13

Connected component labeling for arbitrary binary image Tepfesentations

Michael B. Dillencourt Hanan Samet . Markku Tamminen
Department of Information -~ Computer Science Laboratory for Information
and Computer Science Department Processing Science
University of California University of Maryland Helsinki University
Irvine, CA 92717 College Park, MD 20742 of Technology -

Espoo, Finland

Abstract

An improved and general approach to connected-component labeling of images is
presented. The algorithm presented in this paper processes images in predeternuined
order, which means that the processing order depends only on the image representation
scheme and not on specific properties of the image. The algorithm handles a wide
variety of image representation schemes (rasters, run lengths, quadtrees, bintrees,
ete.). We show how to adapt the standard UNION-FIND algorithm to permit reuse of
temporary labels. This is done using a technique called age balancing, in which when
two labels are merged, the older label becomes the father of the younger label. This
technique can be made to coexist with the more conventional rule of weight baluncing,
in which the label with more descendants becomes the father of the label with fewer

descendants.

1 Introduction

Connected component labeling [7] is a fundamental task common to virtually all image
processing applications in two and three dimensions. For a binary image, represented
as an array of d-dimensional pixels or image elements, connected component labeling is
the process of assigning the same label to all adjacent BLAC]\’.ir‘nage elements [3, 7]. The
" elements niay be 4-adjacent or 3-adjacent [6]. Connected component fabeling can be
characterized {4] as a transformation of a binary input iinage, B, into a symbolic image,
5, such that (1) all image elements which have value WHITE will remain so in §; and, (2)
every maximally connected subset of BLACK -imagé elements in B is labeled by a distinct
positive integer-in §. This definition can be extended to other representations of images
- {e.g., quadtirees. octrees, and bintrees) [8, 9] in an obvious way. In these representations,
the image elements are the portions of the image corresponding to leaf nodes. Throughout
Lhis paper we will assume that in all representations considered, image elements cosrespond
to rectangular areas of the image, and the length and width of each image element is. an

integral muitiple of the length of a pixel.

. A binary image may be thought of as a graph, in which the nodes are the BLACK image

¢

132

elements and the edges correspond to pairs of adjacent BLACK image elements. If the image
fits in memory, and if the representation of the image does not constrain the order in which
edges may be visited, then the components of the image may be efficiently labeled using
a depth-first component-labeling strategy [3]. However, in some image répresentation
schemes, this strategy may not be appropriate. For example, in large pixel arrays stored
in raster order, or in pointerless quadtree representations [14], random access into the
image can produce large numbers of page faults, so it is preferable to process the image
in sequential order. In this paper, we address the problem of labeling the components aof
an image that is to be processed in a predetermined order; that is, in an order that is
determined by the image representation scheme rather than by the specific characteristics

of the image.

A typical implementation of predetermined-order component labeling consists of two
passes. In the first pass, each pair of adjacent BLACK image elements is examined in
“succession, and a set of equivalence classes is maintained. Each BLACK image element is
initially assigned a temporary label, and the temporary label is placed in its own equiv-
alence class. For each pair of ac[ja.ce.nt BLACK lmage eleinents, the equivalence classes
containing the temporary labels éssi_gned to the two im.a,ge elements are merged. When
the first pass is complete, the equivalence classes correspond to components (i.e., two im-
age elements belong to the same component if and only if their temporary labels are in the
same equivalence class). In the second pass, each equivalence class is assigned a unique
permanent label, and each image element is assigned the label of the equivalence class
to which its temporary label belongs. In both passes, the process of keeping track of the
" equivalence classes is facilitated by the use of a disjoint set-union algorithm. While several
such algorithms are known, the UNION-FIND algorithm [1] is the simplest and the most
commonly used. This algorithm maintains each set as a tree, and uses path compression

and weight balancing to yield almost linear behavior.

In this paper, we present a unified single algorithm for predetermined-order con-
nected component labeling. The algorithm handles a wide variety of image representation
schemes, including arrays, quadtrees, bintrees, and their multid_imensioﬁa,l generalizations
[10]. We show how to adapt the UNION-FIND algorithm to permit the reuse of temporary .
labels, by introducing the notion of age-balancing, and we show how to simultaneously

implement age-balancing and weight-ba.laﬁcing.

Section 2 contains basic facts about the UNION-FIND algorithm. Section 3 discusses im-
age scanning orders and the fundamental concepts underlying our algorithm. Section 4 is
a general formulation of an approach to predetermined-order connected.component label-

" ing that satisfles the twin goals of running efficiently and reducing storage requirements.

