Cascaded Spatial Join Algorithms with Spatially Sorted Output

Walid G. Aref and Hanan Samet

Computer Science Department and
Center for Automation Research and
Institute for Advanced Computer Studies
The University of Maryland
College Park, Maryland 20742
Phone: 301-405-1755, Fax: 301-314-9115
E-mail: aref hjs@umiacs.umd.edun

Abstract

The spatial join is an operation that combines entities from
two spatial data sets into a single entity whenever the combi-
nation satisfies the spatial join condition (e.g., if they over-
lap in space). Linear quadtrees and the Z-order are two
widely-used data structures for organizing spatial databases.
They are based on the concept of recursive decomposition
of space. For spatial databases using recursive decomposi-
tion, algorithms for performing spatial join already exist in
the literature. For efficiency purposes, some of these algo-
rithms require that the two input streams of the spatial join
be indexed, while other algorithms require that the two in-
put streams be sorted, but not necessarily indexed. These
algorithms suffer from the fact that they produce spatially
un-ordered output, i.e., their output is not sorted. As a re-
sult, they cannot be used efficiently to answer complex spa-
tial queries that involve cascading spatial join operations in
their query evaluation pipelines. A new optimization is pre-
sented that can be applied for a wide variety of spatial join
algorithms that would result in producing spatially ordered
output, i.e., sorted. This optimization enhances the appli-
cability of these algorithms significantly so that they can
be efficiently used to answer spatial database queries that
involve multiple cascading spatial join operations.

1 Introduction

One of the most useful tools for spatial query processing is
the spatial join. Generally speaking, the spatial join com-
bines entities (e.g., tuples in a relational database manage-
ment system and also termed elements here) from two sets
(termed streamns) into a single entity in a resulting stream
whenever the combined entity satisfies the spatial join con-
dition (e.g., if the two entities intersect each other). In the
context of data representations where the spatial attribute
is one that describes the space occupied by the entity (i.e.,
tuple), the spatial join primarily means that the two entities
are joined iff they overlap in space. For example, applying
the spatial join to the two maps in Figures 1a and 1b yields
the object pairs (3,4), (3,5), and (3,6).

Permission to make digital/hard copies of all or part of this material fo_r
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage. the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, l{lc. To copy ot.hcr_wnse,
to republish, to post on servers or lo redistribute to lists, requires specific
permission and/or fee

GIS 96 Rockvillle MD USA

Copyright 1997 ACM 0-89791-874-6/96/11 ..$3.50

17

[

Figure 1: Two sample maps.

Many algorithms for performing spatial join already ex-
ist in the literature (e.g., [5, 4, 6, 7, 9, 16, 19]). Our focus
in this paper in on algorithms that assume that the under-
lying spatial database is organized based on recursive de-
composition of space, e.g., quadtrees [8, 11, 20], and the
Z-Order 17, 16]. Orenstein and Manola [15, 16] present two
algorithms for spatial join (overlap) using the Z-Order as
their underlying organization of the spatial database. The
first algorithm, termed the spatial merge, requires that the
two input streams be sorted but does not necessarily require
the presence of an index. The second algorithm, termed the
spatial filter, is an optimization of the spatial merge. The
spatial filter yields significant execution time speedups over
the spatial merge at the added expense of requiring that
both input streams be indexed (e.g., as a result of sorting
on the basis of the spatial attribute so that random as well
as sequential access to the elements in either stream is pos-
sible). This is a very modest requirement given the status
of current database technology (e.g., a B-tree, ISAM, etc.).
The speedups are a direct result of using the index to di-
rectly access the input streams.

Aref and Samet [2] present two new spatial join algo-
rithms that are optimizations over the spatial merge and
the spatial filter algorithms. The first algorithm, termed
the linear-scan spatial join algorithm, avoids processing ev-
ery element in the two streams by just scanning the irrele-
vant intervening elements between corresponding positions
in the two streams as it has no index. The second algorithm,
termed the estimate-based spatial join algorithm, uses on-
line estimates of the input streams to decide whether to use
the index for a direct access request or a linear scan.

All the four spatial join algorithms {namely, the spatial
merge, the spatial filter, the linear-scan, and the estimate-

based algorithms), require that the input streams must be
sorted (spatially ordered, e.g., according to the Z-order),
while the output they produce is not sorted. This is not a
problem if the spatial join is only performed once. However,
in most applications (e.g., in a geographic information sys-
tem), it is usually the case that the spatial query requires
the execution of a cascade of spatial join operations (i.e.,
the output of one operation serves as the input to the next
operation). Thus, use of any one of these algorithms means
that only the first spatial join is efficiently executed. All
subsequent spatial joins will require either to spatially sort
their input (or build a temporary index) before performing
them, or to use a nested loop join algorithm with a spatial
intersection predicate, since none of the above spatial join
algorithms works properly for unsorted input streams.

In this paper we present an algorithmic improvement (or
optimization) that works properly for all of the above fonr
spatial join algorithms. When this new optimization is aug-
mented to any of the four spatial join algorithms, the aug-
mented algorithm will produce output tuples that are sorted
spatially (e.g., using the Z-order sort order). Therfore, any
of the modified spatial join algorithms can then be applica-
ble in spatial query pipelines that involve multiple cascaded
spatial joins without the need to sort the output at each
intermediate stage.

The rest of this paper is organized as follows. Section 2
covers background material that is needed for the presenta-
tion of the algorithms. Then, we present the new optimiza-
tion that we propose in this paper and show how it is appli-
cable to some of the existing spatial join algorithms, namely,
the spatial merge (Section 3), the spatial filter (Section 4),
and the linear-scan algorithm (Section 5). Section 6 sum-
marizes our findings and draws some concluding remarks.
The Appendix contains detailed specifications of the new
modified algorithms so that readers can understand the im-
portant subtleties that are involved in their implementation.

