Extracting Region Boundaries from Maps Stored as Linesr Quadtrees

Michael B:-Dillencourt

raster to vegtor coiiversion. It can'serve as the fiest step of a number of operaticns that
a GIS may want to pétform; sich s computing a buffer zone of a given width about a
region boundary, drawing & map on & <cn+_ou device. (such &s a plotter), or displaying a
map using a palygon-fill type algorithm.,

We asqume that each HES_ has a 'value associated with it, s&—nr might be a eountry,
primary crop, etc., depending on the’ ‘type of map. This value is'called the color of the
pixel: A .nmw_on..no ists of & sat of ....buzn:oﬁ pixéls, each of whicki is associated with tha
same value. For exemiple, the an shown in Figure 1 consists of five tegions, labeled A,
B, C, D, and E.

The boundary of a nmm.oa cah ‘be expressed in several different ways. In this paper,
the boundaty is expresséd as a sequence of vertices. For example, thié boundary of region
A in Figure 1 SEES of s.m Spumnnm

{(o, 5 B 3 cm 0),18, & ? & (8,7,(9,7),(9, & ﬁ 8),(4, 5 B Hmz

The w_mou?vh.m of this paper can easily be adapted to produce other representations of
the boundary, such as chain codes (Freeman, 1974).
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Figure 1. A sample map, consisting of five regions
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2, The Linear Quadtree

One common method of storing region data is the region quadtree (Samet, 1984), .
In this representation, the map is decomposed intc quadrants. Each quadrant that
is not hemegerieous (i.e., whose pixels do not all havé the same associated values) is
further decomposed. The result is a hierarchical decomposition of the map into disjoint
homogeneous squares of différent sizes. The decomposition ig often stored as a tree, in
which each internal (non-leaf) node has four children.

The region quadtree corresponding to Figure 1 is shown in Figures 2 and 3. Fig-
ure 2 shows the homogeneous blocks into which the region is decomposed, and Figure 3
illustrates the actual tree,

A useful alternative to the explicit (pointer-based) representation of the region quad-
tree is the linear quadtree (Gargantini, 1982; Abel and Smith, 1983). In the linear
quadtree, only the leaf nodes of the region quadtree are explicitly stored. Each node is
assigned a lacation code describing its position in the quadtree. The location codes are
assigned in such a way that visiting the nodes.in increasing order of the location code is
equivalent {a a preorder traversal of the leaf nodes of the region quadtree from which the
linear quadtree was derived. The node numbering shown in Figure 2 reflects » quadrant
ordering of Northwest, Northeast, Southwest, Southeast. The leaf nodes can then be
stored in a B-tree (Comer, 1079}, with the location code serving as the key.

The linear quadtree has two major advantages over the pointer-based region quad--

‘tree. It aves the apace that would otherwise be occupied by the internal nodes and the

pointers. Moreover, the linear quadiree method is more appropriate for data that resides
on secondary storage, since it can use a data structure {e.g., the B-tree) that is designed
specifically for random-access sscondary storage devices.

A method for extracting the houndary ‘of a binary image from a region quadtree

" appears in {Dyer, Rosenfeld, and Samet, 1980). It works by using a neighbor-finding

algorithm to follow the boundary of the image through the quadtree. This method could
be successively applied to each region in a map to produce all the boundaries. However,
this approach can be quite inefficient in a linear quadtree: each call to the neighbor-
finding routine may involve swapping pages in the underlying B-tree, .

The algorithm for boundary extraction that we describe here computes the boundary
of all map regions using a single traversal of the linear quadtree. It visits the nodes in
order of ascending location-code, so each page in the B-tree needs to be read only once.

3. The data structures

Our algorithm maintains two basic data structures: an active border {Samet and
Tamminen, 1985), and a list of active regions, The active border represents the border
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Figure 2. The amooavomao: of the map of Figure 1 into
homogendous blocks.
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Figure 3. The quadtree for the image of Figure 2,
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between these quadtree nodes that have been processed and those that have not. It
consiste of quadtree nodes, edges, and vertices.

The active border edges consist of all edges with the property that one of the two
nodes adjacent to the edge has been processed while the other node has not. The
active border edges form a ”staircase,” moving from southwest to northeast, as shown
in Figure 4. The set of active border edges is implemented as a doubly linked list of
records of type edge, ordered from southwest to northeast, Each edge record has two
link fields named NEXT and PREV. In addition, active border edge records contains a
PREVNODE field, which points to the quadtree node, adjacent to the edge, that has
been ‘processed. Moreover, the vertical and horizontal edges are also stored in separate
balanced binary trees, for reasons to be given in the next section.

