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Using Topological Sweep to Extract the Boundaries of
Regions in Maps Represented by Region Quadtrees1

M. B. Dillencourt2 and H. Samet3

Abstract. A variant of the plane-sweep paradigm known as topological sweep is adapted to solve geometric
problems involving two-dimensional regions when the underlying representation is a region quadtree. The
utility of this technique is illustrated by showing how it can be used to extract the boundaries of a map
in O(M) space andO(Mα(M)) time, whereM is the number of quadtree blocks in the map, andα(·) is
the (extremely slowly growing) inverse of Ackerman’s function. The algorithm works for maps that contain
multiple regions as well as holes. The algorithm makes use of active objects (in the form of regions) and an
active border. It keeps track of the current position in the active border so that at each step no search is necessary.
The algorithm represents a considerable improvement over a previous approach whose worst-case execution
time is proportional to the product of the number of blocks in the map and the resolution of the quadtree
(i.e., the maximum level of decomposition). The algorithm works for many different quadtree representations
including those where the quadtree is stored in external storage.
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1. Introduction. Efficient processing of geometric data is an important issue in com-
putational geometry, computer graphics, image processing, geographic information sys-
tems, VLSI design, etc. The algorithm and problems frequently depend on the nature of
the data and, most importantly, on its representation. One of the most popular problem-
solving paradigms is that of plane sweep [3], [10], [17], [18], [20]. It attacks the problem
in two stages. The first stage organizes the data using techniques such as sorting (e.g.,
rectangle problems [9]), arrangements [11], quadtrees [19], etc. The second stage sweeps
a line or a topological equivalent through the result of the first stage, and performs the
operation in a more restricted setting (e.g., on a subset of the data).

By organizing the data in the first stage, we are often able to reduce the necessary
computation by a dramatic amount since the irrelevant data can be pruned from the
search space. In applications involving geometric data, the search space can be large on
account of its size (i.e., the area spanned by it). In such a case the physical organization
of the data may also play an important role in evaluating the efficiency of the solution.
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For example, if the data is stored in external storage (e.g., on disk), then we want to
pursue a solution strategy that minimizes page faults. This means that the organization
of the data imposed by stage one should be tightly coupled to the algorithm used in
stage two. Thus, in the case of two-dimensional regions, an algorithm that computes a
geometric property by following the boundary or connectivity of the region (which may
be arbitrary) may be less attractive than one that computes it by exploiting properties of
the space in which the region lies.

In this paper we focus on two-dimensional region data. Our domain is a collection
of regions whose borders are rectilinear. The regions may also contain holes. Such
data arises frequently in automated cartography (e.g., a map of counties or states). We
assume that the regions are represented by a region quadtree (e.g., [20]). This is a flexible
representation which is based on sorting geometric data according to their relationship
with the space that they occupy. We show how to adapt a variant of the plane-sweep
paradigm known as a topological sweep to solve problems in this domain.

We illustrate the utility of the topological sweep technique by using it to extract the
boundaries of a map inO(Mα(M)) time whereM is the number of quadtree blocks in
the map, andα(·) is the (extremely slowly growing) inverse of Ackerman’s function.
The algorithm presented here makes a single pass over the image. It represents an im-
provement over a previous approach proposed in [8], which extracts the boundary of
each region by using boundary-following techniques. The worst-case cost of applying
the boundary-following algorithm of [8] to the entire map region is proportional to the
product of the number of blocks in the map and the resolution of the quadtree (i.e.,
the maximum level of decomposition). The boundary-following algorithm requires the
entire map to be stored in memory for the entire run of the algorithm. This is not a
requirement for our algorithm. This is an important practical consideration: it means, for
example, that our algorithm can process a very large map on a computer with limited
memory (such as a personal computer). In Section 8 below, we show how to reduce the
memory requirement of our algorithm, at the cost of an increase in processing time.

The techniques of this paper can also be adapted to maps whose boundaries need not
be rectilinear, provided the map is represented appropriately. For example, they can be
applied to polygonal data stored in a PM quadtree [23].

The rest of this paper is organized as follows. Section 2 contains a discussion of the
plane-sweep paradigm and shows how its relative, the topological sweep, can be adapted
to quadtrees. Section 3 discusses the problem of boundary extraction in quadtrees and
reviews prior approaches, as well as gives an overview of our algorithm. Sections 4 and
5 describe the data structures and the new algorithm, while Sections 6 and 7 discuss
the correctness of the algorithm and give an analysis of its space and execution time
requirements. Section 8 shows how memory can be conserved, and Section 9 contains
concluding remarks as well as directions for future research. The Appendix contains
pseudocode for the algorithm.

2. Topological Sweep and Region Quadtrees.Plane sweep is one of the basic para-
digms of computational geometry [3], [10], [17], [18], [20]. It consists of sweeping a
straight line (called thesweep line) across the plane through a collection of objects.
Plane-sweep algorithms consist of two phases: asort phase, which sorts the points at
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which the objects make their first and last encounter with the sweep line (termedhalting
points), and asweep phase, in which the actual plane sweep is performed and partial
solutions are computed. Plane sweep requires maintaining two sets of data. The first set
consists of the set of halting points, while the second set consists of the objects intersected
by the current position of the sweep line (termedactive objects).

Topological sweep [11] is a variant of plane sweep that makes use of a sweep line
consisting of a simple (i.e., non-self-intersecting) curve which need not be a straight line.
It can be applied when an appropriate combinatorial structure among the input objects is
available. It uses the combinatorial structure to guide the sweep and thereby eliminates
the sort phase.

Some of the first problems to be systematically attacked by plane-sweep methods
involved the computation of certain properties of collections of rectangles with sides
parallel to the axes. Among the properties that can be computed using this approach are
the total area [5], intersections [6], [9], [16], and maximum clique in the intersection
graph [15]. In the most general formulation of these problems, rectangles are allowed
to overlap. Under these circumstances, the sort phase cannot be avoided. Indeed, it can
be shown using the methods of [4] that these problems haveÄ(n logn) lower bounds in
the algebraic decision-tree model (also see [18]).