2 Background

2.1 Spatial Data Representation

Spatial data consists of objects which are permitted to over-
lap. In the Z-Order data structure, each object is repre-
sented by a set of restricted rectangular clements (termed
Z-elements) that collectively approximate (and cover) the
object. The restricted rectangular elements result from a
recursive decomposition of the space into two cqual-sized
blocks while cycling the splits through the differcnt coor-
dinate axes corresponding to the dimensions of the space.!
The decomposition is such that the space (i.e., the blocks)
is recursively decomposed until each block is totally covered
by one or more objects or is not covered by any of the ob-
jects. The Z-elements consist of the blocks that are covered
by the objects and not the blocks that are empty. For exam-
ple, Figures 2a and 2b are the Z-elements corresponding to
the maps in Figures 1a and 1b, respectively. In this exam-
ple, we have cycled through the axes in the order zyzy---.
Note that it is impossible for a block corresponding to a Z-
clement to be covered partially by one object and partially
by another object. In other words, block 1 is not considered
to be totally covered if one half of the block is covered by
object j and one half by object k.

1The result is a collection of blocks the length of whose sides are
either all equal or differ by a factor of two; hence the use of the
qualifier restricted.

C

Figure 2: Result of decomposing the maps in Figure 1 into
their Z-elements.

The algorithms of Orenstein and Manola make use of
what is termed a Z-order [13] to order the Z-elements (i.c.,
the blocks that cover the objects). The Z-order is a lineariza-
tion of space where each of the blocks corresponding to the
Z-elements is represented by a unique value which is then
stored in a sorted list or some other data structure (possi-
bly with an indexing capability). In this case, the value is
a function of two parameters: the coordinate values of the
upper-left corner and the size of the restricted rectangular
region corresponding to the Z-element. In addition, cach
Z-element has an object identifier that indicates the iden-
tity of the object to which it belongs. For more details on
how to construct the Z-order for a collection of objects and
the perforinance issues related to redundancy and accuracy
when using them to approximate the objects, see [14, 16].

In our presentation of the new optimization and the
modified algorithms, we also make use of a Z-order. For
simplicity, we restrict our domain to two dimensions with
Z-elements whose corresponding blocks are square. These
Z-elements result from a recursive decomposition of the
space into four square blocks (i.e., a quadtree-like decom-
position [20]). The resulting elements are special cases of
Z-elements and are termed Morton elements [12]. For ex-
ample, Figures 3a and 3b are the Z-elements corresponding
to the maps in Figures 1a and 1b, respectively. The Morton
elements are ordered on the basis of their size and the result
of mapping the point at the upper-left corner of each block
into an integer. This is achieved by interleaving the Ddits
that represent the values of the z and y coordinates of the
two-dimensional point. The result of the interleaving pro-
cess is termed a Morton code [12]. Note that the techniques
presented here apply directly to arbitrary Z-elements which
can assume restricted rectangular shapes in two and higher
dimensions.

B C

@

Figure 3: Result of decomposing the maps in Figure 1 into
their Morton elements.

18

2.2 The Spatial Join Operation

When computing the spatial join of Z-element (including
Morton element) decompositions of two maps, we report the
pairs of overlapping blocks and then obtain the appropriate
object identifiers by use of lookup operations. For example,
the spatial join of the Morton elements in Figures 3a and 3b
.consists of the block pairs (4,1), (F,J), (H,L), and (H,K)
corresponding to the object pairs (3,4), (3,5), (3,6), and
(3,5), respectively. Notice that because of the nature of
the Z-elements and the recursive decomposition process by
which they are constructed, any pair of corresponding Z-
elements either in the input or output streams are either
equal or are contained in one another; however, they cannot
overlap without one Z-element being totally contained in
another Z-element.

One of the drawbacks of decomposing spatial objects into
a collection of Z-elements is that the same pair of objects
conld be reported as overlapping many times. This was the
case in the spatial join of Morton element decompositions of
the maps in Figures 3a and 3b where the object pair (3,5)
was reported twice. In fact, if objects ¢ and 7 are represented
by mi and n; Z-elements, respectively, then, depending on
the extent of the overlap between the objects, the pair (7,)
could be reported as often as n; ++ n; — 1 times. This prob-
lem of multiple reportings arises in the implementations of
many other spatial operations as well. For example, sup-
pose we want to retrieve all the objects in a given region.
Clearly, each object should be reported once. Eliminating
the multiply reported values using more efficient techniques
than simply sorting the output is a serious issue (see {1, 3}
for a discussion of how to deal with this problem when the
spatial objects are line segments and rectangles).

3 The Modified Spatial Merge Join Algorithm

For brevity, we explain directly our modified version of the
spatial merge algorithm of Orenstein and Manola [15, 16].
In contrast to their algorithm, the modified spatial merge
join algorithm produces sorted tuples based on some spatial
order, which in our case is the Morton- or Z-Order.

The modified spatial merge algorithm requires that the
two input streams be sorted but not necessarily indexed. We
present qnadtree variants of the algorithm as we assume that
Z-clements are always Morton elements (i.e., square blocks
in contrast to restricted rectangular blocks as in the more
general case of the Z-Order {13, 17]).

A Morton element B is represented by the Morton code
of B’s upper-left corner and its size.? The key for sorting in
each input stream is the Morton code (in ascending order)
and size (in descending order) of each Morton element in the
stteam. The Z-order for the Morton elements is such that
Morton element B appears in the stream before Morton ele-
ment C if the Morton code of B is less than the Morton code
of C. Furthermore, if two Morton elements share the same
upper-left corner, then the larger one appears first in the
stteam. For example, the Z-order for the Morton elements
in Figure 1ais A, B, C, D, E, F, G, H.

The modified spatial merge algorithm resembles a merge
join algorithm. The difference is that in the modified spa-
tial merge algorithm elements of the same input stream rep-
resent two-dimensional intervals that can be coutained in
one another. The modified spatial merge algorithm is given

2We assume that the origin is at the upper-left corner of the space,
that the positive z direction is to the right, and that the positive y
direction is downwards.

