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-Abstract

Spatial operations are classified in terms of selects and joins, thereby unifying spatial
operations with relational selects and joins. Spatial and non-spatial operators are defined
to act on what is termed a spatial relation. A spatial relation resembles a relation in a
pure relational environment but is designed so that spatial selects and joins share the same
algebraic properties as relational selects and joins and hence are indistinguishable from each
other. Therefore, the algebraic transformation rules of relational algebra hold for mixed
(spatial and relational) operators as well. This approach permits the usage of a conventional
relational optimizer in a spatial database environment without a loss of efficiency in spatial
query processing. Moreover, it permits the spatial aspect of the data to participate fully
in the optimization process once an appropriate cost model is developed for estimating the
cost of spatial as well as relational operators. From a different perspective, the concept of a
spatial relation provides the flexibility of utilizing spatial data structures not only as indezing
mechanisms to speed up the query processing but also as containers for organizing and.
manipulating the full descriptions of spatial objects. An algebra that has spatial relations’
as the basic entities and spatial and relational selects and joins as the basic operators is
developed. In addition, some proofs are given that transformation rules hold for spatial

operators as well.

This work was supported in part by the Nationa! Science Foundation under Grant IRI-9017393.



1 Introduction

In a typical spatial database environment, spatial objects (e.g., roads, rivers, lakes, etc.)
are described by spatial attributes as well as non-spatial attributes. For efficient operatiorn,
we make the following assumptions. First, a set of objects that are spatially related to
each other (e.g., the roads of a city) are Iogn:ally clustered in some form in the database.
Second, the instances of a spatial attribute are stored permanently in appropriate disk-
based spatial data structures and are linked to their non-spatial counterparts [3]. Third, this
augmented database environment is queried via a non-procedural language. In this paper,
the ramifications of these assumptions are studied. The following questions are addressed:

e What is the basic data structure that is supported by this augmented non-procedural
language (e.g., in a pure relational system, this data structure is a table)?

e What is its underlying algebra for both the spatial and database operations?

To answer these questions, the concept of a spatial relation serving as the basic data
structure for an extended SQL-like non-procedural query language is introduced. A spatial
relation is characterized by having spatial attributes and persistent spatial indexes that
survive spatial and relational operations. In addition, a spatial relation captures in it the
result of any spatial or relational operation. A spatial algebra is developed on top of spatial
relations as an extension of relational algebra.

The approach taken in this paper is as follows. First, spatial operations are classified into
selects and joins. Next, the spatial relation is designed in a way such that all the algebraic
properties that hold for relational selects and joins also hold for spatial selects and joins
(e.g., commutativity, associativity, etc.). This permits using the same transformation rules
of relational algebra for handling spatial operations as well. Therefore, given an appropriate
cost model, an optimizer that is used in conjunction with a relational system can still work in
this augmented spatial environment. However, special implementation considerations have
to be taken into account since the basm entity in this case is a spatial relation and not just
a relation.

The rest of the paper is organized as follows. Section 2 classifies some spatial operations
of interest into selects and joins, and gives an example spatial database that will be used
throughout the paper. Section 3 presents the concept of a spatial relation which is composed
of spatial and non-spatial attributes. Section 4 develops a spatial algebra. This includes
defining formally the concept of a spatial relation, redefining spatial as well as relational
operators that act on top of a spatial relation, developing expressions in this algebra and
legal transformations (equivalences) among these expressions. The development of a spatial
algebra serves as the basis for studying spatial query processing and optimization of mixed
(i.e., having spatial and relational operations) queries. Section 5 discusses related work while
Section 6 contains concluding remarks.

2 Spatial Operations

We classify spatial operations into selects and joins. These resemble the relational select
and join operations in a relational database environment. Tables 1 and 2 list some spatial
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operations being classified into selects and joins, respectively. Notice the use of r;, [; and p;
to specify instance values of region, line and point spatial attributes, respectively. s; is more
general and is used to include any instance value of a region, line or point attribute.

We show some examples that clarify the above classification. Throughout the paper we
will often refer to the schema definition given in Figures 1 and 2 which define the land-use
and roads spatial database. Notice that attribute location is a spatial atiribute of type
REGION while attribute road_coords is a spatial attribute of type LINE_SEGMENT. We use an
SQL-like syntax.