The situation changes when further restrictions are placed on the rectangles. In partic-
ular, in many image processing and geographic information systems (GIS) applications,
the image space (i.e., map) is partitioned into a collection of nonoverlapping rectan-
gles that span the image space. Algorithms for computing properties of the image may
then proceed by performing a topological sweep of the image. The sweep line is a con-
nected sequence of horizontal and vertical segments, and the adjacency relations among
rectangles are used to guide the sweep.

The importance of topological-sweep methods is especially apparent when the image
is stored using a hierarchical representation based on a rectangular decomposition, such
as the bintree and the region quadtree (e.g., [20]). The region quadtree decomposes a
map into quadrants. Each quadrant that is not homogeneous (i.e., whose pixels do not
all have the same associated values) is further decomposed. The result is a hierarchical
decomposition of the map into disjoint homogeneous squares, orblocks, of different
sizes. The decomposition is often stored as a tree, in which each internal (nonleaf) node
has four children.

The block decomposition induced by the region quadtree of Figure 1 is illustrated
in Figure 2. The blocks are numbered according to the order in which they would be
visited when the quadtree is scanned using a northwest, northeast, southwest, southeast
scanning order.

If the children of each node are ordered consistently, then a listing of the leaf nodes
in a preorder traversal (or equivalently postorder since the nonleaf nodes are ignored)
corresponds to a valid topological sweep of the image space. For example, if the nodes
are in northwest, northeast, southwest, southeast order, then at any instant during the
sweep, the sweep line is a “staircase” moving from southeast to northwest. The staircase
is termed theactive border. The simple curve that forms the active border is in fact
the topological sweep frontier. The set of active objects consists of the active quadtree
blocks which are the blocks that are adjacent to the staircase in the sense that their
boundaries coincide with the staircase or are adjacent to blocks whose boundaries have
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Fig. 1.A sample map, consisting of six regions.

Fig. 2.The decomposition of the map of Figure 1 into homogeneous blocks.
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been scanned in their entirety. Alternatively, the active objects could also be viewed as
the regions whose quadtree blocks are active. The correct interpretation depends on the
application. These analogies underlie algorithms based on “active border methods” [19],
[21], [22].

3. Boundary Extraction in Region Quadtrees. Boundary extraction is a form of
raster-to-vector conversion. It can serve as the first step of a number of operations that
a GIS may want to perform, such as computing a buffer zone of a given width about a
region boundary, drawing a map on a vector device (such as a plotter), or fitting a spline
to the boundary of a region.

To see this problem at its simplest, consider an image or map in the form of an array
of image elements (termed pixels). Assume that each pixel has a value associated with
it, which might be a country, primary crop, etc., depending on the type of map. This
value is called the color of the pixel. A region consists of a set of contiguous pixels, each
of which is associated with the same value. For example, the map shown in Figure 1
consists of six regions, labeled A, B, C, D, E, and F.

The boundary of a region can be expressed in several different ways. In this paper the
boundary is expressed as a sequence of vertices. For example, the boundary of region A in
Figure 1, starting at the upper left corner and proceeding clockwise around the boundary
(i.e., with the image to the right), consists of the sequence

{(0, 0), (12, 0), (12, 4), (8, 4), (8, 9), (6, 9), (6, 6), (4, 6), (4, 8), (2, 8), (2, 6), (0, 6)}.
Of course, other representations of the boundary (e.g., chain codes [12]) are also possible,
and the algorithms of this paper can be readily adapted to produce them.

We are interested in boundary extraction in an image where the regions are represented
using a region quadtree. An algorithm for extracting the boundary of a single region in a
(pointer-based) region quadtree appears in [8]. The algorithm of [8] works by following
the boundary of the region through the quadtree. Its worst-case time is proportional to the
product of the number of blocks in the image and the resolution. This algorithm could be
adapted to deal with multiple regions by applying it to each region. Holes may also pose a
problem in the sense that the extension of the algorithm does not yield a correspondence
between holes and the containing regions without additional processing. An additional
drawback of this algorithm is that the image elements that comprise the border may not
necessarily be stored next to each other. This will result in page faults if the image is not
entirely in the main memory.

In contrast, the solution that we present processes the adjacencies in the image in
a predetermined order. In particular, it makes a single pass over the image by using a
topological sweep in the form of a traversal of the blocks comprising the quadtree in the
order northwest, northeast, southwest, southeast. The key data structure is a set of active
regions, which represent the regions that meet the sweep line. Associated with each region
is a partial boundary, consisting of one or more simple closed curves (termedcycles).
The partial boundary represents the algorithm’s best current guess at the boundary of the
region, based on the information it has seen up to now.

One cycle, always present, represents the outer boundary of the region. Some portions
of this cycle, calledchains, represent portions of the boundary that are known to belong
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to the boundary (because the block on the other side has been visited and is known to be
of a different color). Other portions, calledbridges, represent portions of the boundary
that may or may not belong to the boundary (their status is unclear because the block
on the other side has not yet been visited.) The remaining cycles, if present, represent
“holes” in the region.

When a new quadtree block is visited, its adjacencies in the western and northern
directions are examined. Each adjacency between two blocks of different colors causes
bridges to be replaced by portions of chains. In addition, it may be that such an adjacency
causes the boundary of one of the regions to become closed (and hence complete). In this
case the boundary of this region is written to the output file and the region is removed
from the active region data structure (i.e., the region becomesinactive). An adjacency
between two blocks of the same color may result in two regions being merged, a hole
being detected, or neither of these two possibilities occurring. A simple test, described
more fully in Section 5.3, distinguishes among these three cases.

One key to the success of this algorithm is that the nature of the sweep and the
associated data structures ensure that when a block is visited, we know its containing
region. This means that when an adjacency causes the boundary of a hole to be closed, we
know the identity of the region surrounding it, so assigning holes to the right region is easy.
In addition, there is no computational overhead in locating the appropriate position in the
active border when processing a block. Consequently, we can perform the sweep phase
of the algorithm in almost-linear time. The periodic merging of disjoint regions results
in a worst-case overhead factor ofα(M) which, while undesirable from a theoretical
point of view, is undetectable in practice.

