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Abstract

. A spatial database allows spatial objects to be indexed. Tn a spatial database, an object may
extend arbitrarily in space. As a result, many spatial data structures (e.g., the quadtree, the cell
tree, the R*-tree) represent an object by partitioning it into multiple, simple pieces, each of which
is stored separately inside the data structure. Many operations on these data structures are likely
to produce duplicate results because of the multiplicity of object pieces. A novel approach for elim-
inating duplicate results based on proximity of spatial objects is presented. An operation, termed
Report.Unique, is defined which reports each object in the data structure Just once, irrespective of
the multiplicity of the partitions of the object indexed by the underlying representation.” Example
algorithms are presented that perform Report.Unique for a quadtree representation of line segments
and for the more general case of arbitrary. rectangles. The complexity of the Report_Unique opera-
tion is seen to depend on a geometric classification of different instances of the spatial objects. Such
classifications are presented for spatial objects consisting of line segments, as well as rectangles.
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1 Introduction

Spatial databases are large in data volume and complex in the inter-relationships between the
constituent data. In this respect, a flexible and efficient spatial data organization can make a
significant contribution to the entire system. As a result, spatial databases are organized in data
structures that provide efficient access to and flexible manipulation of data. There are several ways
of representing a spatial object inside a data structure [10]. Some data structures (e.g., the R-tree [7]
and the Grid File [14]) represent a spatial object by just one entity inside the data structure (e.g.,
by the object’s bounding rectangle in the case of the R-tree and by a point in a higher dimensional
space in the case of the Grid File). On the other hand, another family of data structures (e.g., the
quadtree (8], cell tree [6], and R*-tree [5]) represent a spatial object by partitioning it into more
than one piece, each of which is stored separately inside the data structure. In this paper, we focus
on the latter family of data structures.

One problem that arises in processing queries in a relational database is duplicate elimination.
Many techniques for eliminating duplicates in relational databases are addressed in the literature
(e.g., [3]). Hashing (e.g., linear, dynamic, and extendible [4, 11, 12}) is one of the most common
techniques for solving this problem. Although most of these techniques apply to any type of object,
here we address the issue of duplicate elimination in the context of spatial objects. In particular,
we attempt to take advantage of the spatial characteristics of objects as a guide to eliminating
duplicates that result from spatial database operations. For example, in the case of the R¥-tree
and the quadtree, duplicates arise because the object is partitioned into pieces. We can benefit
from knowing that these pieces are contiguous in space (if this is really the case). In this paper we
define an operation, termed Report_Unique, which manages to eliminate duplicates and report each
object in the data structure just once, regardless of the multiplicity of the partitions of the object
inside the spatial data structure. ‘ _

Report .Unique can be viewed as an alternative approach to hashing when dealing with spatial
data. Report_-Unique maintains a dynamic data structure, termed the active border, that serves
as a repository for the objects currently being processed, termed active objects. The active border
data structure resembles a dynamic hash table. Using spatial properties of the underlying objects,
the active border can grow and shrink in constant time. By knowing the extent and proximity of
- the objects, we can detect when all pieces of an object are entirely processed. At that time we
can remove the object entry from the active border, thereby bounding the size of this table by the
number of active objects. A look-up function, also based on spatial proximity, can be used to access
entries in the active border. The look-up function is the spatial analog of a hash function. As will
be demonstrated in this paper, an important advantage of proximity-based look-up functions is
that as a result of their use, buckets in the active border are guaranteed not to overflow.

Another important distinction is that when conventional hashing techniques are used there is
no-way of predicting when an object will not be referenced again and hence can be safely deleted
from the hash table. By considering the extent of spatial objects, Report_Unique is able to detect
when all the pieces comprising the object have been processed and hence can delete the ob ject.
This way we can avoid the situation that the hash table grows until it reaches its maximum limit,
l.e., O{number of objects in the database). '

The Report_Unique operation can be used to implement 2 number of applications. For example,
suppose we want to count the number of spatial objects in the given data structure. When a spatial
. object is represented by more than one piece inside the data structure, this poses a problem since
the object will be reported more than once. In this case, we want to count each ob ject only once
regardless of the number of partitions of the object. As a specific example, suppose we want to
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report the spatial objects that lie inside a window, say w. Although several partitions of the
same object, say o, may lie inside w, it is preferable to report the identity of o just once. This s
especially true if the identifier of o is to participate in further processing as is the case when the
identifier of o serves as the argument to another procedure, say p {e.g., for computing the area
or perimeter of the object). In this case, if the identifier of o is reported more than once, then
o will be processed by p redundantly. Given the data structure containing the spatial objects in
question, Report.Unique ignores the multiplicity of the object partitions inside the data structure
and transmits each object in the data structure to p just once. Again, our goal is to investigate
the use of the spatial characteristics of objects to eliminate duplicates that result from processing
a variety of spatial queries.

In answering spatial queries, parts of a spatial object may be clipped or occluded (e.g., finding
the objects inside a query window). This affects the object’s extent and proximity since an object
may become discontinuous, have holes, etc. This is reflected in the underlying algorithm for Re-
port_Unique as well as in its performance. We address this issue by classifying spatial objects into
categories that are shown to affect the form and performance of the Report_Unique operation.

The rest of the paper is organized as follows. In Section 2 we review some duplicate elimination
techniques that are commonly applied in relational database management systems. In Section 3 we
outline a straightforward algorithm to solve the Report_Unique problem and analyze its worst-case
space and time complexities. This algorithm resembles a simplified form of hashing. The remaining
sections describe techniques to eliminate duplicates using spatial characteristics of the underlying
spatial objects. Qur spatial objects are line segments and rectangles. We use a PMR quadtree
representation [13] for the set of line segment objects and a variant of the region quadtree [8],
termed a rectangle quadiree, for the rectangles. The straightforward algorithms require O(n) space,
where n is the number of spatial objects in the database. This may be unacceptable for large
databases. Section 4 describes another algorithm that eliminates the space requirements of the
algorithm of Section 3. Section 5 demonstrates that supporting the Report_Unique operation for a
realistic variety of objects requires classifying spatial objects into categories of different complexity.
Sections 6 and 7 show how these classes affect the performance and correctness of the alternative
approaches to Report.Unique. Section 8 contains some concluding remarks.

It is important to note that in this paper we do not attempt to compare the efficiency of
different data structures in performing the Report-Unique operation, nor do we present the most.
efficient algorithms for each class of the spatial objects. Instead, our emphasis is on demonstrating
the importance of Report_Unique when considering new data structures, and the need for efficient
algorithms, especially when dealing with large spatial databases.