19

in the Appendix using procedures Control, NextElement,
EnterElement, ExitElement, and Advance. The basic dif-
ference between the modified spatial merge algorithin and
the spatial merge algorithm of Orenstein and Manola is in
the timing when an output tuple is reported by the algo-
rithm. By selecting the proper timing for reporting the ont-
put tuples during the proper execution of the algorithin, this
results in the reported tuples being produced in sorted order
without extra effort.

In the following, we explain the necessary data struc-
tures and the control structure of the algorithm. The con-
trol structure is particularly important as it is the same
for all of the spatial join algorithms discussed in this pa-
per. Procedures Control, NextElement, EnterElement, and
ExitElement make up the control structure. Procedure
Advance is used in conjunction with NextElement to ob-
tain the next Morton elements from the input streams. It
differs for each of the spatial join algorithms. In the case
of the spatial merge algorithm, it simply produces the next
Morton element in the stream corresponding to its first ar-
gument.

The control structure is responsible for maintaining the
state of the spatial join algorithm. This is done by using
a stack for each input stream, and pointers to the current
Morton element in each stream. The top of each stack con-
tains the most recent Morton element for the correspond-
ing stream, while the containing Morton elements (from the
same stream) are stored deeper in the stack (as they are en-
countered first according to our ordering which places them
earlier in the stream). The area of space spanned by each
Morton element B ranges between the value of the Morton
code of B’s upper-left corner, denoted by zlo(B), and that
of B’s lower-right corner, denoted by zhi(B).

In each iteration of the spatial join, the state of one
stream is updated. As Morton elements from the input
streams are scanned during the merge, Morton elements are
pushed (i.e., entered) into and popped (i.e., removed) from
the stacks of the corresponding streams. The spatial join
behaves like a plane-sweep [18] in the metric space of Mor-
ton codes of the upper-left corners of the Morton elements
(i.e., by their zlo values). Therefore, Morton elements from
both streams that overlap are processed in consecutive iter-
ations of the algorithm (since Morton elements are ordered
by their zlo values).

The main step in each iteration of the algorithm is a
four-way comparison between the zlo values of the current
Morton elements in each stream and the zhi values of the
top Morton elements in the stacks of the streams. The min-
imum of these four values is used to control the action. In
order for the comparisons to work, the stacks are initialized
to contain MaxMortonElement which is a unit-sized Morton
clement whose Morton code is larger than the maximum pos-
sible value (called MaxMortonCode in the code) in the space
in which the spatial join is executed. MaxMortonElement also
serves as the current value in each of the input streams once
they have been exhausted (set by procedure NextElement).

We illustrate our explanation of the algorithm with the
aid of Figure 4 which traces the steps of the modified spa-
tial merge algorithm when used to compute the spatial
join of the streams X and Y given by the Morton elements
in Figures 3a and 3b corresponding to the maps in Fig-
ures 1a and 1b, respectively. In the figure, the leftmost and
tightmost values in the stack entries correspond to the top
and bottom, respectively, of the stack. The stacks are ini-
tialized to W which corresponds to MaxMortonElement. W
is also used as the final Morton element once the input

streams have been exhausted. zlo(W) and zhi(W) are set
to MaxMortonCode+1. Figure 4 is organized in such a way
that the entry for step i indicates the state resulting from
taking the action indicated at this step. This action is based
on the value produced by a four-way comparison using the
current values of the two input streams and the contents of
the top entries in the stacks that resulted from the execution
of step 1 — 1.

Morton element R from stream :is entered (i.e., pushed)
on the stack of stream i when the sweep encounters posi-
tion zlo{R) such that the four-way comparison yields zlo{R)
as the minimum value. Note that upon entering Morton
element R on the stack of stream ¢ we already know that
Morton element R is contained in Morton element S at the
top of the stack of stream ¢ since zlo(R) is less than zhi(S) as
a result of the minimum four-way comparison. Thus there
is no need to remove any members of the stack of stream
i at this point. Processing continues with the next Morton
element in stream i For example, this is the case when we
push B on the stack of stream X in step 2 in Figure 4. We
continue after advancing current(X) to C.

A Morton element is removed (i.e., popped) from the
stack of streamm ¢ when the sweep encounters Morton ele-
ments S and T at positions zlo(S) and zlo(T) in streams i
and J, respectively, such that the four-way comparison re-
sults in the zhi value of Morton element U at the top of the
stack of stream 1t being the minimum value. This means that
Morton element U can be removed from the stack of strcam
1 as Morton element S cannot be contained in Morton ele-
ment U. For example, this is the case when we encounter J
as the current element of stream Y in step 5 in Figure 4 —
that is, we pop I from the stack of stream X.

Upon inserting an element U into the stack of stream
i, the algorithm checks if U overlaps with any of the Mor-
ton elements in the stack of stream j, and reports all the
overlapping pairs that are found. These pairs constitute the
result of the spatial join. Processing continues with a new
element at the top of the stack of stream ¢ Continuing our
example in Figure 4, this means that in step 4 we check if
the pushed element I overlaps with A, the only member of
the stack of stream X that is in the space in which the spatial
join is executed, and find that it does. We report (A,I) as
the overlapping pair and continue. Note that we need not
check if Morton element U overlaps with Morton element
T (the current Morton element of stream j) because at this
time, by virtue of our minimum value four-way comparison,
we already know that zhi(U)is less than zlo(T) (e.g., in step
4 in Figure 4 I need not be tested for overlap with C). Recall
that no overlap between two Morton elements V and W is
possible if zhi(V) is less than zlo(W).

4 The Modified Spatial Fiiter Algorithm

The second algorithm is the modified spatial filter. It is
a modified version of the spatial filter join algorithm of
Orenstein and Manola [15, 16]. It requires that both input
streams be indexed (so that random as well as sequential
access to the elements in either stream is possible).

