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ABSTRACT

Database systems make use of a wide variety of spatial access method for efficient
storage and indexing of spatial data. Access methods based on spatial occupancy
such as the quadtree and the Z-Order are well-suited for a wide collection of data
intensive applications (e.g., medical imagery and geographic information systems). In
this environment, the spatial join is a fundamental eparation for answering queries
that involve spatial predicates. Two new algorithms for performing spatial join are
présented where they are extensions of two well-known algorithms for perferming a
spatial join. The first algorithm applies an optimization technique that takes place in
the case when either or both input streams of the spatial join are sorted but not
necessarily indexed. This case is of practical use in query processing especially when
a query is answered by a cascade of spatial join operations. The performance of this
algorithm is superior to that of published algorithms. The second algorithm is a further
optimization that takes place when both input streams of the spatial join are indexed.
It uses orrline estimates of the input streams to achieve better performance.

Keywords: spatial databases, database m<mﬁm=_,m_ mmﬁm.mzcﬂcﬁmm_ design of
algorithms, spatial join
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1 INTRODUCTION

Representations of spatial data that are based on occupancy are very suitable
for a-wide variety of data intensive applications (e.g., medical imagery and
geographical information systems). Examples of data structures that make use
of this representation are the region quadtiree [8,18], the bintree [9], and the Z-
Order [14]. In these data structures, a spatial object is represented by its
internal region. Several researchers have investigated the usage of these
structures inside a database environment (e.g., PROBE [13] and SAND [1]}. As
pointed out in [5], it is straightforward to implement these data structures in a
database system because they require common facilities that are already

“present in almost all database systems (Mainly any access method that

provides both sequential and direct access, e.g., the B-Tree).

One of the most useful tools for spatial query processing is the spatial foin.
Generally speaking, the spatial join combines entities from two sets info single
entities whenever the combination satisfies the spatial join predicate (e.g., if the
two entities are within n miles from each other), As pointed out in {4], both the
CPU and the disk read costg of the spatial join operation are very significant.
As a result, extensive research has been conducted on alternative ways of
processing the spatial join efficiently (e.g., see [2,3,4,6,13,15]). Becker {3], and
Becker, Hinrichs, and Finke [2] propose an algorithm for the efficient evaluation
of spatial join for databases of multidimensional point objects. Gunther 6]
presents a hierarchical spatial join algorithm applicable to a family of tree-
based data structures, termed the generalization tree. Brinkhoff, Kriegel, and
Seeger [4] apply a similar idea in the context of the R-tree [7]. In addition, they
present several techniques that reduce both the disk read and CPU costs of the
spatial join significantly. Rotem [15], and later, Lu and-Han[10], suggest
precomputing the spafial ebject pairs salisfying a certain spatial relationship
and storing them in spatial join indices in order to speed up the spatial joirr at
query runtime. Orenstein and Manola [13] present two algorithms for spatial
join where the underlying representation of spatial data is the Z-Order [14].
Since this paper is based on the work of Orenstein and Manola, we include a.
brief description of their work. i

In {13,14), each object is represented by a set of rectangular elements (termed
Z-elements} that collectively approximate (and cover) the object. Z-elemerits
are ordered by their key vaiue which is. a function” of ‘two parameters: the

‘coordinate values of the upper-left corner and the size of the rectanguiar region

corresponding to the Z-element. ‘In addition, each Z-elemeént has an object
identifier that indicates the object to ‘which it belongs. In the described
implementation, objects are permitted to overlap. As a result, Z-elements from
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different objects may also overlap. For more details on how to construct the Z-
Order from a collection of objects, see [13].

