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Abstract . _

Selectivity factors for some widely used spatial operations are defined in the context
of spatial data structures that partition spatial objects into more than one piece, In
relational databases, a sclectivity factor helps estimate the size of the olitput relation
(i.e., a one dimensional selectivity factor). On the other band, spatial data sets and spa-,
tial operations require selectivity factors of higher dimensionality (e.g., two-dimensional,
selectivily factors). Two types of selectivity factors are defined for spatial bperations:
the object-gelectivity factor and block- {or piece-) selectivity factor, which estimate the
number M.un objects and object-pieces, respectively, that result from a spatial operation.
Both factors are useful for cost-based spatial query optimization purposes. The spatial
operations considered are window intersection and spatial join. Formulas for estimating °
both types of selectivity factors are derived for each of these spatial operations. The
selectivity formulas are functions of simple parameters that characterize the underlying
data sets as well as characterize the issned user query. These paratmeters are computed
by preprocessing the data sets. The validity of the formulas is verified experimentally
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1 Introduction

As a first step towards query processing and optimization of spatial queries, we need to
estimate the cost as well as the cardinality and size of the output of spatial operations.
In this paper, we focus on ways of estimating only the cardinality and size. Tradition-
ally, in relational databases, a selectivily factor serves this purpose, mainly it is useful
for estimating the cardinality and size of the output relation (i.e., a one dimensional
selectivity factor). Here, we wish to address the problem of defining and estimating
selectivity factors for some commonly used spatial operations in an integrated database
environment. «

Spatial data sets and spatial operations require selectivity factors of higher dimension-
ality (e.g., two-dimensional selectivity factors). One way to go around the dimensionality
aspect of spatial data is by using data representation methods that map an p-dimensional
spatial object into a sequence of simple oliject-pieces, each of which can be described by
a one-dimensional description and stored separately inside the data structure, In dealing
with data structures that decompose an o_c....m.. into more than one piece, we propose
in this paper two complementary ways of defining what a selectivily factor is: Object-
level selectivity factor (05) and picce-level selectivity factor (PS), which estimate tle
number of objects and object-pieces, respectively, that result from a spatial operation.
The object-level selectivity factor is useful in determining the cardinality of the objects
resulting from a given operalion, whercas the piece-level selectivily factor is useful in
determining the size of the output of Lhe given operation (since the number of output
pieces determine the size of the output). In this paper, we present estimates of both
selectivity [actors for some widely used spatial operations.

An important question that we address in this paper and that arises when adopting
a cost-based approach for optimizing queries in spatial databases is the following: what
are appropriale statistics that can be gathered from the underlying spatial database that
cayy be useful for predicting the cost of a given typical set of spatial operations? It is
important to note that a useful set of statistics should reflect, not only a characterization
of the underlying database, but also a characterization of the underlying representation
of spatial d «# s and the underlying access methods. For example, regarding datatypes, the
statistics gathered to optimize queries for a spatial database of points may be different for
those for 2 spatial database of lines, or polygons. With respect to data representation,
sthtistics useful for methods that represent spatial objects by one entity (e.g., a two-
dimensional rectangle represented by a point in four-dimensional space) may be different
from those that are useful for methods tlat represent spatial objects by more than
one entity (g.g., a polygon represented by partitioning it into more than one piece,
each of which is of simpler shape). Finally, with respect to access methods and data
organizations, statistics that assume a grid-like data structure (e.g., the Grid File (3])
may be different from those that assume a tree-like structure (e-g. the R-tree [2]).

An important issue _.,rwn is closely related to spatial database modeling for query
processing n_r:_ optimization purposes is that of the distribution of objects in space. Some
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knowledge of the data distribution of the underlying uvwmmw_ ._w..mv.ﬂwa m.m E..ﬁ:_w..o_,w. in
order to guide in selecting sound statistics for query ~=.ommmm_=m.w=._ ov:BEw.:o: purposes
as well as it affects the types of the parameters selected..]n addition to r.ﬂ:::.n. §m.‘o=m__.<
distributed data sets, we also approximate data sets that have a non-uniform distribution
by using a piece-wise uniform distribution. We studyithe mﬂmn»?au.a% of our .u._u._:og..n_—
for modeling real as well as synthetic data uo»a for query processing and cm::.:nwrcu
purposes. , m _ ,
The rest of the paper is organized as follows. Section 2 presents our E.o_uouma.nrﬁ.vn.
terization of the underlying spatial data set. !Section 3 presents formulas _.w.. m.m-.._ﬁwsnm
selectivity factors of the spatial operations: window intersection and m_.w:u.__ join. Sec-
tion 4 presents our experimental setting for estimating selectivity factors as well as the
experimental results using both real and synthetic data sets, while n@:..-.mm::m the mea-
sured selectivily factors with the developed formulas. Section 5 contains concluding
remarks, S ' oy ! Sy

l !. ..1 )
t o .