2 Duplicate Elimination in Relational Databases

Duplicate. elimination is an expensive operation which is frequently needed during relational query
processing. For example, identical entities appear when applying the relational PROJECT operation.
In particular, in SQL, the key word DISTINCT in the SELECT clause means that only distinct tuples
should remain in the result. One way to eliminate the duplicate tuples is first to sort the entire set
of entities, and then to eliminate duplicates by scanning the entire sorted list while deleting the
entities which appear in consecutive positions.

Sorting is an expensive operation for a large disk file. Special external sorting techniques [9] are
frequently used. A common method is a variation of the merge sort technique. First, the records
within each block are sorted. Then sorted blocks are merged to create groups of sorted records
each of size two blocks. Each such group of sorted records is sometimes called a run. Following
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that, runs of two blocks are merged to form runs of four blocks, and so on until the final run is the
completely sorted file. Assume that there are n spatial ob jects stored in some data structure and
that on the average each object is partitioned into k& pieces inside the data structure.! These object
pieces may be a result of a previous spatial operation e.g., a spatial join. Assume further that each
piece is of fixed length, and that each disk block can hold up to b pieces, where b is the blocking
factor. The number of block accesses needed to sort the file that extends over m blocks (m is nk/b)
is proportional to mlog m. The storage requirement for the sorting algorithm is m blocks.

Hashing can also we used to eliminate duplicates. As each entity is hashed and inserted into a

- bucket of the hash table, it is checked against those already in the bucket. If it is a duplicate, then
it is not inserted into the bucket. The storage requirement for the hash table is proportional to the
number of objects in the spatial data structure (i.e., O(n)). The hash table is checked O(nk) times,
i.e., once per object piece. Notice that not all the hash table buckets may fit in main memory at the
same time. Therefore, O(nk) bucket access requests are generated and disk I/O may be incurred to
insert an object identifier into a bucket or to determine the presence of an object inside a bucket.

3 The Test-And-Set Algorithm

A straightforward algorithm for Report.Unique is the test-and-set algorithm (or Report_Unigquel).
It works for almost all data structures that partition a spatial object into smaller pieces, provided
that each spatial object has a unique identification number that is stored in the data structure
along with each piece of the object. Report_Uniquel makes use of an array of bits. There is one
bit for each object which is initially false. Report_Uniquel proceeds as follows:

1. Traverse the data structure, and for each sub-object that is encountered, test the object’s-
~--corresponding bit in the array.

2. If the bit is false, then set it to true and retrieve the object using the object’s identifier and
report it. '

3. If the bit is trué, then don’t report this object..

Report_Uniquel also represents a simplified model of a hashing mechanism. Assume that there are
n spatial objects stored in the data structure and that on the average each object is partitioned
into % pieces inside the data structure. Assume further that the number of data structure elements .
visited during the traversalis m {e.g., m quadtree nodes). Then, the test-and-set algorithm requires
n bits to store the bit array, and performs kn tests and n object retrievals {possibly from secondary
storage). Therefore, the total cost of the algorithm is C,, + knCopy + nCio, where Cp, is the cost
of traversing the m elements of the data structure, Cyy, is the cost of testing a bit, and Cj, is the
cost of retrieving the spatial object (e.g., the coordinate values of the end-points of a line segment,
the polygon boundary, etc.). Since all the algorithms that we present are based on traversing a list
of blocks, we will omit the term C,, from the comparison. Therefore, the cost of Report_Uniquel
is knCpy + nCi,. This component of the cost cannot be ignored for algorithms that are not based
on traversing the data structure (e.g., direct access of data structure elements).

- In order to improve the execution time or space requirements of Report_Uniquel we will make
use of the fact that the Report_Unique operation requires a test function, say ¢, such that given a
spatial object, say o, with & pieces, p1, p2, ..., P, ¢ has a value of false for only one of the pieces,
say p; of o. Application of ¢ to the rest of the pieces yields the value of true. Any function ¢ that

! Notice that the value of k varies from one data structure to another.
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Figure 1: An example of a PMR c.iuadtree. .

satisfies this criterion can be used as a means of suppressing all pieces of o other than p; from
reporting o’s object identifier, and hence can be adopted by the Report_Unique operation.

For example, in the case of Report_Uniquel, a function #; is defined as follows (a is the bit
array and oid(p;) is the identifier of the object to which piece p; belongs):

ti(p;) = retvalue — aloid(p));
if(not aloid(p;)]) then
aloid(p;)] — true;

return (retvalue);

4 Avoiding the Extra Space

Tn order to have a concrete basis for our discussion we use a database of n line segment objects.?
We assume that the lines are stored in a spatial data structure that partitions the line segments
into pieces. In this section we present a simple reporting algorithm that does not require additional
space (e.g., in contrast to the O(n) space required for hashing as well as Report_-Uniquel). The
algorithm makes use of some simple spatial characteristics of the line segment objects in order to
report each line segment just once instead of as many times as it appears in the data structure.

As an example spatial data structure, we use the PMR quadtree [13]. In this data structure, a
line segment is divided into several pieces, where each piece is associated with the quadtree block
that it intersects. Figure 1 shows one example of the PMR quadtree.

In the PMR quadtree, a block is permitted to contain a variable number of line segments. It is
constructed by inserting the line segments one-by-one into an initially empty structure consisting
of one block. Each line segment is inserted into all of the blocks that it intersects or occupies in its
entirety. During this process, the occupancy of each affected block is checked to see if the insertion
caused it to exceed a predetermined splitting threshold. If the splitting threshold is exceeded, then
the block is split once, and only once, into four blocks of equal size.

Each block in the PMR quadtree stores the object identifiers of the lines passing through it.
The full description of the line segments {e.g., the start and end coordinate values of the end-points)
is stored in what is called the feature table. The index of line [ in the feature table is I’s object
identifier. Notice that we cannot simply traverse the feature table and report the lines that we find
since not all the lines in the feature table have to belong to the data structure in question.

Our first attempt as improving on the test-and-set algorithm is to get rid of the O(n) space
requirements of the algorithm. This gives rise to algorithm Report.Unique2 described below. It

2 A similar algorithm can be described for a database of rectangular objects.
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Figure 2: Line 1 is stored in blocks By, By, and Bz where only block By causes the point-in-block
test to succeed since the starting point p of 1 only lies inside By and not in Bg nor in Bs.

traverses the blocks of the PMR quadtree, and for each block, say B, it performs the following
actions:

1. For each object identifier ¢ stored in B (that corresponds to piece P;), retrieve the line de-
scription, say [;, from the feature table, and

2. perform the following testing function t,

t2(l;, B) = if(start_point(lg) in B) then return (true)

else return ( false)

3. If #3(1;, B) is true, then report line ;.

Figure 2 helps in understanding the algorithm. Notice that for each line 1, the testing function %,
is true only when the block containing the starting point of 1 is processed. Application of ¢z to.all
blocks containing pieces of 1 other than the starting point of 1 yields false (¢, is referred to as the
point-in-block test).