133

Section 5 addresses the correctness of the algorithm and an analysis of its running time.

Section 6 contains some final remarks.

2 The UNION-FIND Algorithm

The UNION-FIND algorithm is a general algorithm for keeping track of disjoint sets of ele-
ments. This algorithm makes use of a tree to represent each set. The trees are represented
using only father links. T ypically, the root of the iree representing a set contains a pointer
to application data relevant to all elements of the set. The UNION-FIND algorithm suppdrts
three basic operations: (1) MAKESET(A) creates a new set containing the single element

-A. (2) FIND(A) finds the root of the tree that contains the element A. (3) uNiON({A, B)

combines the two sets whose roots are at 4 and B by one of the root elements a father of

the other. The root of the combined tree is sometimes called the survivor.

The uNION-FIND algorithm can be made to run quite fast provided the following two
optimizations are performed. (Path-compression:) On each Fin D{A) operation, all nodes
encountered along the path from A to the root of thie tree containing A (including A4,
but not including the root) have their father pointers reset to point to the root of the
tree. (Weight-balancing:}) When a UNION operation is performed, the smaller tree is made
a subtree of the larger tree (i.e., the root with more nodes is the survivor). - With these
two optimizations, any set of m FIND and UNION operations can be perfarmed iﬁ time
O(ma(m)), where a is the inverse of Ackermar’s function and grows extremely stowly.

See [15] for more details on the exact formulation. In most practical cases ce(m) < 5. L is

* worth noting that both optiniizations must be used to obtain the O(ma{m}) time bound.

If only one of the optimizations is used (i.e., either path-compression or weight-'ba,lancing_
but not both), then the worst-case bound is Qmlogm). If neither of the optimizations is

used then the worst-case bound is m?).

In this paper, we will use a modified version of the UNION-FIND algorithin. We add
a fourth operation, RECYCLE(A), which removes an element A from the set to which it
Be1011gs and malkes it eligible for reuse provided 4 is not the father of another entry. It
is the responsibility of the surrounding application to ensure that this constraint on 4 is
satisfied. Clearly, the RECYCLE opération can be executed in constaxﬁ_; time. We refer to
the interval of time between the creation of an element (via MAKESET) and its return {via.

RECYCLE) as an incarnation of the element.

Our algorithm for component labeling uses a concept called age-balancing. Age-

balancing says that when we merge two components, the younger tree (the tree whose

134

root began its current incarnation more recently) is made a subtree of the older one. We
will show that age-balancing permits us to use the RECYCLE operation, thereby lowering
oir space reguirement significantly. We will also show how to make age-balancing and
» weight-balancing coexist, so that the O(ma(m)) bound on the UNION-FIND algorithm is

. maintained.

3 Active Elements and Live Labels

A scanning order defines the order in which image elements are processed, or scanned.
The algorithm of this paper is formulated for 4-adjacency {6], in which each image element
- of a d-dimensional image has neighbors in 2 - d directions, aithough the methods. of this
paper can also be adapted to 8-adjacency, in which each image element has neighbors in 34
directions. An image element and its neighbors are adjacent to each other along a border

of the image element. These directions are grouped into d pairs of opposite directions.

A preprocessing phase initializes the boundaries of the image to WHITE and hence the
- neighbors in these directions are considered to have been scanned initially. At any instant -
during the scan, the image is partitioned into three subsets. Inactive image elemenis are
scanned image elements whose 2. d borders are adjacent in their entirety to image elements
that have a.lready been scanned {or to-the image boundary) These image elements do not
have unscanned neighbors. Active image elements are scanned image elements that have
no more than 2 - d — 1 of their bor ders adjacent in their entlrety to image elements that
have already been scanned (or'to the image boundary). These image elements have at
Jeast one unscanned neighbor. Borders between scanned and unscanned image elements
- are called active borders. Finally, unscanned tmage elements are image elements that have

not yet been scanned. These three subsets are illustrated in Figure 1 for a raster scanning

order. :

Each image element has associated with it a label (this is a temporary label in the first
pass and. a permanent label in the second pass). Two labels are equivalent if two image
elements associated with those labels are known to be in the same component because
" of adjacency information that has already been precessed. We refer to labels that are
associated with at least one active image element (or equivalent to such a label) as alive
(or live), and we say that a label associated only with inactive image elements is dead.
Only active image elements can cause distinct components to subsequently merge. Thus a
_ dead label will never be referenced again (on the current pass over the image), and storage
used to represent a dead label can be recycled and subsequently reused. The algorithm

presented below is based-on e,\plmtmg this observatlon

135

Inactive

Active

Active P

Unscanned

Figure 1: Imége partition after scanning pixel P in raster scanning order.
4 A General Algorithm for Connected-Component Labeling

