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ABSTRACT

A study is performed of the problem of planning a
collision-free path for a robot in a time-varying environment.
It is assumed that an obstacle moves along a known path.
Our formulation also allows the destination point (the point to
be reached) to move along 2 pre-determined path. A new con-
cept of ‘accessibility’ from a point to a moving object is intro-
duced and is used to determine a collision-free path. An
environment which contains some uncertainty in which the
robot needs to see and possibly plan an alternative path is also
considered. The ability to deal with moving obstacles is useful
in a variety of visual tasks such as the navigation of an auto-
nomous vehicle and the interaction between robot arms.
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1. Introduction

Motion planning is a problem of fundamental importance
in visual navigation as well as in robot arm manipulation (6, 7,
10, 11]. The problem is to find a path that connects a given
start and final configuration, among a pre-defined set of obsta-
cles, so that the path is collision-free. For the sake of simpli-
city, the obstacles are usually approximated by polygons, and
the object that follows the path (usually termed a robot) is
treated as a point.

In this paper, we consider the two-dimensional path plan-
ning problem in which the obstacles, as well as the destination
point, are in motion. The ability to perform path planning
among moving obstacles and a moving destination point can
be useful to various robot systems equipped with vision. For
example, the ability to avoid moving obstacles leads to an
increase in the mobility of a robot for navigation. It also
results in a higher productivity for factory manipulators. By
allowing the destination point to move, we are able to consider
a larger class of robot applications. For example, suppose that
the robot arm must pick up an object that lies on a conveyer
belt with visual guidance. As another example, consider an
autonomous vehicle whose goal is to catch up with another
vehicle that is in motion by tracking its movement. We
assume that all the motions of obstacles are piecewise linear -
i.e., the motion of an obstacle consists of a sequence of inter-
vals where in each interval the obstacle moves in a fixed direc-
tion at a constant speed without rotation.
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The piecewise linear motion assumption simplifies the
problem, as well as makes the task of the visual component
easier. First, we assume that all the motions of the obstacles
have already been measured prior to the planning stage.
Later, we discuss the avoidance of obstacles with an uncertain
velocity where the robot has to alternate between the actions
of seeing and moving.

The dynamic nature of the problem gives rise to some
new aspects in our problem that are not considered in the path
planning problem among stationary obstacles. For example, a
path that is viable at a particular instance of time may no
longer be executable at another instance of time. In addition,
there are two types of optimal paths, i.e., the one that reaches
the destination by traversing the shortest distance, and the
one that reaches the destination in the shortest time. These
two optimal paths are usually not identical.

Reif and Sharir [9] show that motion planning for a
three-dimensional environment containing moving obstacles is
PSPACE-hard given bounds on the robot’s velocity, and NP-
hard without such bounds. Canny and Reif [2] show that
motion planning for a point in the plane with a bounded velo-
city is NP-hard, even when the moving obstacles are convex
polygons moving at constant linear velocity without rotation.
Nevertheless, there have been some approaches at solving the
problem. These methods are successful in a limited domain.
Kant and Zucker [5) decompose the problem into two parts.
In the first part, they ignore the moving obstacles in planning
a path among the stationary obstacles. In the second part, a
graph is used to define regions through which the robot may
not pass when following the path computed in the first part.
The positions of these regions influence the choice of the velo-
city. Erdmann and Lozano-Perez (3] make use of stacks (i.e.,
piles) of two-dimensional Configuration Spaces. These spaces
are created each time some object changes its velocity. A path
consists of a sequence of vertex-to-vertex transitions between
two adjacent elements of the piles. None of these approaches
deal with the case in which the destination point can also be in
motion.

Our approach is as follows. We assume that the robot
can move faster than the obstacles. We first determine the set
of points called a collision front with respect to the starting
point. These are the points where our point robot meets with
an obstacle for the first time when the robot is moving at a
constant velocity. In general, the front is in the form of a
curve. We move the robot to one of the end points, say E, of
the collision fronts. From E, we again determine the collision
fronts with respect to E, and move the robot {rom E to one of
the end points of the mew collision fronts. We repeat this



process until the destination point is finally met.