‘A major advantage of Report_Unique2 over the test-and-set algorithm is that it does not require

any additional space. However, Report_Unique2 needs more time to execute. Note that it apples a
-more complex test per object piece. The testing function is still performed nk times. However, the
 point-in-block test requires four comparisons (each of cost Coepu) in contrast to just one comparison
in the test-and-set algorithm. In particular, the point (z, %) is inside block B((blg, bly), (urg, ury)),
where b/ and ur denote the bottom left and upper right corners of the window, respectively, iff &, <
z<urg A bly <y<ur, '

A more serious drawback of Report.Unique? is that in order to perform the point-in-block test
(f2) we must access the feature table (via the object identifier) each time we encounter a piece
of a line. This is necessary to retrieve the starting point of the line. Assuming that the cost of
retrieving a segment from the feature table is also C;,, then the execution time of Report.Unique2
is 4knCepy + knCi,.

The cost term knCj, involves redundant disk-1/0 requests. Basically, it represents the cost.of
retrieving line segments from the feature table (once for every line segment partition, amounting
to k disk requests per line segment).® Notice that an algorithm for duplicate elimination based on
hashing would result in the same number of bucket read operations (i.e., kn). These bucket requests
may or may not result in disk I/O requests depending on the buffering techniques adopted. A better
algorithm would perform only n such requests, i.e., one request per line segment in the database

*In order to simplify the presentation, we do not address the buffering effects which may reduce the actual disk
- Ijo.
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Figure 3: (a) Line 1 as stored in a PMR quadtree. (b) The result of clipping line 1 by a window
operation in a PMR quadtree. Line 1 is partially clipped so that its original starting point in the
feature table is neither in blocks Bo nor in Bs. Notice that the feature table still stores point p as
part of the description of the clipped line. '

instead of one request for each piece of each line segment. Thus, we would like an algorithm that
does not need the O(n) extra storage (or at least having an asymptotic storage cost less than O(n)),
yet one that still performs only n disk requests (e.g., n accesses to the feature table).

In Section 6, a third algorithm (Report_Unique3) is presented that overcomes this drawback.
It uses the concept of an active border [17] to avoid accessing the feature table each time a piece
of the line is encountered. However, this depends on a closer scrutiny of the nature of the spatial

objects which is the subject of the next section.

5 Object Classification

An important factor affecting the performance of the Report_Unique operation is the nature of the
objects stored in the underlying data structure. For example, what is the effect of restricting the
lines to be rectilinear, in contrast to lines with arbitrary slopes? As another example, suppose that
objects are partially clipped as is the situation after a window operation. Is it more difficult to
report these clipped objects than reporting non-clipped objects?

As an illustration of the second example, note that due to the way the PMR quadtree is defined,
Report_Unique2 does not work properly if the line segments are partially clipped. This is shown
in in Figure 3. In particular, when a line is clipped (e.g., as a result of a window operation), the
PMR quadtree does not update the starting and ending points of the clipped line in the feature
table. This is done in order to ensure consistency when portions of line segments are added and
removed as a result of set operations. The problem is that there is not enough precision to express
the starting and ending points of the clipped line segments. Thus the feature table is not updated
and the clipped line segment is stored implicitly. As a result, if a line, say 1, in Figure 3 is clipped
so that only s remains and if s does not contain 1’s starting point, then s will not be reported
by Report_Unique2. This case does not arise in Report_Uniquel, and suggests that we have to
consider the alternative classes of objects (e.g., clipped objects) when developing algorithms for
Report.Unique since it affects the correctness of the algorithm. In the remaining parts of this
section, we present such a classification for spatial objects of type line segment and rectangle.
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Figure 4: Classification of line segments (a) Class-1, (b) Class-2, (c) Class-3.
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Figure 5: Example illustrating how some of the line segment classes are created: (a) Class-2,
(b} Class-3.

5.1 Classification of line-segment objects

Below, we present one way to classify spatial objects of type line segment. Other spatial types can
be classified in an analogous manner. The different classes of line segments are given in Figure 4.
The classes do not always impose different complexity requirements on Report_Unique. Example
implementations of Report_Unique that make use of these classifications are discussed in Section 6.

o Class-1 segments: a line segment having no clipped or missing portions as illustrated in
Figure 4a, and termed a regular line segment.

¢ Class-2 segments: a line segment where either one or both of its end-points are missing as
illustrated in Figure 4b, and termed a clipped line segment.

¢ Class-3 segments: a line segment where several portions (holes) may be missing as illustrated
in Figure 4c, and termed a broken line segment. Although disjoint, all the portions of the line
segment refer to, and represent, just one object of type line segment.

This classification of line segments is of practical use. Class-1 represents regular line segments
(e.g., road segments). Class-2 represents line segments that may result from a rectangular window
operation (Figure 5a). Class-3 represents line segments that may result from intersecting line
segments with arbitrary regions (e.g., a polygon in Figure 5b). Similar classes can be constructed
for other spatial objects {e.g., rectangles as illustrated in’Section 3.2, or polygons). _

We further classify lines of each class into the following types according to their orientation:

¢ Type-1 segments: uniformly axis-parallel oriented line segments—i.c., they may be pa,rallel '
. to the z or the y axes but not-to both (Figure 6a).

o Type-2 segments: rectilinear line segments—i.e., they may be para.llel to either the z or the
y axes (Figure 6b). :

o Type-3 segments_: arbitrary line segments—i.e., they may be of an arbitrary slope (F igure 6c).
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Figure 7: Classification of rectangles (a) Class-1, (b) Class-2, (¢) Class-3, (d) Class-4.

5.2 Classification of rectangular objects

Spatial objects of type rectangle can be classified in the same way as line segment objects. The
different classes of rectangles are given in Figure 7.

o Class-1 rectangles: a rectangle having no clipped or missing portions as illustrated in Fig-
ure 7a, and termed a regular rectangle.

o (Class-2 rectangles: a rectangle Where.only a rectangular portion of it is included and the rest
of the rectangle is clipped as illustrated in Figure 7b, and termed a clipped rectangle.

¢ Class-3 rectangles: a rectangle where several portions (holes) may be missing, but still the rest
of the rectangle is connected, as illustrated in Figure 7c, and termed a clipped-out rectangle.

e Class-4 rectangles: a rectangle where several portions (holes) of arbitrary shape may be
missing that result in the rectangle being decornposed into several disjoint pieces, as illustrated
in Figure 7d, and termed a disjoint rectangle. Although disjoint, all the portions of the

~ rectangle refer to, and represent, just one object of type rectangle.