The general algorithm, which appears as an appendix of th_i's paper, is executed in two
passes. - The first pass writes out an intermediate file consisting of .image elements and.
temporary labels. The second pass processes this file in reverse order (the file can be .
conceptualized as a stack) and assigns final labels to each image element as the end result
is output. Thus the requirement that the whole image not be kept in internal memory
is satisfied. The first pass processes eacl image element [in turn, according tec some
- predetermined scanning order. If J is BLACK, then the temporary labels of all scanned
BLACK image elements that are 4-adjacent 1o / are collected and an appropriate temporary
label is associated with /. Regardless of the color of 1, the set of active image elements
is then updated to reflect the fact that some image elements may have become inactive
when I was processed. This may cause t'emporar_}.' labels to become dead, in which case

‘they. may be eligible for reuse.

The algorithin is'presented in the form of a skeleton which is applicable to images of
arbitrary dimensionalities, as well as to array, runiength, quadtree. bintree, etc., represen-
tations of these images. We leave the précise implementation details of the data structures
(e.g., the set of active image elements) unspecified. The choice of data structures would
depend on factors such as the image representation and the scanning order. These factors
affect the final formulation of the algorithm as some of the steps may become trivial or
even unnecessary. A very efficient implementation for a two-dimensional a,rra,y_represen; :
tation of an image is described in [11]. A discussion of how the algorithm can be used for

a bintree representation of an image of arbitrary dimensionality appears in [12}.

136

An active image element ceases to be active (and is removed from the set of active
image elements) when all 2-d of its borders are ad jacent in their entirety to image elements
that have already been scanned or to the image boundary. This situation is detected by
keeping track of how many borders of each active image element are active. We use the
term active border elernent to refer to elements of these borders. A slight complication
arises when using hierarchical i image representations such as quadtrees, as some borders
of active image elements may be only partially active. A situation of this type is detected

by .use of procedure PARTIALLY_ACTIVE.

As we stated in the introduction, the basic strategy behind our algorithm is to rhaintain
sets of equivalent temporary labels, using UNION-FIND, and to merge sets whenever an
eQuiva,lence between two temporary labels is noted. In order to achieve effective reuse
of .space, we use age balancing. This conflicts with weight balancing; which is necessary
to obtain O(ma(m)} performance. The conflict is resolved by representing a temporary-
label using two tightly coupled data structures: a éurrogate record and a temporary lubel
record. The correspondence between coﬁp]ed surrogate and temporary label records is
explicitly represented by pointers. Each active image element contains a pointe’r to the
appropriate temporary label record. Each equivalence class is maintained as a tree of
surrogate records. When two equivalence classes are xnérged, weight balancing is achieved
by making the surrogate record with more descendants the root of the combined tree. Age
balancing is then achieved by altering the association between the surrogate records and
temporary label records, if necessary, to presérve the ihvariant that the temporary label
record associated with the root of the combined tree is the oldest temporary label record
assoclated with a suri‘ogate record in the tree. This is done by exchanging the pointers
to temporary label records in thé',two surrogate records, and making the corresponding

exchange between the pointers to surrogate records stored in the temporary label records.

We car now describe the data structures for our algorithm. Each active image element,
say I, is represented as a 4-tuple consisting of the fields COLOR, DSCR, NBORDERS, and
TLABEL. COLOR(J) is the color of I. DSCR(I} contains information about I - e.g., the
.1ength of its side for a-quadtree. NBORDERS(/) indicates how many of the borders of 7 are
active, It is initialized when [is added to the set of active image elements. In general, the
initial value must be computed by examining I’s neighbors to determine which ones have
been scanned. For an a.dlﬁissible scanning order, the initial value is easier to compute: jt
is d'for a d-dimensional image except when some of the borders are ad jacent to the image -
' boundary in which case it is less than d. The value is given by the function NUM_ACTIVE,
TLABEL(]) points to the temporary label record of the temporary label associated with J

when I became active. Once TLABEL({T} is set, it never changes until-I becomes inactive.

