MITL

MATSUSHITA INFORMATION TECHNOLOGY LABORATORY

Query Size Estimation of Spatial Join

December 14, 1993

MITL-TR-79-93

Query Size Estimation of Spatial Join!

Walid G. Aref 2
Matsushita Information Technology Laboratory
Panasonic Technologies, Inc.
Two Research Way
Princeton, New Jersey 08540
aref@mitl.research.panasonic.com

Hanan Samet
Computer Science Department and
Center for Automation Research and
Institute for Advanced Computer Studies
~ The University of Maryland
College Park, Maryland 20742
hjs@cs.umd.edu
Abstract
Spatial join is a fundamental operation for answering queries that involve spatial pred-
icates. It combines entities from two sets into single entities whenever the combination
satisfies the spatial join condition (e.g., if they overlap in space). Many queries require
performing more than one spatial join operation to answer them. In order to decide on
the order in which to perform the spatial join operations, the selectivity of each opera-
tion has to be estimated. Highly selective spatial joins should be performed first. Spatial
operations and spatial data sets require selectivity factors along each dimension of the
space (e.g., two-dimensional selectivity factors) which are defined here in the context
of spatial data structures that partition spatial objects into more than one piece. Two
types of selectivity factors are estimated for the spatial join: the ob ject-selectivity factor
and the block- (or piece-) selectivity factor, which estimate the number of ob jects and
object-pieces, respectively, that result from a spatial join. Both factors are useful for the
purpose of cost-based spatial query optimization, Formulas for estimating both types of
selectivity factors are derived for each of these spatial operations. The selectivity formu-
las are functions of simple parameters that characterize the underlying data sets. These
parameters are computed by preprocessing the data sets. The formulas are validated
experimentally using real and synthetic data sets.

Keywords: spatial databases, database systems, query optimization, selectivity factors,
spatial join

December 14, 1993.

1 The support of the National Science Foundation under Grant TRI-9017293 is gratefully acknowledged.
The author conducted most of this research while at The University of Maryland, College Park.

1 Introduction

A spatial database is a collection of objects that span the same underlying space, where
each object may have an arbitrary extent. Usually, spatial databases are very large in
data volume. Consequently, a spatial database is organized using data structures that
provide efficient access and flexible manipulation of the data. There are many ways to
represent and organize a set of objects inside a data structure [14]. In the following we
review some of these representations.

One way is to represent a spatial object by only one entity inside the data structure,
e.g., by a point in higher dimensions as in the case of representing an n-dimensional
polygon having k boundary points by a point in nk-dimensions and then storeit in a point
data structure (e.g., the Grid File [18]), or by some conservative approximation of the
object as in the case of representing the same polygon by its minimum enclosing rectangle
(e.g., the R-tree [12]). The drawback of the former is that the transformation into the
higher dimensional space does not preserve proximity. In particular, the representative
points of two objects that are close to each other in the original n-dimensional space
of the polygons are not necessarily close to each other in the higher dimensional space.
Thus search is not always efficient. The drawback of the latter is that it does not result
in a disjoint decomposition of space. This means that we may have to do extraneous
work during search. Also, the search time appears to grow linearly with the number of
objects stored in the database [1, 16].

An alternative way is to decompose a spatial object into disjoint cells. This means
that the spatial object is represented by more than one entity inside the data structure.
Some example representations include a partition of the spatial object into a collection of
convex blocks (the cell tree [10]), a collection of square blocks at predetermined positions
(the quadtree [13]}, or a collection of rectangles (the R*-tree [7]). The price that must
be paid for the disjointness is that in order to determine the area covered by a particular
object, we have to retrieve al the cells that it occupies. A related drawback is that
when we wish to determine all the objects that occur in a particular region we often
retrieve many of the objects more than once. This is particularly problematic when the
result of the operation serves as input to another operation via composition of functions.
For example, suppose we wish to compute the perimeter of all the objects in a given
region. Clearly, each object’s perimeter should only be computed once. Eliminating
the duplicates is a serious issue; but see [4, 5] for a discussion of how to deal with this
problem for a database of line segments as well as rectangles,

From the above, we see that there is no ideal representation. In the rest of this
paper we focus on the representation of objects by decomposing them into disjoint cells.
In particular, we use regular decomposition representations such as the quadtree as
they facilitate set operations since parts in different data collections (e.g., relations in a
relational database) that span the same space are in registration. However, our methods
are more general and can be applied to other representations as well.

One of the most useful tools for spatial query processing is the spatial join. The

spatial join is commonly used in answering queries involving spatial data sets. Tt combines
entities from two sets into single entities whenever the combination satisfies the spatial
join condition (e.g., if they overlap in space). In practice, many queries require performing
more than one spatial join operation in order to answer them, or a combination of one or
more relational join operations along with one or more spatial join operations. Deciding
the order in which to perform the joins depends on several factors: the size of the input
relations, the availability of indexes, the cost of the algorithms used for each join, the
selectivity of each join, and the possibility of creating temporary relations.

As a first step towards query processing and optimization of spatial queries, we need
to estimate the cost as well as the cardinality and size of the output of spatial opera-
tions. In this paper, we focus on ways of estimating only the cardinality and size of the
output. Traditionally, in relational databases, a selectivity factor serves this purpose.
It is mainly useful for estimating the cardinality and size of the output relation (ie., a
one-dimensional selectivity factor). Here, we wish to address the problem of defining and
estimating selectivity factors for the spatial join.

Generally speaking, spatial data sets and spatial operations require selectivity factors
along each dimension of the space (e.g., two-dimensional selectivity factors). One way
to deal with the multi-dimensionality of spatial data is by using data representation
methods that map an n-dimensional spatial object into a sequence of simple object-
pieces, each of which can be described by a one-dimensional description and stored
separately inside the data structure. In dealing with data structures that decompose an
object into more than one piece, we propose in this paper two complementary ways of
defining the meaning of a selectivity factor: object-level selectivity factor (OS) and piece-
level selectivity factor (PS). They estimate the number of objects and object-pieces,
respectively, that result from a spatial operation. The ob ject-level selectivity factor is
useful in determining the cardinality of the objects resulting from a given operation,
whereas the piece-level selectivity factor is useful in determining the size of the output
of the given operation (since the number of output object pieces determines the size of
the output). In this paper, we present estimates of both selectivity factors for the spatial
join operation. Notice that the two factors are not directly related to each other. For
example, consider two objects, say 0; and o, that intersect each other so that some
object-pieces of 0, intersect some object-pieces of o, resulting in a number of, say ten,
object-piece intersections. This will be counted as one ob ject intersection and ten object-
piece intersections when computing the object and piece selectivity factors, respectively.

An important question that we address in this paper, which arises when adopting a
cost-based approach for optimizing queries in spatial databases, is the following: what
are appropriate statistics that can be gathered from the underlying spatial database that
can be useful for predicting the cost of a given typical set of spatial operations? There
are a number of requirements that these statistics have to meet. One major requirement
is that these statistics should be simple to maintain and update throughout the life time
of the spatial database. In addition, they should depend on the following factors: (1) the
data type of the underlying spatial objects, (2) the way these objects are represented,
and (3) how these objects are organized inside the database. It is important to note

that a useful set of statistics should reflect, not only a characterization of the underlying
database, but also a characterization of the underlying representation of spatial data
and the underlying access methods. For example, regarding datatypes, the statistics
gathered to optimize queries for a spatial database of points may be different than those
for a spatial database of lines, or polygons. With respect to data representation, statistics
useful for methods that represent spatial objects by one entity (e.g., a two-dimensional
rectangle represented by a point in a four-dimensional space) may be different from those
that are useful for methods that represent spatial objects by more than one entity (e.g.,
a polygon represented by partitioning it into more than one piece, each of which is of a
simpler shape). Finally, with respect to access methods and data organizations, statistics
that assume a grid-like data structure (e.g., the Grid File [18]) may be different from
those that assume a tree-like structure (e.g. the R-tree [12]).