The rest of this paper is organized as follows. Section 2
introduces the concept of accessibility. Section 3 presents the
algorithm to find a collision-free path using accessibility, and
Section 4 analyzes the execution time of the algorithm. Sec-
tion 5 extends the concept of accessibility to piecewise linear
motion of the obstacle, and applies the concept in an environ-
ment with uncertainty. Section 6 compares our approach with
some other approaches. Section 7 contains concluding
remarks.

2. Accessibility

Throughout the paper, G and R are used to denote the
destination point and the point robot, respectively. In this
section, in order to ease the presentation, the obstacles are
assumed to make a straight motion. This assumption is
extended to allow piecewise linear motion in Section 5.

First, we define our obstacles. An obstacle is a convex
polygon which moves in a constant direction at a constant
speed. We call such a straight motion a movement. For the
sake of explanation, we treat the line-segments (edges) that
constitute polygons as the basic units of our discussion. A
movement is defined by a tuple (L,d; ,v; ) which represents the
motion of line-segment L in direction d; at speed v, . We will
consider an environment which contains a finite set of move-
ments, M={M,M,,...M,}, where each M; represents a move-
ment as defined above. Note that M corresponds to the
motions of all the edges in the environment; not just one
polygon. Hence, if a polygon P; consists of /; edges, then n =
li+lyt - - - +l, where k is the number of polygons in the
environment.

Second, we describe the motion of R, the point robot.
After leaving the start point at a start time, R can take any
motion as long as its speed doesn’t exceed a given maximum
speed. We assume that the maximum speed of R is greater
than that of any of the obstacles and that of the destination
point.

Third, the path of G is piecewise linear; i.e., it consists of
a finite series of movements. Within a movement, G moves in
a constant direction at a constant speed.

Consider a set of movements M ={M M,,....M, } and G,
the destination point. Let R be a point robot located initially
at O at time ¢y. Suppose that R starts moving at time f; at a
speed v in a fixed direction. A point V (V is either G or a
vertex of a polygonal obstacle) is said to be accessible from O,
if there exists a direction of the motion of R such that R
meets V' without a prior interception by any other move-
ments. We say that V and R meet if there exists a location
X through which both V and R pass at the same time ¢,
where tq<<t. The location X is called an accessible point of
V, and t is called the accessible time of X.

The accessible point varies for different values of the
speed and the initial location of R. Therefore, we use
V(O,tg,v) to denote the accessible point of V formed by R
whose initial location, start time and speed are O, tg and v,
respectively. Also if V' is stationary, then the accessible point
of Vis V itself, if applicable.

Let VS be the set of vertices of the given polygonal obs-
tacles in motion M (termed a vertexr set), and let O, t;, v be
as in the previous definition. The set of accessible points of
vertices in V.S with respect to O, tg, v are called the accessi-
ble point set and denoted as APS(M,O,tg,v). Since some ver-
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tices in VS may not be accessible from O, the size of APS is
at most | VS|.

3. Motion Planning Algorithm

This section describes our algorithm for path planning
using the accessibility concept introduced in Section 2. Let
V, V) be an edge of an obstacle and let P, and P, be accessi-
ble points of V, and V}, with respect to R’s initial location O,
start time to, and speed v. If R keeps moving in a direction
between OP, and OP, at speed v, then R will eventually col-
lide with edge V, V}; at some point. The set of these collision
points with respect to edge V,V, forms a (curve) segment,
which is called the collision front of edge V,V, (Figure 1).
On the other hand, when R keeps moving outside the angle
formed by OP, and OP; at speed v, then R does not meet
V, Vy in motion. This fact is used to guide R in reaching the
destination point. R can move from O to one of the accessi-
ble points of APS(AM,0,t,v), say Q, without colliding with any
obstacle. At @, we construct another APS with @ as the ini-
tial point. Then we can again move to a newly generated
accessible vertex, say @', without colliding with any other
movement. The motivation behind our approach to path
planning is to repeat this process until R eventually reaches
the destination point.