137

Each surrogate record § is represented by a 3-tuple consisting of the fields TLABEL,
FATHER, and COUNT. TLABEL{S} points to the corresponding temporary lahel record.
FATHER(S) is used to implement the sets of equivalence classes; it points to another sur-
rogate corresponding to a temporary label with which the temporary label corresponding
to § has been merged. COUNT(S) contains the number of surrogate records that are
descendants of 5 in the tree of surrogate records used to 1'ep.res'ent equivalence classes of
temporary labels. COUNT(S) is used to impleinent weight balancing, and also to determine

when it is safe to recycle S

Each tempora,ry label record 7T is represented by a 3-tuple consisting of the fields surg,
STAMP, and NACTIVE. SURG(Z") points to the corresponding surrogate record. sTAMP(T)
is a time-stamp, used for the time-comparison between temporary label records necessary
to implement age-balancing. NacTIVE(T) indicates the number of active image elements
whose TLABEL field is T. The key to effective reuse of temporary labels is the observation
that if § and T are a coupléd surrogate record/temporary label record pair representing a
label, the temporary label may be recycled when the following two conditions are satisfied:

(1) the label is no longer associated with any active image elements (NACTIVE(T) = 0), and _
(2} the surrogate record is not referenced by the sur roga.te record of a younger temporary

label (COUNT(S) = 0).

The first pass of the algorithm traverses the image elements and applies procedure
PROCESS_ELEMENT_PASS_1 to each image element, say /. Initially, there are no active
image elements. Dunng this pass an intermediate outpuL file is constructed. The ocutput
file consists of three Lypes of records: WHITE, BLACK, and EQUIVALENCE. Each record
contains the field TYPE that indicates its type. A record of type WHITE corresponds to a
WHITE image element and has ro additional fields. A record of type BLACK corresponds
to a BLACK image element and contains a second field, called TLaABZL, which corntains the

- temporary label associated with the image element at the time of oﬁtput. The temporary
label is specified as an index between @ and the maximum number of temporary labels
that have been used so far. A record of type EQUIVALENCE corresponds to a temporary
label that becomes dead. A z'e_cofd of this type has two additional fields: the temporary
iabel itself, called TLABEL, and the Lemporary label that became its father through the-

surrogate structure, called FATHER. which may have a value of NULL.

Procedure PROCESS_ELEMENT_PASS_]1 makes use of procedures COLLEGT_ADIACENT,
ASSIGN_TEMP_LABEL, REMOVE.ACTIVE_ELEMENTS, and REMOVE_ACTIVE.TEMP_LABELS.
As each image element is processed, it is added to ACTIVE, the set of active image elements.

[T the image element is WHITE, then a record of type WHITE is output.

138

For each BLACK image element . procedure COLLECT_ADJACENT performs a FIND
operation, with path compression, on (the surrogate record of) the temporary label of each
BLACK image element A that is 4-adjacent to 7. During the path 'compression, temporary
labels that are no longer associated with any active image elements are made available for
reuse. The set of oldest representatives of equivalence classes containing temporary labels

associated ‘with elements of 4 is accumulated in TLABELSET.

Procedure ASSIGN_TEMP_LABEL is used to associate a temporary label with /. If
TLABELSET is empty, then a new temporary label is allocated. Otherwise, the tempo-
rary labels in TLABELSET are merged. Pointers to the surrogate record with the most
descendants and the oldest temporary label record are accumulated i S_MAXCOUNT and
L-MINSTAMP. respectively. The label L_MINSTAMP is retained, pointers are switched if -
necessary to ensure thal S_MANCOUNT = SURG(L_MINSTAMP), and weight.-baja.mtiug is
applied to the surz'o-gate structure. The count field of the surviving surrogate record
is updated. to reflect the number of temporary labels that have been merged. After the
call to ASSIGN_TEMP_LABEL, PROCESS_ELEMENT_PASS_] increments the NACTIVE field of
the. Lempomry label record corresponding to the surviving surrogate 1ec01d and writes a

record of type BLACK to the output ﬁle

~ Procedure REMOVE_ACTIVELELEMENTS updates ACTIVE, the set of active image ele-
ments, b\, removing those image elements that have become inactive. If a removed i image
element is BLACK, the NACTIVE fields of the associated temporary label is decremented. [f
this causes the NACTIVE field of the associated temporary label to become 0, then the label
is added to the set INACTIVE, which is an initially empty list of candidates for recycling.
Procedure REMOVE_ACTIVE_TEMP_LABELS is called for each surrogate record correspond-
ing to an element of the set INAGTIVE. It checks whether the surrogate record can be
recycled and, if so, recycles it. If the surrogate record is recycled, that may make its
father eligible for recycling, and so on. It is possible that this recycling up a chain could
cause a Lempoxaly label in.the INACTIVE sel to be recycled before its turn comes up in
the loop at the end of PROCESS_ELEMENT_PASS_1. For this reason, the prititive INUsE
~checks whether the label is still i in use (i.e., has not been recycled). This primitive can be
implemented by, for instance, having each temporary label that has been recycled store a

negative value in its NACTIVE field.