The rest of this paper is organized as follows. Section 2 presents our proposed charac-
terization of the underlying spatial data set. Section 3 contains formulas for estimating
selectivity factors of the spatial join operation. Section 4 describes our experimental
setting for estimating selectivity factors as well as the experimental results while con-
trasting them with the developed formulas. Section 5 discusses related work on the topic
of spatial query optimization. Section 6 provides several directions for extending the
work presented in this paper. This includes handling of non-uniform data distributions.
Section 7 contains concluding remarks.

2 Parametric Characterization of the Underlying Spatial Database

In order to obtain meaningful estimates of selectivity factors, i.e., ones that are close to
reality, we would like to know more about the underlying spatial database. In particular,
we need to know about the characteristics and parameterization of the spatial objects
in the database as well as the way the underlying spatial objects are represented and
organized inside the database.

There are several ways of determining the characteristics of the underlying data set,
e.g., by sampling and gathering statistics [15]. However, at the present it is not clear what
statistics are useful for spatial query optimization purposes. So, it is premature to follow
the statistical approach since there is no consensus yet about the useful parameters. As
a result, in this paper, we follow a simpler approach. In particular, we assume that we
are allowed to preprocess the underlying spatial database by scanning it in one pass and
to gather full information about the parameters of interest to us.

In selecting parameters for characterizing a spatial database, our goal is twofold. The
first, and obvious, goal is that these parameters have to be useful in providing estimates
of the selectivity factors and the cost of spatial operations, thereby serving as a guide
for query optimization. Second, these parameters should be easy to maintain if the
- underlying spatial database is updated. Sample parameters that can be gathered in
one preprocessing pass of the underlying database include the number of objects in the
database, the total area covered by the objects in the database, the average area of the

3

. mpalr

. . X ;@% e 508
.
. cll | A
e R L f !!
. e LR
8

(&) (b) (c)

Figure 1: An example quadtree decomposition for (a) points, (b) polygonal
region, and {c) a coliection of overlapping regions (i.e., A,B,C).

objects, the number of blocks in the database, etc.

Regarding the representation and organization of spatial data, as we mentioned in
Section 1, we concentrate on data structures that divide spatial objects into simple pieces
(e.g., rectangles). In order to have a concrete model of the spatial database, we focus on
one type of data structure that partitions a spatial object using a regular decomposition
of space so that a region is decomposed if it contains more than a predefined number
of objects (e.g., points, or parts of different lines as in Figure 1a), or if it is a part of
more than one region (e.g., if a region can be part of just one object as in Figure 1b),
or if each block is totally covered by one or more objects, or is not covered by any of
the objects {e.g., if objects are permitted to overlap as in Figure 1c). In these data
structures, objects are represented by the set of blocks that collectively approximate and
cover them. Frequently, the resulting blocks are linearized (e.g., Z-Order [22, 23], or a
linear quadtree [9, 25]) in the sense that each block is represented by a unique number
which enables it to be stored using a conventional index such as a B-tree. In such a case,
the resulting blocks are called Z-elements or Morton blocks [17). In this paper, we will
assume ob jects such as those given in Figure 1b.

Assuming the use of the above data structure, we propose precomputing the following
parameters during our preprocessing phase:

® NOg: the number of objects in the database.
¢ NBy: the number of object-pieces in the database.
® Aspace: the area of the underlying space for the entire spatial database.

o Ca: the data coverage which is the ratio between the total area covered by the
objects in the database and the area of the underlying space for the entire spatial
database (Agpacc)-

® Xivgs Xnin and Xppa: the average, minimum, and maximum width, respectively,
of the minimum bounding rectangles of the objects in the database.

® Yiug, Yasin and Ypg,: the average, minimum, and maximum height, respectively,
of the minimum bounding rectangles of the objects in the database.

® AO4q,: the average area of an object in the database. This parameter can be
computed as follows:

Cas
AOpy = —I—V-O;Asmce'

® ABjyg: the average area of a block in the database. This parameter can be com-

puted as follows:

C,
ABAvg = ﬁd:bASpace .

® R,y the average aspect ratio of the minimum bounding rectangles of the objects
in the database. The aspect ratio of object o is defined as R, = Y,/ Xo, where X,
and Y, are the width and height of the minimum bounding rectangle of o.

¢ NB gyg: the average number of blocks per object in the database.

We use some of these parameters in the following section to estimate the selectivity factors
for the spatial join. The remaining parameters are useful for other spatial operations
(e-g., the window containment query) [2].

3 Estimates of Selectivity Factors for the Spatial Join

The selectivity factors for spatial join depend heavily on the type of spatial operator
in the join predicate. This operator can be intersection, containment, etc. Examples
are dby.ay intersects dby.ay, and dby.a; contains dbsy.ay, where a; and a; are spatial
attributes of the databases db; and db,, respectively. In this section, we examine the
case of a spatial join with an intersection operator serving as the join predicate. Other
operators can be dealt with analogously.

One way to compute the spatial join selectivity factors is to consider one of the two
input streams of the spatial join as the underlying database and to consider the second
input stream as a source for query windows where each window corresponds to the region
occupied by an object from the second input stream (i.e., the inner component of the
spatial join is the underlying spatial database and the outer component is a set of query
windows). Following this approach enables us to first develop a selectivity formula for an
intersection operation that involves just one window and then sum over all the windows
w in the input stream corresponding to the outer component of the join.

As mentioned in Section 2, we assume that objects in the spatial database are repre-
sented by decomposing them into multiple, yet simple, pieces. We use the Z-Order [22, 23]

or the linear quadtree data structure [9, 25] as our final representation of the decompo-
sition used in the spatial database. The decomposition scheme that we use is such that
an object is represented by the set of blocks that conservatively cover the internal region
of the object. Although such a decomposition rule is capable of being applied to a wide
variety of object shapes and data types, in this paper we limit our discussion to spatial
objects that are of type rectangle. Formulas for estimating the selectivity factors of other
data types can be derived analogously.? It is important to mention that in developing
the selectivity estimates in this paper we assume that the spatial objects are distributed
uniformly in the underlying spatial database. However, in Section 4.2 we test the appli-
cability of these formulas against data sets with non-uniform distributions (basically real
data sets that consist of the road networks in the data of the U.S. Bureau of the Census
Tiger/Line file [19]). In addition, in Section 6 we propose other techniques to handle the
case of non-uniformly distributed objects in order to develop more accurate estimates.
Notice that, even if we assume that objects are distributed uniformly in space, it is not
true that the object-pieces, (e.g., the Z-elements or Morton blocks), that comprise the in-
ternal region of the objects are distributed uniformly in space. For example, if a database
of rectangles is distributed uniformly in space, then the Z-elements or the Morton blocks
that approximate each rectangle will be clustered around that rectangle, and hence the
set of blocks that correspond to the whole database is not uniformly distributed in the
underlying space. '

3.1 The Selectivity of One Window Intersection Operation

We start by estimating the selectivity factors of the intersection of Jjust one window,
i.e., when considering the intersection of just one rectangular object with the spatial
database. In the next section we generalize the estimates that we develop to the more
general spatial join operation (i.e., where more than just one object is considered in both
spatial databases participating in the spatial join). The object-level selectivity for the
window intersection operation, denoted OS,,, is defined as the number of ob jects in the
underlying spatial database that intersect a given window. Assume that we are given
a window, say w, with total area A,; of width and height X,, and Y,,, respectively;
and a spatial database db of NOg, objects, each of type rectangle, that lie in a space of
area, 53y Aspace- Given one object o € db, with total area A,, and width and height X,
and Y, respectively, then the probability that w intersects o is computed by (refer to
Figure 2):

(X + Xo) (Yo + Yo)

ASpace

Notice that if w is a point, then X, = ¥, = 4, = 1. The above probability formula

Probability(w intersects o) =

*In fact, for the purpose of query optimization, other objects can also be approximated using their
minimum bounding rectangles. In this case, the formulas in this section can be applied to spatial
databases of other data types, e.g., the polygon data type.