The active quadtree nodes, or simply active nodes, are those quadtree nodes that have
been processed but are adjacent to nodes that have not been. Equivalently, a quadtree
node is active if some portion of its eastern or southern boundary is an active edge. Eack
active node has associated with it a field REG, which points to the region descriptor of
the active region to which it belongs.

(a)

Active Edges PREVNODE

The active regions are those regions that contain an active node. Each active region
has associated with it a region descriptor. The region descriptor for each active region
has associated with it a partsal boundary for the region. The partial boundary is a linked
list of chains. Bach chain consists of a linkeq list of points, which represent a contiguous
portion of the boundary of the region. Each region descriptor also contains a hash table
(Knuth, 1973) which stores the first and last point of each of its chains,

[(0.8).(8,8)]
[(8.8).(9.8)]
[(9.8).(8.7)1
[(9,7),(10,7)]
[(10,7),{10,6)] -
[(10,6).(12,6)]
[(12,6),(12,4)]
[(12,4).(16,4)]
[{16.4),(16,0)]

The active vertices are those vertices that serve as the endpoiat of an active edge.
Associated with each active vertex is an array, CHAINLOC, of {no more than three)
pointers to the positions where the vertex appears in the partial boundaries active regions.

Figure 4(a) illustrates the active border corresponding to Figure 3, after nodes 1
through 8 have been processed. The heavy lines represent the partial boundaries that
have already been encountered. There are nine active border edges, which are listed in
Figure 4(b). Five of these edges are horizontal, and four are vertical. Nodes 1, 3, 5,
7, and 8 are active. There are two active regions, A and B. The partial boundary of
A cousists of two chains, {(0,8),(0,0),(0,16}} and {(12,4),{8,4), (8,7),(9,7)}, because
the nodes on both sides of elements on these chains have already been processed. The
partial boundary of B consists of the single chain (9,7), (8,7), (8,4), (12,4) for the same
reason.

I I L S -

. (b}
Initially, the active border comprises the north and west borders of the map. When
the algorithm terminates, the active border consists of the south and east borders.

Figure 4. {a) The active border of the map of Figure 2 after

node 8 has been processed. (b) The list of active edges that
make up the active border

4. The algorithm for boundary extraction in a linear quadtree

The boundary extraction whmn.:.:“rE processes each node exactly once. The general
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step in the algorithm uses the procedure PROCESS_1 NQDE, defined below. A detailed
description of the various stepa follows the procedure definition. The basic steps are as
follows. A new region descriptor is allocated, for the region to which the current node
w&oumm. The set of active border edges that are part of the boundary of the current node
is determined, and each active boider edge in this set is examined. All active regions
that share a boundary edge with the current node, and that have the same color as the
current nede, are merged into a single region. Each active border mnnm that separates
the current node from a region with a different color is added to the boundary of the
current region, and to the other region as'well. Finally, the active border is updated, to
reflect the fact that the current node has been processed.

-

Each node has a field called COLOR, s&.nw contains the no_oﬁ of the node or region.
The function REVERSE, when applied to a segment, returns the segment with the end-
points reversed. For example, REVERSE([(0,2),(0,8)]) returns the segment {(0,8),(0,2)}.
The functions XW, XE, YS, and YN, when applied to a node, return the western-

most x-coordinate, :S easternmost x-coordinate, the moﬁwn—.n.ﬂo% y-coordinate, and
the northernmost y-coordinate, respectively.

Procedure PROCESS_1 NODE is applied to each node in the linear quadtree. After

all the nodes are processed, the active border edges are the south and east borders of the

map. These are most easily processed by applying the procedure PROCESS_1_NODE to
two (fictitious) leaf nodes that are the same size as the entire map, to its south and east.

procedure PROCESS_1 NODE(NODE);
value pointer quadtree_node NODE;
pointer region_desc CURREG;
polnter segment SEG muﬁmﬁ.mmﬁ ,ENDSEG;
begin
CURREG = = ALLOCATE NEW_REGION();
NORMALIZE_ACTIVE BORDER(XW(NODE},YS(NODE), XE(NODE),
YN(NODE),STARTSEG,ENDSEG);
SEG := STARTSEG
loop
if COLOR(PREVNODE(SEG) = COLOR{NODE) then

CURREG = gmﬂnmﬁwoﬁwmm<zoumﬁmmavu,ocwwmﬁv
elsa

begin
ADD_TO_BOUNDARY(SEG,CURREG);
ADD.TO_BOUNDARY (REVERSE(SEG),REG (PREVNODE(SEG)));
end;
if SEG = ENDSEQG then
munz._ uoom.
‘else
SEG = Zwuﬂeﬁmwov
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end loop;