The new algorithm requires additional storage for the active border which is on the
order of the perimeter of the image, as well as the partial boundaries of the regions. This
storage is less than the storage required to hold the entire image. Thus if enough storage
is available to permit the algorithm of [8] to run efficiently (i.e., enough to hold the
entire image), the new algorithm will also perform well. If smaller amounts of storage
are available (so that the entire image cannot fit in memory at once), then the algorithm
of [8] (because of its nonsequential access to portions of the image) will cause many
more page faults while reading the image. The new algorithm can be altered to run in
less memory, at some cost in processing speed; such an approach is outlined in Section 8.

Another very important property of the new algorithm is that it works with both
pointer-based and pointerless quadtree representations. Pointerless representations are
of interest because the space required for storing pointers from a node to its sons may
be significant. Of greater importance is the fact that when the quadtree is represented in
external storage, processing pointer chains can be time consuming due to the presence
of page faults.

Two approaches to pointerless quadtree representations have been proposed. In the
first approach the image is treated as an ordered collection of leaf nodes. Each leaf is
represented by a locational code corresponding to a sequence of directional codes that
locate the leaf along a path from the root of the tree [1], [13]. In the second approach
the image is represented as a preorder traversal of the nodes of its quadtree, known as a
DF-expression[14], [24]. In this representation the symbol “G” represents a gray node
(i.e., a block that is subdivided further), and any other symbol represents a leaf node
corresponding to a homogeneous block of the indicated color. The algorithm that we
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present works for all of these representations, although our pseudocode and description
assume the DF-expression representation.

4. The Data Structures. Our algorithm visits the blocks of the quadtree inNW, NE,
SW, SE scanning order. It maintains two basic data structures: an active border [21] and
a set of active regions. The active border is represented by a list of records of type
activeborderelement, and each active region is represented by a collection of records of
typeregion, as described below. We first describe what the data structures represent and
how they interact, and then we describe their implementations (i.e., the record structure).

4.1. The Active Border. Theactive borderrepresents the border between those quadtree
blocks that have been processed and those that have not. The elements of the active border
form a “staircase” of vertical and horizontal edges, moving from southwest to northeast,
as shown in Figure 3(a). Initially, the active border consists of the north and west borders
of the image. When the algorithm terminates, the active border consists of the south and
east borders of the entire image. The set of active border elements is implemented as a

Fig. 3. (a) The active border of the map of Figure 2 after node 13 has been processed. (b) The list of active
edges that constitute the active border.
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doubly linked list of records of typeactiveborderelement, ordered from southwest to
northeast.

4.2. The Active Regions. Because of the order in which the blocks of the quadtree are
processed, a quadtree block isactiveif some portion of its eastern or southern boundary
is an active border edge. Anactive regionis a region (i.e., a continguous set of blocks of
the same color) that contains an active quadtree block. For example, consider Figure 3(a),
which illustrates the active border of Figure 2 after block 13 has been processed. There
are seven active blocks: 5, 6, 9, 10, 11, 12, and 13. There are five active regions. One
of the active regions contains the quadtree blocks 1, 2, 3, 4, 6, 7, 8, 10, and 11. The
remaining four regions consist of a single quadtree block: 5, 9, 13, and 12. Two of the
active regions—the region consisting of block 5 and the region consisting of block 9—
will subsequently be merged into a single region.

Thepartial boundaryof a region describes the boundary of the region as known at
the current point in the scan. It consists of a list ofcycles. One cycle, called theprincipal
cycle, corresponds to the outer boundary of the region. The remaining cycles, which
correspond to the boundaries of holes, are calledauxiliary cycles. Each cycle consists of
a collection ofboundary elements. Each boundary element may be either abridgeor a
chain. A chain is a contiguous set of edges that are known to form part of the boundary
of the region. Abridge is an edge that coincides with a portion of the active border and
forms part of the boundary of that portion of the region that has already been scanned.
Notice that the principal cycle may consist of both bridges and chains, but the auxiliary
cycles consist only of chains.

As an example of these concepts, consider Figure 3(b), which illustrates the partial
boundaries of the regions that are active at the time depicted in Figure 3(a) (i.e., after
block 13 of Figure 2 has been processed). The heavy lines represent the chains, and the
thin lines represent the bridges. The partial boundary of region A at this point in the scan
consists of a single cycle, which in turn consists of the following boundary elemements:

(1) the chain{(2, 8), (2, 6), (0, 6), (0, 0), (12, 0), (12, 4)},
(2) the bridge from(12, 4) to (10, 4),
(3) the chain{(10, 4), (8, 4), (8, 6)},
(4) the bridge from{(8, 6) to (8, 8),
(5) the bridge from(8, 8) to (6, 8),
(6) the chain{(6, 8), (6, 6), (4, 6), (4, 8)}, and
(7) the bridge from(4, 8) to (2, 8).

The partial boundaries of the remaining four regions, which have much simpler structure,
are also illustrated in Figure 3(b).

Auxiliary cycles are necessary because of regions that have holes. For example, in
Figure 2, after block 37 has been processed the partial boundary of region D consists of
two cycles, the principal cycle and a single auxiliary cycle. The auxiliary cycle represents
the boundary of the hole resulting from the existence of region E. It consists of the chain
{(12, 10), (12, 6), (10, 6), (10, 10), (12, 10)}. Notice that the chain is ordered so that the
region D is to its right.

The active regions are represented by a collection of records of typeregion. The
records of this type are partitioned into equivalence classes, and each active region is
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represented by an equivalence class. When two regions are merged into a single region
(for example, when block 22 is processed in Figure 2), the corresponding equivalence
classes are merged (i.e., one consisting of block 9 and one consisting of blocks 5 and
21). The equivalence classes are maintained using the well-knownUNION-FIND algorithm
for disjoint set union [2]. This algorithm implements the equivalence classes as trees in
which nodes are linked to their fathers (but not to their sons). Thus each active region
is represented by a tree of records of typeregion. The partial boundary of a region is
associated with the root of the tree of records of typeregion that represents the region.
This record is called theprimary recordassociated with the region.