Figure 1 illustrates an example of the spatial join operation. Notice that
because of the nature of Z-efements and the way they are constructed, any pair
of Z-elements are either equal, disjoint, or are contained in one another bu!
cannot overlap (without containment),

The first algorithm presented in [13] for performing spatial join (which we term
spalial merge) resembles a merge join. It requires that the two input streams
(ie., the two Z-Order streams) be sorted but doas not necessarily require the
presence of an index. The second algorithm (which we term spafial join) is an
optimization of the spatial merge algorithm. it requires that both input streams
be indexed (so that random as well as sequential access to the elements in
either stream is possible). This is a very modest requirement given the status of
current database technelogy.

stream X

nlin
ST

1
streamY 3

5

Figure 1: An example a spatial join of two input streams. Stream X is displayed
above the horizontal line while stream Y is displayed below the horizoniat line,
The result of the join is the set of intersecting block pairs (A,3), (A,4), and (C,3).

In this paper, we present two further opiimizations over the above algorithms.
The first oplimization (which we term the finear-scan algorithm) is an
enhancement of the first algorithm of {13] (the spatial merge). Similar to the
spatial merge, the linear-scan aigorithm requires that the two input streams be

sorted but does not necessarily require the presence of an index. However, the

linear-scan algorithm simulates the effect of an index in order to skip the
- elements of the input streams that do not contribute to the result of the spatial
join and hence reduces the amount of processing induced by the spatial merge.
It is important to mention that when we process a query that involves a cascade
of spatial join operations, only the first spatial join in the pipeline makes use of
the spatial index. The subsequent spatial joins in the pipeline access the
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resulting data elements from the first spatial join. The resulting stream of
elements is only sorted but is not indexed. In this case, versions of the spatial
join algorithms that do not require an index can be useful for the subsequent
spatial joins in the pipeline. This gives rise to the importance and applicability
of our new algorithm {the linear-scan algorithm),

The second algorithm (which we term the estimate-based algorithm) is a further

enhancement of the second algorithm of [13] (the spatial filter). Similar to the

spatial filter, the estimate-based algorithm requires that both input streams of

the spatial join be indexed. Furthermere, the estimaie-based algorithm makes

use of a minimal preprocessing stage of the underlying spatial database so that
it can achieve performance gains at run-time, At each stage of execution, the

algorithm computes on-line estimates of the input streams using the data

gathered at preprocessing time. The estimales are used as a guide in deciding,

in real-time, on how the algarithm proceeds in deciding whather or not to use

the index for a given direct access request.

The rest of the paper proceads as follows. Section 2 describes briefly the twa
spatial join algorithms In[13]. Section3 presents the new aigorithm for
performing spatial join when either one or both input streams are sorted but not -
indexed. Section 4 presents our second algorithm which assumes that both
input streams are indexed. Section 5 contains the results and discussion of our
experiments. Section 6 contains concluding remarks.

2 BACKGROUND: AN OVERVIEW OF THE mvh.:b_... JOIN ALGORITHMS

Z-elements can be either square or rectangular blocks [14]. For simpficity, we
restrict our presentation to square blocks. We use the term Morton block [11] ta
distinguish it from a Z-element. However, the techniques presented here apply
directly to Z-elements which can assume rectangular shapes. Furthermore, we
limit our discussion to a two-dimensional space. All the concepts extend readily.
to higher dimensions. We use the following terminclogy: a two-dimensional
Morton code [11] is the result of mapping a two-dimensional point into a ong-
dimensional paint by interleaving the bits that represent the values of the
coordinates of the two-dimensional point. For example, the Morton code of the .
point {10,01)base 2 is 0110base 2. A two-dimensional Morton block is a
maximal square block that results from a regular decomposition of space into
homogeneous regions (i.e., a quadtres decomposition). A Morton block, say B,
is represented by the Morlon cade of B's upperleft corner and its size. We
assume that the origin Is at the upper-left comner of the space, that the positive
x direction is to the right, and that the positive y direction is downwards. The
key for sorting in each input stream is the Morion code (in ascending order)}
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and size (in descending order) of each block in the stream. The order implied is
such that a Morton block B appears in the stream before Morton block € i the
Morton code of B is less than the Morton code of C. Furthermore, if two Morton
blocks share the same upper-left corner, then the larger one appears first in the
stream.

