In Proceedings of the 4th International Symposium on Spatial Data Handling, vol.
2, pages 589-598, Zurich, Switzerland, July 1990.

An Approach to Information Management in Geographical
Applications !

Walid G. Aref
Hanan Samet
Computer Science Department and
Center for Automation Research and
Institute for Advanced Computer Studies
The University of Maryland
College Park, Maryland 20742

Abstract

The design of an integrated system is described for combining spa-
tial and nonspatial attribute data to allow fast query handling. By fast
it is meant that search queries can be executed in logarithmic time.
Nonspatial attribute data is managed by standard database techniques.
Efficient and robust spatial data structures are used to store spatial
information. In addition to the standard access methods usually pro-
vided for accessing attribute data (i.e. through the data base man-
agement system), data can also be accessed through the spatial data
structures in a homogeneous way that is transparent to the user. The
design makes use of an SQL-like interface. The SQL query language is
extended to provide efficient access methods to spatial structures, and
to match functional and efficiency requirements desired from a combi-
nation of spatial and nonspatial information. The simplicity of SQL
helps to clarify the design approach. However, other interfaces can be
used with minor modifications.

1 Introduction

In geographical applications, it is often desirable to attach attribute infor-
mation such as elevation heights, city names, etc, to objects appearing in
maps. On the other hand, in many standard database applications, it is

!The support of the National Science Foundation under Grant IRI-88-02457 is grate-
fully acknowledged.



useful to add spatial attributes to describe different objects in the database
such as the extent of a given river, or the boundary of a given county, etc.
Many queries can be answered more efficiently when spatial and nonspatial
information are combined.

As a typical situation in a spatial database, consider a set of objects
(e.g., points and lines) in 2D space, and a set of features which partition
the space into nonoverlapping or overlapping regions. Our aim is to design
a system which integrates both spatial (e.g., points, lines, regions, etc.) and
nonspatial (e.g., features, names, addresses, etc.) attributes in an efficient
way. Some typical queries include the following:

Point location: Given a point in a plane, find the feature (e.g., the region,
or more generally, the feature name) in the plane containing this point.

Feature location: Given a feature name, find the locations of the regions
associated with this feature.

Windowing: Given a region (e.g., a rectangular window), find all points
inside this region. Alternatively, find the feature names overlapping a given
window (e.g., a circle).

Spatial operations: Some examples are: arithmetic operations (e.g., find
the area/preimeter/centroid of a given region, specified by any of its at-
tributes or by a point inside it); set operations (e.g., find the intersec-
tion/union of two regions, or find the negation of a region); region expansion
also called buffer zoning (e.g., find the region within a certain radius from
the boundary of a given region); proximity operations (e.g., find the nearest
line to a given point, or the region to the north of a given region). For a
more comprehensive list see [10].

Many prototype systems have been proposed to store spatial data along
with the nonspatial data describing it in a relational database management
system [1, 5, 11]. They adopt an encoding of spatial features that results
in generating numeric key values. These values are then stored in record
attributes in the same way as nonspatial attributes. Orenstein [5] and Abel
et. al. [1] use z-ordering [4] to serve as the encoding method. By using
this appoach, a spatial operation is viewed by many researchers as a two-
step process: first, retrieve the spatial data and then operate on it. Since
spatial data is stored with nonspatial data in database tuples, much time



is wasted on the retrieval step. In particular both spatial and nonspatial
data are retrieved although only the spatial portion in needed. This has
led many researchers to try to enhance the performance of the retrieval step
[1, 3,5, 11]. In particular, Faloutsos and Roseman [3] performed experiments
in order to find the coding with the least retrieval time when a range query
is imposed. As an alternative, if spatial data is structurally separated from
nonspatial data, while maintaining appropriate links between the two, then
the spatial data retrieval bandwidth can be much higher. Thus, we can
perform the spatial operations directly on these structures. Also, it gives us
the freedom to choose a more suitable spatial structure besides the imposed
relational structure. In other words, the goal is to enhance the performance
of the entire spatial operation in the database environment, rather than just
the retrieval aspect of it.

