and produce the output pairs. */ 

end; 
end; 

pointer element procedure NextElement( 
/’ Return a pointer to the next element in stream X. If the stream 

is empty, then return a pointer to MaxMortonElernent which is a 
global co11stant. ‘f 

begin 
reference pointer StateOfInput X; 
rrturn(if eof(seq”ence( X)) t&n hlaxMortonElement 

else “ext(scquc”ce(x))); 
end; 

procedure EntcrElcmrrlt(S,Y,Rcsulr); 

f’ Enter the currrnt element of srre~m .X (current(X)) into S’s 
stack (nest(X)). */ 

begin 
reference pointer StateOfInput X,Y; 
reference pointer output Result; 
push(nest(X),current(X)); 
ReportPairs(top(nest(X)),nest(Y),R~s”lt)~ 
Advance(X.Y); f’ advance to the next element in stream X. ‘/ 

end: 

procedure ExitElement(X,Y,ResuIt); 
/* Remove the top clement of the X’s stack after comparing it with all 

the elements of Y’s stack. The elements that overlap are reported as 
output of the spatial join. ‘/ 

begin 
reference pointer StateOfInput X,Y; 
reference pointer output Result; 
pop(nest(X)); 

end; 

procedure SpatialMergeAdvance(X,Y); 
/’ Assign to the current element of X the next element of stream X. 

Y is unchanged in this version of the procedure. */ 
begin 

reference pointer StateOflnput X,Y; 
current(X):=NextElement(X); 

end, 

procedure SpatialFilterAdvance(X,Y); 
/’ Assign to current(X) an element in stream X that overlaps current(Y) 

or with some element in nest(Y). Skip the elements in stream X that 
lie between current(X) and current(Y) that do not correspond to any 
output pair of the spatial join. ‘/ 

begin 
reference pointer StateOfInput X,Y; 
pointer element c; 
stack of element candidates; 
Boolean CoverFound; 
surrerlt(X):=NextElement(X); 
if zhi(current(X))% “ge%alo(current(Y)) then 

return /* current(X) overlaps with or is past current(Y) ‘/ 
else if StackContains(nest(Y),current(X)) then 

return /’ current(X) is one of the elements in nest(Yj or 
is contained in one of the elements in nest(Y) ‘/ 

else /’ Check for nodes in stream X that contain current(Y) */ 
begin 

clear(candidates); /* lrritialize the stack */ 
c:=current(Y); 
while zhi(current(X));zlo(c) do /* Calculate the ancestors of */ 

begin /* current(Y) between current(X) ‘/ 
push(candidates,c); /’ and current(Y). No I/O is involved.*/ 
c:=parent(c); f* parent(c) is the Morton clement that contans c 

and is twice the size of c. */ 
end; 

/’ Search stream X “sing the zlo field value for each of the computed 
ancestors starting with the larger ones. This involves one direct 

access to stream X for each ancestor. *f 
CoverFound:=false; 
while not(empty(candidates)) and not(CoverFound) do 
begin /* randac(sequrnce(X),k) performs random access to stream X 

using key k to search the index. If k is not found in the 
index, then return the smallest key greater than k in the 

index. This could bc MaxMortonElrment if we are at the end 
of the stream. ‘f 

c:=randaC(srqUcnce(S),zlo(top(Candidatrs~jj; 
if same’elernent(c,top(candidates)) then 

begin 
CoverFound:=true; 
c”rre”t(x):=c; 

end 
else pop(candidates); 

end; 
if not(CoverFound) then current(X):=c; 

/* At this point, current(X) 1s assigned to one of the follow- 
ing values: 

(a) the largest ancestor of currd(Yj found in stream X past 
current(X), (b) or in the case where no ancestor is found, the 

smallest key greater than or equal to current(Y). In either case. 
the irrelevant elements in stream X are skipped. */ 

return; 
end; 

end: 
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stack of ~kmrnt carlrlidates; 

Ekmlean CowFound; 
cllrrcrlt(r:):=NextEIcmrr~t(X); 
if zhl(currrnt(X))S”ge~zlo(cur~ent(Y)) then 

return /’ current ovrrlaps wrh or 1s past current(Y) ‘/ 
else if StilckCorltains(rlrst(Y),cu~rent(X)j then 

wturn ,I* current[X) is in nest(Y) */ 
else /* Check far nodes in stream X that contain currat */ 

begin 
clear(candidatrs); 

c:=current(Y); 
while ‘zhi(current(Xj)izl(c) do 

beg111 
pushjcandidatqc); 

c:=parent(c); /*parent(c) is the Morton clement that contains c 

and has double the size of c */ 
end; 

CovrrFound:=false; 
while not(empty(candidates)) and not(CoverFound) do 
begin I* Perform the linear scanning until an ancestor is folmd */ 

if zlo(current(X))jzlo(top(candidates)j then 
cllrrent(X):=NextElement(X) 

rlsc if same’elemrnt(current(X),top(csrldidates)) then 
CoverFound:=true 

FISC pop(candidates); 
end; 

if not(CoverFound) then 
while r,ot(currmt(X~=MaxlMortonEtement! 

and ~l~(currmtjXj)i~to(currrnt(u)) do 
culrent(X):=NextElement(X); 

returr,; 
end; 

end ; 
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