Now, we present the procedure to find a path to the des-
tination point using APS. Let § be a start point (i.e., the
point at which R, the point robot, is initially found), ¢y be a
start time, G be the destination point which is in motion, and
M={M, .. ,M,} be the set of movements. With each accessi-
ble point, say P, we also associate a time value, say t(P), to
denote P’s corresponding accessible time. We use a priority
queue of points where the accessible time of each point serves
as the point’s priority.
procedure FINDPATH

(1) Insert S in the queue and set its default accessible time

to ¢y.

(2) Pop a point, say P, from the queue whose associated

minimum accessible time is the minimum (i.e., it is the
youngest).
If P in step (2) is the destination point, then exit the
procedure; otherwise, construct APS(M,P,t(P),v) and
enter the new points of APS into the queue. Repeat
steps (2) and (3).

(3)

L at time t(P,) Py

collision front

L at time t{P})

L at time 1

Figure 1



Figure 2 is an example of the result of planning a path
using our approach. § and G are the start and destination
points. Triangle ABC is an obstacle moving towards the
right, and rectangle DEFG is an ohstacle moving towards the
left. Points N, P, and Q are the accessible points of B from
S, of F from N, and of H from P, respectively. The dashed
objects show the locations of the corresponding obstacles at
the indicated times. Note that while the robot is moving
between P and @Q, it is coincident with some point on edge
FH of obstacle DEFH. SNPQG constitutes the final path.

DEFH at time £(Q)
DEFH at time t(P)
E

Figure 2

4. Execution Time

This section analyzes the time required to generate a
collision-free path using the algorithm described in the previ-
ous section. First, we show that the shape of the collision
front is either a parabola, hyperbola or an ellipse. Without a
loss of generality, consider the situation shown in Figure 3.
Line segment L lies parallel to the y-axis. Let (zqyo) be the
location of one of L’s endpoints at the start time, [ be the
length of L, v, be the velocity of L, v be the velocity of the
robot, and 0 be the angle formed by the direction of the move-
ment and the z-axis. Suppose that a point P at (20, Y) in L
is accessible from the origin (0,0) at point (z,y).  and y must
satisfy:

m _ (1'1'0).'*'(31*)/)"

v

t(zy)=

(1)

max #

y=(z-z0)tand+Y

(2)
3)

Equations (1) and (2) define a quadratic relationship between
z and y - ie., the collision front lies either on a parabola,
hyperbola, or ellipse. (The curve degenerates to a straight line
when the direction of the motion is parallel to L). Also, we
can show that the origin is on the same side as one of the focl
of the curve. Generally, the two endpoints of a collision front

yo<Y <yot+!
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7 .
L collision front

(0,0)

Figure 3

(accessible points) can be computed by setting Y to yo and
yo+l in equations (1) and (2).

Having computed two accessible points of a single move-
ment, we must now compute all the accessible points (APS)
when the robot is at a given start point, say S, with a given
speed v. For a set of polygonal obstacles with n vertices,
there are n candidate accessible points. However, some points
may not be accessible from S since some other movement
intercepts the accessibility of that point. We now show that it
takes O(nlogn) time to compute APS. The set of accessible
points is determined by using a similar technique to that used
to compute the visibility of a given set of line segments. This
is also known as a plane-sweep algorithm [8]. This is a two-
step process. The first step sorts all the vertices, say in a
clockwise direction with respect to S. This sorting process
takes O(nlogn) time. The second pass rotates a line about S
and halts each time the line intersects a vertex, and we check
whether or not the collision front associated with the vertex is
accessible from S. This process can be achieved in O(logn)
time by using a 2-3 tree (1} to maintain the active collision
fronts based on their distance from 5. In this way, the closest
collision front is marked as accessible from S. Since it takes
at most Of(nrlogn) time to build the initial 2-3 tree and
O(logn) time for each update at a vertex, the determination
of accessibility of n candidate points takes O(nlogn) time.
Therefore, given a start point and a set of candidate points, it
takes O(nlogn) time to compute accessible points from the
start point.