In [13}, Orenstein and Manola present two variants of the spatial join algorithm.
The first atgorithm {which we term spatial merge) requires that the two input
streams be sorted but not necessarily indexed. The second algorithm (which
we term the spalial filier) requires that both input streams be indexed (so that
random as well as sequential access to the elements in either stream is
possible). Below, we briefly describe each of the two algorithms. We present a
quadiree variant of the algorithms as we assume that elements are always
square bilocks (in contrast to rectangular blocks as in the case of the Z-
Order [14]). )

The spatial merge algorithm resembles the merge join algorithm. However, the
spatial merge algorithm is slightly unconveniional because input elements of
the same stream represent two-dimensional intervals that can be contained in
one ancther. The state of the algerithm is maintained by using a stack for each
input stream, the current element in each stream, and a cursor indicating the
next element in each stream. The top of each stack contains the current
element for the corresponding stream, and the containing ¢lements (from the
same sequence) are stored deeper in the stack. A detailed explanation of the
spatial merge algorithrm can be found in [13).

The second algorithm of Orenstein and Manola {the spatial filter} for performing
spatial join assumes that both input sireams are sorted and indexed. The
underlying index permits both sequential and direct access of elements in the
index. The algorithm behaves exactly like the 'spatial merge algorithm except
when advarcing {o the next element in the stream, In particular, all the changes
are encapsulated inside one roufine, namely routine Advance, which in the
case of the spatial merge algorithm advances to the next element in either one
of the two input streams. We term the second version of this routine
SpatialFilterAdvance. Instead of advancing to the next element in stream X,
SpatialFilterAdvance{X,Y} uses information from the stream Y to directly access
stream X, using the index on X, to skip elements in siream X that are not
relevant to the spatial join operation {i.e., ones that do not overlap with any
elements in stream Y and therefore cannot contribute to the result of spatial
join). Figure 2 iliustrates this process. Given the current elements of each
stream, say current(X) and current(Y), the algorithm
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Figure 2: Possible parents between current(X) and current(Y).

uses current(Y) to directly access stream X thereby skipping the unneeded
elements that lie between current{X} and current{Y} that do not coniribute to the
resull. One problem that the algorithm has to resclve is that there may exist
same blocks in stream X that start past current(X) and that contain current(Y)
{and hence contribute to the result of the join) that may be skipped if the
algorithm uses only current(Y) to directly access the elements in stream X, In
order to overcome this problem, the spatial filter algorithm generates all the
possible ancestars (i.e., containing blocks) of current(Y) that lie between.
current(X) and current(¥). Not all the possible ancestors of current(Y) exists in
the stream X. In fact, it could be that none of them may exist. For exampte, in
Figure 3 four possible parents of current(Y) are computed but only two of them
really exist in the stream, The algorithm needs to advance the cursor of stream
X s0 that it points to the largest ancestor of current(Y) that exists in stream X, I
such an ancestor exists, then routine SpatialFilterAdvance assigns to
current(X} the value of this ancestor and the spafial join algarithm proceeds
from there. After computing the possible ancestors of current(Y), the algorithm
direclly accesses stream X searching for one ancestor of current(Y) at a time, -
This requires a number of direct accesses to stream X equal o the number of
computed ancestors between zhi{current(X)) and zio(current{X)} in the worst.
case. The algorithm returns afier finding the first largest ancestor. For example,
in Figure 3 the algorithm returns after directly accessing the second largest
parent of current(Y) that exists in stream X as the largest possible parent was
directly accessed and was not found. If none of the parents is found, then the

.algorithm assigns to current(X) the smallest element past current(Y) in stream

X. Obviously, the algorithm requires that the input streams be indexed so that
both sequential and random access are possible. A detailed explanation of the
algorithm can be found in [13]. o

195




ﬁOn.wwwl ancestors
betwsen currsnt(X) and current {Y)

current (X)

stream X ‘ 4

stream Y

]

current {Y)

direct dirsct
Access #1 access #2

D ancestor exists inp stream X

..i Aancestor does not exist in stream x

Figure 3: Possible parents between current(X) and current(Y).