M
‘
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2 Parametric Characterization of »r».ﬂu&ﬁ.ﬁ:ﬂ..mvaﬁ& Uw»wvwn..n

In order to obtain meaningful estimates of selectivity factors, i.e., ones that are a—.oao to.
reality, we would like to know more about the underlying spatial ,mwowvmum. In particular,
we need to know about the characteristics and parameterization of the spatial objects
in the database as well as the way the underlying spatial o_u..,_mnﬁ.. are represented and

organized inside the database. :

There are several ways of knowing the characteristics of z.a.,:,uiazﬁsn data set, e.g.,
by gathering statistics. However, until now it is not clear sww»_mnwnmmmmu are useful for
spatial query optimization purposes. So, it is premature to follow the statistical approach
since there is no consensus yet about the useful parameters. As a result, m=, this paper,
we assume a simpler approach. Mainly, we assume that we will Jm allowed to preprocess
the underlying spatial database by scanning it in one pass and to gather full information
about the parameters of interest to us. '

In selecting parameters for characterizing spatial datahase, our goal is niono_.m_.* The
first, and obvious, goal is that these parameters have to be useful in ?d.s&:« estimates
of the selectivity factor and the cost of spatial operations, and hence in helping as a
guide for query optimizalion. Second, these parameters should be easy to maintain if
the underlying spatial database is updated.' Sample parameters that can be mpmraqﬂ
in one preprocessing pass of the underlying database are the number of objects in the
"database, the total area covered by the objects in the database, the average area of the
objects, the E«Bc.ﬁ. of blocks in the database, ete. I .

Regarding the representation and organization of spatial data, as we mentioned in. -

Section 1, we focus on data structures that divide spatial objects into simple _.mmmmu nm.m...u
rectangles). In order to have a concrete model of the spatial database, we honﬁ.mu one
type of data structure that partitions a spatial object using regular decomposition of
space (i.e., the Z-Order [4, 5}, or the linear quadtree [1, 6]). In this data structure, a
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Figure 1; An example quadtree decomposition of a polygen.

spatial object is _.f:.aun:pﬁ_ by a set of blocks that collectively approximate and cover
the object’s internal region. For example, Figure 1 gives the quatsee decomposition of a
simple polygon into the quadtsce blocks (termed Morton blocks in the case of the linear
quadtree, or Z-elements in the Tmm of the Z-Order) that are internal to the polygon. For
the rest of this paper, we will assume that all the objects in the database are decomposed

in a similar manher.
L

Assuming the above data structure, we precompute the following parameters during
our preprocessing phase:

¢ NOy: the numbet of objects in the database,
o NBy;: the number of object-pieces in the database,

. 9.". the total area covered by the objects in the database (also termed the area
coverage),

* Xavpr Xain and Xpg,.: the average, minimum, and maximum width, respectively,
. of the minimum bounding rectangles of the objects in the database,

..5:._.,5; and Yps: the average, minimum, and maximum height, respectively,
* of the minimum bounding rectangles of the objects in the database,

¢ NBjy,: the average number of blocks per object in the database.

® Aspsce: the area of the underlying space for the entire
spatial database,

L]
We will use several of these parameters in the following section to estimate the cost
of some common spatial operations. The rest of the parameters are useful for other
operations, e.g., window containment.