(create table land-use
name CHAR[40],
address CHAR[100],
location REGION,
usage CHAR[40],
zip_code NUMBER,
importance NUMBER);

Figure 1: Land-use database schema

(create table roads

road_id NUMBER,

road_name CHAR(30),
road_trafficability NUMBER,
road_lanes NUMBER,
road_width NUMBER,
road_coords LINE_SEGMENT) ;

~ Figure 2: Roads database schema

Example (Spatial Select): The following query retrieves all the regions inside a given query
window:

select all
from land_use
where in_window(location,x,y,width,height)

The in_window operation in the where clause is termed a spatial-based selection, or simply
a spatial select. Spatial-based selection means that objects are selected by Boolean qualifi-
cations that refer to the objects’ spatial attributes only.

Operating on multiple spatial attributes (and hence multiple spatial data structures)
and querying on the various relationships between spatial objects introduces the concept of
a spatial join. :



Table 1: Some Spatial Selection Conditions

Spatial Selections Description

in-window w True if s; lies inside the rectangular window w
in_circle ¢ True if s; lies inside circle ¢

nearest_to p True if s; is nearest to point p

object.at p True if s; is located at point p

Table 2: Some Spatial Join Conditions

Spatial Join Description
pass_through | True if /; or r; pass through s;
adjacentto | True if r; is an adjacent neighbor of T

contained True if s; is contained in s;
within n True if s; is within n units of distance from 8;
intersect True if s; and s; overlap

Example (Spatial Join): Consider the following query, which retrieves all the regions within
5 miles from universities in the land-use database:

select all
from land-use 1, land-use k
where within(l.location,k.location,5)
and l.usage = "University"

There may exist more than one university in the database, and hence more than one
tuple could be selected by the condition 1.usage = "University". Let the set of selected
tuples be L. Then the spatial within condition generates the regions within 5 miles from -
each member of L. The result of the within condition should consist of a join relation. In
particular, two tuples are merged if their corresponding spatial objects are within 5 miles
of each other. The resulting relation contains all the attributes of the two participating
relations, including the two spatial attributes (i.e., the location attribute).

We refer to the within condition as a spatial join. This is because it has the same effect
as a regular join. Namely, a spatial join combines related entities from two entity sets into
single entities whenever the combination satisfies the spatial join condition (e.g., if they are
within n miles from each other).



3 The concept of a spatial relation

3.1 Attributes

A spatial object is described by two sets of attributes: spatial and non-spatial. A set
of homogeneous spatial objects (i.e., of the same data type such as line data) that are
spatially related to each other (e.g., are in proximity, or belong to a given region) is logically
clustered in the database {e.g., stored together in database relations or in suitable spatial
data structures).

For example, the schema definition shown in Figure 2 represents roads (homogeneous
line data) in a given county (i.e., spatially related). The set of objects roads is described
by the set of spatial attributes containing just one spatial attribute, namely road_coords,
and the set of non-spatial attributes containing the other attributes in the schema. Different
structures are used to store the data instances of the different sets of attributes.

A spatial data structure is associated with each spatial attribute in the schema and is used
to store all data instances of that attribute over the set of homogeneous objects. The data
structure is used as an index for spatial objects as well as a medium for performing spatially-
related operations (e.g., rotation and scaling for images, point-in-region test, windowing,
polygon intersection, area of a region, connected component retrieval, proximity queries,
etc.). Depending on the attribute’s data type (e.g., reglon, line, or pomt) a spatial data
structure suitable for handling this type is selected.

The instances of a spatial attribute are merely some spatial indexes that point to the
spatial description of the objects stored inside the spatial data structures. More details about
how spatial and non-spatial descriptions of an object are linked to each other is presented
in Section 3.2 (also, see [3]).

The data instances of the set of non-spatial attributes are stored in database relations.
The spatial and non-spatial description of an object are linked to each other by what we
term a spatial relation that is described in more detail in the following subsection.

3.2 The spatial relation

In standard SQL, the basic data structure that is supported is a table. In other words, each
operation that is performed has a table as input and produces a table as output. Once the
query has been processed in its entirety, the tuples in the table qualify for all the conditions
stated in the query. Here, we discuss the form of the basic data structure which allows for
spatial and non-spatial attributes as descriptors of spatial objects, given the assumptions
stated at the beginning of Section 1.