UPDATE_ACTIVE_BORDER(XW(NODE), YS(NODE), XE(NODE),YN(NODE);
end; , :

.,H.ra variable CURREG represents a pointer to the mmwnm.vnoy. of the region to which
the current node belongs. It is initially allocated by the call to the function ALLO-
Q.PHH.ZHEH.HQEZO

Procedure ZOE_.._HNHLPO.HZHHONUHW has two roles. First, it ensures that
there 35 & set of active border nmwﬁ that exactly covers the west and north boundaries
of the current node. This may require splitting active border edges. For example, in
Figure 2, before node 1 is processed, the active border edges are [{0,16),(0,0)] and
[(0,0}, (16,0)].. In thia case, NORMALIZE_ACTIVE_BORDER. must split each of these
two. segments, thereby transforming the astive border edges into the set of four edges
((0,18), (o, m:_ —Acu mY AO-OV_. :Ou o}, nmucu_. and :m-cu. (16,0)]. Second, it returna pointers
to the first .(i.e., most southwest) and lest (i.e., most northeast active border edges
that are adjacent to the current node. The process of lacating the active border edge
containing the southwestern and northeastern corners of the current node is made more
officient by the organization of the active border edges as two balanced binary trees,
which was mentioned in the previous section. Theae trees are based on the leftmost x-
coordinate, and the topmost y-coordinaie values of sum horizontal and vertical segments, .
respectively, of the active border.

The loop processes each active border edge that forms part of the bouidary of the
current node. Thére are two cases, depending on whether the edge separates two nodes
of the same color or of different colors.

If the edge separaies two nodes of the same color, then the two nodes must belong
to the same region. This fact is recorded by invoking the procedure MERGE. MERGE
takes as its arguments two pointers to region descriptors, If the two regions are identical,
MERGE does EunEum Otherwise, it merges the partial boundaries of the two regions.
One of the region mownuvaoﬂm (the mnnqz_.o& has the data for the other nom_on merged
into it. The other region descriptor (the old descriptor) is overwritten with a pointer
to the survivor. Subsequent references to the old descriptor will follow this pointer to
the survivor. Chains of pointers, resulting from several merges, are shortened by using
path-compression techniques {Sedgewick, 1983). Region descriptors that are not in use
are detected using reference counters, so they can be deallocated and recycled (Samet
and Temminen, 1986). MERGE returns a pointer to the surviving region descriptor.

If the edge separates two nodes of different colors, then the boundary structure must
be updated. This is done by two calls to the procedure ADD_TO.BOUNDARY. In order
to produce a clockwise traversal of the boundary of a region, a segment must be added
to the boundary of the region in such a way that the region is to the right of the segment.
Thus the ségment is added to the boundary of the current region, and the reverse of the
segment i8 added to the boundary of the previous region. For example, when node 4 is
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procesged in Figure 2, the segment [(8, 4), {8,6)] is added to the mo::mwa_. of region B,
and the segment [{8,8), (8,4)] is added to the boundary of region A.

When ADD_TO_BOUNDARY adds a segment to a boundary, it locks for a chain to
which the segment can be concatenated, using the hash table of chain endpeints described
in the previous section. Depending on the result of this search, it may add the segment
{o a chain, combine two chains, start a new chain, or complete a cycle. (A cycle is a
chain in which the first and last points are the same). The processing for MERGE is
similar, except thaf instead of adding & single segment, all chains in the old region are
added to the survivor region. In either case, the hash table of chain endpoints must vn
modified after each medification to the partial boundary structure.

When all the chains of the partial boundary of a region are cycles, the boundary is
said to be complete, and it may be written to the cutput file. When this happens, the
region is no longer active, and all atorage used for the region descripter may be reclaimed.
If a reglon is simply connected {j.e., if it has no "holes”), then its completed boundary
consists of a single component. Regionas with holes are discussed in the following section.

The routine that writes the boundary to the output file is an appropriate place to
petform conversions between appropriate representations. For instance, the represente-~
tion of the boundary &s a sequence of horizontal and vertical segments could be converted
to a chain code.

The final step in PROCESS_1_NODE is a call to UPDATE_ACTIVE_BORDER. This
procedure removes the west and north boundaries of the current node from the set of
active border edges, and replaces them with the east and south edges, It also updates
the active vertex and active quadtree node structures. .

5. Regions with holes

Special considerations may apply when the map contains regions that are not simply
connected. If the boundary of a region does not intersect itself, then the algorithm of
the previous section works without modification. The Iest chain of the boundary of a
region to be completed (i.e., to become a cycle) is the outer boundary, while the other
cycles represent the boundaries of holes.