The notion of separating the structure of spatial data from that of non-
spatial data to achieve better performance is the motivation behind the
research of a number of groups in extensible databases (e.g., [9]). However,
most these systems are still in the early stages of development and are not
ready for validation in terms of efficiently supporting spatial data.

Our research places a greater emphasis on the operational side of the spa-
tial processor while allowing high interleaving between the database man-
agement system and the spatial processor in order to optimize the query
answering process. We will combine both processors (the database man-
agement system and the spatial processor) in a way that permits efficient
access to both spatial and nonspatial information whenever possible. The
major goal for our system is threefold. First, each data entity should be
represented by the most efficient form that suits its operational purpose.
For example, spatial attributes should be stored in spatial data structures
and not flattened in database records. Second, the user should not be con-
cerned with implementation details of such spatial data structures. In other
words, there should not be a distinction between spatial and nonspatial at-
tributes in the user’s eyes. Third, it is desired to answer queries efficiently,
and to minimize any deterioration in performance of both the spatial pro-
cessor and the database management system when they operate in the same
environment.

The rest of the paper is organized as follows. First, we show how the user
interacts with (i.e., views) the system by informally providing the extended
data definition and manipulation languages. We demonstrate the use of both



languages through examples. Next, we present the system design and show
how it achieves the efficiency goals. This is followed by a comparison of our
design with alternative approaches. We also discuss related research that
addresses a broader class of problems. Finally, we also touch on directions
for future work and research.

2 User Interface

In this section, we demonstrate the data definition and manipulation facility
of the system from a user’s perspective. We show how spatial attributes and
spatial operations that are essential in geographic information systems can
be integrated into the relational model. This makes the data model easier
to use for storing geographic data, and more efficient for handling spatial
and nonspatial queries.

2.1 Data Definition

The user views the system as an extended relational database management
system. In addition to the usual attributes in relations, a user can define
spatial attributes in a homogeneous way.

The system supports four types of spatial entities: points, line segments,
polygons, and regions. The data types for them are POINT, LINE_SEGMENT,
POLYGON, and REGION, respectively. The system can be extended easily to
support other spatial entities in the same way (provided that the spatial
processor has the capabilities to handle it).

Example 1:
Consider the following SQL schema definitions.

create table roads

(road_id NUMBER,

road_name CHAR(30),

road_trafficability NUMBER,

road_coords LINE SEGMENT); /* spatial attribute */

create table regions
(region_id NUMBER,



region name CHAR(30),

region location REGION, /* spatial attribute */
region_utilization CHAR(30),

region_importance NUMBER) ;

As an illustration, in the first definition, each tuple in the roads relation
represents a line segment. It also defines the road_coords attribute as a
spatial attribute of type LINE_SEGMENT. All other three attributes in the
roads relation are ordinary nonspatial attributes.

2.2 Data Manipulation

In addition to the standard SQL commands, some spatial functions must be
augmented in order to handle spatial map processing. In this section, we
demonstrate the user’s view of the extended data manipulation language by
giving some examples. We will make use of the data definitions provided in
Example 1.

2.2.1 Standard database operations (e.g. select, project, join,
etc.)

Example 2:
Find all roads (including their coordinates) with trafficability factor greater
than 9.

Select all
from roads
where road_trafficability > 9;

This query results in the generation of a new relation as well as the creation
of a line map. This map reflects the records selected in the operation (i.e.
it will contain the line segments with trafficability factor > 9).

2.2.2 Qualification by set operations

Given one or more spatial attributes, set operations can be applied to them.
This yields an output map as well as a new relation. The map contains the



spatial entities resulting from the set operation, and the relation contains
the nonspatial attributes selected from the tuples that describe the new spa-
tial entities.

Example 3:
Find the names of the roads passing through the ‘Univ. of Maryland’ region.

Select road_name

from roads regions

where regionname = "Univ. of Maryland"
and intersect(region_location, road_coords)

The region_location(s) of the tuple(s) whose region name is ‘Univ. of Mary-
land’ will be intersected with the road_coords attribute of the road map.