Consider the following two example spatial queries that contain a mix of spatial and
non-spatial conditions. The description of the spatial conditions involved in the query, along
with other conditions, is given in Tables 1 and 2. '

Example 1: Find roads that pass through an industrial region that is adjacent to a mountain
which lies within 5 miles of an earthquake region.



select road_name m.name i.name
from roads land-use m, land-use i, earthquake e
where m.usage = "mountain"
and i.usage = "industrial"
and pass_through(road_coords,i.location)
and adjacent_to(i.location,m.location)
and within(m.location,e.location,5)

Example 2: Find the road (excluding Route 1 if it qualifies) that passes through the
University of Maryland campus and is nearest to the Computer Science Department (for
simplicity, specified here by its coordinate values (nx,ny)), and such that the road is within
distance r from the point (cx,cy).

select road_name
from roads land-use
where in_circle(road_coords,cx,cy,r) -
and road_name != "Route 1"
and pass_through(road_coords,location)
and name = "University of Maryland"
and nearest_to(road_coords,nx,ny)

The two queries contain a mix of spatial and non-spatial conditions. There is a need for
some data structure that captures in it the intermediate result of the spatial conditions as
well as the non-spatial conditions.

In [2, 4], we suggested the concept of a spatial relation as the basic data structure sup-
ported by the spatial data model. Figure 3 shows several forms of spatial relations. A spatial
relation is composed of two main components: a spatial and a non-spatial repository. The
spatial repository may be composed of one or more spatial data structures while the non-
spatial repository is simply a relation. In Section 4, we show how to formalize the concept
of a spatial relation in the context of developing a spatial algebra that is based on spatial
relations and spatial as well as non-spatial operations.

Figure 3 also illustrates how we link spatial and non-spatial attribute values of an object.
In particular, we maintain two types of logical links between the spatial and non-spatial data
instances of an object: forward and backward links. Forward links are used to retrieve the
spatial information of an object given the object’s non-spatial information. On the other
hand, backward links are used to retrieve the non-spatial information of an object given the
object’s spatial information. Notice that the description of a spatial object in the spatial
data structure can point back, via backward links, into more than one tuple in the relation.

We argue informally that the concept of spatial relation indeed captures the intermediate
result of select and join operations whether spatial or non-spatial. Refer to Figure 4 for
illustration. Figures 4a and 4b show that a spatial relation survives a select operation (i.e.,
that the result of the selection is also a spatial relation). Figure 4c shows that the result of
joining two spatial relations is also a spatial relation. Notice the use of multiple backward
links to avoid duplicating the spatial description of an object while still binding the non-
spatial information to the spatial information of the same object. :
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Figure 3: (a) A spatial relation with one spatial attribute A, (b) a spatial relation with two
spatial attributes Al and A2.

Observe also that spatial select and join still resulted in the generation of a spatial data
structure. Although this may not always be needed (e.g., see the possible optimizations
in [4]), these spatial data structures can be used to perform composite spatial operations
that might be difficult to perform if the spatial data is not stored in a suitable spatial data
structure. Also, the resulting spatial relation can be stored for future querying on it. This
reflects the need for a persistent spatial index. A persistent spatial index exists before and
after the performance of a spatial or a non-spatial operation. In fact, although used for
different purposes, this technique of building indexes on the fly is used in processing some
difficult queries. Also, Sellis [24] discusses constructing partial indexes on the fly in order to
save on query processing time.

Backward and forward links can be realized in different ways. However, we do not address
implementation issues in this paper. One example of a forward link is a candidate point inside
a region to uniquely select a regional object in an object space consisting of non-overlapping
regions; while a backward link can be tuple-id.