As there are n vertices in the environment, it can be
shown [4] that an APS needs to be generated at most n times
before a path reaches the destination point This means that
procedure FINDPATH require O(n’logn) time to compute a
path. Note that for stationary polygonal obstacles, using 2
visibility graph, the shortest length path can be computed in
0(n?) time [12].

5. Two Adaptations

In this section, we describe two adaptations of the acces-
sibility concept in an environment in which (1) the motion of
the obstacles is piecewise linear, and (2) there is some uncer-
tainty in the motion of the obstacles.



5.1. Piecewise linear motion of the obstacles

At times, a straight motion is not sufficient to describe
the movement of the obstacles. A somewhat more general
description is a piecewise linear motion- te., the motion con-
sists of a finite number of time intervals such that during each
interval the obstacle moves in a fixed direction with a constant
speed. It is simple to extend the accessibility concept to this
situation. Now, we can define a movement for line-segment L
as (L,dp,v,, Tl ), where TI; represents the time interval dur-
ing which L moves in direction d; at speed v;,. When the
motion of the obstacle is piecewise linear, then the collision
front becomes a finite set of connected sub-segments of qua-
dratic curves. Note that points where two curves are con-
nected may now correspond to an internal point of the line
segment in motion- i.e., L.

The value n in the execution time analysis (Section 4)
now represents the total number of movements made by the
polygonal obstacles. In other words, if a polygon P; consists
of [; vertices and each polygon P; has m; movements in its life
time, then n=Ilym;+lymqo+ - - [ym;, where k is the total
number of polygons.

5.2. Environment with uncertainty

It should be pointed out that our approach can be easily
adapted to an environment with uncertainty. Such a situation
arises due to errors in the measurement of the motion of the
objects. For example, the notion of accessibility can be
extended to handle some amount of uncertainty in the speed
of the obstacles. Consider a line segment L which moves in a
constant direction at a speed v, where v;<v<w, for some
known v, and vy. We can create two collision fronts, C'; and
Cy, which correspond to the movement of L at speeds v, and
vq, respectively. A collision front of L at velocity v must lie
between C; and C, We use the term collision area to
denote the area which is swept by L and bounded by C'1 and
C2 (Figure 4). The two extremum points of this area (e.g.,
points A and B in Figure 4) can be used as accessible points
in procedure FINDPATH (described in Section 3) to find a
path among obstacles with uncertain speeds. At an accessible
point, the robot may have to ‘see’ again to make sure that it
knows the location of the other obstacles. After ‘seeing’, the
robot moves toward the next accessible point. In other words,
the robot need not ‘see’ during the time interval.

Another source of uncertainty is the point robot itself.
Due to errors inherent to the driving mechanism or minor tur-
bulence along the path, the robot may have a certain range of
uncertainty with respect to its own velocity. A dynamic
nature of the problem aggravates the problem: once a robot
falls behind a strictly planned path specified with time, it
becomes increasingly hard or even impossible for the robot to
catch up with the original path. This is because a small delay
at an earlier stage of the path can easily grow to be an insur-
mountable delay from the pre-planned path, as the delay
increases with its propagation. To prevent this from

happening, we can incorporate the uncertainty factor of the
robot’s velocity by defining a collision area similar to that
shown above. In the future, we will also take into account
uncertainty in the direction of the velocity.
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Figure 4

8. Discussion

At this point, let us compare our approach with some
past work in the field of motion planning among moving obs-
tacles. In particular, we pay attention to how ‘fast’ the final
path is. Our approach is in contrast with the ones taken by
Kant and Zucker (5] and Erdmann and Lozano-Perez [3]. Lee
and Lee [6] use an approach that is similar to [5].