This classification of rectangles is of practical use. Class-1 represents regular rectangles (&.g.,
bounding boxes of some spatial objects in a map). Class-2 represents the parts of a rectangle
that remain after a rectangular window operation (Figure 8a). Class-3 represents the parts of a
rectangle that lie outside one or more rectangular query windows (Figure 8b). These rectangles
result from clipping-out regular rectangles against the query rectangles. Notice that each of the
resulting rectangles is still representable as a four-connected region. Class-4 represents the parts of
a rectangle that lie inside (or outside) one or more query windows of arbitrary shape. For example,
Figure 8¢ is the result of intersecting a rectangle with a number of simple polygons. We further
classify rectangles of each class into the following types according to their orientation:

8.
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Figure 8: Example illustrating how some of the rectangle classes are created: (a) Class-2, (b) Class-
3, (¢) Class-4.
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Figure 9: Two types of rectangles: (a) Type-1, (b) Type-2.

* Type-1rectangles: rectilinear rectangles, i.e., whose sides are parallel to the axes (Figure 9a).

* Type-2rectangles: arbitrary rectangles—i.e., rectangles whose orthogonal sides have arbitrary
orientations (slopes) (Figure 9b).

6 Duplicate Elimination Algorithms for Line Segment Objects

Below, we present some implementations of algorithms for the Report_Unique problem that can
handle several class/type combinations given in Section 5.1, and see how these combinations affect
the complexity of the algorithms. Our underlying spatial database makes use of a PMR quadiree
to store the spatial database objects which are line segments in these examples. ‘

6.1 Class-1 Type-1 and Class-1 Type-2 Line Segments

Assume a collection of line segments that are parallel to the z-axis (Figure 6a). They may represent
time intervals for a group of events. The algorithm traverses the quadtree block by block and
maintains the active set of line segments. These are the line segments that intersect the block or
pass through the block. A line segment, say [, is added to the active set when / is first encountered
during the traversal. [ is deleted from the active set once all the quadtree blocks through which [
passes have been visited during the traversal. The necessary storage is bounded by the maximum
size of the active set during the execution of the algorithm. The size of the active set should be
considerably smaller than n, the number of line segments in the spatial database.

In order to execute the algorithm efficiently, we need to organize the active set of line segrents.
The organization of the active set depends on the operations that are to be performed on the set. -

9
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Figure 10: Various states of the active border: (a) initial condition; (b) after visiting block A, lines
1 and 2 are reported, line 1 is deleted; (c) after visiting block B, line 3 is reported, line 2 is deleted;
(d) after visiting block C, lines 4 and & are reported.

The algorithm performs the following three primitive operations on an active set, say A: (1) test if -
a line segment exists in A (notice that this is needed in order to decide whether a line has already
been encountered or if it is encountered for the first time in the traversal), (2) insert a line segment
into A, and (3) delete a line segment from A.

Before providing more details about the algorithm, observe that if we are able to perform each
of the above three operations in O(1) time and maintain the underlying data structure that stores
the active set in O(1) time, then the overall complexity of the algorithm would be O(nk) time with
O(active set size) space.

The algorithm visits the blocks of the quadtree in NW, NE, SW, SE scanning order. It maintains
one basic data structure: an active border [17]. In the context of duplicate elimination and hashing,
the active border is the spatial analog of a hash table. The active border represents the border
between those quadtree blocks that have been processed and those that have not. The elements
~ of the active border form a “staircase” of vertical and horizontal edges, moving from southwest to
northeast, as shown by the heavy line in Figure 10a. Initially, the active border consists of the
north and west borders of the image. When the algorithm terminates, the active border consists of
the south and east borders of the entire image. In other words, whenever a node is visited by the
algorithm, the active border is updated accordingly to include the border of this new block (see
Figures 10b and 10c).

We define an active line segment as a line segment that is partially processed, i.e., at least one
of the quadiree blocks overlapping with this line has not been processed yet. A line is inactive
if either all of the blocks through which it passes have been processed by the traversal algorithm
or if all of them are yet to be processed. There is a data bucket associated with each element
of the active border. Each bucket is of capacity b, which is the same as the bucket capacity of
the underlying quadtree block. Every element of the active border stores in its bucket the set of
active line segments that intersect the portion of the active border corresponding to this element.
For example, in Figure 10d, lines 4 and 5 are associated with portion (element) p of the active
border. A line segment is reported once it is first inserted in the active border, and is deleted once
its identifier does not appear in the neighboring quadtree block of an active border portion that
‘contains the line’s identifier. For example, when block B is processed in the quadtree of Figure 10c,
line 2 is deleted since it is entirely covered by blocks A and B which have been processed already..

When a block in the quadtree that corresponds to a leaf node is processed, the portion of
the active border that is adjacent to the block must be located. In [1}, a technique is described
that enables the blocks to be located in the active border in constant time. This is achieved by
traversing (and updating) the active border along with the quadtree traversal while passing and
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Figure 11: (a) Type-3 line segments with NW-SE orientation. (b) Type-3 line segments with
NE-SW orientation. :

stacking pointers to guarantee that the exact location in the active border is available (O(1) time)
Whenever needed, so that searching in the active border is entirely avoided. The reader is referred

to [1] for further details. Once the appropriate active border element is located, testing this element
for the existence of a line segment as well as as insertion and deletion of a line segment can each
be done in O(d) time which is really a constant or O(1).4

The size of the active set in the worst case is O(bT') where b is the maximum number of spatial
objects that can be stored in a quadtree block before it overflows (i.e., the bucket size) and T is
the width of the space comprising the underlying spatial database. In practice, it is expected that
the size of the active set is considerably smaller than O(bT'). Observe that it is guaranteed that the
active border buckets will never overflow since there is one-to-one correspondence between elements
of the active border and blocks of the underlying quadtree. Since each block can hold up to b line
segments, then at worst each bucket will hold the same number of line segments and hence cannot
overflow.

It is important to note that the above algorithm does not perform any disk I/O requests in order
to access the feature table. The reason is that none of the steps of the algorithm require knowledge
of the coordinate values of the end-points of the line segments. It suffices to know the existence
of the line segment identifier in the visited block of the underlying spatial database. In addition,
only the line segment identifier needs to be maintained in the active border. This is because lines
are regular (Class-1) and are parallel to the axes (Type-1). As we will see in the following sections,
this will no longer be true if we must be able to handle other class/type combinations. In the latter
case, we will need to know the coordinate values of the end-points of the line segment and hence
will need to issue I/O requests to the feature table to gain this information.