2.2.3 Qualification by region expansion (buffer zoning)

Example 4:
What are the important regions within 5 miles of the ‘Univ. of Maryland’
(i.e., surrounding it)?

Select rl.regionname rl.regionutilization rl.region_location
from rl regions, r2 regions

where rl.region_importance > 8

and r2.regionname = "Univ. of Maryland"

and intersect(within(r2.region location, 5), rl.region_location)

This query finds the region names, utilization, and locations of ‘impor-
tant’ regions within 5 miles of the ‘Univ. of Maryland’ region. Since the
region_location spatial attribute is selected, the result is a map contain-
ing the selected regions.

In addition to the above qualifications, many other spatial conditional
expressions can be added to the query language as long as they are supported
by the spatial processor. Some of these conditional expressions are given
below. Notice the use of region attr and line attr to specify region
and line attributes, respectively. On the other hand, spatial attr is more
general and includes region_attr and line attr.



area(region_attr) > val
objectat(spatial attr, location)
nearest_to(spatial_attr) = a
length(line_attr) > val

in window(spatial_attr, xi, yi, X2, y2)

3 System components

To allow efficient information retrieval from both parts of the system (spa-
tial and nonspatial), we use three major components: a relational database
management system (RDBMS), a spatial map processor (SP), and a high-
level query interpreter (HQI). Although this approach is not novel, and has
been suggested by a number of researchers (e.g., [7]), it is how the two parts
are combined to meet the required efficiency goals that makes the selection
interesting.

We store all attribute information (nonspatial data) about map entities
in the relational database management system. Map storage and manage-
ment (spatial data) is handled through the spatial processor. The HQI maps
a user query into an application plan which contains subqueries to both the
RDBMS and the SP.

In the following sections, we discuss each system component in greater
detail, and we show how to link them.

3.1 The Relational DBMS

Relational databases are becoming the major mechanism for storing large
collections of data. In our design, we chose the relational model instead
of other models since it is highly flexible, has improving performance, and
other models (e.g., network and hierarchical) can be reduced to the relational
model [2]. Consider the SQL schema definition for table regions given in
Example 1. This definition is translated by the HQI into two coupled defi-
nitions. In this section we discuss the RDBMS aspect of the definition. The
SP definition is deferred to the next section. In the RDBMS definition of
the regions schema, the region location spatial attribute is represented
by an attribute of type NUMBER that contains an index to a candidate point
internal to the map region corresponding to the tuple. This is based on the



assumption that regions are represented by their internal area. However, it
is easy to extend this approach to other region representations. This pointer
establishes a link from the relation to the map. It guarantees that given a
tuple_id (or any other attribute) that helps select a subset of tuples, we can
access the corresponding spatial object (e.g., the corresponding region in
the coupled map). We call this pointer a forward link, as opposed to a
backward link that is directed from the map to the relation. Forward and
backward links facilitate many queries as shown below.

Example 5:
Find the names of the roads passing through the ‘Univ. of Maryland’ region.

Select road name

from roads regions

where regionname = "Univ. of Maryland"
and intersect(region_location, road_coords)

This query is processed as follows:

1. The RDBMS searches the regions relation for the tuple whose region
name is ‘Univ. of Maryland’. The pointer(s) to the spatial region
location (actually the forward link(s)) of ‘Univ. of Maryland’ stored in
the region_location attribute are projected from the selected tuples
and passed to the SP.

2. The SP performs an intersection operation between the roads map
(representing the road_coords spatial attribute), and the subset of the
regions map corresponding to the ‘Univ. of Maryland’ region (built by
the SP given the pointers passed by the RDBMS as described above).
The result of the intersection is a subset of the roads map.

3. Using the backward links from the map to the relation, the pointer(s)
to the tuple(s) corresponding to the selected line(s) are passed back
to the RDBMS.