4.3. The Record Structures. We now describe the record formats in more detail. Re-
gions are represented by records of typeregion. Such a record has seven fields:REG-
COLOR, FATHER, COUNT, BORDERCOUNT, PRINCIPALCYCLE, AUXCYCLEFRONT, andAUX-
CYCLEREAR. These seven fields can be decomposed into three groups: color, data to
support the union-find process, and partial boundary information.

Let r be a record of typeregion. REGCOLORcontains the color associated with the
region.FATHER, COUNT, andBORDERCOUNTsupport the union-find process.FATHER(r )
points tor ’s father,COUNT(r ) is the number of proper descendants ofr , andBORDER-
COUNT(r ) is the number of elements of the active border that referencer . TheCOUNT

field supports weight balancing. A recordr of type region may be safely reused if
COUNT(r ) = 0 andBORDERCOUNT(r ) = 0.

A region consists of a principal cycle and a set of auxiliary cycles. The elements of
the partial boundary of a region can be parts of any of these cycles. The partial boundary
of a region is represented by the three fields:PRINCIPALCYCLE, AUXCYCLEFRONT, and
AUXCYCLEREAR. PRINCIPALCYCLE points to a boundary element in the circular list of
boundary elements that comprise the principal cycle. The auxiliary cycles are maintained
as a linked list withAUXCYCLEFRONT andAUXCYCLEREAR pointing to its front and rear,
respectively.

A list of auxiliary cycles is represented by a record of typecyclelist with two fields,
FIRSTBOUNDARYELEMENTandNEXTCYCLE. FIRSTBOUNDARYELEMENTpoints to a bound-
ary element in the circular list of records of typeboundaryelementthat comprise the
cycle.NEXTCYCLE points to the next cycle in the list.

Each boundary elemente is represented by a record of typeboundaryelement. The
fields FLINK andPLINK are always present and point at the successor and predecessor
of e in the circular list of boundary elements comprising the cycle to whiche belongs.
It also has either two additional fieldsFRONT andREAR if it corresponds to a chain, or
one additional fieldREG if it corresponds to a bridge. Ife corresponds to a bridge, then
it contains an additional field,REG, which points to a record of typeregion in the tree
of records representing the region to whose boundarye belongs. Ife corresponds to a
chain, then it contains two pointers,FRONT andREAR, to the front and rear of a singly
linked list of records containing the vertices that comprise the chain. Both front and rear
pointers are used because new vertices may be added to either the front or the rear of the
chain. The list is singly linked because vertices are never deleted from the middle of a
chain.

The chain of vertices comprising a boundary element is represented by a record of
type chain with two fieldsDATA andNEXT with the obvious meaning. Each vertex is
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represented by a record of typevertex with two fieldsX andY corresponding to thex
andy coordinate values of the vertex, respectively.

Elementeof the active border is represented by a record of typeactiveborderelement.
NEXT andPREV are link fields that support the doubly linked list of elements, ordered
from southwest to northeast.LEN(e) contains the length ofe. HORIZONTAL(e) is a Boolean
value that is true ife is horizontal, and false ife is vertical. Being an element of the active
border,e is a bridge in the partial boundary of the region immediately to the left ofe
(if e is vertical) or immediately abovee (if e is horizontal), andDATA(e) points to the
boundaryelementrecord for this bridge.

5. Algorithm. The boundary extraction algorithm assumes a DF-expression repre-
sentation of a quadtree. The quadtree is stored on disk and read sequentially, thus min-
imizing the number of page faults. Each quadtree block is processed exactly once. The
main routine is the recursive procedureTRAVERSE. The parameters toTRAVERSEenable
it to locate the appropriate element in the active border and to keep track of the size
and location of the current quadtree block. WhenTRAVERSEencounters a leaf blockP,
it calls PROCESSLEAFBLOCKto processP. ProcedurePROCESSLEAFBLOCK, in turn, calls
PROCESSBORDERELEMENTto process each active border element that is adjacent toP.

In the following discussion it is important to remember that the entire quadtree is
not stored in memory. Instead, only the active border and current region structures are
stored in memory. The quadtree is processed one block at a time. Each timeTRAVERSE

is invoked, it gets the next element from the DF-expression by calling the functionGET.
If the corresponding quadtree block, sayP, is gray,TRAVERSE calls itself recursively
to process each of the four sublocks ofP. Otherwise,P is a leaf block, in which case
PROCESSLEAFBLOCKis called. VariablesXLEFT, YTOP, andSIZEkeep track of the position
of the upper-left corner and the size of blockP.

We describe the algorithm in several stages. First, we describe how proceduresTRA-
VERSEandPROCESSLEAFBLOCKare able to find the appropriate entries in the active border
list (Section 5.1). We then describe how these two routines process each quadtree block
(Section 5.2). Next, we describe howPROCESSBORDERELEMENTprocesses each active
border element (Section 5.3). In Section 5.4 we describe one of the primitive operations
of the boundary extraction algorithm, namely adding an edge to a chain. A complete
specification of the algorithm, in the form of pseudocode for the high-level routines and
informal descriptions of the lower level routines, is presented in the Appendix.

5.1. Keeping Track of Position in the Active Border List. Whenever a leaf block is
processed, the portion of the active border that is adjacent to the block must be located.
This is accomplished as follows. WhenTRAVERSEis called, it is passed a pointer to the
uppermost active border element along the left border of the block about to be processed
(UPPERLEFT). WhenTRAVERSEcallsPROCESSLEAFBLOCK, it passes this pointer. By fol-
lowing PREV andNEXT links, PROCESSLEAFBLOCKcan find all active border elements
adjacent to the block inO(1) time per element.