Figure 2: The rectangles w and o intersect if and only if the upper-left
corner of w (point p) lies anywhere inside the shaded rectangle whose sides
are Xy + X, and Yg + Y,.

holds for all objects in the database db. Summing for all objects in db,

. 1 (Xw + Xo)(Yu + ¥5)
05w NOg Z

oEdb ASP““
= (+ + N Y, + 3 X,)
Nodb ogd:b ASpaoe oEdb ASpaoe A.S'pace ocdb ASpaoe ocdb
1 XoNO#pY4, YuNOuXa,
= ——(NOuCuw+C = g g
NOdz.(#Cw+Can + Aspon Az)

Cdb + YwXAug + XwYAvg
NO db ASpace

= Cw+

where C,, = Zf:;:’ and X445 and Yy, are the precomputed average width and height,

respectively, of all the objects in the underlying spatial database. Observe that yif Xy =
Xy and Yg,g = Y, then

Ca
NOg

0Sy = 3C,+

This formula is applicable if the size of the query window is of the same order as the
average dimensions of the objects in the database.

In order to compute the block selectivity of the window intersection operation, we
follow a slightly different approach. We cannot Jjust apply the above formula by replacing
the rectangular objects by the object-blocks and sum over all the blocks in the database.
The reason is that the set of all pieces composing the objects is not uniformly distributed
over the entire space. The objects themselves are, but the object-blocks are clustered
around the uniformly distributed objects. Thus we cannot generalize the above formula
for object pieces as well. Instead, we proceed as follows: First, we compute the average
area of intersection, say A,, between the query window w and an arbitrary object, say

7

o, in the database. Then we estimate the number of the object-blocks in A4,, and sum
the result over all the objects in the database. Let (2p, ¥p) be the coordinate values of
the upper-left corner of w. From Figure 2, the upper-left corner of w is equally likely to
be at any location inside the rectangle [z, ¢, + X, + X,] X [¥ps ¥p + Yo + Yo, L., with
probability m To obtain the average area of intersection, we compute the
area of intersection when w is at some arbitrary location (z,y) and multiply it by its
probability of occurrence. Next, we integrate the area over all possible values of z and Y
inside the rectangle [z, 2, + Xu + X,] X [3p, ¥p + Yay + ¥o]. The resulting average area
of intersection in this case is given by (see the Appendix for a complete derivation):

Aow = Awdo .
P (Kot Xo)(Ye + Yo)
From Ay, we can estimate the number of intersecting object-blocks, say NB,,,, as:
A
NBg,, = A‘:” NB,
Ay
= NB,

(Xw + o) (Yo + Yo)

where NB, is the number of blocks comprising object o. Summing over all the objects
o in the database and multiplying by the probability of intersection between each o and
w, we can estimate the block selectivity of the window intersection operation as follows:

ow

NBa s Aspace

Substituting for NB,,, in the above formula, we get

BSy = —i— > NB,

NBay Aspace /o3,
ASpace

3.2 The Spatial Join Operation

In joining two sets of objects using an intersection predicate, the object-level selectivity
denoted OF;, is defined as the number of intersecting pairs of objects from the two
sets. One way to compute the spatial join selectivity factor OS; is to consider one of
the two input streams of the spatial join as the underlying database and to consider
the other input stream as a source for query windows (i.e., the inner component of the
spatial join is the underlying spatial database and the outer component is a set of query
windows). This enables us to utilize the selectivity formula for the window intersection
operation described in Section 3.1, and to sum over all the windows w in the outer input
stream. This results in the following (as in Section 3.1, we assume that the objects in

8

the underlying spatial database are approximated by their enclosing rectangles resulting
in a spatial database of rectangles):

1 (X + Xo) (Y + ¥,)
05; = ——— u
7 NOg, NOg, Z E Aspace

wedbs oedbg

_ 1 Aw Ao Xw
" 0w, N0, 2 2 Fom T 2 2 T b 2 T 2 Vo

wedb; o€dby ASP““ wedby oEdby Space wedby Space o€dbp

Y Y X))

wedby ASpace o€dh,

1 Ay ' Xw
= —————(NOg + Cabg + NOgpy Yauge +
NOdb; Nodbg z wé:h ASpm:e wé!:b; £ £ ¢ wGZdh ASpa.ce
Y,
NodngAng Z A =
wedh, Space
1 X avg1 Y 4o
= W(N0d520d61 + NOu,Capy + NOay, NO g, —-‘T;—“—z- +
1 2 pace
XA 2YAU 1
.NOde Nodbg —-T:fspa_ccg—)
_ 0&51 Cdbz XAﬂgI YAvg.? + XAngYAvQI .
= NOus, + WOu, + Asgnee , Or equivalently,
— AOAng + AOAvge + XAng YAugz + XAug.zYAng
ASpaoe ASpace ASpace

Notice that the roles of db; and dbs are symmetric in the above formula. Also notice that
the last formula indicates that the object selectivity factor for the spatial join depends
only on the average area (or the extent) of the objects in the underlying spatial database.

We can compute the block selectivity of spatial join BS; as follows. Assume that
objects w and o belong to db; and db,, respectively. We estimate the average area of
intersection (Aoy,) between these two objects in the same way as in Section 3.1. Now,
we compute the number of blocks of each object that overlap with A,,. Let these be
denoted by NB,,, and NB,,,. The maximum number of pairs of intersecting blocks is less
than NB,, + NBy, (e.g., Figure 3d where it is 4), and in the best case, it is greater than
or equal to max({NBoy, NBy,) (e.g., Figure 3e where it is 2)%. We define BS; maz and
st—total as the block selectivity for spatial join in the best and worst cases, respectively.
They can be computed by summing over all the ob Jjects 0 and w in the two input streams

and in each case multiplying the number of estimated intersecting pairs by the probability

*Notice that the worst case of overlaying n and m blocks is nm. However, because of the restrictiveness
of the quadtree recursive decomposition of space, blocks cannot intersect each other arbitrarily; they can
either coincide in space or one block can contain the other. As a result, the worst case is reduced to
n4m—1.

e

' ::Z-.-x..,. L gg&%ﬂm ﬁ;%é%%%

o

(d) (e)

Figure 3: (a)-(c) A decomposition of three rectangles into quadtree blocks
that cover the internal of the rectangles. (d) Although the number of
blocks inside the intersection region is 3 blocks in each rectangle, there
are 4 intersecting pairs of blocks. (e) The best case occurs when all the
blocks in one rectangle intersect just one block in the other rectangle.

of intersection between o and w. This results in the following estimates:

1 (X + Xo) (Y + 1,)
BS = e NBoy + NByo
total NBJBI NBdbg wedn, ogz ASpaoe ()
1 (Xw + Xo)(Ye + Yo)
3 = THh e oury Bwo

wedby oEdba

where NB,,, and NB,,, are defined and computed as in Section 3.1 (The formula for
NB,, is the same as the one for NB,,, once the roles of 0 and w have been interchanged).
Notice that the actual value of the block selectivity of spatial join, BS; lies somewhere
between BS _mag ond BS; i-total ie.,

BS]

As we will see in Section 4, in some cases BS; can be slightly greater than BSj—total'
This is due to the way we use average values.

By substituting the estimated values of NBoy and NB,, in the formula for computing
BSj-tatal’ we get

maz < BS; < BS -total

——> (X + X)(Yu + Y2) A, NB,+

BS =
-total NBg, NB dbg Aspace (Xw + Xo)(Yo + Yo)

wedb; oCdby

10

DD (Xw + Xo (Vi + Yo) Ao

NB,,
wEdby o€dby Aspace (Xw + Xo)(Yo + Y5))
1 A A,
= WBE w2, 5—— D NB.+) NB)
NBd61 N-Bdbg WEZi:bg A.S'pace erd;g ° wezdbl woegbg ASpace
1
= NBu, NBa, CttiVBats + Cuy NBa,)

Ca, Ca, .
= tl
NBus, + NBdbz’ or equivalently,
ABAng + ABA'ugZ

-ASpace ASpace

where the last formula is only dependent on the block and ob ject average sizes in both
databases.