The second pass processes the intermediate file of records output in the first pass in
reverse order by a.pplylng procedure PROCESS_ELEMENT-PASS_2 to each record. The data
structures for the second pass are much simpler than those for the first pass. There is no
need to support \V‘Eightbalahci ngin the imp}e.men_tation of UNION-FIND so thereis no need

for surrogate records. The temporary label records require two fields: FATHER to support

R

. 139

UNIGN-FIND, and LABEL to hold the Ppermanent label. These fields may share storage with

the fields in the temporary label records used in Pass I, so no new stor age is. necessary .fm

Pass 2.

Recall that there are up to three fields in each record of the intermediate file, called
TYPE, TLABEL, and FATHER. Whenever a record corresponding to an equivalence relation
<'EQUIVALENCE",L,NULL> is encountered in the intermediate file, a unique (permauent)
label is generated and associated with L. If a record <‘EQUIVALENCE’,L,F > is eneoun-
tered, L is linked to the temporary label F (i.e., FATHER(L) is set to). This link is
used by a FIND operation { which includes path compreséion) to obtain the correct {abel
when a record corresponding to a BLACK node with temporary label L {or its equivalént
sons) is subsequently encountered. WHITE nodes, {and GRaY nodes for certain hierarchical

Tepresentations) do not require any special handling on the second pass, although thev are

written to the final output file as “place -holders.”

As an example, consider the 7 x 5 image in Figure 2(a), scanned according to a raster
scanning order, where B and W correspond to BLACK and WHITE pixels respectively. The
output of Pass 1 is shown in Flgule 2(b) where the records of type EQUIVALENGE have been
placed in the cell associated with the pixel which triggered its output. The final output
is shown in Figure 2(c), where the final component labels are generated in the order C1, '

C2, C3 (recall that the second pass scans the intermediate file in reverse order).

5 Correctness and Analysis

In this section we bneﬂy sketch an argument for the correctness of the algouthm described
in Section 4 and provide an upper bound on irs running time. More detail can be found
in [2].

In the first pass, no temporary label is Lecycled as long as it is the father of a temporary
label, and no temporary label is recycled as long as it is associated with an active image

element. These two observations imply that no temporary label is recycled prematurely, so

~space is reused conectly in the first pass.. In the second pass, no temporary label is reused

while it is still the father of a non- reused temporary label. Moreover, when a temporary
label is encountered as the TLABEL field of a BLACK record in the INTERMEDIATE file, then
it is in a tree whose root has the correct permanent label in its LABEL field. It follows

that space is reused correctly in the second pass, and each image element is assigned the

‘correct permanent label.

The time-complexity of the algorithm is determined by the following quantities: the

140
BIB|B|B|W
wWiw|w|B|w
wW|wW|wW|[B[w
wW(W|wW[B|wW
B|B|B|BI|B
WiwW|w|w|w
w|B |[w|w|w
(a)
(B,1) (B,1) (B,1) (B.1) (W)
(W) (W) (W) (B,1) (W)
(W) (B,2) (W) (B.,1) (W)
(W) (W) (E.2,Q2) (W) - (B,1) (W)
(B,2) (B,2) (B,2) (B,1). (B,1)
(W) (W) (W) (E,2,1) (W) (W) (E,1,£2)
W) (B,1) (W) (E,1.Q) (W) (W)
(b)
QCloelalce|l w
wWiliwlw|Q|w
W 33w | w
wlwlwle|w
Qle|loc|lae] e
wWIilwlw/| w| w
wilic|lwl|w/| w
(©)

Figure 2: lllustration of the connected-composient labeling algorithm on a 2-dimensional
raster-scanned image. (a) A 7 x5 two-dimensional image. (b) The output of the first pass.
(¢} The final output.

141

cost of processing the image elements, the cost of examining all the active neighbors of all
image elements, and the cost of the UNION-FIND operations. Let 7 be the total number of

im'age elements, and let & be the number of all adjacent pairs of image elements.