We also observe that the above algorithm works for lines that are parallel to the y axis, lines
that are parallel to either axis (i.c., Type-2 objects), as well as lines of NW-SE orientations {which
are a subset of Type-3 objects—see Figure 11a). As we will see in Section 6.3, line segments of
NE-SW orientations (the rest of the Type-3 objects—see Figure 11b) are more difficult. However,
the algorithm in Section 6.4 handles all of these cases in a uniform manner.

6.2 Class-2 and Class-3 Line Segments

The algorithm of Section 6.1 has been defined for Class-1 Type-1 line segments. It can be extended
easily to support some Class-2 and Class-3 line segments. In fact, for Class-2 Type-2 objects (and

*In some applications where the block or bucket size b is large, performing a linear search in O(b) time may be
too slow. In such a case, the objects inside each bucket can be sorted to achieve a better search time (e.g., O{log b))

within the bucket.

11




a4 Bl E a4 B|1 E a4 B|, E A4 B|; E
c D c D c D c D
F G F G F G F @

(a) (b) (c) (d)

Figure 12: Example illustrating the difficulty with Class-3 Type-2 line segments. (a) initial state,
(b) 1 is reported when block 4 has been processed, (¢} 1 is deleted when block B has been processed,
(d) 1 is reported again when block E has been processed.
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Figure 13: Class-3 Type-2 line segments. (a) initial state, (b) 1 is reported when block & has been
processed, {c) 1 is still considered active when block B has been processed (although it does not
overlap with B), (d) 1 is not reported when block E has been processed, and is deleted from E since
1’s end-point p lies inside E.

also Class-2 Type-1), the same algorithm applies correctly without any changes. For Class-3 Type-2
objects, a portion of a line segment can be hidden so that its absence from a neighboring block
of the active border does not imply that this line segment has been processed in its entirety, and
hence it cannot be deleted from the active border (see Figure 12). For this reason, the line deletion
mechanism in the algorithm of Section 6.1 does not work properly. In fact, if used, it may result
in a line segment being reported several times on account of its erroneous deletion from the active
border.

In order to avoid this problem, additional information must be stored in the active border for
each active line segment. When the identifier of a line segment, say 1 in Figure 12, is encountered
for the first time during the traversal, the coordinate values of 1’s end-points are retrieved from
the feature table. The end-point, say p, of 1 that has not vet been encountered by the traversal
is stored in the active border along with 1’s identifier. Now, if a neighboring quadtree block B is
visited, where B is a neighbor of the portion of the active border that contains 1’s identifier, then
we need to check whether or not p lies inside B. If yes, then 1 is deleted from the active border (1is
entirely processed by now). If not, then 1’s identifier is propagated into the portions of the active
border that represent block B. This process is illustrated in Figure 13. Notice that in this case, a
disk I/O request has to be issued to the feature table once per line segment in order to retrieve the
coordinate values of the end-points of the line segment. However, this is only performed once for
each line segment for a total of O(n) disk I/O requests for the entire algorithm.
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Figure 14: Example illustrating the difficulty with Class-1 Type-3 line ségments.

6.3 Class-1 Type-3 and Class-2 Type-3 Line Segments

The algorithm of Section 6.2 does not work for Type-3 objects (regardless of their class). For
example, consider the two lines 1 and s in Figure 14. This algorithm would report line segment s
more than once, i.e., once for each of the visits to blocks E and F. Since block E is encountered before
blocks F and G in the quadtree traversal, s will be first reported when block E is processed. When
block F is encountered, s will be reported again since s’s identifier does not appear in elements of
the active border that are adjacent to the western and northern boundaries of F. Notice that the
algorithm of Section 6.2 restricts the search of the active border in these two directions in order to
guarantee constant time access to the active border. In addition, line segment 1 is also reported
more than once—in fact, once for each of the visits to blocks C, D, and F. The problem is worse for
Class-3 line segments. '

In order to understand the cause of this problem we point out that it arises because of the nature
of the quadtree traversal that scans the underlying space in NW, NE, SW, SE scanning order. Any
line with an orientation from the NE to the SW quadrant (we term it a NE-SW orientation)
may be reported more than once. Recall that when processing a block, say b, of the underlying
quadiree, we restrict ourselves to accessing elements of the active border that are adjacent to the
northern and western boundaries of . Adopting this restriction enables us to access and update
the active border in constant time. In order to report lines with a NE-SW orientation just once,
- one possible solution is to traverse the underlying quadtree twice, once in the NW, NE, SW, SE
scanning order and a second time in the SE, SW, NE, NW scanning order [18]. Whenever a line
segment identifier is encountered during the processing of a quadtree block, say b, the active border
is accessed (actually, only the elements of the active border that are adjacent to the morthern and
western boundaries of b are accessed) to check if the line segment already exists. If the line segment
is not found in the active border, we retrieve it from the feature table and compute its slope. In
the second scan, we consider only the line segments with a NE-SW orientation, while in the first
scan we consider all the other line segments.

The two-scan approach has two factors that adversely affect the I/O cost and hence the overall
performance. First of all, the cost of the quadtree traversal process is doubled since the quadtree
is traversed twice. Second, for n line segments, the feature table is accessed nk times instead of n
times. The reason for the extra factor k is the need to check the orientation of all pieces of line
segments that are encountered. The problem is that during the first scan, when processing a line
in NE-SW orientation, each piece of the line may not be in the northern and western elements of
the active border that are adjacent to the boundaries of the current quadtree block. So, in order
to avoid reporting such a line, we must check its slope, which means that the line segment has to
be retrieved from the feature table. Observe that only the line-segment identifier is stored in the -
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quadtree block. The same problem occurs with lines in NW-SE orientation during the second scan.
This results in nk accesses to the feature table in the worst case.

An alternative solution to the Report_Unique problem for Class-1 Type-3 and Class-2 Type-3
line segments is achieved by adapting a variant of the algorithm described in [1]. That algorithm
computes the boundaries of regions in a region quadtree. We can adapt this algorithm to work
for line segment objects by treating the blocks through which the line segments pass as regions
with appropriate connectedness conventions. In particular, the variant of the algorithm reports the
coordinate values of the end-points of the line segment that passes through the region instead of
the boundary. This version of the algorithm executes in O(kn - a{kn)) time where a() is the inverse
of Ackerman’s function (a function that grows very fast and hence its inverse grows very slowly).
A nice feature of this algorithm is that it does not perform any disk I/O requests to the feature
table.

Note that the algorithm of [1] maintains the partial active border of a spatial object. This
information may not be needed in the case of Report_Unique, thereby suggesting that a further
simplification of the algorithm (from a computational complexity standpoint) may be possible. We
do not address this issue here.

The above algorithm works for Class-1 Type-3 and Class-2 Type-3 line segments. In fact, the
algorithm works for any type of object (not necessarily a line segment) as long as the object’s
pieces are connected and are not disjoint. In the following section we present a unified algorithm
that works for all Class-Type combinations and that achieves good performance in almost all of
the cases.