3 A NEW ALGORITHM FOR NON-INDEXED SORTED STREAMS

A pipetlined architecture for processing queries is commonly used in database
systems. A query can be answered by a pipeline that is composed of a cascade
of one or more operations. The first operation in the pipeline operates on the
original input streams and its result is passed to the second operaticn in the
pipeline using common buffers. The major problem in such an architecture is
that the underlying indexing capabilities are effective only for the first
operations in the pipeline. Later operations in the pipeline have to operate on
non-indexed spatial data unless temporary indexes are built. In other words, if
the input stream is indexed, then only the first operations in the pipeline can
benefit from the index. The same problem arises when operaling on spatial
data.

Many queries with spatial predicates can be answered using a cascade of
spatial join operations. The result of the first spatiat join operation is passed to
the next spatial join in the pipeline, and so on. Only the first spatial join in the
pipeline can lake advantage of the fact that the input streams are indexed,
while, the next spatial joins in the pipeline will have to operate on non-indexed
data. in order to apply Orenstein and Manola's optimizations for spatial join
{Le. in order to use the spatial filler algorithm rather than the spatial merge
m_oo:SBV the input streams have to be indexed. If we want to apply the spatiat
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filter for each spatial join in the pipeline, then the query processor has to build
a temporary index from the results of each spatial join.

Building temporary spatial indexes during query processing has its tradeoffs.
On the one hand, building temporary indexes to organize intermediate resulis
helps speed-up the execution of the spatial operations since they operate on
structured data (inside the femporary index} rather than on an unarganized
collection of data items. On the other hand, the space and :Bm cosis oﬁ
building the temporary index may exceed its benefits.

As a compromise between the two approaches {building a temporary index and
applying the optimized spatial join algerithm vs, applying the non-optimized
spatial join algerithm, i.e., the spatial merge algorithm, directly on the non-
indexed data), we propose a semi-optimized spatial join algorithm, which we.
term linear-scan spafial join, that operates on sorfed but non-indexed streams.
This algorithm fits very well in the pipeline as a later operation since it does not
require. an index. However, its performance is much better than the spatial
merge algerithm.

skipped elaments
stream X

X.current |I.._ _ ] m_ﬂ
Y.current |I.._|_

stream Y

Figure 4: Example illustrating the appropriateness of random access to the B-
tree since it resulls in skipping many elements that do not contribute to the
result of the spatial join.

The idea is m_SEm We would like to simulate the spatial filter algorithm Qrm

indexed version of spatial join) although we do not have an index. More

specifically, we want to avoid the random access of nodes in the siream, thus

relaxing the requirement of indexing on the part of input streams. The new

algorithm behaves almast exactly like the spatiai filter. The only difference is in
routine Advance. We term it LinearScanAdvance.

LinearScanAdvance(X,Y) uses current(Y) as a guide lo advance the cursor in
the stream X First, current(X) is advanced to the next element in stream X_ If
current(Y) happens to be past current(X), then we can advance stream X so
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that current(X) points to the first element that centains current(Y). If such an
element does not exist, then current(X) is set to the first element in stream X
that is greater than or equal to current(Y). Notice that this resembles. exactiy
what algorithm indexed-spatial join (i.e., the spatial filter) does except in one
point. Once routine LinearScanAdvance decides ihat it wants to directly access
an ancestor, it just performs a linear scan until it reaches that ancestor {instead
of directly accessing the ancestor through an index).

The number of disk page reads for this algorithm is the same as the one for the
spatial merge (i.e., the non-indexed version). The performance gain results
from the fact that the spatial merge will have to process each of these elements
through its main loop, which is CPU intensive, while they do not contribute to
any output tuples of the join. Alternatively, our version detects these elements
and excludes them by sequentially scanning and skipping all of them so that
they will not gei processed by the main loop of the algorithm. The performance
gain from this simple optimization is substantial. Experimental results are
shown in Section 5. The listing of the algerithm is omitted for brevity.