It is difficult to get a closed form expression for BS, i-magz Since it depends on the sum
of the maximum of pairs of blocks. However, since B, j-mag Serves as a lower bound for
B5;, we can replace the formula for st-ma:z: by a further lower value BS j-maz such that

BS j-mazg < BSj.mam < B§; < BSj-total

BS j-maz is defined as follows:

BSj—mam = ma'x(B:S'j-mamI’B.sj-maz,?): where

_ 1 (X + X,) (Yo + Y,)
BS.: = =3 ¥ NBoy, and
j-mazl NBay, NB g, wedhy oedhy AsSpace
o 1 (Xo + X,) (Yo + Y2)
BS = =y ¥ .
Simeat = FEu WBa. NBo

wedby ocdby ASpace
Notice that BS j-mag < BSj-max since
max() Za,z db< > > max(a,b)
a€AbEB acAbEB a€AbeB
By substituting the formulas for NB,, and NB,y,, we get:

; 1 A,
BS. = NB,
J maﬂ?l NBde NBdﬁz wgl ASpgcg 06%2

Cdbl - ABAng
NBg 1 ASpace

-~ 1 A,
BSjmezs = Fpowpar 2 NP X

wedh, o€dby Aspace
_ Casy, ABjpuy

NBdbg B ASpace

11

Therefore,

T max(Cdb; Cd'bg
NB g, "NB dbe
ABAugI ABAvg.e

'
ASpaoe ASpace

), or equivalently,

).

= max(

The number of output pairs of blocks can be estimated by multiplying B—Sj-maz or
BSj-total by the Cartesian product NB gy, X NB g3, (according to the definition of the join
selectivity factor, where the Cartesian product of the two input data sets is considered
to be the maximum size of the input).

3.3 Self Join

In many circumstances we may need to join a stream with itself (which we term a
self join). For example, finding the pairs of intersecting rectangles in a given database
requires a self join operation. Since in addition to intersecting some other rectangles in
the stream, each rectangle intersects itself, the formulas given in Section 3.2 for estimating
the selectivity factors of the spatial join will not be accurate in the case of the self join.
We need to compensate for the fact that each rectangle intersects itself. This results in
some additional output pairs of the spatial join that are equal to the total number of
objects in the database. Therefore, we add a corrective factor equal to the number of
objects in the stream to the formulas giver in Section 3.2 (the same is also true for the
blocks in the stream). This results in the following formulas for the object and block
selectivity factors of the self join, 0S,; and BS,;, respectively. Notice that in order
to include the corrective factor in the formula of the selectivity factor, we divide the
corrective factor by the term NOg X NOg which is the size of the output of the spatial
join in the worst case.

1
NOg
Ca XavgYaug 1
2 +2 +
NOg A.S'pace NOm
= 2Cd6 +1 + 2XAvgYAﬂg
NOg Aspace
A0y, XavgYa 1
9 9 4 gdvgAv
Aspoce | ° Aspae T NO3
2A0Avg + -XAvgYAug + 1
A.S'pace N Odb

OS,J' = OS_.,' -

; Or equivalently,

Similarly,

1
Bssj-total = BSj-tota!'I' NBg

12

Data Area of Number of Average Number
Coverage | Rectangle | Rectangles | of Morton Blocks
0.01 64 40 980
0.10 64 40¢ 9385
0.20 64 819 18937
1.00 64 4096 94239
1.60 64 6144 142086
2.00 64 8192 ig9496
3.00 64 12288 283062

Table 1: Parameter settings for input data sets with fixed object size and
varing data coverage.

Ca + 1
NBy NBg
= -2—%3;—%- ,» or equivalently,
AB gy 1
ASpace NB db
_ - 1
BS sj-maz = BS j-maz t NB 4
_ Cy + 1
= 1;36:6 , Or equivalently,
_ AByy + 1
B ASpace NB db

4 Experimental Results

The purpose of our experiments is to verify the significance of the derived formulas for
estimating selectivity factors under varying conditions. Experiments were conducted us-
ing real as well as synthetic data sets. The real data sets consisted of the road networks
in the data of the U.S. Bureau of the Census Tiger/Line file [19] for representing the
roads and other geographic features in the U.S. The synthetic data sets are collections
of rectangles generated at random. Each rectangle was subsequently decomposed into
its corresponding constituent Morton blocks. Notice that since it is possible for the gen-
erated rectangles to overlap, the same is true for the Morton blocks inside the database.

13

Data Area of Number of Average Number
Coverage | Rectangle | Rectangles | of Morton Blocks
1.00 i28 2048 69813
1.00 B12 612 40010
1.00 1024 266 29096
i.00 2048 128 21764
1.00 16384 16 8404

Table 2: Parameter settings for input data sets with fixed data coverage
and varying object area.

4.1 Experiments with Synthetic Data

Tables 1 and 2 describe the the synthetic data sets that we used in our experiments.
The tables use some of the parameters suggested and discussed in Section 2. These
include the data coverage of all the objects, the average area, in pixels, of all the objects
in the database, the number of objects, and the number of objects-pieces in the entire
database. The size of the underlying space for all the synthetic data sets is normalized
to 512 x 512.

We conducted the following experiment: for each entry in Tables 1 and 2, we generate
10 sets of random rectangles satisfying the same parameter setting PS. We call the 10 sets
a master data set, and denote it by MDSpg. To measure the selectivity factor for spatial
join for a pair of parameter settings PS; and PSy, we ran the following experiment:
each set of rectangles in MDSpg; is joined with each set of rectangles in MDSpgs using
spatial join. The number of output pairs (object-pairs as well as block-pairs) is measured,
summed and averaged (by dividing it by 100, which is the total number of times the
spatial join was executed for this experiment). For our experiments, we fixed the area of
the underlying space to be always 512 x 512. We verified our estimates with the measured
selectivity factors while varying the data coverage of the input streams as well as the
average size of the rectangles in the underlying spatial database.

Figure 4 compares the estimated value of the object selectivity factor for the spatial
join against the measured value for different data coverages (we use data sets from Table 1
for both input streams). The data coverage of the first input stream was fixed at 0.01,
0.1, 1.0, and 2.0, respectively, while the data coverage of the second input stream varied
from 0.01-2.0. In the figure, the estimated value for the object selectivity factor of the
spatial join is constant (appoximately, 95 x 1075). This is because the estimates for the
object selectivity factor that we developed in Section 3.2 do not depend on the the data
coverage. They depend only on the average sizes of the objects in each stream. The
figure also shows the measured values of the object selectivity factor that resulted from
the experiments. It is found that they are relatively constant and within 20% of the
estimated value.

Figure 5 performs the same comparison while varying the average areas of the ob jects

14

9 8 T 1 1 1 I 1 ¥ 1 ¥

Object selectivity X 100,000

0 0.2 0.40.60.8 1 1.2 1.41.6 1.8 2
Data coverage of the second stream

Estimated object selectivity -e--
0.01 data coverage for the first stream —+—
0.10 data coverage for the first stream —»—
1.00 data coverage for the first stream —»—
2.00 data coverage for the first stream —=—
Figure 4: A comparison of the measured vs. the estimated object selectivity
for the spatial join operation as a function of the data coverage of the
second stream.

in the second input stream (we use data sets from Tables 2 for both input streams). The
average area of each object in the first input stream in Figure 5 is 1024. Since the total
area of the space is 512 x 512, 1024 accounts for about 0.4% of the whole space area,
respectively. The relative error of the estimated values for the object selectivity factor
of the spatial join is within 10% of the measured values.