The main procedures in bothk Pass 1 and Pass 2 (PROCEéS_'EL EMENT_PaSS_I and
PROCESS_ELEM ENT_PASS_2, respectively) are each executed [times. Each adjacency pair
- 1s examined at most four times. In Pass 1, each image element induces at most one UNION
operation, and each adjacency pair induces at most one FIND operation. The total tine re-
quired by all UNION and PIND operations in Pass 1 is thus O(Ea(E)), since the UNION-FIND
implementation in Pass | combines weight-balancing and path-compression. Hence the to-
tal time required by Pass 1 is O(Ea(E)). In the full paper, it is shown that Pass'2 runs in
O(I) time. Thus the worst-case time-complexity of the géneré.l algorithm is O(I+ Ea(E)).
For almost any representation of an image, and certainly for all the ones considered here
(bintrees, quadtrees, arrays, etc.), £ = O([)', so the worst-case time-complexity reduces

to O(Ja(f)} in these importatit cases (Q(d- Ta(])) in d dimensions).

6 Concluding Remarks

We have presented an efficient algorithm for connected-component labeling of images for
arbitrarily specified scanning orders. For raster-scanned arrays, the algorithm runs in time
linear in the number of pixels [I1]. Thus in this case, our general algorithm problem is
‘as fast as the algorithm of [13], which is specifically formulated for raster-scanned arrays
and does not appear to be easily generalized to other image representa’cioﬁs_. We leave as
- an open problem a detailed worst-case analysis of the storage and time requirement of the

general algorithm for other representations such as quadtrees and 3D-pixel arrays.

Acknowledginents

We thank John Canning and Azriel Rosenfeld for helpful discussions and comments. This
research was supported in part by the National Science Foundation under grant IRI-

8802457,

References

(1] A: V. Aho, J. E. Hopcroft. and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison- Wesley, Reading, MA, 1974.:

142

[2] M. B. Dillencourt, H. Samet, and M. Tamminen. Connected-component labeling of
binary images. Computer Science CS-TR-2303, University of Maryland, CoIiege'Park,
MD, August 1989. ' o

(3] J. Hopcroft and R. Tarjan. Efficient algorithms for graph manipulation. Communi.
cations of the ACM, 16(6):372-378, June 1973.

(4] R. Lumia, L. Shapiro, and O. Zuniga. A new connected components algorithm
- for virtual memory computers. Computer Vision, Graphics, and Image Processing,
22(2):287-300, May 1983.

[5] C.M. Park and A. Rosenfeld. Connectivity and genus in three dimensions. Computer
Science Technical Report TR-156, University of Maryland, College Park, MD, May
1971. .

[6] A. Rosenfeld and A.C. Kak. Digital Picture Processing. Academic Press,_N ew York,
‘NY, second edition, 1982. ' s

(7] A. Rosenfeld and J.L. Pfalts. Sequential operations in digital image processing. Jour-
nal of the ACM, 13(4):471-494, October 1966. :

[8] H. Samet. Connected component labeling using quadtrees. Journal of the ACM,
28(3):487-501, July 198]. :

[9] H. Samet. The quadtree and related hierarchical structures. ACM Computing Surveys,
16(2):187-260, June 1984.

(10) H. Samet. The Design and Analysis of Spatial Data Structures. Addisqn-Wesley,
Reading, MA, 1989. ' '

" [11] H. Samet and M. Tamminen. A general approach to connected component labeling

of images. In Proceedings of ¢ ‘omputer Vision and Pattern Recognition 86, pages

312-318, Miami Beach, June 1986.

[12] H. Samet and M. Tamminen. Efficient component labeling of images of arbitrary
dimension represented by linear bintrees. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 10(4):579-586, July 1988.

[13] J. T. Schwartz, M. Sharir, and A. Siegel. An efficient algorithm for finding connected
‘components in a binary image. Robotics Research 38, New York University, New
York, NY, February 1985. Revised July, 1985,

i

143

[14] C. A. Shaffer, H. Samet, and R. C. Nelson. QUILT: a geographic infdrmation system
based on quadtrees. Computer Science Technical Report TR-1885.1, University of
Maryland, College Park, MD, July 1987.

[15] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the
ACM, 22(2):215-225, April 1975.