4 FURTHER OPTIMIZATION OVER THE SPATIAL FILTER ALGORITHM

The linear-scan algorithm enhances over spatial merge. It is interesting to know
if the spatial filter can be improved upon. The main advaniage of the spatial
filter is its ability to skip the elements in the input stream that do not confribute
to the join result (e.g., Figure 4). On the other hand, the linear-scan must
examine elements that do not contribute to the finat join result, aithough it need
not process them as is the case for the spatial merge. In contrast, the main
drawback of the spatial filter is that it must perform a direct access to the index
on stream f for each of the possible ancestors of the current element of stream j
that it :

no elements between
stream X - % current and P

P

stream Y
Figure 5: Example illustrating the inappropriateness of a random access to the
B-tree since P is very close to current(X). A linear scan from current(X) ta P will
result in a lower execution time.
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examines even if an ancestor P of the current element of stream f is very close
to the current element of stream i {e.g., P in Figure 5 for streams X and Y
corresponding to streams i and j, respectively). In such a case, a linear scan
from the current element of stream i to P would be faster than one (or possibiy
mare if other larger ancestors were possible) direct access operations to P
using the index.

This suggests that an ideal solution would be cone that combines the linear-
scan and spatial filler algorithms by selecting the appropriate one on the basis
of an “estimate” of the closeness of the “next” relevant element in stream /.
Such an algorithm would perform a direct access for the case in Figure 4 and a
linear scan for the case in Figure 5. The resuit is termed an esfimale-based

" spatial join algorithm. Both input streams must be indexed in order for this

optimization to be applicable.

The key issue in using an estimaie-based spatial join algorithm is what is a
proper estimate? Such an estimate must be simple and fast to compute. Qur
estimate does not take the disk read cost .into account directly - that is, it is
only in terms of the CPU cost. However, we can argue that our CPU estimate is
also proportional to and reflects the disk read cost. A detailed analysis is
omitted due to lack of space. Let N be the number of elements in stream / that
lie between the current elements of streams 7 and j. Njj is an attainable upper
bound for the number of elements that must be examined during a linear scan
in the search for the ancestors of the current element of siream j Therefare,
the average number of elements that are examined is HEQ._._M 1. :

The cost of direclly accessing the index depends cn the nature of the index,
Assume that the index is a B-tree of depth d with a maximum of N3 elements
per B-tree node. The CPU cost results from descending d B-tree nodes, and at
each node performing a binary search to locate which pointer {0 use in arder to
descend to the next level. This results in logz Ng element comparisons per
node and a total of d logz Ng element comparisons in order {a directly access
one ancestor. If the algorithm computes p ancestors between the current
elements of streams i and j, then, on the average, it will find the first largest
ancestor in stream i after [p/2 ) direct accesses to the B-tree, Therefore, the.
average total CPU cost for locating the first largest ancestor using direct
access is [do2 ] log2 NB element comparisons. Thus a reasonable initial
estimate is one that uses the linear-scan algorithm if [dp/2 ) logz NB is greater
than Tc%_w 1. The value of p is computed while generating the passible
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ancestors of the current element of stream j, while ¢ and Ng are system
parameters frequently known in advance.

Figure 6: Part of a map sheet of Prince George's county in Maryland.