Notice that the above parameters can be computed differently depending on the
underlying spatial data distribution. For example, if the data is uniformly distributed,

then the parameters can be computed over the entire space. On the other hand, in the
case when data is non-uniforinly distributed, the database is divided into a coarse uniform
grid. When the database is preprocessed, the parameters are cvaluated for each grid cell
separately, This results in a two-dimensional array for,each computed parameter, where
the value stored in each entry of the array cotresponds tp the vajue of the parameter
at the corresponding grid cell of the underlying database. For a given spatial operation
that queries (or overlaps) a certain grid cell of the database, the parameters of this cell
are the ones used by the oplimizer to estimate the cost or selectivity factor of the given
operation. We do not address this topic any further in the __u...__ﬂn.
1

3 Estimates of Selectivity Factors | '

In this seclion, we assume that objects in the spatial database are represented by their
internal regions msing the Z-order [4, 5] or the linear quadtree [1, 6] data structures.
Although these data: structures are capable of representing objects of a wide variety of
data types, in this section we limit our discussion to spatial objects that are of type rect-
angle. Formulas for estimating the selectivity factors of other data types can be derived
analogously?. We compute the object-level as well as block-level selectivity factors for
some commonly used spatial operations, namely, window intersection and awu.at Jjoin.
Notice that, even if we assume that objects are distributed uniformly in space (e.g., in
the uniform model), it is not necessarily true that the object pieces that cornprise the in-
ternal region of the objects are distributed uniformly in space. For example, if 2 database
of rectangles is distributed uniformly in space, then the Z-elements or the Morton blocks
that approximate each rectangle will be clustered around that rectangle, and hence the
set of biocks that correspond to the whole database is not uniformly distributed.
: . j . Ce

f e . . ]

3.1 The Window Intersection Operation . co

. : T S
The object-level selectivity for the window intersection operation, denoted OS,, is de-
fined as the number of objects that intersect a given window. Assume that we are given
a window, say w, with total area, say A,, and width and height, say X, and Y,,, re-
spectively, and a spatial database, say db, of NOy objects, each of type rectangle, that
lie in a space of area, say Aspece. Given one object o € dl, with, total area, say A,, and
width and height, say X, and Y,, respectively, then the probability that w intersects o
is computed by (refer to Figure 2): © . ' ' : . t

1

_ '
(Xuw + X (Yo + Yo)
Lminnu Cod

Probability(w intersects o) =

Notice that if w is a point, then X, = u\s.u Aw = 1. The above probability ,_.S.«.E_u.

s e

In faet, for the purpose of query I ion, other objects can be approximated using their min-
imum bounding rectangles. Then the formulas in this ion:can be applied for spatial databases of
other data types, e.g., the polygon data type. !




Figure 2: The rectangles w and ¢ intersect if and only if the upper-left
corner of w (point p) lies anywhere inside the shaded rectangle whose sides
are Xy + Xpand ¥,y + Yo

#oEu for all oEan..a in db. m====:.m for all objects in the database,

M AX + kcv:.: + u~ V

Q.WE = 20;— oEdb b.wvenu
= Cu+Cu + u\E\xuxeu + \4...*\;«»
- .N 0& b.w!-nn

irana Qs = NLF.. and X4y, Ez_ Yay, are the precomputed average width and height

Space

of all the objects in the underlying spatial database.

In order to compute the block selectivity of the window intersection operation, we
follow a slightly different approach., We cannot just apply the above formula by replacing
_the rectangular objects by the object-blocks and sum over all the blocks in the database.
The reason is that the set of all pieces composing the objects is not uniformly distributed
over the entire space. The objects themselves are, bul the object-blocks are clustered
around th' ‘.niformly distributed objects. Thus we cannot generalize the above formula
for object pieces as well. Instead, we proceed as follows: First, we compute the average
area of intersection, say Aq, between the query window w and an arbitrary object, say
o0, in the database. Then we estimate the number of the object-blocks in Agw and sum
the result over all the objects in the database. From Figuse 2, the upper-left corner of w
is equally likely to be at any location inside the rectangle [ Xu, Xy + X4} X [V, Yio + Vo),
i.e., with probability Qﬂﬂﬂwﬁa To compute the average area of intersection, we
integrate over all possible values of z and y inside the rectangle [ X, Xo+ Xo} % [V, Yo +
Y,] and compute the area of intersection in each case and muitiply it by its probability

of accurrence, we get: )
A = Awhe

T (Xt X )Y 4+ Yo)
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From A,., we can estimate the number of intersecting oEm.n_.._w_On_mm. say NB,y,, as:

T,

Summing over all the objects o in the database and multiplying by the probability of
intersection between each o and w, we can estimate the Eonr uannrsc. of the window

intersection operation as follows: . Cor =
1 Q..+k..x<e+§ _
BSe = NB
h NBy am__ hm.vsnn . o
- \—.: : '
- hhvnnn

3.2 The Spatial Join Operation. . W ..

In joining two sets of olijects using an intersection predicate, the object-level selectivity
denoted OS;, is defined as the number of intersecting pairs of objects from the two
sets. One way to compute the spatial join selectivity factor OS; is to nga:._o_. one of
the two input streams of the spatial join as the underlying mwnwrumm and to consider
the other input stream as a source for query windows (i.e., the inner component of the
spatial j join is the underlying spatial database and the outer component is a set of query
windows). This enables us to utilize the selectivity formula for the window intersection
operation described in Section 3.1 and to sum over all the windows w in the outer input
stream. This results in the following {as in Section 3.1, we assume-that the objects in
the underlying spatial database are approximated by their enclosing rectangles resulting
in a spatial database of rectangles):

: ) Kot X)Fut¥) -
0§; =
’ 2°L—s 20&—& EMML: QMU bhﬁnon

R

By summing and simplifying, we get: o

Cus, + Cas, +§.§:S¢_ + Xav2 Yoy .
- NOu,  NOu, o Aspaee "

Notice that the roles of dli; and dby are symmetric in the above formula. .

os; =

We can compute the block selectivity of spatial join BS; as follows. Assume that
objects w and o belong to diy and dby, respectively. We estimate the average area of
intersection (A, ) between these two objects in the same way as in Section 3.1. Now,
we compute the pumber of blocks of each object that overlap with A,,. Let these be
denoted by N4,,, and NBy,. The maximum number of pairs of intersecting blocks is less
than NB,,, + NBy, (e.g., Figure 3d where it is 3. and in the best case, it is greater than
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(d) . {0)

' Figure 3: (a)-(c) A decomposition of three rectangles into quadtree blocks
that cover the internal of the rectangles. {d) Although the number of
blocks inside the intersection region is 3 blocks in each rectangle, there
are 4 ?K:nn_m:n pairs of blocks, (e) The best case oceurs when all the

. blocks in one rectangle intersect just one block in the other rectangle,

or equal to max(NBoy, NBiw) (e:g., Figure 3¢ where it is 2)3. We define BS;_maz and
h.m.u..soui as the block selectlvity for spatial join in the best and worst cases, respectively.
They can be éomputed by summing over all the objects o and w in the two input streams
and in each cise multiplying the number of estimated intersecting pairs by the probability
of intersection between o and w. This results in the following estimates:

N 1 (X + Xo)(Ye + V)
BS. NB.., + NB
. Hj-tolal NBu,NBu, EmM&_ o‘mu ASpace (Ve w)

' 1 Auﬂ_e + *uvcne + u\av
BS:. = 1ax(NB,y, NB
I T0j-maz NBu,NBa, SmM.: ..mm. Aspace (N Bows VBue) .

-

where NB,,, and NB,, are defined and computed as in Section 3.1 (The formula for
NB,, is the same as the one for NB,,, once the roles of 0 and w have been interchanged).
Notice that the actual value of the block selectivity of spatial join, BS; lies somewhere
between BS; ;.. and BS; 4000 e, .

v L. 5
. , B5;.maz £ BS; £ BS;gtai

.u< substituting the estimated values of NBy and NB., in the formula for computing

*Notice that the worst case of overlaying n and m blocks ix nm. However, because of the restrictiveness
of the quadtree recursive decompesition of space, blocks cannot intetsect each other arbitrarily; they can
either coincide in space or one block can contain the other. As a tesult, the worst case is reduced to
ntm-—]
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P&.&&E. sutmning, and sitnplifying, we get:

Cu Ca
BS. = Rl g S8
'j-total , 2.%&: _Zm&n

It is difficult to get a closed form expression for m.w. ;

.of the maximumn of pairs of blocks. lowever, since B, jesnaz

S “ B
b !
FN '

-maz SINCE it depends on the sum

serves as'a lower bound for

BS;, we can replace the formula for S i-maz VY.a further lower value 5% mag Such that
. C \

- e
'