Appendix: A General Algorithm for Connected-Component Labeling

procedure PROCESS_ELEMENT_.PASS1(I,ACTIVE);

/* Add image element [to the set of active image elements duung the first pass of connected
component labeling of an inage and output appropriate records to the intermediate file pointed
at by INTERMEDIATE for the second pass. The contents of these records are specified within
angle brackets */

begin

value pointer image._element 1; 7

reference pointer image_element set ACTIVE;

global integer MAXSTAMP, MAXLABEL; /* mma.lly 0 at start of passl */

global pointer file INTERMEDIATE;

pointer temp _label set TLABELSET INACTIVE;

pointer image._element 4;

if cOLOR(I) = GRAY then
begin /* this case handles quadtrees, octrees, bintrees, etc. ' */

output{INTERMEDIATE,<'GRAY'>};
DECOMPOSE_AND_RECUR(I,PROCESS. ELEMENT_PASS1);
end

else
begin

addtoset(1,ACTIVE);
NBORDERS(I) ~— NUM_ACTIVE(L);
/* NUM_ACTIVE indicates how many of 1's borders are ACTIVE */

if COLOR(1) = WHITE then output(INTERMEDIATE,< " WHITE >}
else /* I is BLACK */
begin

TLABELSET «~ empty;
foreach A in ACTIVE suchthat FOUR_ADJACENT(4 1) do
COLLECT_ADJACENT(A ,TLABELSET);
ASSIGN_TEMP_LABEL{I,TLABELSET);
NACTIVE(TLABEL(1)) +— NACTIVE(TLABEL{I))+1;
output{INTERMEDIATE,<'BLACK’ TLABEL(I)J>}
end;
INACTIVE — empty;
foreach A in ACTIVE suchthat
FOUR_ADJACENT({A 1) and not PARTIALLY _ACTIVE(DSGR(a),DSCR{1)) do
REMOVE_ACTIVE_ELEMENTS(A,ACTIVE INACIIVL)
foreach L in INACTIVE do
if INUSE(L) then REMOVE_ACTIVE.TEMP LABELS{SURG(L));
end; - '
c:lld,‘ :

' procedure COLLEGT-ADJACENT({A, TLABELSET);

144

/* Collect the temporary labels of BLACK active image elements that are 4-adjacent to 1. */
_begin '
value pointer image_element a;
reference pointer temp label set TLABELSET;
pointer surrogate $, sl, §2:
integer PATHCOUNT — 0;
if coLOR{A) = BLACK then
begin
51 « 5 — SURG{TLABEL{(a));
while not null(FATHER(S)) do § «— FATHER(S); /* FIND */
while 51 # s do /* path compression */
begin
$2 «— FATHER{S1); .
/* PATHCOUNT contains value of counT(s1) from before start of path compression* /
if 52 # s then
‘begin , ‘
COUNT(S2) «— COUNT{S2) — PATHCOUNT — 1;
PATHCOUNT « PATHCOUNT + COUNT(s2) + 1; /* old counT(s2) */
end;
if GOUNT(51) = 0 and NACTIVE{TLABEL(s1)}=0 then
begin :
RETURN_TO_AVAIL(TLABEL{S1));
COUNT(8) — COUNT(S) — 1;
end - . '
else
FATHER(S1) < §;
51 — 82,
end;
addtoset(s TLABELSET}:
end;
end;

procedure ASSIGN_TEMP_LABEL(i,TLABELSET);
/* Assign a temporary label to image element I. TLABELSET contains the temporary labels o
all BLACK image elements that are 4-adjacent to 1. If TLABELSET is empty, then allocate =
- temporary label and assign it to L. Otherwise, determine L.MINSTAMF - the oldest temporar
label, and 5_MAXCOUNT, the surrogate with the most descendants. In this case, first achieve age
balancing and weight-balancing by ensuring that S MAXCOUNT is the surrogate for L_MINSTAMP
Next merge the labels in TLABELSET */ '
begin '
value pointer image_element 1;
reference pointer templabel set TLABELSET;
pointer temp label L_MINSTAMP L;"
pointer surrogate S MAXCOUNT;
pointer global integer MAXLABEL, MAXSTAMP,
if empty(TLABELSET) then
begin /* no BLACK active linage elements are 4—adjacent to L. */
L.MINSTAMP « NEW_TEMP_LABEL(}); .
. /*returns pointer to templabel record properly coupled with a surrogate tecord */
NACTIVE(L_MINSTAMP) — COUNT(SURG(LMINSTAMP)) — 0;
FATHER(SURG(L_MINSTAMP}) — NIL;
STAMP(L_MINSTAMP) + MAXSTAMP MAXSTAMP + 1;
end '
else’