One approximation to | Niji2 ], and the one we use, is based on a uniform
distribution of Morton elemenis in the underlying space. Let Ag be the area
measured in unit-sized elements of the space occupied by the underlying
database, and Nj be the number of Morlon elements in stream i Moreover,
recalling that ziofcurrent(j)) is the Morton code of the upper-left corner of the
Morton element corresponding to the current element of stream J, and
zhifeurrent(i)) is the Morton code of the lower-right cormer of the Morton
glement comresponding to the current element of stream i we have
zio(current(Y)) - zhifcurrent{X}) unit-sized Morton elements lying hetween the
current elements of streams j and j. Thus NiF (zlo(current(f)) - zhi(current(i))) Nj
{ Ag.Usually the distribution of Morton elements in space is not uniform and
thus the estimate Nj may not be accurate. A closer approximation can be
obtained by assuming a piecewise uniform distribution of Marton elements in
the underlying space, For example, we could subdivide the space into a 16X16
grid of cells, say NG, and store a number such as Ng for each of the cells in
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Ng. Now, we compute Nijj by accessing the cell in MG containing the zfo value
of the current elements of streams fand j. -

5 EXPERIMENTAL RESULTS

We tested our algorithms by running a number of experiments on a SUN
SPARC | workstation. All the spatial join algorithms were written in C++. We
made use of the foliowing software: a buffer manager, a B-tree index, a Morton -
block manipulation library, and a Morton block index (a tailored B-tree index for
_storing and retrieving Morton blocks with an appropriate interface). Our
software maintains its own page buffer pool. The buffer manager used a least
recently used (LRU) page replacement policy. We also implemented and used
a quadiree decomposition algorithm 1o construct the Morion blocks
corresponding to any given two-dimensional object. .

We conducted our experiments using both real and synthetic data sets. The
real data sets consist of the road networks in the data of the U.S. Bureau of the
CensusTiger/Line file [12] for representing the roads and other geographic .
features in the U.S. (e.g., see Figure 6). For gach line segment in the Tiger
database, we constructed the line's minimum bounding rectangie. The synthetic
data sets are collections of randomly generated rectangles. Each rectangle is
decomposed into the Marton blocks that are Inside it. The blocks are then
inserted into the Merton block index (the B-tree) along with blocks from the
decomposition of the other rectangles.

Map Name Data Coverage Number of Line- ,_‘o.”.m_ Number of
segments Morton Blocks
Falls Church 0.43 R 24330
Bedford 0.34 - 1644 27725
Williamsburg 0.19 2112 20686
Franklin 0.35 . 1685 25708
Baltimore 0.54 13952 87301
Prince George's 0.82 44392 © 148826
Washington DC 0.56 18517 94934

Table 1: Parameter values for the Tiger data files :.mma in our experiments. The
size of all the maps is normalized to 512X512. .

The m«SEmzo,amnm sets are characterized by the foliowing parameters: the
area of the underlying space Ag, (e.g., 512X512 pixels), the average area of
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the rectangles AR in the data set (measured In square pixels), and the total
coverage of the rectangles CrS {measured in percent). This is the ratio
between the total area of all the rectangles in the index and the area of the
underlying space. This measure is an indication of the degree of densenass of
the underlying space. The Tiger/Line maps are characterized by the total
coverage, the number of line segments, and the number of Morton blocks.
Table 1 gives the values of these parameters for the Tiger/Line maps that we
used in the experiments.

For the synthetic data sets, each input stream of the spatial join is
characlerized by assigning one value to each of the above parameters. We call
the triplet of paramelers As, AR, and CRs 2 parameter setting PS. In order to
test a spatial join algorithm, we need to specify the parameter setting of each
input stream, e.g., the two input streams have parameter seftings £S¢ and
P82, respectively. ‘' To make our results more robust, for a given parameter
setting PS of A8, AR, and CRg, we generate 10 sets of random rectangles
satisfying the same parameter setting. We call the 10 seis a master data set,
and denote it by MDSps. To test any version of the spatial join algorithms
described in this paper, say algorithm FOQ_JOIN, for a pair of parameter
settings PS¢ and PS2, we ran the following experiment: each set of rectangles
in MDSps1 is joined with each set of rectangles in MDSpg2 using algorithm
FOO_JOIN. The overall CPU time is then summed and averaged (by dividing it
by 100, which is the total number of times the FOOQ_JOIN algorithm was
execlted for this experiment). For our experiments, we fixed the area of the
underlying space AS to be always 512X512. Other parameters’ that we used
are given in Table 2.