4. Given the tuples in the roads relation selected by the intersection
operation through the SP, the RDBMS performs a projection to get
the road names of these tuples (i.e., the road names of the line segments
that intersect the ‘Univ. of Maryland’ region).



The above example utilizes backward and forward links. The implementa-
tion of backward links from the spatial objects to the corresponding tuples is
described in the next section. It is clear that each of the above operations is
performed in the system that performs it best. The search for region name
= ‘Univ. of Maryland’ is performed in the RDBMS while the intersection
is performed in the SP.

3.2 The Spatial Processor (SP)

The SP is responsible for storing and maintaining the spatial objects as well
as performing spatial operations such as set operations, windowing, etc. It is
also responsible for maintaining the backward links from the spatial objects
to the corresponding tuples in the RDBMS.

In addition to the data structure for storing spatial objects in a map, each
spatial object representation contains an additional field called the class
field. The class field serves as an index to a tuple in the corresponding
relation coupled with the map. This establishes the backward link from
the SP to the RDBMS. Therefore, given a pointer to a spatial object, we
can access its corresponding tuple containing all of the object’s nonspatial
information. If the spatial object is represented by more than one entry in
the spatial data structure, then each such entry has to point to the same
tuple by storing the tuple’s index in its class field. Note that if, for exam-
ple, a schema definition has two spatial attributes, then two different maps
are created, one for each spatial attribute. Each map keeps its own set of
backward links into the relation tuples.

Now let us look at how the SP responds to the regions relation schema
definition of the previous section. As mentioned earlier, regions are stored
in maps that are represented by spatial data structures (e.g., counties,
crop regions, etc.). The SP creates a region map to be coupled with the
region_location (defined as a REGION-type attribute), and stores the re-
gion objects pointed at by the region location attribute values. By cou-
pled, it is meant that forward and backward links are established between
the spatial attribute in the relation and the spatial objects in the spatial
data structure.

Recall that the REGION-type attribute stores a pointer to a candidate
point inside the spatial region. Therefore, for the design to be complete,
given a point inside a region, the SP must retrieve or extract the whole con-



nected region from the spatial map efficiently (which is achievable by using
a connected component labeling algorithm [6, 8]). Being able to retrieve the
whole region quickly, will not degrade the queries directed from the RDBMS
to the SP. The result is superior to storing the whole region in the RDBMS
since there is no overhead in the retrieval process.

Note that storing the regions by using spatial data structures is the key
to performing spatial operations efficiently as it makes use of the underlying
spatial index mechanism that is inherent to the spatial data structure. Some
of these spatial operations are region expansion, windowing, computing the
perimeter of a region, etc.

On the other hand, if we were to store the whole region in the database
[5] (e.g., by storing each pixel inside the region in a separate record, or by
storing each quadtree block in a separate record if the region is represented
by a quadtree), then we would lose the spatial processing power. In other
words, there would be a tremendous degradation in performance because
of a need to maintain and operate spatially on a large number of database
records representing the whole region (along with the nonspatial attributes
describing it), while having to do sequential search to access all of them
when performing some spatial operations.

3.3 The High-level Query Interpreter (HQI)

The HQI is responsible for translating extended data definition and ma-
nipulation statements issued by the user into an application plan. An
application plan consists of lower level subcommands to either the RDBMS
or the SP. As an example, consider the following window query.

Select all

from roads

where in window(road coords, X1, Vi, X2, ¥y2)
and road name # "Route 1"

This query selects all roads (except ‘Route 1’) overlapping with the window
[x1 : o] X [y1 : y2]. Notice that all attributes have been selected for output
(via the a1l command) which means that the spatial attribute road_coords
is among the selected ones. Therefore, an output map is also generated
containing all the selected line segments.

10



In writing application plans, we identify the commands by the name of
the processor which processes them (e.g., SP, RDBMS, and HQI*). The
HQI* commands are for bookkeeping purposes. For the above query, the
HQI produces the following application plan:

HQI*: get the map name associated with the attribute road _coords in the
roads relation.