As mentioned before, the key to the spatial merge al-
gorithm is that procedure SpatialMergeAdvance processes
the elements of the two streams in Z-order. This could
be rather wasteful as the elaborate control structure is in-
voked for every element in the two streams. In contrast,
the modified spatial filter algorithm, encoded by procedure
SpatialFilterAdvance given in the Appendix, assumes the
presence of an index for cach of the two streams (e.g., a

20

B-tree, B4+-tree, ISAM. etc.).

We illustrate our explanation of the algorithm with the
aid of Figure 5 which traces the steps of the modified spat.al
filter algorithm when used to compute the spatial join of the
streams X and Y given by the Morton elements in Figures 3a
and 3b corresponding to the maps in Figures 1a and 1b,
respectively. It is interpreted in the same way as Figure 4.
Note that along with each step in Figure 5 we also indicate
the corresponding step in the trace given in Figure 4.

SpatialFilterAdvance differs from
SpatialMergeAdvance in that instead of simply advancing
to the next element in stream i and continuing processing
from there, SpatialFilterAdvance advances to the next el-
ement in stream ¢ and uses information from stream j to
directly access stream i (via the index on i) thereby skip-
ping elements in stream 7 that do not overlap the current
element of stream j and thus cannot contribute to the result
of the spatial join operation. Figure 6 is an example where
elements A and B in streain X are skipped while current (X)
is reset to C. This situation also occurs in steps 1, 5, and 7
of Figure 5 where elements B, D and E, and G, respectively,
are skipped.

current (X)

stream X

stream Y

-

current (Y)

Figure 6: Morton elements A and B are skipped after pro-
cessing current(X) with processing resumed at C.

It should be clear that SpatialFilterAdvance cannot
skip any elements in stream i after executing the initial ad-
vance in stream 7 if the current element of streamn 2 starts at
a point beyond the current element of stream j or overlaps
with it. For example, in Figure 5 step 2 illustrates the case
that J, the current element of stream Y, starts at a pcint
beyond C, the current element of stream ¥. Continuing this
example, steps 8 and 11 demonstrate the case that the cur-
rent element of stream Y (i.¢, K and L, respectively) overlaps
the current element of stream X (i.e., H). Also, at the same
instance, no elements can be skipped if the current element
of stream ¢ is on the stack of stream j or is contained in vne
of the elements of this stack.

In the rest of the discussion of the modified spatial fiiter
algorithm in this section, we consider the case that proce-
dure SpatialFilterAdvance has just advanced the current
element of stream ¢ This means that it uses @, the current
element of stream j, to directly access stream 7 to find the
next element to be processed in stream 7. [f @ 1s not found in
the index corresponding to stream i, then the element R in
stream i with the smallest index value (i.e., zlo{R)) greater
than that of Q (i.e., zlo(Q)) is returned as the new current
elernent of stream i One problem that must be resolved by
the modified spatial filter algorithm is that there may exist
some Morton elements in stream 7 that start at a position
that is past the current element of stream i and that contain
the current element of stream j (hence contributing to the
result of the spatial join) that might be erroneously skipped
if the algorithm uses only the current element of stream j
to directly access the elements in stream i. For example, in

step [current(X) | current(Y) [stack of X | stack of Y action
start A I w w
1 B 1 AW w push A on stack of X
2 C 1 BAW w push B on stack of X
3 C 1 AW W pop B from stack of X
4 C J AW 1w push I on stack of Y and
report pair (A,I)
5 C J AW w pop 1 from stack of Y
6 C J w w pop A from stack of X
7 D J cw w push C on stack of X
8 D J w w pop C from stack of X
9 E J DW w push D on stack of X
10 E J w w pop D from stack of X
11 F J EW w push E on stack of X
12 F J w w pop E from stack of X
13 G J Fw w push F on stack of X
14 H J GFW w push G on stack of X
15 H J FW w pop G from stack of X
16 H K F W JwW push J on stack of Y and
. report pair (F,J)
17 H K W JW pop F from stack of X
18 H K w w pop J from stack of Y
19 H L w KW push K on stack of Y
20 \id L HwW KW push H on stack of X and
report pair (H,K)
21 w w HW LKW push L on stack of Y and
report pair (H,L)
22 w w w LKW pop H from stack of X
end W w W LKW X and its stack are empty

Figure 4: Trace of the application of the spatial merge algorithm to the Morton elements in Figures 3a and 3b.

Figure 5 step 5 illustrates the case that D, the current ele-
ment of stream X, terminates at a point before J, the current
element of stream Y, while F in stream X starts at a point
past D and does contain J.

In order to overcome this problem, the modified spatial
filter algorithm generates all the possible ancestors (i.e., con-
taining Morton elements) of the current element of stream j
that lie between the current elements of streams 7 and j (i.¢.,
Morton elements A in stream j such that zhifcurrent(i)) is
less than zlo(A)).* Of course, not all the possible ancestors
of the current element of stream jexist in stream 7. In fact, it
could be that none of them may exist. For example, in Fig-
ure 7 four possible ancestors of current(Y) are generated
but only two of them are found in the stream. A similar
sitnation occurs in step 5 of Figure 5 where F and an ele-
ment analogous to J are generated for stream X with D as its
current element, and of course only F is found in stream X.

Procedure SpatialFilterAdvance must set the current
element of stream i to point at the largest ancestor of the
current element of stream j that is found in stream : past
the current element of stream i (e.g., in step S of Figure 5 F
is the largest ancestor in stream X of J, the current element
of stream Y, that is past D, the current element of stream
X). If no such ancestor exists, then the current element of
stream 1 is set to the first element in stream i that over-
laps with or lies past the current element of stream j (i.e.,
zlo(current(i)) > zlo(current(j))). For example, in step 7 of
Figure 5 current (X) is set to H as no ancestor of current (Y)
(i.e., J) exists past the previous value of current(X) (i.e.,
G). Computing the set of possible ancestors of the current
element of strearm j does not require any accesses to the in-
dex as this process only involves the calculation of Morton
codes of the ancestors.