Figure 6 compares the estimated value of the block selectivity factor for the spatial
join against the measured value for different data coverages. The two estimates for block
selectivity presented in Section 3.2 are plotted (namely, BS;.mag 2nd BS;_totq) Where
they correspond to the plots for Est-Max and Est-Total in the figure, respectively). The
data coverage of the first input stream was fixed at 0.01, 0.1, 1.0, 2.0, and 3.0, respectively,
while the data coverage of the second input stream varied from 0.01-2.0. As expected, the
measured value is greater than Est-Max and less than Est-Total. Notice that for spatial
databases with small data coverages, Est-Max is a better estimate than Est-Total. On
the other hand, as the data coverage gets larger (and hence more object overlaps occur),
the measured values for the block selectivity factors approach the estimate Est-Total.
This can be used by the query optimizer as a strategy for choosing between the two
estimates.

15

11 T E) L] T L]
o 10 F Estimated -8—
g 9 Measured
a 8
>
r 7 -
ke
2 ° '
Q 5 .
-
g af -
4 3
b
B 2]
(@] 1‘ E
O i [} 1 1 1 L h

(o]

7 8 g 10 11 12 13 14
log (Object Size) of the second stream

Figure 5: A comparison of the measured vs. the estimated object selectivity
for the spatial join operation as a function of different average object areas.
The data coverage of both input streams of the join is 100%. The average
area of the objects in the first stream is 1024. The z-axis corresponds to
the average area of the objects of the second stream.

Figure 7 provides a comparison of the estimated and measured block selectivity for
the spatial join while varying the average areas of the objects in one of the input streams.
The average area of an object in the other stream is 1024. From the graph, we notice that
the measured selectivity value is greater than Est-Max and less than Est-Total which
correspond to BSj_mam and st-total defined in Section 3.2, respectively. This is true
for all cases. It is worth mentioning that although our estimates produce satisfactory
results, they ignore the fact that smaller blocks are closer to the boundary of the objects.
In particular, the estimate of the number of intersecting object-blocks NB,,, i.e.,

Aow

NBouw =~ NB,,

assumes that size distribution of the blocks inside an object is uniform, which is not
the case for the quadtree decomposition of space. In this case, a better estimate can be
developed that takes into consideration the fact that the blocks inside the object are not
equally distributed but are clustered more towards the borders.

From the figures we can see that our estimates form an upper bound on the measured
values. The maximum error between the two values is less than 25%, although in most
cases it is much less.

16

Block selectivity X 100,000

0 0.2 0.40.60.8 1 1.21.41.61.8 2
Data coverage ¢f the second stream

Estimated block selectivity: Est-Total ~—
.00 data coverage for the first stream ——
.00 data coverage for the first stream —&—
.00 data coverage for the first stream —»—
.10 data coverage for the first stream ——
.01 data coverage for the first stream —*—

Estimated block selectivity: Est-Max -%—

OO NW

Figure 6: A comparison of the measured vs. the estimated block selectivi-
ties for the spatial join operation as a function of the data coverage of the
second stream.

4.2 Experiments with Real Data

We used five Tiger/Line databases (given in Figures 8a—8f). For each line segment in
the Tiger/Line database, we constructed the line’s minimum bounding rectangle. Each
rectangle was then decomposed into its corresponding constituent Morton blocks. These
data sets help verify our estimates for arbitrary distributions of objects in space.

Table 3 gives a characterization of the real data sets (the Tiger/Line) files using
some of the parameters suggested and discussed in Section 2. These include the area
coverage of all the objects, the average area of all the bounding boxes that include each
line segment in the database, the number of objects, and the number of object-pieces in
the entire database. The size of the underlying space for all the Tiger/Line data sets is
normalized to 512 x 512,

In order to conduct our experiments, we spatially join each pair of the Tiger/Line
files together. Notice that although the Tiger/Line data files that we use refer to non-
overlapping geographical regions, we normalize the coordinate values of each file so that
its upper-left corner has the coordinate values (0,0). This results in overlapping data
sets and allows us to perform spatial join using data sets derived from real sources.

W

17

16

14 |

Est-Total —+—
Measured —»—
Est-Max —=—

(o]
<
<
o
[ws]
- 12
]
o 10
-
-3
D 8
O
aQ
‘s 6
)]
5
g 4
—f
m
2
6

7 8

log (Object Size) of the second stream

9 10 it 12 13

14

Figure 7: A comparison of the measured vs. the estimated block selectivity
for the spatial join operation as a function of different average object sizes..
The data coverage of both input streams of the join is 100%. The average
area of the objects in the first stream is 1024. The z-axis corresponds to
the average area of the objects of the second stream.

Table 4 gives the relative error in the estimated value of the object selectivity factor
of the spatial join over the measured value. In the table, a negative percentage indicates
that the measured value was smaller than the estimated value while a positive percentage
indicates that the estimated value was smaller. On the other hand, Tables 5 and 6 give the
relative error in the estimated value of the block selectivity factors of the spatial join:
B.S' _total 2nd BS; j-maz respectively, over the measured value of the block selectivity.
The total number of data set pairs that we spatially joined together was 15. Figure 9
summarizes the above tables by giving the percentage of the number of spatial joins
whose estimated selectivities lie within a certain relative error from the actual value.

Map Name Data Avg. Area of | Number of Number of
Coverage | Bound. Box Line-segs. | Morton Blks.
Falls Church (FC) 0.43 192,10 587 24330
Bedford (BF) 0.34 54.17 1644 27725
Williamsburg (WB) 0.19 23.62 2112 20686
Franklin (FR) 0.35 54.46 1685 25708
Washington D.C. (DC) 0.56 7.90 18617 94934

Table 3: Parameter setting for the Tiger data files. The size of all the
maps is normalized to 512 x 512.

18

(e) Washington D.C.

Figure 8: The Tiger/Line spatial databases used in the experiments.

In the case of estimating object selectivities, for the 15 spatial join operations that
we conducted, 14 of them (i.e., over 93% of the joins performed) have their estimated
value of the object selectivity factor lie within 30% of the actual measured value, and
13 of them (i.e., over 86% of the joins) have their estimated value lie within 25% of the
actual measured value. For block selectivity estimates using B'S'j-total’ 14 out of the 15
join operations (i.e., over 93% of the join operations performed) have their estimated
value of the block selectivity factor lie within 30% of the actual measured value, while
13 out of 15 (i.e., over 86%) have their estimated value lie within 25% of the actual
measured value. For block selectivity estimates using B_Sj-ma:m only 4 out of the 15 join
operations (i.e., 26% of the join operations performed) have their estimated value of the
block selectivity factor lie within 30% of the actual measured value, while 9 out of 15
(i.e., 60%) have their estimated value lie within 40% of the actual measured value.

Therefore, we see that the experiments show that BS _total 18 2 better estimate for
the block selectivity factor than st-maz This con_ﬁrms our conclusions for synthetic
data in Section 4.1. As the data coverage increases, more overlap among objects (and
hence object-pieces) is expected and hence BS' total will be the better estimate. The
real data sets have high data coverage in the regmns where data is concentrated and
hence BS _iotal 18 @ better estimate for the overlaps that take place. The experiments
in this sectzon confirm this conclusion as well. However, all three estimates are certainly
good enough to be useful for query optimization purposes. The experiments also show
that our formulas for estimating the object and block selectivity factor for the spatial
join operation perform quite well for real data sets, given the non-uniformity in the
distribution of the objects in the underlying space of these data sets.

FC BF WB FR DC
FC | 0.24 7 -0.03 0.15 0.13 0.25
BF 0.13 | -0.10 | -0.04 0.10
WB 0.28 0.06 | ~0.22
FR 0.22 0.14
bC 0.5b

Table 4: The relative error in the value of the estimated object selectivity
factor of the spatial join over the measured value.