Maintaining forward and backward links between the spatial and non-spatial aspects of
a set of homogeneous objects facilitates browsing in the two parts and also permits efficient
query processing. Flexibility in the interaction between spatial and non-spatial attributes
enables operations (whether spatial or non-spatial) to be performed in their most natural
environment. In [2, 4] we showed how forward and backward links facilitate query processing
and query optimization. ‘
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Figure 4: (a) Two spatial relations 1 and 2, (b) the result of performing a selection on 1
(that selects objects a and b), (c) the result of joining 1 and 2 using the spatial intersect join
operator. ' :

4 Spatial Algebra

We now develop a formalism for specifying the notions of a spatial attribute and a spatial
relation. Using this formalism, we will redefine both spatial and relational operators in
the context of spatial relations. These operators along with spatial relations form what
we call the spatial algebra. In addition, we study equivalences among legal expressions in
this algebra. This serves as a basis for spatial query processing and optimization. We
investigate the usefulness of this formalism (or possibly a different one} in query processing
and optimization. We start by defining a spatial relation more formally. ' :

Definition - Spatial relation: A spatial relation is the 2-tuple R =< R, L > where Ris a
relation with schema r and [ spatial attributes (1>0), and L is a set of I quadruples. Each
quadruple, say ¢ in L, is of the form < A,,,S;, F}, B; >, where A, is a spatial attribute in
R, S; is the spatial data structure corresponding to As;, F; is a function representing the
forward links of the attribute A,,, and B; is a function representing the backward links of
the attribute A,,. :

The domain of F; is the set of tuples in R and the range is the set of spatial indexes of
the spatial objects stored in S;. In other words, given a tuple, say ¢, in R, F;(t) returns the
spatial index of t’s corresponding spatial object stored in ;. The domain of B; is the set
of spatial objects stored in S;, while the range is the power set of the set of tuples in R. In
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Figure 5: Some tuples do not match with a spatial description and vice versa.

other words, given a spatial object index s in S;, Bi(s) returns a set, say U, of tuples that
point to s, a.nd U C R. Notice that t € B;(F;(%)).

Definition - The spatial relation invariant: Given a spatial relation £ =< R, {<
As, 5, F, B >} >, then for every spatial object in &, there is a tuple ¢ and a spatial description
s that are linked properly to each other through the functions F and B. More formally,

Vi:(€RA(Ts:(s€ SaAFa(t)=sAt € Ba(s)H) A
Vs:(s €San|Ba(s)| > 1AVE:(t € Ba(s)At € RAFa(t) = s)).

Definition - The relaxed spatial relation invariant: Here we allow the situation shown
in Figure 5. In other words, we do not insist that each tuple matches with a spatial description
in the spatial data structure and that each spatial description has a corresponding tuple.

Vi:(E€ERAFA()=sAs€Sa= Ba(s)=t)A
Vs:(sE€ESaAVt€Ba(s):1 € R=> Fa(t) = s).

Now it remains to show that the concept of a spatial relation indeed captures the intermediate
results of both spatial and non-spatial qualifications in a given query. In the following, we
try to formalize spatial and non-spatial operations based on spatial relations.

4.1 The Select Operator

Select is a unary operator on spatial relations. When applied to a spatial relation ®, it yields
another spatial relation that is the subset of ® with a certain qualification on a specified
attribute. If the qualification is based on a spatial attribute, the operation is called a spatial
select, while if the qualification is based on a non-spatial attribute, the operation is called
a non-spatial or relational select. We now express the deﬁmtlon of a spatml selection a,nd a
relational selection more formally.

Let R be a spatial relation < R, {< A,, S, F, B >} > where R is a relation with schema
r, A, is a spatial attribute in r whose corresponding spatial data structure is S and mapping
functions F' and B, and ¢ is a constant (which may or may not be in the domain of A,).
A spatial select on the spatial attribute A;, osp(a,,q)(R) (‘select spatial objects where the
instances of A, satisfy the spatial condition sp(A,,a)’) is the spatial relation R’ =< R', {<
A, S', F', B’ >} > where R' is a relation with the same schema as R (i.e., with schema r).
The components of #' are defined as follows:



s {s|s € S Asp(s,a)},
R {tlt € RA sp(F(t),a)},
F'(t) F(t) Vt:(t € RAsp(F(t),a), and

_B'(s) = B(s)Vs:(s €S Asp(s,a)).