®We could have also used the less restrictive test “zlo(current(i))
< zlo(A)}’. However, we make use of the fact that no ancestor of
current(j) can start between zlo(current(i)) and zhi(current(i)) to
restrict the secarch, and thus compare zhi(current(:)) with zle(A) in
the code.

stream X

stream Y

21

possible ancestors
between current(X) and current(Y)

A\

currxent (¥Y)

current (X)

direct direct
access #1 access #2

]

ancestor exists in stream X

ancestor does not exist in stream X

Figure 7: Possible ancestors between current(X) and cur-
rent(Y).

Once the possible ancestors of the current ele-
ment of stream ;7 have been computed, procedure
SpatialFilterAdvance directly accesses stream 7 searching
for the largest ancestor of the current element of stream j
one-by-one. In the worst case, this requires a number of di-
rect accesses to stream i equal to the number of computed
ancestors betwcen zhifcurrent(i)) and zlo(current(j)). As
soon as the algorithm finds the largest ancestor in stream 1,
it can stop the search and return. For example, in Figure T,
SpatialFilterAdvance returns after directly accessing the
second largest possible ancestor of current(Y) in stream X
as the largest possible ancestor was directly accessed but
was not found.

step current(X) [current(Y) | stack of X | stack of Y action
start A W W
1(1) B [AW w push A on stack of X and
set current(X) to B
candidate in Y: 1
C 1 AW w randorn access on X yields C
2 (4) C J AW w push I on stack of Y and
report pair (A,I)
3(5) C J AW w pop I from stack of Y
4 (6) (e} J w w pop A from stack of X
5 (7) D J CcCw w push C on stack of X and
set current(X) to D
candidates in Y: F's analog and J
F J CWwW w random access on X yields F
6 (12) F J w w pop C from stack of X
7 (13) G J Fw w push F on stack of X and
set current(X) to G
candidate in Y: J
H J Fw w random access on X yields H
8 (16) H K Fw IwW push J on stack of Y and
report pair (F,J)
9 (17) H K W JwW pop F from stack of X
10 (18) H K w w pop J from stack of Y
11 (19) H L W KW push K on stack of ¥
12 (20) w L H W KW push H on stack of X and
report pair (H,K)
13 (21) w w HW LKW push L on stack of Y and
report pair (H,L)
14 (22) w W w LKW pop H from stack of X ;
end W w w LKW X and its stack are empty |

Figure 5: Trace of the application of the spatial filter algorithm to the Morton

elements in Figures 3a and 3b. Step numbers within

parentheses correspond to the step numbers in the trace of the spatial merge algorithm in Figure 4.

§ The Modified Linear-Scan Spatial Join Algorithm

Similarly, the modified linear-scan spatial join is an enhance-
ment over the linear-scan spatial join of Aref and Samet [2],
where the modified linear-scan algorithm guarantees that
the output of the join is spatially sorted according to the
Morton- or the Z-order.

The spatial filter algorithm results in significant speedups
over the spatial merge algorithm. Unfortunately, it requires
that the two streams be indexed while producing an output
that is not indexed. This is problematic in a pipelined archi-
tecture for query processing (e.g., [10, 21]} where the query
is answered by a pipeline composed of a cascade of one or
more operations. The first operation in the pipeline oper-
ates on the original input stream and its result is passed to
the second operation in the pipeline using common buffers.
Thus in such an environment the underlying indexing ca-
pabilities are effective only for the first operations in the
pipeline. Subsequent operations in the pipeline must oper-
ate on non-indexed spatial data unless temporary indexes
are built, which is expensive.

In other words, if the input streams are indexed, then
only the first operation in the pipeline can benefit from the
index. This makes it difficult to apply the spatial filter al-
gorithm at latter stages in the query pipeline, unless we are
willing to rebuild the index after each operation. Moreover,
since the output of the spatial filter is not sorted, we cannot
even use the spatial merge join algorithm at the latter stages
in the query pipeline. Alternatively, we can use the modified
spatial filter algorithm just for the first spatial join, and then
use the modified spatial merge algorithm for all subsequent
spatial joins in the cascade.

Building temporary spatial indexes during query process-
ing has its tradeoffs. On the one hand, building temporary
indexes to organize intermediate results helps speed-np the
execution of the spatial operations since they operate on

22

structured data (inside the temporary index) rather than
on an unorganized collection of data items. On the other
hand, the cost of building the temporary index may exceed
its benefits.

In this section, we present a new algorithm, termed the
modified linear-scan spatial join algorithm, which is an cun-
hancement of an algorithm, termed linear-scan spatial join,
that is proposed by the authors in {2]. In addition to the
savings in execution time resulting from the lincar-scan spa-
tial join, the modified linear-scan spatial join produces its
output in spatial order (i.e., sorted), and hence the same
algorithm can be applied progressively in further stages of
a query pipeline.

Assume that the spatial filter algorithm has just ad-
vanced the current element of stream i. In this case, we ob-
serve that the only time procedure SpatialFilterAdrance
makes use of the index is when it tries to sct the current
clement of stream i to the largest ancestor of the current
element of stream j that is found in stream i Of course.
this process is speeded up by use of the index. However,
we could also avoid the need for the index by using a ‘inear
scan of stream ¢ starting at the current element of stream
i. Recall, that computing the set of possible ancestors docs
not require use of the index.

The above observation is used as the basis of the modi-
fied linear-scanspatial join algorithm encoded by procedure
LinearScanAdvance, given in the Appendix. We illustrate
our explanation of the algorithm with the aid of Figure 8
which traces the steps of the modified linear-scan algorithin
when used to compute the spatial join of the streams X and
Y given by the Morton elements in Figures 3a and 3b corre-
sponding to the maps in Figures la and 1b, respectively. It
is interpreted in the same way as Figure 5. Note that along
with cach step in Figure 5 we also indicate the correspond-
ing step in the trace given in Figure 4. Figure 8 is almost

unchanged from Figure 5. The only changes occur in steps
1, 5, and 7 where current (X) is set to the appropriate next
element by use of a linear scan in Figure 8 while this is done
with a random access in Figure 5.