WheneverTRAVERSE andPROCESSLEAFBLOCKare called, they return two pointers,
UPPERRIGHTandPREVLOWERLEFT. UPPERRIGHTis the uppermost active border element
along the right border of the processed block,after it has been processed and the active
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border has been updated.PREVLOWERLEFTis the predecessor, in the active border element
list, of the first element that is adjacent to the processed block. For example, whenPRO-
CESSLEAFBLOCKis called to process block 31 in Figure 2,UPPERLEFTpoints to the active
border element separating block 31 from block 24. AfterPROCESSLEAFBLOCKcompletes,
UPPERRIGHTandPREVLOWERLEFTpoint, respectively, to the active border elements sep-
arating block 31 from block 32 and block 28 from block 33. As another example, letP
be the gray block whose sons are the leaf blocks 39, 40, 41, and 42. AfterTRAVERSEis
finished processing blockP, PREVLOWERLEFTpoints to the bottom border of block 30,
andUPPERRIGHTpoints to the active border elements separating block 40 from block 43.

With these definitions, it is easily seen that the following four relations hold for any
gray blockP.

1. UPPERLEFT(NW(P)) = UPPERLEFT(P).
2. UPPERLEFT(NE(P)) = UPPERRIGHT(NW(P)).
3. UPPERLEFT(SW(P)) = PREVLOWERLEFT(NW(P)).
4. UPPERLEFT(SE(P)) = UPPERRIGHT(SW(P)).

The fact that the topological sweep processes the blocks of the quadtree in the order
northwest, northeast, southwest, southeast ensures that the correct value ofUPPERLEFT

is always passed to each invocation ofTRAVERSEandPROCESSLEAFBLOCK.

5.2. Processing Blocks. ProceduresTRAVERSE and PROCESSLEAFBLOCKcombine to
process each block as follows. First,TRAVERSE checks whether either the left or top
border of the block is properly contained in an active border element. This situation
can arise if the block is smaller than its western or northern neighbor. For example, in
Figure 2 when block 3 is processed, its top border is properly contained in an active
border element, namely the entire bottom border of block 1. In this case, the left and/or
top border element is split to achieve the desired size. Note that the split operation could
be applied several times. In particular, if the side length of the neighboring block was
four times that of the current block, then two splits would be required. If the block is a
gray block, thenTRAVERSEis invoked recursively for each of the four sons. If the block
is a leaf block, thenPROCESSLEAFBLOCKis called.

PROCESSLEAFBLOCKprocesses a leaf blockP by first walking down the left side of
P until it finds LOWERLEFT, the lowermost active border element adjacent to the left
border of P. Next, it callsALLOCATENEWREGION to allocate a new region descriptor
CURREGcorresponding to the region to whichP belongs. The region descriptor returned
by ALLOCATENEWREGIONhas a border consisting of three bridges: the east border ofP,
the south border ofP, and a third bridge,CURBRIDGE. CURBRIDGErepresents the portion
of the west and north border ofP that has not yet been processed.

Next, PROCESSLEAFBLOCKprocesses the active border elements along the west and
north border ofP, following NEXT links (i.e., moving upward along the west border, then
eastward along the north border). This is done with two loops, one for the west border and
one for the north border.PROCESSLEAFBLOCKcallsPROCESSBORDERELEMENTto process
each active border element.

After the last call toPROCESSBORDERELEMENT, CURBRIDGE corresponds to a null
boundary element, as the entire northern and western boundaries ofP have been pro-
cessed. HenceCURBRIDGEcan be deleted from the principal cycle of the region containing
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P. Finally,UPDATEACTIVEBORDERis called to delete from the active border those active
border elements that have been processed in this invocation ofPROCESSBLOCK(i.e., those
along the western and north borders ofP) and to replace them with two new active border
elements, representing the southern and eastern borders ofP.

5.3. Processing Border Elements. PROCESSBORDERELEMENTprocesses one border el-
ement. Throughout this section assumePROCESSBORDERELEMENThas been called to
process the border elemente, thatPROCESSLEAFBLOCKis processing blockP, and that
Q is the block on the opposite side ofe from P. There are four cases, illustrated in
Figure 4. The left half of each figure shows the situation before the border elemente
is processed, and the right half shows the situation aftere is processed. To simplify the
following explanation, we introduce some terminology, corresponding to variables in the
code. The “current region” (CURREG) is the region containingP. The “neighbor region”
(NEIGHBORREG) is the region containingQ. The current bridge (CURBRIDGE) is labeled
c, while the “neighbor bridge” (NEIGHBORBRIDGE), labeledn, is the bridge that forms the
part of the neighbor region’s partial boundary corresponding to the active border element
e. Notice that in the code, some processing common to cases (b)–(d) is performedafter
the processing for the individual cases.

Case(a). P andQ are not the same color. In this case the boundary of the neighbor
region must be updated to reflect the fact that the border betweenP andQ is part of its
boundary (i.e., part of a chain). A similar update must be made to the boundary of the
current region. This is done by two calls toNEWCHAINEDGE, discussed in Section 5.4,
below. After this is done, the routineCHECKFOROUTPUTis called to determine whether the
neighbor region’s boundary is complete. (This can be determined by checking whether
the two fieldsCOUNT(NEIGHBORREG) andBORDERCOUNT(NEIGHBORREG) are both zero.)
If so, the boundary of the neighbor region can be written to the output file, and all the
storage used by the neighbor region and its cycles can be reclaimed.

Case(b). P and Q are the same color, but they do not belong to the same region.
In this case the current region and the neighbor region must be merged. This merging
is done in two phases. First, the “union” portion of the standard union-find algorithm
is executed. Next, the partial boundaries of the two regions are merged. This requires
appending the auxiliary cycle list of the “losing” region (the one that did not become
the root) to the auxiliary cycle list of the “winning” region. It also requires readjusting
pointers to combine the two principal cycles, and deleting the neighbor bridge from the
border of the (newly combined) region.

Case(c). P andQ already belong to the same region (i.e., the neighbor region and the
current region are the same region) and a new auxiliary cycle has not been detected. This
case is characterized byCURBRIDGEbeing immediately followed byNEIGHBORBRIDGE

in a traversal of the partial boundary ofCURREG. In this case all that is necessary is to
deleteNEIGHBORBRIDGEfrom the partial boundary ofCURREG.