As a simple example, consider Figure 5(a). After node 15 is processed, the boundary
of region B is complete and may be written to the output file. After the south and
west boundaries of the map are processed, the boundary of region A is complete. The
boundary of region B is {(1,1), (3,1), (8,3}, (1,3), (1,1)}. The boundary of A consists
of two compoenents: the cuter component of the boundary is {(0,0), {4,0), ﬁm 4}, (0,4),
(0,0)} and the inner component {(1,1), (1,3), (3,3), (3,1), (1,1)}.

Notice that each component of the boundary of A is oriented so that the region A
is to its right. Notice also that the boundary of the inner region {B) is written before
the boundary of the outer region (A). Both of these properties are characteristic of the
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Figure 5. Regions with holes. (a) A region with a hole. (b) A region
in which the boundary of region A intersects itself. (c} The partial
boundary of region A in (b) before node 7 is processed. (d) The partial
boundary of region A in {b) after node 7 is processed.
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algorithm. These properties may reduce the amount of work that needs to be done by
subsequent processing steps. For example, suppose the output of the boundary extraction
algorithm is to be used to color the map using a polygon-fill algorithm on a device
with destructive overwrite. Then correct results will be obtained if (1) only the outer

. component of each boundary is processed, and (2) the boundaries are processed in the
opposite order from the order in which they were written to the output file. For example,
in Figure 5{a), first the area inside the outer boundary of A (i.e., the whole map) will
be colored with the appropriate colar for A, and then area B will be overwritten with its
color. : ’

If the boundary of a region intersects itself, certain subtletics may come into play.
For example, consider the map of Figure 5(b}, which has three regions. The boundary of
region A intersects itself at the point (2,2). If the algorithm described above is applied
without modification, the boundary of region A will be determined to have two com-
—uOﬂﬂHemﬂ Anmunv- nmu HY QJ 5. AH. Nu_ AN;NUH and .mﬁQ-Ov. AA—OU- n#. Nu_ ﬁNy wu. nm. #y Ao.ku_
{0,0)}. In many cases, this may be an appropriate result. However, there are situations
in which it is better to express the boundary of A as a single component, {{0,0), (4,0},
{4,2), {2,2), (2,1), (1,1), (1,2), (2.2), (2.4}, (0,4), (0,0)}. For example, it might be
known that B and C were really the same region, and that their apparent separation was
an artifact of the digitization process.

The fact that it is possible to connect two components of the boundary of A can.

be detected, and acted upon, as follows. After node 6 is processed, the partial bound-
ary of region A consists of the two components {(0,4), (0,0), (4,0)} and {(1,1), (1,2),
(2,2), (2,1), (1,1)}, as shown in Figure 5(c). Processing node 7 causes the segmentsa
[(2,2), (2, 4)] and [(4,2), {2, 2)] to be added to the partial boundary of A, aa in Figure 5(d).
The fact that the point (2,2) is already part of the boundary indicates that the boundary
intersects itself. It is easy to see that when the two pieces of the boundary are joined in
such a way that region A is always to the right of the boundary, it must be true that the
two turns taken by the boundary at {2,2) must both be 90 degree angles {measured coun-
terclockwise). Thus the segment [(4, 2}, (2,2}}, directed to the west, must be followed by
the segment {(2,2),{2,1)], which is directed north. Similarly, {(1,2), (2,2)] must be fol-
lowed by [(2,2),(2,4)]. So after node 7 is processed, the partial boundary of A consista of
the two components {(0,4), (0,0), (4,00} and {(4,2),(2:2),(2, 1),(1, )(1,2),(2,2),{2, ).
After the south and east borders of the map are processed, a boundary consisting of a
single component will result. It can be shown that the single rule applied above, namely
that whenever. a boundary intersects itself, it must take two 90 degree counterclockwise
turns, can be applied to resolve all situations of this type.

Notice that efficient implementation of the steps just describe for handling a eelf-
intersecting boundary requires being able to quickly detect that an active vertex (in
this case, (2,2)) is already part of a boundary chain. This is the reason for associating
the array CHAINLOC with each active vertex. This array contains péinters to the

appearances of the vertex in the boundary chains to which it belengs, as described in
Section 3. . :
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8. Summary

An algorithm has been described for deriving the boundaries of all regions in a map
that is stored as a quadtree. This algorithm haa been implemented on a Sun 3 worksta-
tion. In contrast with the algorithm of (Dyer et al, 198D), which traces a single boundary,
the algorithm described here makes a single pass over the quadiree and maintains par-
tial descriptions of all boundaries. Thus our algorithm is particularly suited for usecn a

linear quadtree in secondary storage. With minimal adjustments, the algorithm handles
regions with holes. -
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