145

begin
L_MINSTAMP +— ARBITRARY(TLABELSET); /* pick some arbitrary element of TLABELSET */
$ MAXCOUNT «- SURG(L_MINSTAMP);
foreach L in TLABELSET do
begin :
if STAMP(L) < STAMP(L_MINSTAMP) then
L.MINSTAMP «— L; /* determine oldest temporary label. */
if COUNT(SURG(L)) > COUNT({S_MAXCOUNT) then :
S MAXCOUNT — SURG(L); /* determine surrogate with largest subtree */
end; i
/* ensure S_MAXCOUNT is surrogate for L_MINSTAMP */
if SMAXCOUNT # SURG(L_MINSTAMP) then
begin
L « TLABEL{S_MAXCOUNT);
TLABEL{5.MAXCOUNT) TLABEL(SURG(L_MINSTAMP }):
SURG(L) — SURG(L_MINSTAMP); - :
end; :
foreach L in TLABELSET do
begin /* union */
$ +— SURG(L); .
if § # S_MAXCOUNT then
begin
FATHER(S) «+— S_MAXCOUNT;
GOUNT(($-MAXCOUNT) «- COUNT{S_MAXCOUNT). + COUNT(5) + I;
end;
end;
end;
- TLABEL(I) +~ L_MINSTAMP;
end;

procedure REMOVE.ACTIVE_ELEMENTS(A ,ACTIVE,INACTIVE};
/* Remove image element 4 from the set ACTIVE if it is no longer active. If the removed image
' element is BLACK, decrement the NAGTIVE field of the associate temporary label. If this field
becomes 0, add the temporary label to INACTIVE. */
hegin
"~ value pointer image.element a; _
reference pointer image_element set ACTIVE:
reference pointer temp label set INACTIVE; .
NBORDERS(A) — NBORDERS(A)—1I; /* 1 can be adjacent to a along only one border */
if NBORDERS{A)=0 then : '
begin /* image element A is no longer ACTIVE */
REMOVE_FROM_SET(A,ACTIVE);
if coLor{A)} = BLACK then
begin
NAGTIVE(TLABEL(A)) ~— NACTIVE(TLABEL(A))—1i:
if NACTIVE{TLABEL(4}) = 0 then addtoset(TLABEL{A) INACTIVE);
end; : :
end;
end;

procedure REMOVE_ACTIVE_TEMP LABELS(S); _
/* Recycle the temporary tabel associated with surrogate record 5 if it is legal to do so. If s can
be reused, then check if its father can also be reused, and so on. Update count fields all the
way up to the root */ :

146

begin
value pointer surrogate s;
pointer surrogate 51;
integer DELETED_COUNT — (:
while not null(s) do
begin :
. COUNT($) + GOUNT(S) — DELETED_COUNT;
sl «— s;
§ «- FATHER{S);"
if NACTIVE(TLABEL(S1))=0 and COUNT(51)=0 then
begin /* temporary label with surrogate s can be reused */
DELETED_COUNT —DELETED.COUNT + 1;
output(INTERMEDIATE,<'EQUIVALENCE’, TLABEL(51) TLABEL(S))
/™ TLABEL{NIL) = NIL ! */
RETURN_TO AVA[L(TLABEL(SI))
end;
end;
end;

procedure PROCESS_ELEMENT_PASS2(R);
/* Assign-the final component label to the object corresponding to R dunng the second pass of
connected component labeling of an image. */
begin
value INTERMEDIATE_RECORD R;
global integer MAXLABEL; /* initially 0 at start of pass2 */
if TYPE(R)='BLACK’ then /* format is <‘BLACK’,TLABEL> */
Output(LABEL(F!ND(TLABEL(R))) '
else if TYPE(R)= EQUIVALENCE then /* format is <‘EQUIVALENCE’ ,TLABEL FATHER> */
begin
FATHER(TLABEL(R)) + FATHER(R) /* uNioN */
if null(FATHER(R)) then LABEL{TLABEL(R)}) — MAXLABEL — MAXLABEL+1;
end
else cutput(TYPE(R)); /* WHITE or GRAY node */
end: :

pointer temp label procedure FIND(L);
/* Find the root of the tree to which 1 belongs, using path compression */
begin
value pointer temp. label L;
pointer temp.label L1, L2;
if null(FATHER(L) then 1etu1n(L)
L1 < L;
while not null(FATHER(L)) do L — FATHER(L); /* find root */
while FATHER{L1) # L do /* path compression */
begin o o
L2 — FATHER(LI),‘ ' '
FATHER(L1) — L;
L1 — L2;
end;
return(L);
end;