Case(d). P andQ already belong to the same region (i.e., the neighbor region and the
current region are the same region) and a new auxiliary cycle has been detected. In this
case a new auxiliary cycle is formed by “pinching off” the portion of the principal cycle
betweenNEIGHBORBRIDGEandCURBRIDGE.
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Fig. 4. The four cases that arise inPROCESSLEAFBLOCK. (a) The current region and the neighbor region are
different colors. (b) The current region and the neighbor region are the same color and have not previously
been merged (i.e., they are different regions). (c) The current region and the neighbor region are the same
region and a hole has not been detected. (d) The current region and the neighbor region are the same region
and a hole has been detected.
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5.4. Adding Edges to Chain. Edges are added to chains by the procedureNEWCHAIN-
EDGE. The goal of efficient use of storage, both in program memory and in the output
file, dictates that chains must be stored in an efficient manner. For this reason, chains are
coalesced as follows. When a new edge is placed at the beginning (resp. end) of a chain,
if the new edge and the first (resp. last) edge on the chain are both horizontal or vertical,
then the first (resp. last) vertex on the chain is replaced, otherwise a new vertex is added
to the chain. Similar considerations apply when two chains are merged.

For example, consider Figure 2. Immediately before block 15 is processed, one of the
chains in the boundary of region A is the chain

{(2, 8), (2, 6), (0, 6), (0, 0), (12, 0), (12, 4), (8, 4), (8, 6)}.

When block 15 is processed, the procedureNEWCHAINEDGE is called to add the edge
from (8, 6) to (8, 8) to this chain. Because this new edge and the last edge on the chain
(from (8, 4) to (8, 6)) are both vertical, wecoalescethese two edges to form a single
edge from(8, 4) to (8, 8) and store the coalesced edge instead.

A more precise statement of the behavior ofNEWCHAINEDGE is as follows. When a
new edge is added, we know its predecessor and successor along the cycle to which it
is being added. If these are both chains, then the new edge will cause the two adjacent
chains to be merged. If either the successor or the predecessor (but not both) is a chain,
then a new edge is added to that chain. In all these cases we coalesce if possible, as
indicated above. If neither the successor nor the predecessor is a chain, then a new chain
consisting of a single edge is created.

6. Correctness of the Algorithm. The correctness of the algorithm follows from the
fact that the following properties (P1)–(P7) are preserved by each call toPROCESSLEAF-
BLOCK.

(P1) The variableCURREGpoints to the root of the tree of records of typeregion repre-
senting the region containingP. This record is called theprimary recordassociated
with the region.

(P2) The primary record associated with a region (together with its corresponding point-
ers) contains a complete description of the partial boundary of the region.

(P3) The variableCURBRIDGE points to a bridge corresponding to that portion of the
north and west border ofP that has not yet been visited. Initially, this bridge
corresponds to the entire north and west border. WhenP has been processed in its
entirety, the bridge is null and must be deleted.

(P4) The partial boundary of an active region consists of a collection of cycles. More
precisely, it is the boundary of the scanned portion of the region. Some edges of
the partial boundary are on the boundary of the scanned portion of the image; these
edges are bridges. The remaining edges of the partial boundary belong to chains.

(P5) The principal cycle of an active region may contain both bridges and chains. Let
r be the primary record associated with a region. If eitherCOUNT(r ) > 0 or
BORDERCOUNT(r ) > 0, then the principal cycle of the region contains at least one
bridge. Otherwise (i.e., ifCOUNT(r ) = 0 andBORDERCOUNT(r ) = 0), the principal
cycle consists only of a chain (and hence the boundary of the region is ready for
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output). Note thatCOUNT(r ) can be nonzero whenBORDERCOUNT(r ) = 0. Such a
situation arises when two regions,r ands, have been merged intor , and the active
border elements that refer tos still exist. When a merge occurs, we do not update
all entries of the active border, as this would be too time consuming.

(P6) Any auxiliary cycle of an active region consists only of chains. In other words,
auxiliary cycles contain no bridges.

(P7) For any recordr of typeregion, the fieldsCOUNT(r ) andBORDERCOUNT(r ) contain,
respectively, the number of descendants ofr (in the appropriate union-find tree) and
the number ofactiveborderelementrecords whoseBRIDGEPTRfield references a
bridge that in turn points tor .

We first sketch an informal proof that these properties are correct. (P1) and (P2)
follow because, when tworegion records are merged inPROCESSLEAFBLOCK, CURREGis
assigned to the root of the newly merged tree and the partial boundaries are immediately
merged. (P3) and (P4) can be verified by straightforward induction arguments, which we
omit. (P5) follows because every active border element is associated with some region.
Indeed, ifr is the primary record of typeregion associated with a region, any active
border element associated with that region is either associated directly withr (in which
caseBORDERCOUNT(r ) > 0) or with some descendant ofr (in which case, it follows
thatr has at least one descendant, soCOUNT(r ) > 0). (P6) follows from (P4), since once
a “hole” is identified, all blocks inside it (and all their neighbors) have been visited, so
none of the edges on the boundary of the hole can be on the boundary of the scanned
portion of the image (which means they cannot be bridges). Finally, (P7) can be proved
by induction, as it is preserved at each place in the code where the union-find structure
is altered or the values of theCOUNT andBORDERCOUNTfields are modified.

The correctness of the algorithm can now be seen as follows. By (P4), the partial
boundary of each region, as maintained in the primary record region, is correct. By (P5),
the check described inCHECKFOROUTPUTfor determining when a region’s boundary is
complete is correct. By (P7), when this check is performed, the requisite fields (COUNT

andBORDERCOUNT) have been correctly maintained. Hence each region’s boundary is
correctly maintained and is written to the output file when it is available.

7. Analysis of the Algorithm. The total time required by the algorithm isO(Mα(M)),
whereM is the number of quadtree blocks andα(·) is the (extremely slowly growing)
inverse of Ackerman’s function. This bound follows from the following, easily verified
facts:

1. There areO(M) calls toTRAVERSEand exactlyM calls toPROCESSLEAFBLOCK.
2. The number of calls toPROCESSBORDERELEMENT(and the total number of iterations

of the while loop in PROCESSLEAFBLOCK, over all calls) isO(M). (This follows
because each block has four edges, so the total number of active border elements that
are created during an entire run of the algorithm is at most 4M).