There are two differences between LinearScanAdvance
and SpatialFilterAdvance. Again, assume that the algo-
rithms have just advanced the current element of stream i.
The first is the absence of the use of the index in determin-
ing the largest ancestor in strcam i of the current element
of stream j (e.g., in steps 1, 5, and 7 in Figure 8). Recall,
that in SpatialFilterAdvance a random access was used
to check if the possible ancestors of the current element of
stream j, in decreasing order of Morton element block size,
are present in stream i. As soon as one was found, say A4,
procedure SpatialFilterAdvance sets the current element
of stream 1 to A and exits.

Procedure LinearScanAdvance also scans the possible
ancestors of the current element of stream 3 in decreasing
order of Morton element block size. In addition, it also
simultaneously scans the Morton elements in stream #in in-
creasing order, each time resetting the value of the current
element of stream 4, while testing if a particular ancestor of
the current element of stream jis present (e.g., in step 5 in
. Figure 8 when checking stream X for the presence of ancestor
F of J in stream Y, current (X) is advanced from D to E and
from E to F). The scan continues for a particular ancestor A
as long as the Morton code value of the current element of
stream i (i.e., zlo(current(i))) is less than A’s Morton code
value (i.e., zlo(A4)). Whenever this test fails (i.e., 4 is not
found in stream :), the scan continues with the next smaller
ancestor of the current element of stream j.

The second difference is that if none of the possible an-
cestors of the current element of stream jis found in stream
7 at a position past the current element of stream ¢, then the
scan of stream i must be continued until encountering the
first element in stream 7 that lies past the current element
of stream j (i.e., zlo(current(i)) > zlo(current(3))). For ex-
ample, this is the case in steps 1 and 7 in Figure 8 where
we scan stream X to C and H which are past I and J, the
respective current elements of stream Y.

The number of disk page read operations for the modified
linear-scan algorithm is the same as for the modified spatial
merge algorithm. The modified linear-scan algorithm has
superior performance because the spatial merge algorithm
must process each element in a stream (i.e., enter it into
the stream’s stack and remove it from the stack) even when
it does not contribute to any output tuples of the spatial
join. Instead, the modified linear-scan algorithm detects
these elements and excludes them by sequentially scanning
and skipping cach one of them so that they will not get pro-
cessed by the controlling loop of the algorithm (i.e., entered
and removed from the stack’s of each stream by procedure
Control). The performance gain and a comparison between
the algorithms can be found in [2]. Notice that it is difficult
to compare the number of disk page read operations be-
tween the linear-scan and the spatial filter algorithms. The
reason is that they will differ depending on the structure
of the data. Tu particular, they depend on the separation
between the current elements of the two streams. For more
details, see [2]. However, the contribution here is that both
algorithms are now adjusted so that they produce spatially
sorted blocks, and hence the algorithms can be used any-
where in a query pipeline.

23

6 Conclusions

Providing sorted output for the spatial join opcration is of
significant importance to spatial query processing of com-
plex spatial queries. Since the modified spatial join algo-
rithms, presented in this paper, produce spatially sorted out-
put, they can be used in an environment where the queries
are cascaded without the need to sort the output after every
intermediate operation as is the case when using the spatial
merge algorithm.

Spatial join algorithms have a variety of requirements
and characteristics. Some need indexed input and produce
unindexed unsorted output, while others need only sorted
input but produce sorted output, etc. We plan to model
and study the cost of alternative query evaluation plans that
contain cascaded spatial joins and study the effect of the
characteristics and requirements of the various spatial join
algorithmns on the overall cost of the plans.

7 Acknowledgements

The second author gratefully acknowledges the support of
the National Science Foundation under Grant IRI-92-16970.

References

[1] W. G. Aref and H. Samet. Uniquely reporting spatial
objects: Yet another operation for comparing spatial
data structures. In Proceedings of the 5th International
Symposium on Spatial Data Handling, pages 178-189,
Charleston, SC, August 1992.

W. G. Aref and H. Samet. The spatial filter revisited. In
6th international Symposium on Spatial Data Handling,
Edinburgh, Scotland, September 1994.

W. G. Aref and H. Samet. Hashing by proximity to
process duplicates in spatial databases. In The Inter-
national Conferance in Knowledge Management, pages
347-354, Gaithersburg, MD, November 1994.

(3]

(4] L. Becker, K. Hinrichs, and U. Finke. A new algorithm
for computing joins with grid files. In Proceedings of
the 9th International Conference on Data Engineering,
pages 190-197, Vienna, Austria, April 1993.

[5] L. A. Becker. A New Algorithm and a Cost Model for
Join Processing with Grid Files. PhD thesis, University

of Siegen, July 1992.

T. Brinkhoff, H. P. Kriegel, and B. Seeger. Efficient
processing of spatial joins using R-trees. In Procecdings
of the 1993 ACM SIGMOD International Confcrence
on Management of Data, pages 237-246, Washington,
DC, May 1993.

Volker Gaede. Geometric information makes spatial
query processing more efficient. In Proc. 3rd ACM In-
ternational Workshop on Advances in Gecgraphic In-
formation Systems (ACM-GIS'95), pages 45-52, Balti-
more, Maryland, USA, 1995.