6.4 A Unified Algorithm

Our goal here is to outline an algorithm that performs relatively well for all the class/ type combi-
nations. We will concentrate on disk I/O complexity since it is the major factor in our case. The
idea behind the unified algorithm is three-fold.5

1. We report a line ! at the time / is deleted from the active border and not at the time it is
inserted into the active border (Figure 15). This involves storing the bounding box of [ in
the active border instead of the coordinate values of the end-points of . This is done in order
to accommodate lines with NE-SW orientation. One useful property of a Z-shaped traversal
for rectangular objects (e.g., the NW, NE, SW, SE order) is that by the time the block
containing the lower-right corner of the rectangle is traversed, it is guaranteed that all the
blocks of the underlying database that comprise the rectangle have already been traversed [2].
For bounding boxes containing line segments, regardless of the orientation of the line, once
the traversal of the database blocks reaches the lower-right corner of the bounding box, we
are sure that all the pieces of the line segment have already been visited during the traversal.
In this case, reporting the line at this point, and then deleting it from the active border,
ensures that the line will be reported just once since it will never appear again during the
traversal. :

"2. During the traversal process, we propagate the identifier of the line segment into the active
border as long as the corresponding bounding rectangle is not entirely traversed. This ensures
that regardless of whether the line is regular, clipped, or broken, the line segment identifier

5\We assume that we traverse the underlying spatial database as well as the active border simultanecusly in a NW,
NE, SW, SE order and that the origin is at the upper-left corner of the underlying space. o
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Figure 15: The algorithm reports a line segment after the line segment is entirely spanned by the
active border.
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Figure 16: A disk I/0 request is issued to access the feature table when the line segment identifier
is encountered in the traversal and is not found in the neighboring element of the active border.
Notice that lines with NE-SW orientations may issue redundant disk I/0 requests.

~will always be propagated in the active border until all the pieces of the line segment have
been processed.

3. We relax the restriction that we perform only one disk I/0 request to the feature table per
line segment. Although more than one access to the same line-segment in the feature table
. Is redundant, this will help in providing a new algorithm for the Class/Type combinations
that were not covered in the previous sections, mainly clipped or broken lines with arbitrary
orientation, i.e., Class-2 Type-3 and Class-3 Type-3 line segments. In addition, the algorithm
will still perform one disk I/0 request to the feature table per line segment for the simpler
classes (in other words we will not incur any increases in complexity because of adopting this
unified approach).

The algorithm (termed Unified) proceeds as follows:

.1. Traverse the underlying spatial database as well as the active border simultaneously in the
NW, NE, SW, SE order. : ' :

2. Maintain in the active border:

(a) the identifiers of the lines that intersect the active border or whose pieces have not yet
been entirely processed by the algorithm, and
(b) the bounding box of each line described above.

3. Report the identifier of each line ! when the block containing the lower-right corner of I’s
bounding box is reached, and delete {’s information from the active border.

Figure 16 illustrates the situation which arises when a disk I/O is requested for each Class/Type
combination given in Figure 15. Notice that only for the case of lines with a NE-SW orientation
will there be more than one disk I/O request. Figure 17 illustrates the worst case number of disk
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Figure 17: The maximum number of disk I/O requests that can arise for a line segment with
NE-SW orientation.

- 1/0 requests that are required with lines of this orientation. Observe that a disk I/0 request occurs
with every other piece in the object. Therefore, in the worst case [%] disk I/O requests are issued.
The unified algorithm performs a disk 1/O request even for the case of Class-1 Type-1 objects. In
order to avoid this, we add the following two exceptions at the beginning of the algorithm, resuiting
in this final version of the algorithm (termed Unified2) given below:

1. If all the line segments in the underlying spatial database are regular (Class-1) and are either
parallel to the z axis, or parallel to the y axis, or are of NW-SE orientation, then perform
“the algorithm of Section 6.1.

2. Else if the line segments in the underlying spatial database are regular or broken (Class-1 and
Class-2) and have arbitrary orientation (Type-3), then perform the algorithm of Section 6.3.

3. Else perform the algorithm Unifiedl.

Letting nyw_seg and nyg_sw be the number of lines with a NW-SE and NE-SW orientation,
respectively, we have the following disk 1/0 complexity for algorithm Unified2: ‘

o No disk I/0O requests for regular lines (Class-1) that are elther parallel to the z axis, or to
the y axis, or that are of an arbitrary orientation.

o n disk I/0 requests for clipped and broken lines {Class-2 and Class- 3) that are parallel to the
-z axis, or to the ¥ axis, or that have a NW-SE orientation.

. [ 2| nnE-sw disk I/O requests for chpped or broken lines (Class-2 and Class-3) that are of a
NE-S5W orientation.

The complexity of Unified2 is similar to the other algorithms presented in Sections 6.1-6.3 in addi-
tion to the fact that it handles broken lmes having a NE-SW orientation for whxch 1o correspondmg
algorithm is given in Sectlon 6.
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Figure 18: (a) The decomposition of rectangle r into its constituent quadtree blocks. (b) Block B
is decomposed after rectangle s is inserted.

7 Duplicate Elimination Algorithms for Rectangular Objects

Below, we present some implementations of algorithms for the Report_Unique problem that can
handle several class/type combinations of rectangular objects given in Section 5.2, and see how
these combinations affect the complexity of the algorithms. The rectangles are stored in a variant
of the region quadtree [8] which we term a rectangle quadirce. In particular, each rectangle is
decomposed into the quadtree blocks that lie inside the rectangle. For example, Figure 18a shows
the decomposition of rectangle r into its constituent quadiree blocks. We assume that the rectangles
need not be disjoint. We also adopt the restriction that each quadtree block is completely inside
all of the rectangles that overlap it. In other words, the case that only part of a quadtree block lies
in a rectangle is not allowed. For example, this restriction means that block B of Figure 18a must
be decomposed when rectangle s is added to yield the decomposition given in Figure 18b.

Our representation assumes that all the blocks that are internal to a rectangle store an object
- identifier which is an offset in a feature table where the upper-left and bottom-right coordinate
values of the rectangle are stored. As in the case of line segments, when a rectangle is clipped
(e.g., as a result of a window operation), the rectangle quadtree does not update the coordinate
values of the the clipped rectangle in the feature table. Notice that we cannot simply traverse the
feature table and report the rectangles that we find since not all the rectangles in the feature table
necessarily belong to the data structure in question.