SP: create a temporary map (for output of the selected line segments).
RDBMS: create a temporary relation (for output of the selected tuples).

SP: apply in_window _iterator to each line (each time it is called, the in_window iterator
generates a new line that overlaps with the window).

SP: insert the generated line into the output map.
SP: get road_id; (stored in the class field in the current line),

RDBMS: extract this line from the roads relation given its road_id, and
add it into the output relation.

It should be clear that the above plan is not optimized. By using a special
optimizer, a more efficient plan can be generated. Pipelining back and forth
between the SP and the RDBMS (e.g., by using an iterator construct) is
one technique to avoid the unnecessary traversals and buffering between the
two processors.

The HQI design can be enhanced in a number of ways. Applying stan-
dard optimization techniques to spatial operations is an obvious direction.
The subject of plan generation and optimization in the context of our design
is a subject for future research.

4 Conclusions

In this paper, we have shown how spatial and non-spatial attributes can be
combined in an efficient way. Our measure of efficiency was to allow opera-
tions (whether spatial or non spatial) to be performed in their most natural
environment. Flexibility in the interaction between spatial and nonspatial
attributes was achieved through the use of forward and backward links. We
believe that these are the necessary and sufficient additions to both the SP

11



and the RDBMS to achieve the efficiency goal for answering spatial and
nonspatial queries in a combined environment. This architecture can be
used to benchmark other proposed general purpose extensible systems. The
objective is to see how these systems restrict the implementation of this
architecture, since any restriction will adversely affect efficiency.

One-to-one onto and many-to-one links are supported between the SP
and the RDBMS (‘many’ in the SP side, and ‘one’ in the RDBMS side).
For point data one-to-one onto links are used. For line data, depending
on the data structure used to represent it, one-to-one or many-to-one links
may be used. For region data, a design compromise took place since a
region can be represented by more than one spatial entity (as in the case
of representing regions by their internal area, or by their bounding line
segments in a polygon representation).

Directions for future work include studying the automatic generation
of application plans. Optimizing these application plans and developing
measures for them is another direction.

References

[1] D. J. Abel. Relational data management facilities for spatial informa-
tion systems. In Proceedings Third International Symposium on Spatial
Data Handling, pages 9-18, Sydney, Australia, August 1988.

[2] C. J. Date. An Introduction to Database Systems, volume 1. Addison-
Wesley, Reading, MA, fourth edition, 1986.

[3] C. Faloutsos and S. Roseman. Fractals for secondary key retrieval.
Technical Report Computer Science TR-2242, University of Maryland,
College Park, MD 20742, May 1989.

[4] G. M. Morton. A computer oriented geodetic data base and a new tech-
nique in file sequencing. Technical report, IBM Ltd., Ottawa, Canada,
1966.

[5] J. A. Orenstein. Spatial query processing in an object-oriented database
system. In Proceedings of the ACM SIGMOD Conference, pages 326—
336, Washington, DC, May 1986.

12



[6]

[7]

[11]

A. Rosenfeld and A. C. Kak. Digital Picture Processing. Academic
Press, New York, second edition, 1982.

N. Roussopoulos, C. Faloutsos, and T. Sellis. An efficient pictorial
database system for PSQL. IEEFE Transactions on Software Engineer-
ing, 14(5):639-650, May 1988.

H. Samet. Connected component labeling using quadtrees. Journal of
the ACM, 28(3):487-501, July 1981.

H. Schek and W. Waterfeld. A database kernel system for geoscien-
tific applications. In Proceedings, Second Intl. Symp. on Spatial Data
Handling, pages 273-288, Seattle, WA, July 1986.

C. A. Shaffer, H. Samet, and R. C. Nelson. QUILT: a geographic in-
formation system based on quadtrees. Technical Report Computer Sci-
ence TR-1885.1, University of Maryland, College Park, MD 20742, July
1987.

T. C. Waugh and R. G. Healey. The GEOVIEW design: A relational
data base approach to geographical data handling. Intl. J. Geographical
Information Systems, 1(2):101-118, 1987.

13