A relational select on the attribute A, o4, 0)(R) (‘select tuples where the instances of
A, satisfy the condition db(A,,a)’) is the spatial relation ® =< R/, {< A,, 5, F’, B’ >} >
where R’ is a relation with the same schema as R (i.e., with schema ), and the components
of R’ are defined as follows:

S = {s3t:(t € RAdb(t,a) AF(t) = s At € B(s))},

R = {tite RAdb{,a)},
F'(t) = F(t)VYt:(t € RAdb(t,a)), and
B'(s) = B(s}Vs:(s€SA3t:(t € RAdb2,a)AF(t) =sAt € B(s))).

Lemma 1: The result of the select operator (whether spatial or relational) satisfies the
spatial relation invariant (i.e., the result of the select operation is also a spatial relation).

Proof: We prove the lemma for the case of a spatial select only. The proof for relational
select is analogous. Let ® =< R,{< 4,,S5,F,B>}>and ® =< R, {< A,,5',F',B' >} >
such that ®' = 0,5(4,,0)(R). From the definition of o,,,

Vte R
(from the definition of S')
(from the definition of B')-
(from the definition of F’)

t€ RA3s: (s € SAsp(s,a) At € B(s) AF(t) =s)
tERAIs:(s€S' Ns€SAsp(s,a) At € B(s) AF(t)=s)
t€ERAIs:(s€S ' As€SAsp(s,a) Ate B'(s) AF(t) =s)
tERAIs:(se€S' AsecSAsp(s,a) At € B'(s) AF'(t) = s5)
Js:(s€S'ALtEB(S)AF'(t) = s)

R

Therefore, the resulting spatial relation satisfies the first part of the invariant. Similarly, the
resulting spatial relation can be proven to satisfy the second part of the invariant.

O

Lemma 2: The select operators (whether spatial or relational) commute under composition.
There are three different cases to consider.

Udb(asp(%)) = 0Osp (Udb(%)):
O'spl(a'sp2 (?R)) 0892(03P1 (3%)), and
Tdp1 (Udbz(ﬁ)) = Udb2(0'dbl(§R))'



Here we demonstrate only one case, namely that of og(o,,(R)) = Tsp(oa(R)).
Consider the left-hand side. Let ®; = osp(R) =< Ry, {< A,, $1, F1, By >} >. Then,

S1 = {sls€ S Asp(s,a)},
Ry = {tite RAsp(F(2),a)},
Fi(t) = F(@)Vt:(t e RAsp(F(t),a)), and

Bi(s) = B(s)Vs:(s €5Asp(s,a)).

Now let R = 04s(R1) =< Rz, {< Ay, S, Fy, B >} >. Then

S
R
F 3 (t)
Bz (S)

= {s|3t: (¢ € RiAdb(t,a) AFi(t) = s At € Bi(s))},

= {t|lt € Ry Adb(t,a)},

Fi(t) Vit : (t € Ry Adb(t,a)), and

Bi(s) Vs : (s € S1 A3t: (t € Ry Adb(t,a) A Fi(t) = s At € Bi(s))).

Substituting S for Sy and B for B, we restrict the domain of s by sp(s, a) as follows:

S =
Ry
Fa(t)
Bg(s) =

{s]3¢ : (£ € Ry A db(t,a) A Fi(t) = s At € B(s) A sp(s, a))},

{t|t € Ry A db(2,a)},

Fy(t) Vi : (t € RiAdb(t,a)), and

B(s) Vs : (s € SAsp(s,a) A3t : (1 € Ry Adb(t,a) A Fi(t) = s At € B(s))).

Substituting R for R; and F for Fy, we get:

S =
Ry =
Bt) =
Bo(s) =

{83t : € Ry Adb(t,a) AF(t)=sAt € B(s) A sp(s,a))},

{tlt € R A db(t,a) A sp(F(¢),a)},

F(t)Vt: (t € RAsp(F(),q)), and :

B(s) Vs: (s € SAsp(s,a) A3t: (t € RAdb(t,a) A F(t) = s At € B(s))).

This is easily reversible to yield o,,(0g(R)).

|

Lemma 3: The select operator (whether spatial or relational) is distributive over the binary
Boolean operations. ,

This and other equivalence expressions in the context of spatial relations and spatial
operations can be studied similarly. Some are given in Sectipn 4.3.
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4.2 The Join Operator

Join is a binary operator for combining two spatial relations. A theta-join is a join that
handles comparisons between columns that are 0-comparable where @ is a comparator. If
the comparator is based on spatial attributes, the operation is called a spatial join, while if
the comparator is based on a non-spatial attribute, the operation is called a non-spatial or
relational join.