" BSjpyaz is defined as follows: . i

o T i
wmu..:::.. < w,m..w..-aaa < BS; < b.w..«ouﬁ : k

¢ f

| 1 {

DS ngz = Su.iw.mu..::.n? m.mu..::c:y wherq ' - ! ...
- M " - lqm " )
BSjinazs = (X + Xo)(¥io + ¥o) .
d 2@&. NBu, EmMs—. ommn " ASpace NBow, ga— :
BS, - 1 (Xt Xo)(Y +Y,) _
'j-maz? NBys.
. - NBy, NBy, EWU.. oWu: ASpace Buo o

Notice that wm imaz < mh.m.au.n since

' EEAMU MPMMUSM MUMJ?R?.S

SEAMCE aEAbcH aEAbER
By substituting the formulas for NB,, and NB,,, we get:

_ C
S, AL
' :Eu« NB a,

< Ca .
BS;, =il
J-maz2 NBy, .,

Therefore, '

- Ca C,
BS, = by _-dbp
J-maex Bp.x;\mgt "NBu, )

The number of output pairs of blocks can be estimated by multiplying BS
E._mw.__ﬁi by the Cartesian product NB4, x NB 4, (according to the definition o
selectivily factor, where the Cartesian product of the two input data se

to be the maximum size of the input). 1
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. The purpose of our experiments is to verify the significance of the derived formulas for - 12000 \.“\. “ 120 i 3
estimating selectivity factors under varying conditions. Due of the limited space, we _e.m.m y/4 _ ﬁ i E:
o_:v._ present the results of testing the spatial Jjoin operation. Experiinents are conducted LM y/4 , : 0.60 “
using real as well as synthetic data sets. The real dala sets were built from Tiger/Line 0.00 \\ , R4 ; N
files which describe road networks of cities, counties, and states of the United States 2000 ' ~ - : A i
of America. The synthetic data sets are collections of rectangles that are randomly 000 e ; * 3 = Ervenge !
generated. Each rectangle is then decomposed into its corresponding constituent pieces . > o 200 ' _ 1 Pom o I_.maa.w 1 pﬁm' " .V :

t  (in our case, the pieces are the Morton blocks inside each rectangle). Notice that since (2) Coverage = 1% (Ist stream). T ( .~ o<,o§%n i b (e ,..m,wmu.:ﬂ ’ *

. the generated rectangles can possibly overlap, so will the Morton blocks. Recall that in Number of Objects 3 107 . Nember of Blacks 110° S K
the context of rectangular data sets and the spatial join aperation, the object selectivity ».0 Erimaied oo Toul
is an indicator of the number of pairs of intersecting rectangles while the block selectivity A0.00 \\ A e : d ) EY
i an indicator of the number of pairs of intersecting blocks, ' M“ /L 100 : \

1 M0} \\\\ ' ) - \

4.1 Experiments with Synthetic Data M.“ /4 _ % :

1850 L : 00 : \

The syntheticd data sets are characterized using several parameters. These include the 16.00 - \\ v

number of objects in the database, the average sizes of the objects, the area of the 14.00 /4 .30

underlying spate, and the area coverage of all the objects. Mainly, these parameters, ”M.M y/d :

among others, are the ones suggested and discussed in Section 2. In this seclion, we only ! 2.00 VA 1o