(6]

{7

[8] I. Gargantini. An effective way to represent guadtrees.
Communications of the ACM, 25(12):905-910, Decem-

ber 1982.

step current(X) | current(Y) | stack of X | stack of Y action
start A I W W
1 (1) B 1 AW w push A on stack of X and
set current(X) to B
candidate in Y: 1
C I AW W scan X to C
2 (4) C J AW W push I on stack of Y and
report pair (A1)
3 (5) C J AW W pop I from stack of Y
14(6) C W W pop A from stack of X
5(7) D cw W push C on stack of X and
set current(X) to D
candidates in Y: F's analog and J
E J CWwW w scan X to E
F J Ccw w scan X to F
6 (12) F J w w pop C from stack of X
7(13) G J Fw W push F on stack of X and
set current(X) to G
car.didate in Y: J
H J Fw W scan X to H
8 (16) H K Fw Jw push J on stack of Y and
report pair (F,J)
9 (17) H K w JwW pop F from stack of X
10 (18) H K w w pop J from stack of Y
11 (19) H L w KW push K on stack of Y
12 (20) W L HwW KW push H on stack of X and
report pair (H,K)
13 (21) w w HW LKW push L on stack of Y and
report pair (H,L)
14 (22) w w w LKW pop H from stack of X and
end w w w LKW X and its stack are empty

Figure 8: Trace of the application of the linear-scan algorithm to the Morton

elements in Figures 3a and 3b. Step numbers within

parentheses correspond to the step numbers in the trace of the spatial merge algorithm in Figure 4.

[9] O. Ginther. Efficient computation of spatial joins.
In Froceedings of the 9th International Conference on
Data Engineering, pages 50-59, Vienna, Austria, April
1993.

L. M. Haas, W. Chang, G. M. Lohman, J. McPherson,
P. F. Wilms, G. Lapis, B. Lindsay, H. Pirahesh, M. J.
Carey, and E. Shekita. Starburst mid flight: As the
dust clears. IFEE Transactions on Knowledge and Data
FEngineering, 2(1):143-160, March 1990.

(10]

[11] A Klinger. Patterns and search statistics. In J. S.
Rustagi, editor, Optimizing Methods in Stalistics, pages

303-337. Academic Press, New York, 1971.

G.M. Mortan. A computer oriented geodetic data base,
and a new technique in file sequencing. Technical Re-
port Unpublished report, IBM Ltd., Ottawa, Canada,
1966,

[13] J. A. Orenstein. Algorithms and data structures for the
implementatjon of a relational database system. Tech-
nical Report SOCS-82-17, School Compnut. Sci., McGill

Univ., Montreal, Quebec, Canada, 1983.

J. A. Orenstein. Redundancy in spatial databases. In
Proccedings of the 1989 ACM SIGMOD [nternational
Conference on Management of Data, pages 294-304,
Portland, OR, June 1989.

f14]

J. A. Orenstein and F. A. Manola. Spatial data model-
ing and query processing in PROBE. Technical Report
CCA-86-05, Computer Corporation of America, Cam-
bridge, MA, October 1986.

{16] J. A. Orenstein and F. A. Manola. PROBE spatial data

modeling and query processing in an image database

[20]

24

application. [EEFE Transactions on Software Enginecr-
ing, 14(5):611-629, May 1988.

J. A. Orenstein and T.H. Merrett. A class of data siruc-
tures for associative searching. In Proceedings of the 9rd
ACM SIGACT-SIGMOD Symposiumn on Principles of
Database Systems (PODS), pages 181-190, Waterloo,
Canada, April 1984.

(17]

[18] F. P. Preparata and M. [. Shamos. Computational Ge-
ometry: An Introduction. Springer-Verlag, New York,

1985.

[19] Doron Rotem. Spatial join indices. In Proceedings of
the 5th International Conference on Data Engineering,

pages 500-509, Kobe, Japan, April 1991.

H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, Reading, MA, 1090,

[21] M. Stonebraker ahd L. Rowe. The design of POST-
GRES. In Proceedings of the 1986 ACM SIGMQO /) In-
ternational Conference on Management of Data, pages
340-355, Washiugton, DC, May 1986.

8 Appendix: Detailed Implementations of the Spatial Join
Algorithms
Each spatial join algorithm is given by the collec-
tion of procedures Control, NextElement, EnterElement,
ExitElement, and Advance. Procedures Control,
NextElement, EnterElement, and ExitElement are the same
for each of the algorithms that we describe. The differ-
ence is in the encoding of procedure Advance which pro-
duces the next clements in the input streams. We differ-
entiate between the different algorithms through the use of

procedures SpatialMergeAdvance, SpatialFilterAdvance,
ScanCascadeAdvance, and EstimateBasedAdvance.

The spatial join algorithms make use of the following
data types. The principal data type is a Morton element ele-
ment represented by a record of type element. State0fInput
identifies the state of each input stream and is a record of
three fields: sequence, nest, and current. sequence is
a list of Morton clement elements. nest is a stack of
Morton elements. current is the current Morton element.
output is a 1ist of pairs of elements (corresponding to over-
lapping Morton elements) counsisting of fields element1 and
element2 which are pointers to records of type element.

procedure Control(LeftSequence, RightSequence, Result);
/* Perform the spatial join operation by using a variant of merge join.
The two input streams are assumned to be sorted but not necessarily
indexed. A stack is used to maintain information about the nest-
ing of
Morton blocks in each input stream. */
begin
reference pointer list LeftSequence, RightSequence;
reference pointer output Result;
pointer StateOflnput L R;
integer cvent;
global pointer element MaxMortonElement;
/* Initialize the left and right strearns and their state variables.
MaxMortonCode is the maximum possible value for the
Morton code in the space in which the spatial join is executed.
MaxMortonElement is a constant unit-sized Morton element that
lies outside the space in which the spatial join i1s executed.
The stacks are initialized to contain this element, and it is
also the last element in each stream. */
MaxMortonElement:=create(element);
zlo(MaxMortonElement):=MaxMortonCode+1;
zhi(MaxMortonElement):=MaxMortonCode+1;
L:=create(StateOfInput);
R:=create(StateOfInput);
sequence(L):=LeftSequence;
clear(nest(L));
push(nest(L),MaxMortonElement);
current(L):=first(sequence(L)); /* Assume sequencce is non-empty */
sequence(R):=RightSequence;
clear(nest(R));
push{nest{R),MaxMortonElement);
current(R):=first(sequence(R)); /* Assume sequence is non-empty */
while not(current(L)=MaxMortonElement and
top(nest(L))=MaxMortonElement) and
not(current(R)=MaxMortonElement and
top(nest{R))=MaxMortonElement) do
begin
/* The main loop of spatial join scans each element of both
streams. zlo(B) returns the Morton code of the upper-left
corner of B. zhi(B) returns the Morton code of the lower-
right corner of B. */
event:=min(zlo(current(L)), zhi(top(nest(L))),
zlo(current{RY)), zhi(top(nest(R))));
/* depending on the minimum event, perform the appropriate
action. */
if event=zlo(current(L)) then /* enter current(L) into L's */