Let ®; and R, be the two spatial relations < Ry, {< As, 81, F1,B; >} > and < Ry, {<
B;, Sz, F3, By >} >, respectively, where each of ®; and ®; has only one spatial attribute.
The schemas for R; and R; are r; and 7, respectively. We now express the definition of a
spatial and relational join more formally.

A spatial join M, on the spatial attributes A, and B,, R, Msp(4,,B,) R2, is the spatial
relation ' =< R, {< A,, 8, F{,B] >,< B,, 8, F},B, >} > where R' is a relation with
schema r1 + r;. The components of R are defined as follows: Let #:id (denoting tuple-id) be
some notion of backward link information.

81 = {sils1 € S1A3sp 1 (52 € S2 Asp(sy, 52))},
S = {s2ls2 € 52 A3s1: (81 € Sy Asp(si, 82))},
R = {tltzitl ERiIANta € Ry A sp(Fl(tl), Fz(tz))}, .
F{(tl) = Fl(tl), Fé(tz) = Fz(tz) th,ig : (tl ERI At € Rg A Sp(Fl(t1), Fz(tz))), and

Bi(s1) = Bi(sz)=1tid(t') ¥s1,52:(s1 ES1 As2 € Sz A sp(s1,82)
Ay € B]_(sl) Aty € 32(32) At = tltz).

Notice that since new tuples are constructed as the result of the join, the backward link
information (the function B) has to be updated accordingly to point to the new tuples.

A relational join can be expressed analogously. Several properties and equivalences that
involve joins hold in the context of this spatial algebra. For example, commutativity of the
join operation can be seen from the symmetry in its definition. Further properties of spatial
and relational joins when applied to spatial relations {e.g., associativity) need to be proved
and are a subject of future research.

4.3 'The Overlay Operator

The overlay operator is a special form of a spatial join where the two spatial attributes
participating in the spatial join are merged in some way to yield only one output spatial
attribute. In this regard, the overlay operation resembles a spatial natural join in contrast
to the spatial join presented in Section 2. Another feature of the overlay operator is that the
instance values of the resulting spatial attribute are the result of applying a function whose
domain is the instance values of the two participating spatial attributes and whose range
is the overlay of these two instances expressed in some format. The above two features are
illustrated by the following example.

Example: Consider the two spatial relations ®; and R;, given in Figures 6a and 6b. The
result of overlaying ®; and ®; is given in Figure 6¢c. Notice that the resulting spatial relation
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has only one spatial attribute, say az, and that some new spatial objects are instantiated
(e.g., ae and ce whose spatial indexes did not exist in ®; or R2). These spatial indexes and
their corresponding objects were generated on the fly while performing the overlay operation
with some overlay function. 1

Ri1 S1 R2 82
al a2 b1 b2
d
2 T~ a éb ‘\t
b e d e
/ vq]\\*
c — c
spatial relation 1 spatial refation 2
(@ (b)
R a2 at b1
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Nl ¢ e

(©)
Figure 6: (a) and (b) the two input spatial relations, (c) the result of the overlay operation.

Let £, and R; be the two spatial relations < Ry, {< A,, S1, F1,B; >} > and < R,, {<
B;, Sa, Fy, By >} >, respectively, where each of ®; and R, has only one spatial attribute.
The schemas for R; and R; are r; and r;, respectively. We express the definition of the
overlay operator more formally. For simplicity, we make the following assumptions: each of
the two spatial relations corresponds to a map having only non-overlapping spatial objects
(e.g., non-overlapping regions), and there is at least one spatial object stored in each spatial
relation that corresponds to the background (or white space) of each map.