5 Related work

In the past, very little attention was devoted to spatial query processing and optimization.
Existing spatial database systems have basically ignored the optimization issues. Little
is known about the different strategies and alternatives for processing spatial queries
(i.e., when interspersing spatial and nonspatial operations) as well as about the cost
of executing alternative query evaluation plans containing spatial operations. However,
recently several prototype systems address the issue of spatial query optimization, (e.g.,

20

FC BF WB FR DC
FC | ~0.12 | 0.06 | -0.08 { -0.22 | -0.27

BF 0.01 0.06 | -0.07 | -0.08
wB ~0.13 | -0.10 .16
FR ~0.14 | ~0.18
DC 0.37

Table 5: The relative error in the value of the estimated block selectivity
factor of the spatial join, BSj—total- over the measured value,

FC BF WB FR bC
FC | 0.31 | 0.37 | 0.38 | 0.54 | 0.41

BF 0.19 |1 0.39 | 0.61 | 0.37
B 0.24 4 0.46 | 0,28
FR 0.30 | 0.41
DC 0.46

Table 6: The relative error in the value of the estimated block selectivity
factor of the spatial join, BS j-maz» OVver the measured value.

SAND [3], Gral [11], GEOQL [24], and Geo-Kernel [27]). [3] presents several strategies
for evaluating such queries. GEOQL [20, 21, 24] has an extended query optimizer that
fully decomposes 2 given query into simpler spatial-only and nonspatial-only subqueries.
The results of all the subqueries are later merged together (similar to the query de-
composition technique in [28] but extended to handle spatial operations). However, the
optimizer for GEOQL only optimizes the cost of nonspatial operations and does not take
into account the I/O cost of spatial operations or the selectivity factors of the operations.
Gral [6, 11] uses an algebraic query language at both the query description and execution
levels. In particular, a rule-based optimizer is used to normalize and optimize at the de-
scriptive algebra level. In addition, rules are used to translate a query into its executable
equivalent as well as to express heuristics such as performing selects before joins. The
developers of Gral place a greater emphasis on expressing query optimization techniques
using rules. However, there is little emphasis on providing good cost estimates as well
as selectivity factors of spatial operations. Instead, they choose ad hoc selectivities for
spatial operations (similar to the selectivities of Selinger et al. [26]).

Geo-Kernel [27] uses some heuristics for query optimization and is not based on a
cost-model for spatial operations. For example, the query optimizer in [27] adopts a
useful heuristic which prefers to perform relational selections before spatial selections in
order to reduce the cost of spatial data conversion (i-e., downloading) by reducing the
number of qualifying tuples. However, this is not based on actual cost estimates.

21

100

2 80 |
-]
o]
-]
“ 60 F
&
aé 40
5]
M
4 20

0) L N . L . N . 1
0 0.1 0.20.30.40.50.60.,70.80,9 1
Relative Error

Object selectivity estimate ——
Block selectivity estimate: Est-Max ——
Block selectivity estimate: Est-Total -e—

Figure 9: The number of spatial joins whose estimates were within the
relative error given in the z-axis.

6 Extensions and Future Work

A very important issue that is closely related to spatial database modeling for query
processing and optimization purposes is that of the distribution of objects in space.
The data distribution depends heavily on the application domain. For example, the
distribution of rectangles in a VLSI circuit may be different from the distribution of
plan-icons in a floor plan, and both of these distributions may be different from the
distribution of line segments in a downtown city map. These distributions may vary:
from simple uniform distributions, to skewed non-uniform distributions. It is obvious that
some knowledge of the data distribution of the underlying spatial database is required
in order to guide the selection of useful statistics for query processing and optimization
purposes. It also affects the types of the parameters selected. Although this topic is not
emphasized much in this paper, in this section we develop a framework for future research
in this area. In addition to handling uniformly distributed data sets, we approximate
data sets that have a non-uniform distribution by using a piece-wise uniform distribution.
We also point out in this section how the query optimizer can benefit from knowing the
distribution of the location of user queries.

6.1 Distribution of Spatial Objects and Locations of User Queries

The distribution of spatial data objects in space varies according to the underlying ap-
plication (e.g., geographic database, VLSI circuit database, medical imagery database,
etc.). For example, if the spatial database is to model geographic data, then the distri-

W

22

bution of geographical objects in space is known to be non-uniform [8]. In the case of
geographical maps, spatial objects are usually clustered around some cluster points (e.g.,
cities), while in the case of VLSI circuit layouts, objects may be uniformly distributed
in space.

Several factors impede the process of gathering statistics from the underlying
database for the purpose of query optimization. First, incorporating an accurate distri-
bution for the underlying spatial database inside the query optimizer is time-consuming.
On the other hand, although simple to model and maintain, an over-simplified distri-
bution for the objects in the underlying database does not help to estimate selectivity
factors because the spatial objects are usually clustered. This problem is most apparent
when spatial objects are non-uniformly distributed in space.

One way to model non-uniform data distributions for query optimization purposes is
to assume some piece-wise uniform distribution of the spatial objects in the underlying
database. This implies that the database be sub-divided into blocks, and that statistics
are gathered for each block independently while assuming a uniform distribution inside
each block. When a user query is directed towards a certain block, or a group of blocks,
the statistics of these blocks will be involved in estimating the selectivity of the query.
The number of blocks has to be kept small so that their management and access will be
easy for the optimizer.

Another aspect to consider is the distribution of the user queries. Depending on the
application, the user queries may be either distributed uniformly over the whole space or
targeted towards particular locations in the database. Usually, users’ queries are directed
more towards the locations in the database that have a higher density of data. As a result,
non-uniformity in user queries is likely to happen in geographic applications since the
distribution 1crf geographic data is non-uniform. For example, downtown sites are queried
much more often than some other neighboring rural sites. Table 7 (columns 1-3) gives
all possible combinations of spatial data distributions and user-query distributions.

There are several approaches to addressing data and query modeling inside a query
optimizer for each of the cases given in Table 7. In this paper, we treat cases 1 and 2
in the same way, i.e., when the data distribution is uniform, our model for computing
selectivities is insensitive to the spatial distribution of user queries. The rationale for our
reasoning is that it is relatively easy to model data that is uniformly distributed. So, the
optimizer will be able to estimate the outcome of the user queries quite well regardless of
the nature of the user queries, i.e., regardless of whether or not the distribution of user
queries are themselves uniform or non-uniform. We call this approach the uniform data
model. For the case of non-uniform data distributions (cases 3 and 4), the optimizer
has two choices: either to ignore this non-uniformity in the data distribution and hence
assume some uniform distribution of the data, i.e., treat these cases in the same way
as cases 1 and 2, or to assume some piece-wise uniform distribution as described above.
We call the latter approach the piece-wise uniform data model. When user queries are
also non-uniform (case 4 only), the optimizer can still model the data distribution as a
uniform distribution in the following sense. The optimizer can collect statistics from the

23

dense areas only and then generalize these statistics over the whole space, thus assuming
a uniform distribution over the whole space. Although the areas with low densities will
result in false estimates for selectivity factors, these areas are not queried much by the
user according to our assumption that user queries are also non-uniform, and that user
queries are typically directed towards the areas with dense data. We call this approach
the false uniform model. Column 4 of Table 7 summarizes the alternative approaches
that can be taken by the optimizer to model spatial data and user queries in each case.

Case | Spatial Data | User Query Alternative
Study | Distribution | Distribution Models
1 uniform uniform The uniform model
2 uniform non-uniform | The uniform model
3 non-uniform | uniform The uniform model
The piece-wise uniform model
4 non-uniform | non-uniform | The uniform model
The piece-wise uniform model
The false uniform model

Table 7: Possible combinations of spatial data and query distribution, and
their corresponding models.