EnterElement{L,R,Result) /*stack and advance to next element.*/

else if event=zlo(current(R)) then /* enter current(R) into R's */
EnterElement(R,L,Result) /* stack and advance to next element.*/

else if event=zhi(top(nest(L))) then /* delete elements from L’s stack */

ExitElement(L,R,Result) /* and produce the output pairs. */

else if evént=zhi(top(nest(R))) then /* delete elements fromn L’s stack */

ExitElement(R,L Result); /* and produce the output pairs. */
end;
end;

pointer element procedure NextElement(X);

/* Return a pointer to the next element in stream X. If the stream
is empty, then return a pointer to MaxMortonElement which is a
global constant. */

bLegin
reference pointer StateOflnput X;
return(if eof(sequence(X)) then MaxMortonElement

else next(sequence(X)));
end;

procedure EnterElement(X,Y,Result);

/* Enter the current element of stream X (current(X)) into X's
stack (nest(X)). */
begin
reference pointer StateOfInput X,Y;
reference pointer output Result;
push(nest(X),current(X));
ReportPairs(top(nest(X)),nest(Y),Result);
Advance(X,Y); /* advance to the next element in stream X. */
end;

procedure ExitElement(X,Y,Result);

/* Remove the top element of the X's stack after comparing it with all
the elements of Y’s stack. The elements that overlap are reported as
output of the spatial join. */

begin
reference pointer StateOfInput X,Y;
reference poiuter output Result;
pop(nest(X));

end;

procedure SpatialMergeAdvance(X,Y);

/* Assign to the current element of X the next element of stream X.
Y is unchanged in this version of the procedure. */

begin
reference pointer StateOflnput X,Y;
current(X):=NextElement(X);

end;

procedure SpatialFilterAdvance(X,Y);

/* Assign to current(X) an element in stream X that overlaps current(Y)
or with some element in nest(Y). Skip the elements in stream X that
lie between current(X) and current(Y) that do not correspond to any

output pair of the spatial join. */

begin
reference pointer StateOfInput X,Y;
pointer element c;
stack of element candidates;

Boolean CoverFound;
current(X):=NextElement(X);
if zhi(current(X))$ “ge$zlo(current(Y)) then
return /* current(X) overlaps with or is past current(Y) */
else if StackContains(nest(Y),current{X)) then
return /* current(X) is one of the elements in nest(Y) or
is contained in one of the elements in nest(Y) */
else /* Check for nodes in stream X that contain current(Y) */
begin
clear(candidates); /* Initialize the stack */
c:=current(Y);
while zhi(current(X))jzlo(c) do /* Calculate the ancestors of */
begin /* current(Y) between current(X) */
push(candidates,c); /* and current(Y). NoI/O is involved.*/
c:=parent(c); /* parent{c)is the Morton element that contains ¢
and is twice the size of c. */
end;
/* Search stream X using the zlo field value for each of the computed
ancestors starting with the larger ones. This involves one direct
access to stream X for each ancestor. */
CoverFound:=false;
while not(empty(candidates)) and not(CoverFound) do
begin /* randac(sequence(X),k) performs random access to stream X
using key k to search the index. If k is not found in the
index, then return the smallest key greater than k in the
index. This could be MaxMortonElement if we are at the end
of the stream. */
c:=randac{sequence(X),zlo(top(candidates)));
if same’element(c,top(candidates)) then
begin
CoverFound:=true;
current(X):=c;
end
else pop(candidates);
end;
if not(CoverFound) then current(X):=c;
/* At this point, current(X) is assigned to one of the follow-
ing values:
(a) the largest ancestor of current(Y) found in stream X past
current(X), (b)Y or in the case where no ancestor is found, the
smallest key greater than or equal to current(Y). In either case,
the irrelevant elements in stream X are skipped. */
return;
end;
end;

24 a

procedure 3canCascadeAdvance(N\Y);
begin
reference pointer StateOflnput XY,
pointer element ¢;
stack of element candidates;
Boolean CoverFound;
current(X):=NextElement(X);
if zhi(current(X))$ “ge$zlo(current(Y)) then .
return /* current(X) overlaps with or is past current(Y) */
else if StackContains(nest(Y),current(X)) then
return /* current(X) is in nest(Y) */
else /* Check for nodes in stream X that contain current(Y) */
begin
clear(candidates);
c:=current(Y);
while zhi(current(X));zlo(c) do
begin
push(candidates,c);
c:=parent(c); /* parent(c) is the Morton element that contains ¢
and has double the size of ¢ */
end;
CoverFound:=false;
while not(empty(candidates)) and not(CoverFound) do
begin /* Perform the linear scanning until an ancestor is found */
if zlo(current(X))izlo(top(candidates)) then
current(X):=NextElement(X)
else if same element(current(X),top(candidates)) then
CoverFound:=true
else pop(candidates);
end;
if not{CoverFound) then
while not(current{X)=MaxMortonElement)
and zlo(current(X));zlo(current(Y)) do
current{X):=NextElement(X);
returr;
end;
end;

24 p