An overlay ™, , on the spatial attributes A, and B,, R, Msp_o(4.,B,) R2, is the spatial
relation ®' =< R, {< C,,5,F',B’ >} > where R’ is a relation with schema r; + 73 —
{As, B} + {C,}. The components of R’ are defined as follows: Let sid (denoting spatial-
id) and #id (denoting tuple-id) be some notion of forward and backward link information,
" respectively. Then

S = {§'|3s1 € S1 Asa € S : (s = sp_o(s1,s2))},
R = {t{t)|3t, € Ri At € Ry: (8] = mryma,(t1) Ath = Ty, (E2) A sp-o(Fi(t1), Fa(t2)))},
F'(t’) = sid(s’) Vt’.: (f.’ = i;t’z A ii = er_A,(tl) /\t’z = Mp,—B, (tz) Aty ERiAto E Ry
As’' = sp_o(Fi(t1), Fo(t2)) A s’ # ¢) and
B'(s) = td@) Vs : (3 : (¢ =tith Aty = mr—a,(B1) AL, = 7, p, (82) Aty € Ry At € Ry

As' = sp-o(F1(t1), Fa(t2)) A 5" # 4)).
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Other algebraic properties that involve selection, projection, and join can be proved in
the context of spatial relations in a way similar to that of Section 4.1. A few examples
of such equivalences are given below. We use the following notation. Let ®; =< Ry, {<
As, 51, F1, By >} > and R, =< Ry, {< B,,S2, Fy, B, >} > be two spatial relations; r; and -
ry be the schemas of R, and R;, respectively; X be a subset of schema, r1; A, Az be attributes
in ry; B, By be attributes in-ry; and p and ¢ be spatial or relational conditions. Then

. Tx(opa)(R1)) = mx(opay(mix,a)(R1)))
Wx(ap(A)(gfl)) Up(A)(WX(%l)) fAe X
Tp(a1) (1 My(a,5) R2) Tp(an)(R1) Mya,m) B2

Other operations that need more investigation are map update and map display. Some
. operations may update the spatial data structure but may or may not change the value of
the spatial index attached to the corresponding tuple in the relation. For example, in a
minimum bounding box structure (e.g., an R-tree [9]), due to editing, rectangles may grow
or shrink. Deleting the original rectangle and then reinserting it may change the spatial
index of the rectangle in the tree.

In addition, there is a variety of map editing operations that need further considera-
tion. Some of these operations are: splitting a region, expanding or shrinking a region,
adding/deleting a new spatial object, and relabeling an object. In general, map editing is
an interesting spatial update operation that deserves further study.

-5 Related Work

The support of spatial data in a database environment is a subject of considerable amount of
research (e.g., [1, 8, 10, 15, 18, 26, 30]). This includes ways of representing and accessing large
volumes of spatial data (e.g., [7, 10, 20, 29]), data models (e.g., [31]), developing algebras and
extensions to existing systems to accommodate spatial data and spatial operations {e.g., [8,
16, 19, 23, 30]), spatial query processing and optimization (e.g., [4, 14]), interface languages
(e.g., [6]), etc.

Using links to support complex objects was proposed in [12] as an enhancement to System
R [5]. In [13] arbitrary links (via references and identifiers) were used in the context of
geographical databases where a geographical object is represented by a tuple having some
unique identifier and a long field to store the geographic representation of the object in
addition to other non-spatial attributes. Links were used to express explicit relationships
between geographical objects (e.g., parent-child, or reference relationships). More recently,
in [11] they were used to design a very promising extension of the SQL query language. Bi-
directional links were also used in GEO-Kernel [30, 22] in order to allow each of the spatial
and non-spatial parts of an object to access the other part. Spatial objects are partitioned
into cells. Cells are clustered according to their two-dimensional neighborhood. The address
of the non-spatial description of an object is stored with each cell of this object. Since GEO-
Kernel uses nested relations [21], an attribute of type relation (i.e., a sub-relation) is used
in order to store all the addresses of the cells comprising a spatial object. This resembles a
forward link in a spatial relation. However, in contrast to sub-relations, in a spatial relation
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only one spatial identifier is stored as a forward link and it is the responsibility of the spatial
data structure (or its encapsulating spatial process or ADT) to extract the rest of the spatial
description of an object. This greatly reduces the storage overhead from the relational side
as well as reduces the cost of maintaining the set of addresses stored in a sub-relation in
GEO-Kernel that refer to different cells of the same object.