6.2 Selectivity factors for non-uniformly distributed data

The parameters described in Section 2 are computed differently in the case of non-
uniformly distributed data. In the case of the uniform model, these parameters are
pre-computed over the whole set of objects in the database. On the other hand, in the
case when data is non-uniformly distributed, i.e., piece-wise uniform model, the database
is divided into a coarse uniform grid. When the database is preprocessed, the parameters
are computed for each grid cell separately. This results in a two-dimensional array for
each computed parameter, where the value stored in each entry of the array corresponds
to the value of the parameter at the corresponding grid cell of the underlying database.
For a given spatial operation that queries (or overlaps) a certain grid cell of the database,
the parameters of this cell are the ones used by the optimizer to estimate the cost or
selectivity factor of the given operation. In the rest of this section we describe formulas
that can be used for estimating selectivity factors for the spatial join operation with a join
predicate that involves window intersection. Following the same approach of Section 3,
we start with the case of one window intersection operation, and then use the resulting
formulas to estimate the selectivity factors for the spatial join.

24

6.2.1 One Window Intersection

The piece-wise uniform model: the formulas in Section 3.1 assume that spatial objects
are distributed uniformly in space. For the piece-wise uniform model, described in Sec-
tion 6.1, data is non-uniformly distributed in space and this non-uniformity is modeled
with a piece-wise uniform distribution. Assume that the database is divided into a coarse
uniform grid such that each grid cell is of width and height X; and Y, respectively, (g
stands for grid). In this case, the formulas in Section 3.1 stay the same except that
the precomputed parameters (i.e., X 09, Y4ug, etc.) will be replaced by the parameters
of the grid cell that overlaps the query window. When the database is preprocessed,
parameters are computed for each grid cell separately. This results in a two-dimensional
array for each precomputed parameter, where the value stored in each entry of the array
corresponds to the value of the parameter at the corresponding grid cell of the underlying
database. Assume a query window, say w, whose upper-left corner has coordinate values

(25, ¥p). Let

XAvg(w) = XAvg[][y:]

Yavg(w) = YAvg[][]:

Tp

NO,",(w) = Nodb[X_g][gE‘],

NBg(w) = NB b[[?] and

Cas(w) = Ca[3E]['{,—g]

Then,
Cd{,(w) Y X 4y (w)+X Yo (w)
OSw = Cup+ + g g
NO g (w) Acent
A
BS, = —-
Acent

where Ac.i; is the area of each grid cell and is equal to X Y. Notice that the number of
output objects and the number of output blocks can be estimated by multiplying OS,,
and BS, by NOg(w) and NBg(w), respectively.

The false uniform model: the formulas described above for the piece-wise model assumes
that the underlying space is decomposed into a coarse grid and that the preprocessing
parameters are gathered for each grid cell. For the false uniform model, described in
Section 6.1, in addition to the non-uniformity of the distribution of objects in space,
we also assume that the distribution of the user queries is non-uniform. Furthermore,
we assume that both distributions are almost alike. For example, this implies that the
density of objects in a certain location in space is directly proportional to the density
of the user queries to the same location. As a result of these assumptions, in the false

25

uniform model we neglect portions of space where no objects are contained. As a result,
instead of using Agpa.. in the formulas for estimating the selectivity factors, we use Aspu,
where Agg,c. is the sum of the areas of the non-empty grid cells of the underlymg space.
The rest of the optimization parameters are gathered for the entire space {not per grid
cell). This results in the following object and block selectivity estimates:

Cap Yw-XA'ug + XwYAtrg

OSw = Cw + Nodb + A.-Spaoe

, and

BS, = Cy

where C,, = -—s—‘"——— In other words, the false uniform model computes the preprocessing
'pace

parameters in the same way as the uniform model except that it assumes that the empty
space is non-existent (since it will not be queried by the user, according to the model
assumptions) and hence is eliminated. One problem with the false uniform model is that
it will not produce satisfactory results when the non-empty areas of the space have large
variations in the densities of the objects. In this case the piece-wise uniform model would
be more appropriate.

6.2.2 The Spatial Join Operation

The piece-wise uniform model: For a spatial join with an intersection predicate, objects
inside a grid cell g in one stream only join with objects that are within the same cor-
responding grid cell in the second stream (for simplicity, we assume that the grid cells
are of the same size in both streams). As a result, the formulas for estimating OS; and
BS; need to be computed locally for each grid cell, using the formulas of Sect1on 3.2,
and then the results must be summed over all the grid cells. This results in the following
formulas:

P Cdb: (g) Cdbg (g) XAng (g)YAvg2 (g) + XAvgz (g)YAng (g)
05; = +
g€grid cells NOu,(g9) NO a2(9) Acelt
or equivalently,
A AO 40g1(9) | AOpug2 (9) X Avgl (9)Y avg2(9) + X 40g2(9)Y tvg1(g)
05; = X =% T4 A
g€grid cells Cell Cell Cell
BS.;] = Ca,{9) Carg(g)
-tota g€grid cells VD dbg (9) * NBas,(9)
or equivalently,
BSjtotal =), AB‘; w1 (9) | ABaus(9)
gegrid cells Cell Acent
T Ca (9) Cuaelg)
BS - = max ! , 2
e QGSr%:cclls (NBdbz (9)’ NBay,(g)

or equivalently,

26

ABAvgi (g) + ABAvgz (g)
Acen Acar

B:gj-maz = Z
g€grid cclls

The false uniform model: this is similar to what we performed for the false uniform model
in the case of the one-window selectivity formulas (Section 6.2.1). In other words, the
empty regions (i.e., the ones containing no spatial objects) of the underlying space are
excluded from being considered in the selectivity formulas. As a result, instead of using
Aspace in the formulas for estimating the selectivity factors, we use Zspm where Espm
is the sum of the areas of the non-empty grid cells of the underlying space. The rest of
the optimization parameters are gathered for the entire space (not per grid cell). These
parameters along with Ay, are directly substituted in the formulas for ob ject-level and
block-level selectivity factors of the spatial join that were derived in Section 3.2. This
results in the following formulas.

A_OAng AOAug2 XAng YAvgi + XAug2 YAng

0S; = + St
! ASpace A.S'pace ASpace

ABavgr , ABuugs
BS; = e
j-total Agpace Agpace

- ABgogt ABjygs

BS'- = i g — g

Sj-maz max(ASpace ' ASpace

7 Concluding Remarks

In estimating selectivity factors for spatial operations, several factors must be consid-
ered: the nature of the operation, the distribution of the underlying data set, and the
distribution of the user queries. Techniques for estimating selectivity factors in spatial
databases differ from those used for relational databases. Omne major difference is the
dimensionality of the data. As a result, two types of selectivity factors were introduced
and estimated in this paper: object-level, and block-level selectivity factors. The object-
level selectivity formulas that were presented are applicable regardless of the underlying
data structure used. On the other hand, the block-level selectivity formulas are geared
towards data structures that partition an object into more than one piece. Although
our discussion has been for this class of data structures, a similar framework can be
developed for other classes of data structures.

References

[1] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence
databases. In David B. Lomet, editor, Foundations of Data Organization and Algo-
rithms, pages 69-84, Berlin, 1993. Lecture Notes in Computer Science 730. Springer-
Verlag. ’

27

[2] W. G. Aref. Query Processing and Optimization in Spatial Databases. PhD thesis,
University of Maryland, College Park, MD, July 1993. Also available as Technical
Report CS-3097, University of Maryland, College Park, MD, 1993.

[3] W. G. Aref and H. Samet. Optimization strategies for spatial query processing. In
Proceedings of the 17th International Conference on Very Large Databases (VLDB),
pages 81-90, Barcelona, Spain, September 1991.

[4] W. G. Aref and H. Samet. Uniquely reporting spatial objects: Yet another opera-
tion for comparing spatial data structures. In Proceedings of the 5th International
Symposium on Spatial Data Handling, pages 178-189, Charleston, SC, August 1992.

[6] W. G. Aref and H. Samet. Duplicate elimination using proximity in spatial
databases. Technical Report CS-3067, University of Maryland, College Park, MD,
May 1993.