3. The total costs of all the union-find processing isO(Mα(M)). This is because both
weight-balancing and path-compression are used [2], 25.

While theO(α(M))overhead is undetectable in practice, it is an interesting theoretical
question whether it can be eliminated. By using the age-balancing strategy described in
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[7] this overhead can be eliminated for pixel arrays scanned in raster order, but it is open
whether the same strategy works for quadtrees.

One of the novel features of our algorithm is thatTRAVERSEkeeps track of the current
position in the active border, so there is never any need to search the active border for
the border of a block. By avoiding this search, we eliminate the potential logN factor
in the time-complexity that would result from a more naive storage method.

The storage requirements of our algorithm are bounded by the sum of three factors,
namely the costs of storing the active border elements, the active regions (i.e., all the
records of typeregion), and the partial boundaries. The cost of storing the active border
is proportional to the number of active border edges, which is at most 2N in an N × N
image and may be significantly less. The maximum number of regions active at any one
time is never more than the number of blocks in the active border. The storage required
by the partial boundaries is never more than the cost of storing the entire region. Thus,
if the algorithm of [8] has enough storage to operate efficiently, our algorithm does also.
In the next section we address the question of what to do if the partial boundaries do not
all fit in primary storage. (Notice that, in this case, the algorithm of [8] would be forced
to swap portions of the quadtree to external storage and would then generate many page
faults due to the nonsequential way in which it accesses quadtree blocks.)

8. Conserving Memory. The storage required by the algorithm is proportional to the
length of the active border (which isO(N) in an N × N image), plus the maximum
storage required by the partial boundaries of active regions. This is2(M) in the worst
case, whereM is the number of quadtree blocks. If, at any time, the maximum storage
required by the partial boundaries of active regions is small compared withM , then
the total memory required by the algorithm will also be small with respect toM . (This
happens, for example, if the map consists of regions of moderate size that do not have
long, thin “fingers.”) In contrast, the algorithm of [8] always requires2(M)memory (to
hold the map).

In the worst case the storage required by the partial boundaries of active regions may
be proportional to the number of blocks in the entire quadtree. An example, consisting
of a single region with a very long and sinuous boundary, is shown in Figure 5. In this

Fig. 5. In this N × N image, the algorithm requiresÄ(N2) storage.
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case our algorithm as described above would require2(M) memory. Here we briefly
describe a modification that permits our algorithm to run with less memory, at the cost of
some performance degradation. This modification is only of interest in situations where
the size of the map exceeds available memory; in these situations the algorithm of [8],
which assumes the map fits in memory, cannot be used.

Only the first two and last vertices of a chain are relevant to the determination of
how to coalesce when adding edges to a chain. (Two vertices are necessary because we
need to know whether the first or last edge is horizontal or vertical.) Thus long chains
may be written (swapped) to an auxiliary file, provided the first two vertices and last
two vertices are kept in memory. If this is done, then it is necessary to keep a pointer
to the beginning and end of the swapped chain. This can be done by adding a new
variant type to theboundaryelementrecord. When a chain is swapped to the auxiliary
file, theboundaryelementrecord corresponding to that chain is modified to represent
a swapped chain, and all thevertex records associated with the portion of the chain that
has been swapped may be reused. When a region boundary is output, each swapped
chain in the boundary causes a seek operation and some additional reading from the
auxiliary file. Thus primary storage cost is reduced, at the cost of some additional input/
output.

The above technique suggests the following strategy. LetK be the total amount of
available memory. As long as memory usage remains well belowK , simply run the algo-
rithm. If memory usage gets within some critical value (say 90% ofK ), start swapping
out long chains. The threshold value for a “long chain” and the exact definition of the
critical value will depend on the characteristics of the hardware. This approach permits
very large maps with arbitrarily shaped regions to be processed, although performance
will degrade as the number of chains that have been swapped out increases.

9. Concluding Remarks. We have shown how to adapt a variant of the plane-sweep
paradigm known as topological sweep to solve geometric problems involving two-
dimensional regions when the underlying representation is a region quadtree. The utility
of this technique was illustrated by showing how it can be used to extract the boundaries
of a map inO(M) space andO(Mα(M)) time, whereM is the number of quadtree
blocks in the map, andα(·) is the (extremely slowly growing) inverse of Ackerman’s
function. The algorithm works for maps that contain multiple regions as well as holes.
The algorithm represents a considerable improvement over a previous approach, based
on boundary-following, which processes regions one at a time and whose worst-case
execution time is proportional to the product of the number of blocks in the map and the
resolution of the quadtree (i.e., the maximum level of decomposition). The algorithm
works for many different quadtree representations including those where the quadtree is
stored in external storage.

Directions for future work include the relaxation of the restriction that the boundaries
be rectilinear, as is the case when the map is represented as a PM quadtree [23]. Other
applications include its use with quadtree representations of other types of geometric
data such as rectangles, points, lines, and even three-dimensional regions. It is an open
question whether the algorithm can be improved to get rid of theα(M) factor in the
algorithm’s execution time.
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Appendix. The Boundary Extraction Algorithm

recursive procedureTRAVERSE(UPPERLEFT,UPPERRIGHT,PREVLOWERLEFT,XLEFT,
YTOP,SIZE);
/∗ Recursive routine to extract all region boundaries in a quadtree stored as a DF-
expression. On input,UPPERLEFTis the uppermostactiveborderelementalong the
left border of the current quadtree block. On output,UPPERRIGHTis the uppermost
activeborderelementalong the right border, andPREVLOWERLEFTis the immediate
predecessor of the lowermostactiveborderelementalong the left border of the
current quadtree block.XLEFT, YTOP, andSIZE describe the current quadtree block’s
location and extent.∗/

value pointer activeborderelementUPPERLEFT;
reference pointer activeborderelementUPPERRIGHT,PREVLOWERLEFT;
value integerXLEFT,YTOP,SIZE;
pointer activeborderelementPLL,UR,DUMMY ; /∗ local variables∗/
color BLOCKCOLOR;
begin /∗ TRAVERSE∗/

if LEN(UPPERLEFT) > SIZE then SPLIT(UPPERLEFT,SIZE);
if LEN(NEXT(UPPERLEFT)) > SIZE then SPLIT(NEXT(UPPERLEFT), SIZE);
BLOCKCOLOR := GET();
if BLOCKCOLOR= “GRAY” then begin