Abstract data types (ADTs) as new attribute domains in a relation and user-defined
spatial index structures were first introduced in 26, 28]. Following this approach, spatial
“data structures are viewed in many extensible database systems (e.g., [8, 27, 18, 17]) as
indexing structures. As a result, only backward links (i.e., from the index structure to the
actual tuple) are needed in these architectures. In contrast, it is important to note that in
a spatial relation, user-defined data structures serve not only as spatial indexes for speeding
up operations but also as containers for the full description of spatial data. In the latter,
bi-directional links between corresponding components of the ADT can be used for efficient
access. Spatial relations can be viewed as a merge of the ADT work in [26] and the complex
object support in [12]. In a spatial relation, a spatial attribute is an ADT that is implemented
by user-defined data structures, and some operations that function over an instance of an
ADT or over a collection of instances {e.g., all the instances of the ADT in a given spatial
relation).

Another alternative (e.g., as in [8]) avoids forward links (and hence does not use con-
tainers) by employing spatial data structures as indexes that approximate spatial objects
(e.g., by using bounding boxes). In addition, the full description of the spatial object (e.g.,
the coordinate values of the vertices of a polygon) is stored with the object’s correspond-
ing tuple in an on-line format (i.e., formatted in a memory-mapped image such that when
the tuple is loaded into main memory, the spatial description of the object is ready for use
without any additional format conversions). In this case, when a query is posed, the spatial
data structure is used as a filtering step that produces a set of candidate objects, then the
full description of these objects is used as a refinement step to produce the final answer to
the query. The performance of these alternative data architectures with respect to spatial
query processing and optimization is an interesting research problem. One drawback of this
approach, though, is that every time a tuple participates in a join, the full description of
the spatial object needs to be duplicated as well {in many cases, the size of this spatial
description of an object is large; for example, this is the case with polygon objects).

Another alternative to having permanent disk-based spatial data structures for storing
spatial data is the following: store each instance of a spatial attribute as a textual string, and
download these instances (via conversion routines) into an appropriate on-line spatial data
structure in order to query and perform spatial operations on them. Then, upon completion,
upload them (if necessary) back into their string format (via another conversion routine).
Since spatial data is voluminous, downloading and uploading it is expensive. In addition,
the entirety of the data is not likely to fit into main memory. Therefore, disk-based spatial
data structures appear to be a necessity. Therefore, we short-cut the downloading/uploading
procedures, and assume that spatial data is stored permanently in disk-based structures to
begin with, thereby getting rid of the textual off-line representation of spatial data.

Generally speaking, the concept of a spatial relation and the spatial algebra imposed on it,
as presented in this paper, can be viewed as an extension of the Probe spatial data model [16].
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In Probe, relations are extended by spatial attributes where spatial data is represented using
Z-order encoding which is then stored in a B-tree. In this respect, a spatial relation extends
Probe in that it permits Z-order or any other appropriate representation for spatial data in
addition to any suitable spatial data structure. Spatial data is stored in the most appropriate
spatial data structures to permit efficient spatial operations.

6 Conclusions and Future Work

The concept of a spatial relation as a means of unifying spatial and non-spatial aspects
of data was introduced. The spatial relation provides the flexibility in utilizing spatial
data structures not only as indexing mechanisms to speed up query processing but also as
containers for organizing and processing the full descriptions of spatial objects. A spatial
relation also supports efficient processing of spatial and relational operators since it permits
each operation to be performed in its most natural environment. Classifying operations into
selects and joins and designing the underlying basic data structure (the spatial relation)
so that the main algebraic characteristics still hold paves the way for using the same logic
employed by a standard query optimizer but with a different basic structure. A system called
SAND (denoting Spatial And Non-spatial Data) [3] that reflects the concept of a spatial
relation has been prototyped and implemented using POSTGRES [27] and QUILT [25].
QUILT serves as a spatial processor to support spatial data handling. It uses a number of
variants of hierarchical data structures.

Other questions that need to be addressed include:

e How should we process queries expressed in this augmented environment where both
spatial and non-spatial data are linked together?

e How should we optimize queries?

e What are the selectivity factors for spatial operations?

e What are the heuristics used for optimization?

e How can we estimate the cost of spatial queries in this environment?

Future work includes addressing the above questions in the context of spatial relations and
their associated algebra, and developing a cost model for spatial operations that we can use
in building a spatial query optimizer.
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