It is important to observe that rectangles of the underlying spatial database are allowed to
overlap arbitrarily in space. Let ¢ be the maximum number of overlapping rectangles at any point
in space, i.e., for any block, there are at most ¢ overlapping rectangles. As we will see in the
following section, ¢ is also the maximum number of entries that can be stored at any given element
in the active border i.e., g plays the same role as the bucket size b in the PMR quadtree descrlbed

in Section 4.

7.1  Class-1 Type-1 and Class-2 Type-1 Rectangles

.Assume a collection of rectangles whose sides are parallel to the z and ¥ axes where some of the
rectangles can be clipped (Class-2) but are still of rectangular form. The algorithm traverses the
rectangle quadtree block-by-block and use the active border to maintain the active set of rectangles.
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Our goal for this Class/Type combination is not to perform any I/O to the feature table. In
this case, the only information at hand are the rectangle identifiers that are stored in the quadtree
blocks. We now show that this information is sufficient for this Class/Type combinations.

Rectangle identifiers are added to the active border when they are encountered during the
traversal, and propagated into the active border until all the pieces of each rectangle have been
visited. A rectangle identifier is reported at the time it is being deleted from the active border.
The problem is how to detect that a rectangle has been processed in its entirety when there is no
means for the algorithm to know the coordinate values of the end-points of the rectangle. In order
to capture this information, the algorithm needs to maintain some temporary information in the
active border to help it determine that the lower-right corner of the rectangle has been reached and
that the rectangle identifier can be reported.

For example, consider the rectangle r given in Figure 18a. We use Figure 19 to illustrate the
process of reporting its presence. Heavy shading is used to indicate that the block has already been
traversed. When block 4 is encountered during the traversal (Figure 19a), r’s identifier {associated
with A} is inserted into the active border. When block B is visited (Figure 19b), r’s identifier
is propagated into the active border. Upon encountering a western or southern boundary of a
-tectangle for the first time (e.g., when processing block € in Figure 19c¢) a special marker symbol,
say er, is associated with the active border element that led to the detection of this fact (e.g.,
adjacent to block C). Notice that e, is propagated into the active border when block D is processed
{(Figure 19d). As another example, we observe that a special marker symbol, say sy is added to the
active border element contiguous to block E (Figure 19¢) and is propagated into the active border
elements to the east of E, when their adjacent blocks in the database are processed. At the time
block F is processed (Figure 19f), the active border elements to the north and west of F will contain
the special markers e, and sy, respectively. This situation serves to indicate that we are through.
At this point, both e, and s, are deleted from the active border and r’s identifier is reported.

Notice that r is reported once all the blocks comprising r have been visited by the traversal
procedure. For example, in Figure 19{, at the time block F is visited, we are sure that all the blocks
inside r are already processed by the algorithm. This is because a NW, NE, SW, SE traversal order
is admissible [2].

As demonstrated here, our algorithm does not need to perform any disk I/0 requests to access
the feature table. The time complexity of this algorithm is O(nkq) which is proportional to the
number of object pieces in the database that are encountered during the traversal. Notice that the
factor ¢ is included becaunse all the procedures that access the active border perform in O(g) time,
as described in the introduction of Section 7. The space complexity is O(active rectangles), where
the active rectangles are the ones that intersect the active border at any given point. The worst
case size of this set is O(¢T"), as shown in Section 6.1. Notice that the algorithm works correctly
even if rectangles are clipped due to some intersection with a rectangular window (i.e., rectangles
of Class-2) as it does not depend on the actual coordinate values of the rectangle since it does not
access the rectangle entry in the feature table.

7.2 Class-3 Type-1 and Class-4 Type-1 Rectangles

Class-3 and Class-4 imply that the rectangles may have notches on them or may even comsist of
disjoint pieces. For these classes of rectangles, we cannot avoid accessing their entries in the feature
table in order to know the real extent of the rectangles while traversing them. Rectangle identifiers
will be propagated in the active border (regardless of whether we are traversing a part of the
rectangle or a clipped out portion of the rectangle) until the lower-right corner of the rectangle
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Figure 19: (a) When block 4 is processed r is inserted into the active border. (b} r is propagated
into the active border when block B is processed. {c) When block C is processed a special marker
symbol ey is inserted into the active border. (d) ey is propagated into the active border when block
D is processed. (e) When block E is processed a special marker symbol sy is inserted into the active
border. (f) r is reported at the time block F is processed and both e; and sy are deleted irom the
active border.
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Figure 20: (a)-(c) When the rectangle is first encountered a disk I/O request is issued to retrieve
the rectangle’s coordinate values. (d) Two disk I/O requests are issued whenever the upper-left
corner of the rectangle is clipped out (Class-3). (e) Although the rectangle is clipped from several
locations, only one disk I/O request is issued since the upper-left corner of the rectangle is not
clipped out (Class-3). (f) The worst-case disk I/O requests for Class-3 rectangles occurs when
many query rectangles clip out portions of the rectangle such that the upper-left piece of the
remaining portion of the rectangle forms a line segment of NE-SW orientation. (g) Redundant disk
I/0 requests are issued when the nupper-left piece of the rectangle is processed since the upper-left
corner of the rectangle is clipped out (Class-4). {(h) Only one disk IO request is issued although
the rectangle is partitioned into more than one d1530111t p1ece (Class-4). Notice that the upper-left
corner of the rectangle is not clipped out.

is visited by the traversal. In this case, the rectangle is reported by the algorithm and deleted
from the active border. This implies that the algorithm has to issue some disk I/O requests to the

feature table. The algorithm proceeds as follows:

1. Traverse the underlying spatial database as well as the active border simultaneously in the
NW, NE, SW, SE order.

2. Maintain in the active border:

(a) the identifiers of the rectangles that intersect the active border or whose pieces have not
yet been processed in their entirety by the algorithm, and

(b) the coordinate values of the end-points of the rectangles in (a).

3. When the block containing the lower-right corner of rectangle r is reached, report the identifier
of r, and delete r’s information from the active border.

Figure 20 illustrates the locations at which a disk I/O request is issued and when a rectangle is
reported for several possible rectangles in Class-3 and Class-4. Notice that for Class-3 rectangles,
one or more disk I/O requests can be issued. For example Figures 20a—c and e have only one
disk I/O request, Figure 20d has two disk I/O requests as the upper-left corner of the rectangle is
clipped-out, while Figure 20f has many disk I/O requests. For Class-4 rectangles, more than one
disk I/O request is possible (e.g., Figure 20g) depending on the number of blocks in one of the four
line segments of the window boundary that has a NE-SW orientation and is closest to the origin of
the underlying space. Notice that for Class-4 rectangles, if the upper-left corner of the rectangle is
not clipped out, then only one disk I/O request is issued regardless of the number of disjoint pieces
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of the rectangle (e.g., Figure 20h). Since the upper-left corner of the rectangle is processed first, a
disk I/O request is issued to the feature table and the coordinate values of the end-points of the
rectangle are made known to the active border. This helps avoid any further disk I/0 requests.