[6] L. Becker and R. H. Giiting. Rule-based optimization and query processing in an
extensible geometric database system. ACM Transactions on Database Systems,
17(2):247-303, June 1992.

[7) C. Faloutsos, T. Sellis, and N. Roussopoulos. Analysis of object oriented spatial
access methods. In Proceedings of the 1987 ACM SIGMOD International Conference
on Management of Data, pages 426—439, San Francisco, May 1987.

[8] A. U. Frank. Properties of geographic data: Requirements for spatial access meth-
ods. In O. Giinther and H. J. Schek, editors, Advances in Spatial Databases - 2nd
Sympostum, S5D’91. Also Lecture Notes in Computer Science 525, pages 225-234.
Springer-Verlag, Berlin, 1991.

[9] I. Gargantini. An effective way to represent quadtrees. Communications of the
ACM, 25(12):905-910, December 1982.

[10] O. Giinther. The design of the cell tree: an object-oriented index structure for
geometric databases. In Proceedings of the Fifth IEEE International Conference on
Data Engineering, pages 598-605, Los Angeles, February 1989.

[11] R. H. Giiting. Gral: An extensible relational system for geometric applications. In
Proceedings of the 15th International Conference on Very Large Databases (VLDB),
pages 33-44, Amsterdam, August 1989.

[12] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceed-
ings of the 1984 ACM SIGMOD International Conference on Management of Data,
pages 47-57, Boston, June 1984.

[13] A Klinger. Patterns and search statistics. In J. S. Rustagi, editor, Optimizing
Methods in Statistics, pages 303-337. Academic Press, New York, 1971.

28

[14] H. P. Kriegel, P. Heep, S. Heep, M. Schiwiets, and R. Schneider. An access method
based query processor for spatial database systems. In G. Gambosi, M. Scholl, and
H.-W. Six, editors, Geographic Database Management Systems. Workshop Proceed-
ings, Capri, Italy, May 1991, pages 194-211, Berlin, 1992. Springer- Verlag.

[15] Richard J. Lipton and Jeffrey F. Naughton. Query size estimation by adaptive
sampling. In Proceedings of the 9th. ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS), Nashville, TN, April 1990.

[16] Abha Moitra. Spatio-temporal data management using R-Trees. In Niki Pissinou,
editor, Proceedings of the ACM Workshop on Advances in Geographic Infomation
Systems, pages 28-33, Arlington, Virginia, November 1993.

[17] G.M. Morton. A computer oriented geodetic data base, and a new technique in file
sequencing. Technical Report (Unpublished), IBM Ltd., Ottawa, Canada, 1966.

[18] H. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: an adaptable,
symmetric multikey file structure. ACM Transactions on Database Systems, 9(1):38~
71, March 1984.

[19] Bureau of the Census: 1990 technical documentation. Tiger/line precensus files.
Technical report, US Bureau of Census, Washington, DC, 1989.

[20] B. C. Ool. Efficient Query Processing for Geographic Information Systems. PhD
thesis, Monash University, Victoria, Australia, 1988. (Lecture Notes in Computer
Science 471, Springer-Verlag, Berlin, 1990).

[21] B. C. Oci and R. Sacks-Davis. Query optimization in an extended DBMS. In
W. Litwin and H.-J. Schek, editors, Foundations of Data Organization and Algo-
rithms, pages 48-63, Berlin, 1989. Lecture Notes in Computer Science 367. Springer-
Verlag.

[22] J. A. Orenstein. Algorithms and data structures for the implementation of a rela-
tional database system. Technical Report SOCS-82-17, School Comput. Sci., McGill
Univ., Montreal, Quebec, Canada, 1983.

[23] J. A. Orenstein and T.H. Merrett. A class of data structures for associative searching.
In Proceedings of the 3rd ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems (PODS), pages 181-190, Waterloo, Canada, April 1984.

[24] R. Sacks-Davis, K. J. McDonell, and B. C. Ooi. GEOQL - A query language for ge-
ographic information systems. Technical Report 87/2, Monash University, Victoria,
Australia, July 1987.

[25] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading, MA, 1990.

29

(26] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access path selection in a relational database management system. In Proceedings of
the 1979 ACM SIGMOD International Conference on Management of Data, pages
23-34, Boston, MA, June 1979.

[27] A. Wolf. The DASDBS GEO-Kernel: Concepts, experiences, and the second step.
In A. Buchmann, O. Giinther, T. R. Smith, and Y.-F. Wang, editors, Design and
Implementation of Large Spatial Databases, Proceedings of the First Symposium
55D’89. Also Lecture Notes in Computer Science 409, pages 67-88. Springer- Verlag,
Berlin, 1990.

(28] E. Wong and K. Youssefi. Decomposition - A strategy for query processing. ACM
Transactions on Database Systems, 1(3):223-241, September 1976.

8 Appendix

In this Appendix, we give a detailed derivation of the following formula that was used
in Section 3.1 to compute the average area of intersection between two rectangles:

_ AwAo
T (Kt Xo)(Yu + Vo)

where w and o are the corresponding rectangles; A,,, Xy, and Y,, are the area, width and
height, respectively, of w, and 4,, X,, and Y, are the area, width and height, respectively,
of 0. Also, let p be the point corresponding to the upper-left corner of w, and (zp, ¥p) be
the coordinate values of p. In order to compute Aoy, (refer to Figure 10), we observe that
p is equally likely to be at any location inside the rectangle [z,, 2 + Xy + Xo] X [Yps ¥p +
Y, + Y], i.e., with probability m We use the following approach. First, we
compute the area of intersection when p is at some arbitrary location (z,) and multiply
it by its probability of occurrence at this location. Next, we integrate the area over all
possible values of z and y inside the rectangle [zp, 2, + Xu + Xo] X [¥p, ¥p + Yor + Yol
From Figure 10, the upper left corner of w must lie somewhere inside the shaded area
so that w can possibly intersect o. For simplicity in developing the formulas, we assume
that the origin of the space is located at point C. We also assume that o is larger than w.
If this happens to be false, then the roles of 0 and 1w can be exchanged. This is possible
since we are interested in their common area of intersection. To compute A,,, we divide
this shaded area into four region classes 1, 2, 3, and 4. We will develop the formulas for
each region class separately as there is a difference in the way the area of intersection is
computed in each case.

A

1. I p lies anywhere in regions of class 1, then the area of intersection (A1) is computed
as follows: A4; = zy, where z and y range from 0---X,, and 0. . -Y,,, respectively.

2. If p lies anywhere in regions of class 2, then the area of intersection (A3) is computed
as follows: A = Xy, where z and y range from X, - - - X, and 0---Y,,, respectively.

*

30

X Xo Sw

g}

i % -

Figure 10: Computing the average area of intersection between two rect-
angies.

3. K plies anywhere in regions of class 3, then the area of intersection (As) is computed
as follows: A3 = zY,,, where z and y range from 0- - - X, and Yy - Yo, respectively.

4. If p lies anywhere in regions of class 4, then the area of intersection (A4) is com-
puted as follows: 4; = X, Y,,, where z and y range from X,,--- X, and Y, --- Y,
respectively.

Now, in order to compute A,,,, we integrate each of A; - - - A4 over the ranges above and
divide by the probability of occurance at the given locations. As mentioned above, p
is equally likely to be anywhere in the shaded region with probability T X.j(Yw)
Therefore, the average area of intersection A,,, can be computed as follows:

4 1 . Xy (Y 4 (Xe Yu 4 Xo Yo 4 Xo (Yo 4
- 2 b ae
i (Xw + Xo)(Yw + K))(\/D »/0 vt w Y0 * o w o Kw VYo 4)

Notice that the multiplicative factors are due to the number of times each region class
exists, i.e., there are four instances of class 1, two instances of classes 2 and 3, and one
instance of class 4. By integration and simple cancellation of terms, we get the final
formula for A,,,.

31