Paramster Name Constant Value
Disk page size 1024 bytes
Space size 512X512 pixels

Morton block size 12 bytes {includes
an object identifier)
B-tree pointer size | 4 bytes

B-tree fanout 64

B-tree buffer size 16 pages

Table 2: Constant parameters used throughout the experiments.
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Table 3 gives the average number of efements {i.e., Morton blocks) per input’
stream for some of the master data sets that we used in the experiments.
Netice that the total number of Morton blacks is proporticnal to the total number
of objects in the database. Since the area of the rectangles is fixed, more
rectangles need to be inserted into a stream in order to increase its data
coverage. This in turn increases the number of Morion Blocks in the stream.
Also notice that as the area of the rectangles increases, the number of Morton
blocks decreases. This is a result of the data coverage being fixed, which
means that as the area of the rectangles increases, less rectangles are needed
to achieve the required coverage. Therefore, the overail number of Morton
blocks decreases as well since there are less rectangles in the stream,

Data Coverage| Areaof |Space Area| Number of | Average Number
Rectangle Rectangles | of Morton Biocks

0.01 64 | 512X512 40 950
0.10 64 | 512X512 409 9385
0.20 64 | 512X512 818 18937
1.00 64 | 512X512 4096 94239
1.50 64 | 512X512 6144 142086
2.00 64 512X512 &192 189496
1.00 128 | 512X512 2048 69813
1.00 512 | 512X512 512 40010
1.00 1024 | 512X512 256 29096
1.00 2048 | 512x512 128 - 21754
1.00 16384 | 512X512 16 8404

Table 3: Average number of elements in an input stream with a given
parameter setting in synthesized data sets. The area of the rectangles is
measured in square pixels.

For synthetic data sets, we-compared our first spatial join algorithm (the linear-
scan spatial join) with the spatial merge and spatial filter algorithms for different
data coverage values. Figure 7 gives the comparison results when the data
coverage of the first input stream is fixed at 1% and 10%, respectively, while
the data coverage of the second input stream varies from 1% - 200%. Other
data coverage values show similar trend. Although the linear-scan algorithm is
not as efficient as the the spatial filter algorithm, it performs much better than
the spatial merge algorithm (9 and 20 times faster). The performance gain is
substantial. This result is very promising especially in light of the fact that the
linear-scan spatial join algorithm operates on nen-indexed but sorted data
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which makes it more applicable than the spatial filter algorithm in a pipelined
query processing architecture. ’

For real data sets, Table 4 compares the spatial merge algorithm with the
linear-scan spatial join algorithm using the Tiger/Line data files. Since their
geographical locations are different, we normalized them so that they cover the
same area as far as the join is concerned.
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Figure 7. A comparison of the linear-scan join, spatial merge, and spatial join
algorithms. The data coverage of the firsl input stream of the join is (a) 1%,
{b} 10%. The x-axis corresponds to the data coverage of the second input
stream.

FC |BF _|WB {FR |BA |PG [DC
FC- (068 (149 11.64 [1.20 |1.44 {1.20 {1.13
BF 1148 [0.70 11.88 |1.39 |1.84 [1.48 {1.33
WB [1.66 {1.87 [0.71 |1.69 [3.60 (2.50 |2.31
FR [1.18 [1.36 |1.72 |0.67 |2.18 |1.27 |1.27
BA ([1.46 (1.84 [3.70 |[1.97 10.69 {185 |1.85
PG 121 (1.50 {2.58 |1.31 |1.682 |0.70 [1.20
DC (111 [1.30 [2.36 |1.27 }1.86 |1.22 [0.69

Table 4: Ratio of the execution time of the spatial merge over the linear-scan
spatial join algorithms using the Tiger/Line files.