TRAVERSE(UPPERLEFT,UR, PLL, XLEFT, YTOP, SIZE/2); /∗NW son∗/
TRAVERSE(UR,UPPERRIGHT,DUMMY , XLEFT+ SIZE/2, YTOP, SIZE/2); /∗NE son∗/
TRAVERSE(PLL,UR, PREVLOWERLEFT, XLEFT, YTOP+ SIZE/2, SIZE/2); /∗SW son∗/
TRAVERSE(UR,DUMMY ,DUMMY , XLEFT+ SIZE/2,

YTOP+ SIZE/2, SIZE/2); /∗ SEson∗/
end

else
PROCESSLEAFBLOCK(UPPERLEFT,UPPERRIGHT, PREVLOWERLEFT, XLEFT, YTOP,

SIZE, BLOCKCOLOR);
end /∗ TRAVERSE∗/;

procedure PROCESSLEAFBLOCK(UPPERLEFT,UPPERRIGHT, PREVLOWERLEFT, XLEFT,
YTOP, SIZE, BLOCKCOLOR);
/∗ Process a single leaf block, exploring all its adjacencies by first working down
along the west border and then from left to right along the north border.
BLOCKCOLORis the color of the leaf block, otherwise
parameter definitions are as inTRAVERSE. ∗/

value pointer activeborderelementUPPERLEFT;
reference pointer activeborderelementUPPERRIGHT, PREVLOWERLEFT;
value integerXLEFT, YTOP, SIZE;
value color BLOCKCOLOR;
integer X,Y
pointer region CURREG;
pointer boundaryelementCURBRIDGE, LOWBRIDGE;
pointer activeborderelementE,LOWERLEFT;
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begin /∗ PROCESSLEAFBLOCK∗/
E := UPPERLEFT;
Y := YTOP+ LEN(E); X := XLEFT;

while Y < YTOP+ SIZE do begin
E := PREV(E);
Y := Y + LEN(E);
end;

PREVLOWERLEFT:= PREV(E);
LOWERLEFT := E;
ALLOCATENEWREGION(XLEFT, YTOP, SIZE, BLOCKCOLOR,CURREG,CURBRIDGE,

LOWBRIDGE);
repeat

PROCESSBORDERELEMENT(E,CURBRIDGE,CURREG, X, Y, X, Y − LEN(E));
Y := Y − LEN(E);
E := NEXT(E);

until Y = YTOP;
repeat

PROCESSBORDERELEMENT(E,CURBRIDGE, X, Y, X + LEN(E), Y);
X := X + LEN(E);
if X < XLEFT+ SIZE then E := NEXT(E);

until X = XLEFT+ SIZE;
UPDATEACTIVEBORDER(LOWERLEFT, E, LOWBRIDGE,UPPERRIGHT, SIZE);
BORDERCOUNT(CURREG) := BORDERCOUNT(CURREG)+ 2;
FLINK(PLINK(CURBRIDGE)) := FLINK(CURBRIDGE);
PLINK(FLINK(CURBRIDGE)) := PLINK(CURBRIDGE);
FREE(CURBRIDGE);

end /∗ PROCESSLEAFBLOCK∗/;

procedure PROCESSBORDERELEMENT(E,CURBRIDGE,CURREG, X, Y,NEWX,NEWY);
/∗ Process one border element.CURREGis the surviving region descriptor associated
with the block being processed.∗/

reference pointer activeborderelementE;
reference pointer boundaryelementCURBRIDGE;
reference pointer regionCURREG;
reference integerX, Y,NEWX,NEWY;
pointer boundaryelementNEIGHBORBRIDGE;
pointer region NEIGHBORREG;
begin /∗ PROCESSBORDERELEMENT∗/

NEIGHBORBRIDGE:= DATA(E);
NEIGHBORREG:= REG(NEIGHBORBRIDGE);
BORDERCOUNT(NEIGHBORREG) := BORDERCOUNT(NEIGHBORREG)− 1;
NEIGHBORREG:= FIND(NEIGHBORREG);
if REGCOLOR(NEIGHBORREG) 6= REGCOLOR(CURREG) then begin /∗ Case (a)∗/

NEWCHAINEDGE(X, Y,NEWX,NEWY, PLINK(CURBRIDGE),CURBRIDGE);
NEWCHAINEDGE(NEWX,NEWY, X, Y, PLINK(NEIGHBORBRIDGE),

FLINK(NEIGHBORBRIDGE));
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CHECKFOROUTPUT(NEIGHBORREG);
end

else begin /∗ Cases (b), (c), and (d): regions are the same color∗/
if NEIGHBORREG 6= CURREGthen begin /∗ Case (b)∗/

UNION(CURREG,NEIGHBORREG,CURREG, LOSER);
NEXTCYCLE(AUXCYCLEREAR(CURREG)) := AUXCYCLEFRONT(LOSER);
FLINK(PLINK(CURBRIDGE)) := FLINK(NEIGHBORBRIDGE);
PLINK(FLINK(NEIGHBORBRIDGE)) := PLINK(CURBRIDGE);
end

else ifPLINK(CURBRIDGE) = NEIGHBORBRIDGEthen /∗ Case (c): no–op∗/
else /∗ Case (d)∗/

NEWAUXCYCLE(FLINK(NEIGHBORBRIDGE), PLINK(CURBRIDGE),CURREG);
/∗ Cases (b), (c),and (d) ∗/
PLINK(CURBRIDGE) := PLINK(NEIGHBORBRIDGE);
FLINK(PLINK(NEIGBHBORBRIDGE)) := CURBRIDGE;
FREE(NEIGHBORBRIDGE);
end;

end /∗ PROCESSBORDERELEMENT∗/;
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