Kant and Zucker decompose the process of path planning
into two steps, i.e., “where” and “when” phases. In the first
step, they determine “where to go”, i.e. they plan a path
among stationary obstacles. Next, in the second step, the
speed along the fixed path, which is an output of the first
stage, is varied so that the trajectory is collision-free with the
moving obstacles. However, their algorithm become inefficient,
and may even fail to generate a path, when one of the obsta-
cles moves on a path which is coincident with the path of the
robot which was computed in the first stage of the algorithm.
The problem is that the path is fixed in the second stage, and
thus the robot is not allowed to circumnavigate moving obsta-
cles. Also, as the path is fixed in the first stage, their method
cannot easily incorporate a moving destination point.

Erdmann and Lozano-Perez [3] represent the movements
of the obstacles as a set of slices which embodies space-time.
These slices represent the Configuration Spaces at the particu-
lar times. The times are those at which some moving obstacle
changes its velocity. A path consists of a set of path segments
which starts at a vertex of an obstacle in one slice and ter-
minates at a vertex of an obstacle in the next slice. Between
two vertices, the moving obstacle makes a straight movement
with a constant speed. As a result, along a final path, a
point-robot changes its velocity only at some of the vertices of
the obstacles when some obstacle’s velocity changes. Their
approach is complete when the topology of the free space
doesn’t change, (i.e., the obstacles don’t merge or split) and
runs in time O(rn®), where n is the total number of edges in
the environment and r is the number of slices constructed.
Their path can be inefficient when obstacles don’t change their
velocities at all, since the robot is forced to move at a constant
speed from start to end. It is possible to incorporate the case
of a moving destination in the space-time approach.

Our approach determines “where”” and “when” to go at
the same time. As a result, our approach generates a
collision-free path also in a situation where the approach of



Kant and Zucker fails. A path generated in our method also
consists of straight path segments, but they do not necessarily
terminate at a vertex of an obstacle. OQur approach is com-
plete only when the topology of free space doesn’t change. For
example, we can imagine 2 ‘gate’ on the route to the destina-
tion which opens only for a specific short period of time. Then,
the planner must be able to generate a path such that the
robot arrive at the gate just in time for the opening. In par-
ticular, the planner must be at least able to generate a point-
wise time-optimal path.

Figure 5 shows how the above three approaches negotiate
a moving obstacle. § and G represent the start and destina-
tion points. Object ABCD is an obstacle of size 2m by 2m
whose initial speed is 2 m/s moving towards the right. ABCD
changes its direction of motion towards the left when its right
edge reaches point X and also slows down its moving speed to
1 m/s. Three paths which are the outputs of the above men-
tioned approaches are illustrated. Here, we impose a speed
limit 3 m/s on the robot. Path o is the one planned by our
algorithm. Path f is generated by vertex-vertex transitions as
implemented by Erdmann and Lozano-Perez. The first vertex-
vertex transition can be either S to C at Z or S toD at W.
The later possibility must be eliminated in this situation

Figure 5
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Figure 6

because of the speed bound. Path v is a path that would be
generated using Kant and Zucker’s approach. It is a straight
line, since there are no stationary obstacles in the scene. The
second stage determines the speed along this straight line.
Note that along path ~ the robot gains speed after passing ver-
tex C while moving towards the left, and again after passing
vertex D. Figure 6 is the time-speed diagram for these paths.
Paths 8 and ~ terminate at the destination later than path a.
This indicates that paths generated by their corresponding
algorithm are, in general, not time-optimal.

7. Conclusions

We have presented a new approach to path planning
among moving obstacles using the concept of accessibility. In
our formulation, the destination point was also permitted to
move, which was not allowed in any of the previous
approaches. In so far as described above, the concept of acces-
sibility can be effectively utilized in planning a path among
obstacles whose motions are piecewise linear. We are currently
studying the time optimal property of the algorithm.
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