study the variation in the area coverage. ‘ 600 \\_\ 0.30

We verify the estimates for e spatial join operation that were derived in the previous ! “S i
section as follaws. We generate 10 sets of random reclangles with the same parameter _ 0.00 Area 000 Area
setting PS5 (in bur case, the area coverage). We call the 10 sets a master data set, and ‘ 0.00 1.00 200 Ve 0.00 1.00 2bo S
denote it by MDSps. To measure the selectivity factor for spatial join for a pair of ! (c) Coverage = 100% (1st stream). ' (d) Coverage = 1% C_._n stream).
parameter settings PS; and PS,, we ran the following experiment: each set of rectangles _ 3 ? _ A
in MDSps; is joined with each set of rectangles in MDSpss using spatial join. The * Pmben of Plockyx 10 T b oA 0 nTow
number of output pairs {object-pairs as well as blbek-pairs) is measured, summed and , " s © 3s0m A4 [Veameea
averaged (by dividing it by 100, which is the total number of times the spatial join was » \ oM a \ S i
executed fo * uis experiment). For our experiments, we fixed the area of the underlying 30.00 ' 300.00 -
* space to be always 512 x 512. We verified our estimates with the measured selectivity _ \ . ' ' \
factors while varying the area coverage of the input streams, | 0 , B ! \
Figutes da, 4b, and 4¢ compare the estimated value of the object selectivity factor 4 2000 \ % . T 14
for spatial join against the measured value. The area coverage of the first input stream is _ /| 1 . . -/ \ el
fixed at 0.01, 0.10, 1.0, respectively, while the area coverage of the second input stream i Bl - ] ' 15000 ' J - g :
varies from 0.01-2.0, . : 10.00 \ = ' 100.00 \ A '
Figures 4d, de, and 4f compare the estimated valne of the block selectivity factor for w : \ < ~ , o \ \ " _
spatial join against the measured value. The area coverage of the first input stream is o . : o ’ 00 ......u.. o i
fixed at 0.01, 0.10, 1.0, respectively, while the area coverage of the second input stream ., 0.00 A ' 000 y
varies from 0.01-2.0. The two estimates for block selectivity presented in Section 3.2 . . Cege 70 Coerge
are plotted. As expected, the measured value is greater than Est-Max and less than v Y ™ e ¢ 2
Y () Coverage = 10% (1st stream). . . {f) Coverage = 100% (1st stream).

! t R 1
_ Figure 4: A comparison of the measyred vs. the estimated object selec-
tivity (a, b, and c), and block selectivity (d, e, and f) for the spatial joih
] , operation. The data coverage of the first input stream of the join is'(a)
' 1%, (b) 10%, (c} 100%, (d) 1%, (e) 10%, and (f) 100%. The x-axis
corresponds to the data coverage of the second input stream. '
40
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(a) Baltimore (b) Williamsburg

Figure 5: A sample of the Tiger/Line spatial databases used in the exper-
iments.

Est-Total ?—:,umm correspond to BS;,,, and BS,,,,, defined in Section 3.2, respectively).

etal
From the figures we can see that our estimates form an upper bound of the measured
values. The maximum error between the two values is less than 30%, although in most
cases it is much less.

4.2° Experiments with Real Data

We used th- Tiger/Line databases (a sample is given in Figures 5a and 5b), We spatially
Join each par of the Tiger/Line files together. The size of the underlying space for all the
Tiger/Line data sets is normalized to 512 x 512. For each line segtment in the Tiger/Line
database, we constructed the line's minimum bounding rectangle. Each rectangle is then
decomposed into its corresponding constituent pieces (in our case, Morton blocks). These
data sets help verify our estimates for non-uniform distributions of objects in space.

!' In the case of estimating object selectivities, over 80% of the spatial joins petformed
had their estimated value of the object selectivity factor lie within 30% of the actual
measured value, and 71% of the joins had their estimated value lie within 25% of the
actual measured value. For block selectivity estimates using BS;_otap over 80% of the
join operations performed had their estimated value of the block selectivity factor lie
within 30% of the actual measured value and 71% had their estimated value lie within
25% of the actual measured value. When using DS i-maz OMY 43% of the join operations
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, . _ _ _
performed had their estimated value of the block selectivity factor lie within 30% of the
actual measured value and 67% had their estimated value lie within 40% of the actual
measured value. Therefore, the experiments show :.wm BS; 1otal 18 @ better estimate
for the block selectivity factor than DS ..:.._u.“v*.osmér all three estimates are certainly
good enough to be useful for query optimiation purposes. The experiments also show
that our formulas for estimating the object and bLlock selectivity factor for the spatial
join operation perform quite well for real data sets, given the non-unifofmity in the
distribution of the objects in the underlying space of these data sets.

‘ 1 ' S : .
"
5 Concluding Remarks T B , Ty
I . . .

f . v 1

In estimating selectivity faclors for spatial operations, several factors must be considered:

the nature of the operation and the distribution of the objects in the underlying data set. '

Techniques for estimating seleclivity factors in spatial databases differ from those used
for relational databases, One major difference is the dimensionality of the data, As a
result, two types of selectivity factors were introduced and were estimated in this paper:
object-level, and block-level selectivity factors. The object-level selectivity formulas that

were given in the paper apply regardless of any underlying data structure used. On the

other hand, the block-level selectivity formulas are geared towards data structures that
partition an object into more than one piece. Although demonstrated for this class of
data structures, a similar framework can be modeled for other classes of data structures.
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