Observe that this is not the case when. the upper-left. corner.of the rectangle.is-clipped- out (g,

Figure 20f).

Figures 20f and 20g illustrate the cases where the maximum number of disk I/0 requests for
Class-3 and Class-4 rectangles can be generated, respectively. Let k4, be the number of blocks
in the edge of the window with a NE-SW orientation that is closest to the origin of the underlying
space. Then, the maximum number of disk I/0 requests to the feature table for Class-3 and Class-4
is [55“&2@&] This is similar to the case of line segments with a NE-SW orientation, illustrated in
Figure 17.

The algorithm described above is similar to algorithm Unified2 of Section 6.4. Therefore, in
order to make jt work for all classes and still avoid performing disk I/0 requests for Classes 1 and 2,
we check for these cases explicitly at the beginning of the algorithm.

It is worth mentioning that the task of uniquely reporting spatial objects is different from
that of connected component labeling [15, 16]. In the Jatter task we are interested in assigning
2 unique identifier to each four- (or eight-) connected region in the underlying space. Although
in Section 6.3 we were able to adapt one of the connected component labeling algorithms (f1]) to
perform as Report_Unique, this is not generally the case. The principal difference is that, generally
speaking, the inputs of the two tasks are different. More specifically, in Report_Unique we can
always perform a disk I/O request to the feature table and retrieve the object’s exact description.
This information is not made available to the connected component labeling algorithms. In fact,
the main purpose of the connected component labeling algorithms is to build the object’s exact
description from the local information given in the underlying space.

As a result of the difference in the nature of the type of input and the goals of the two tasks,
their complexities are different. For example, Figure 21 demonstrates the worst-case complexity
for the connected component labeling algorithm (measured in terms of the new labels that have to
be introduced). On the other hand, the shape of the region in Figure 21 does not represent the
worst case disk I/0 complexity for Report_Unique. In particular, only two disk 1/0 requests will
be issued (i.e., when blocks A and B are visited). The worst case number of disk I/O requests for
Report_Unique for clipped-out rectangles (Class-3) is given in Figure 20f. Notice that having a saw-
tooth-like shape (e.g., as in Figure 21) does not change the worst case since at block B of Figure 21,
a disk I/O request is issued to retrieve the exact description of the rectangle from the feature table,
and this description will be propagated in the active border in the eastern and southern directions.
This will cover all of the saw-teeth to the east and south of block B, thereby obviating the need for

additional disk I/O requests {e.g., at block C).

7.3 Rectangles of Type-2

In order to ensure that rectangles of arbitrary orientations are reported only once, we maintain
their rectilinear bounding box in the active border (Figure 22a} and report the rectangle identifier
once the lower-right corner of the bounding box is covered by the traversal. This is similar to the
approach given in Section 6.4 when dealing with lines of arbitrary orientations. The number of disk
- 1/0 requests to the feature table is proportional to [-]*-"‘“gm] , where kg1 is the number of blocks
in the line segment of the window boundary with a NE-SW orientation that is closest to the origin
of the underlying space (Figure 22b). Notice that once this set of disk I/O requests is issued, the
algorithm does not need to access the feature table again since the propagation of the rectangle
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Figure 21: Sample image of size 8 X 8, which results in the generation of a maximum number of
equivalence pairs for the connected component labeling algorithm. -

O

) ‘ (0)

@ =disk I/O request

Figure 22: (a) A bounding box is stored in the active border for rectangles of arbitrary orientations
(Type-2). (b) Several disk I/O requests occur when processing the line-segment closest to the origin
(the upper-left corner of the underlying space).

identifier and coordinate values in the active border will help avoid any further disk I/O requests
to the feature table.

8 Conclusion and Future Research

Tables 1 and 2 represent a summary of our results. They show the different complexities of the
algorithms developed for the-class/type object combinations that we explored. As we can see,
duplicate elimination using the spatial characteristics of objects is a challenging problem. In par-
ticular, using the spatial characteristics of the objects enables us to adapt techniques used with
hashing. For example, we were able to reduce the number of disk I/ O requests (e.g., in comparison
to O(nk) disk I/O requests when using hashing), sometimes to O(n) or even 0 which is a significant
improvement. In addition, by using the extent and proximity of spatial objects we were able to
detect when an object is no longer needed in the active border data structure (analogous to a hash
table), and hence we were able to bound the size of the table. Future work involves developing bet-
ter algorithms for other class/type combinations, classifying spatial objects besides line segments
and rectangles in an analogous manner as well as developing algorithms for them, and conmdenng
other spatial data structures that partltlon objects besides the quadtree variants.
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Table 1: Summary of time and space worst-case complexity of Report_Unique for class/type com-

binations of line segment objects. a() is the inverse of Ackerman’s function.

Type-1 Type-2 ‘ Type-3
Class-1 O(knr) cpu, no ifo O(kn} cpu, no /o O(kn - e(kn)) cpu, no ifo
O(T") space, O(T) space O(T) space
: O(active objects) avg. space | Ofactive objects) avg. space O(active objects) avg. space
Class-2 O{kn} cpu, no ifo O(kn) cpu, no ijo O(kn - ¢(kn}) cpu, no 1/0
C(T) space O(T) space O(T) space
Ofactive objects) avg. space | Ofactive objects) avg. space O(active objects) avg. space
Class-3 O(kn) cpu, n ifo O(kn) cpu, n ifo O(kn) cpu, nnw_se + [£]nne-sw i/fo
O(T) space O(T) space O(T) space
Of(active objects) avg. space | Ofactive objects) avg. space Ofactive objects) avg. space

Table 2: Summary of time and space worst-case complexity of Report_Unique for class/ type com-

blnatlons of rectangle objects. a() is the inverse of Ackerman’s function.

Type-1 Type-2
Class-1 Of{kng) cpu, no ifo O(kng) cpu, [5“-5“1‘-.]11 ifo
Q(¢T) space, O(gT) space
Of{active objects) avg. space | Ofactive objects) avg. space
Class-2 O(kng) cpu, no ifo O(kng) cpu, fﬁ"-gm‘-]n ifo
O(gT) space, O{¢T) space
O(active objects) avg. space | O(active objects) avg. space
Class-3 | Ofkng) cpu, [2udth]y ifo Of(kng) cpu, fﬁ-',_;'m-]n ife
O(¢T) space 0(¢T) space
Olactive objects) avg. space | Ofactive objects) avg. space
v | Class-4 | O(kng) cpu, [Extthin ifo O(kng) cpu, [E=d]n ifo
O(gT) space O{gT) space
O(actlve objects) avg. space | O(active objects) avg. space
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