The table computes the ratic of the execution time of the spatial merge
algorithm divided by the execution time of the linear-scan algorithm. From the
table, we can deduce that the linear-scan algorithm performs better in all but
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the diagonal cases (i.e., when a map is joined with itself). The performance
gain varies from 11% to 270% in favor of the linear-scan algorithm. This gain is
related to savings in the CPU time of the linear-scan algorithm (see [4] for &
similar discussion on the expensive CPU cost in spatial joins). As mentioned in
Section 3, the number of disk page reads of the two algorithms is exactly the
same. The performance gain results from the fact that while the spatial merge -
join processes each element in the two input streams uniformly, the linear-scan
algorithm spends less CPU-time on the slements detected by it that do not
contribute to the final result of spatial join. An interesting observation is that
only on the diagonal of the table does the spalial merge algorithm perform
better. The reason is that when applying spatial join to two identical data sets
(which is the case for the diagonal of the table), each element in one stream
will be joined with its corresponding element in the other stream. In this case, .
the algorithm can not jump ahead and thus reduces to a spatial merge with the
additional overhead of needlessly frying to compute parents and skip elements
which does not pay off in the case of two similar input streams.

We also compared the performance of our second algorithm with the spatial
filter algorithm for beth synthetic and real data. For synthetic data, Figure B
gives the comparison results when the data coverage of the first input stream is
fixed at 1% and 10%, respectively, while the data coverage of the second input
stream varies from 1% -- 100%.The figures show that the estimate-based
algorithm does not perform much belter than the spatial filter afgorithm.
Although dominating in all cases, the estimate-based algorithm has a
performance gain of only 8%—20% which is relatively insignificant. For real -
data, Table & gives the ratio of the execution time of the spatial filter aigorithm
divided by the estimate-based algorithm. The performance gain is only 0%--
32% which again is relatively insignificant. Thus we see that both the spatial
filter and the linear-scan algorithm are quite efficient and it is difficult to improve
on them. ) .
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{a) Area coverage = 1% (1st stream}. {b) Area coverage = 10% (1st stream).

Figure 8: A comparison of our estimate-based spatial join algorithm and the
spatial filter algorithm. The data coverage of the first input stream of the join is
(a) 1%, (b) 10%. The x-axis corresponds to the dala coverage of the second
input stream.

FC |BF [WB |FR [BA |PG [DC
FC [1.00 [1.25 1129 }11.22 [1.12 |1.20 |1.00
BF (126 (1.00 |122 113 [1.13 |1.13 |1.15
WB |1.29 |1.32 104 [1.31 |1.21 1119 {1.20
FR 1124 ]1.25 [1.28 {1.12 |1.16 |1.15 [1.15
BA [1.16 [1.16 |1.19 11,16 [1.03 [1.13 |1.14
PG |1.15 |1.16 {122 [1.18 {1.15 {1.03 |1.11
DC {117 11.19 |1.18 [1.15 [1.14 [1.12 {1.00

Table 5: Comparison between the spatial filter and the estimate-based spatial
join using the Tiger/Line files.

6 CONCLUSIONS

Two new spatial join algorithms are presented in this paper which are proposed
optimizations over the spatial merge and spatial filter algorithims. Our first
algorithm, the linear-scan spatial join runs around 9-20 times faster than the
spatial merge algorithm. The importance of the linear-scan algorithm lies in the
fact that it addresses a very common need in a pipelined query processor. It
assumes that the input streams are sorted but not necessarily indexed. The
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only existing aiternative in this case (i.e., the spatial merge algorithm) is 9--20
times slower. Our second algorithm, the estimate-based spatial join, an
optimization of the spatial filter algorithm, uses estimates- and some
preprocessing parameters in order io enhance the performance of the spatial
filter algorithm. As shown in the experiments, the spatial filter algorithm proves
to be very efficient and that using estimates does not enhance the performance
significantly enough {a maximum of 32%) to pay off the burden of using
estimates and preprocessing parameters. Therefore we recommend the use of
the spatial filter algorithm instead.
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