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ABS TR A C T 

A method is presented for planning a pa th  in t h e  pres- 
ence of moving obstacles. Given a se t  of polygonal moving 
obstacles, we focus on generating a pa th  for a mobile robot 
t h a t  navigates in t h e  two-dimensional plane. O u r  methodol- 
ogy is t o  include t ime as one of t h e  dimensions of t h e  model 
world. T h i s  allows u s  t o  regard the  moving obstacles as being 
s ta t ionary  in t h e  extended world. For a solution to he feasi- 
ble, the  robot must  no t  collide with any  o ther  moving obsta- 
cles, and ,  also, i t  mus t  navigate without exceeding t h e  
predetermined range of velocity, acceleration, and  centrifugal 
force. W e  use a spatial  index to facilitate geometric search for 
t h e  pa th  planning task.  Computer  simulation results are also 
presented to illustrate t h e  feasibility of this approach. 

1. INTRODUCTION 
Planning a collision-free pa th  is one of t h e  fundamenta l  

requirements for a mobile robot to execute i ts  tasks [Broo86, 
Davi85, Crow85, LIora831. Much of t h e  prior work on this 
topic is concerned with methods for generating a path among 
stationary obstacles iLoza79, Broo83, Kamb861. I t  should be 
clear t h a t  a robot t h a t  can cope with moving obstacles will be 
capable of performing a much larger and more complex class 
of tasks.  For example, t h e  capability of handling moving 
objects is essential in implementing concurrent motion for 
multiple robots.  

T h e  robot motion planning among stationary obstacles 
may he divided into two stages, i.e., t h e  determination of a 
collision-free pa th  and then the determination of control 
(velocity, acceleration, etc) along the  fixed pa th .  When obsta- 
cles a re  moving, we cannot  simply separate these two stages.  
For example, a collision-free pa th  for a robot t h a t  moves a t  
some velocity may not  be collision-free if i t  moves a t  a 
different velocity. Here we present a method to plan motion 
in the  presence of moving obstacles, i.e., determine a pa th  and 
velocity along the  pa th  such t h a t  t h e  pa th  is collision-free. 
1.1. Statement of the problem 

Our objective is t o  navigate a mobile object from the  
s t a r t  position t o  t h e  goal position in t h e  presence of a given 
se t  of moving polygonal obstacles on a two-dimensional plane. 
W e  require t h a t  the  mobile object move on a flat two- 
dimensional plane, avoid obstacles, observe a predetermined 
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range of velocity and acceleration, and  not negotiate any 
curve beyond a velocity t h a t  exceeds a predetermined upper 
limit o n  t h e  allowable centrifugal force. W e  also assume t h a t  
all the  information regarding obstacles (such as shapes, move- 
m e n t  directions, etc.) is known a priori to t h e  robot. We 
consider t h e  mobile robot t o  be a point.  In addition, we 
assume t h a t  each obstacle is a polygon which moves a t  a con- 
s t a n t  speed wi thout  rotation. These assumptions a re  n o t  
essential to our  method, b u t  they make  our presentation 
simpler. W e  also consider planning a pa th  in t h e  presence of 
some uncerainty in t h e  movements of obstacles. 

1.2. Space-time 
Our approach t o  the  problem is t o  use a three- 

dimensional space in which t ime is t h e  third dimension. T h i s  
space is usually called space-time. An object,  say  0 ,  moving 
in a two-dimensional plane can be regarded as a three- 
dimensional stationary object whose volume is the  trajectory 
t h a t  is swept  as i t  moves. If a point (z,y,t) is inside t h a t  
volume in space-time, then the  two-dimensional point (z,y) is 
occupied by object 0 a t  t ime t .  Therefore, a n  interference 
between t w o  objects in three-dimensional space means t h a t  a 
collision has  occurred in t h e  two-dimensional plane. Note 
t h a t  t w o  different objects which occupy the  same location a t  
different times don’t  collide and will occupy different locations 
in space-time. 

Now, o u r  task becomes one of finding a collision-free 
pa th  in space-time. Given a s t a r t  position, t ime, and goal 
position, t h e  search process generates a pa th  for the  mobile 
object t h a t  connects t h e  s t a r t  position t o  the  goal position. 
Minimizing the  t value of the  goal position will be a main 
concern in t h e  problem of t ime optimal path generation. 
Since o u r  third dimension is time, we have t o  be careful so as 
n o t  t o  choose an unrealistic path-e.g., traveling in t h e  nega- 
tive t ime direction. Moreover, t h e  pa th  must  satisfy the  
predefined conditions with respect to velocity, acceleration, 
and curva ture  

1.3. Related work 
T h e r e  a re  some approaches t h a t  examine the  moving 

objects. Samet  and  Tamminen [Same85a] describe a way to 
add  t h e  t ime dimension t o  a CSG. By converting a C S G  tree 
t o  t h e  bintree representation, dynamic collision detection can 
be efficiently performed. T h e  problem of collision detection is 
also discussed by Esterling and  Rosendale [Este83]. T h e y  
divide the  t ime dimension as well as the o ther  dimensions 
recursively to quickly locate the  collision point between two 
moving objects. K a n t  and  Zucker (Kant861 a t t e m p t  t o  
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determine a n  appropriate velocity along a fixed trajectory.  
T h e y  employ static pa th  planning techniques t o  solve a fixed- 
pa th  trajectory planning problem in time-varying environ- 
ment .  Reif and Sharir  [Reif851 have made  the  first theoretical 
s tep  toward t h e  dynamic pa th  planning problem. T h e y  prove 
t h a t  a pa th  among a se t  of moving polygons can be found in 
polynomial time with respect t o  the  to ta l  number  of vertices 
of t h e  obstacle polygons. Erdmann and Lozano-Perez 
[Erdm86] describe a planner for moving objects t h a t  con- 
s t ruc ts  a configuration space each time the  environment 
changes. Thei r  method is based on stacking two-dimensional 
planes, where each plane represents a configuration space a t  
some time. In this approach, two adjacent planes are 
inspected t o  see if a pa th  exists between these two planes. 
Bolles and Baker [Bo11851 construct a three-dimensional solid 
from an image sequence for motion analysis. Our method also 
incorporates t ime explicitly in the model world, which makes 
i t  easier t o  analyze factors like velocity and acceleration. To 
substantially facilitate geometric search, we use a spatial  
index. T h i s  is described in Section 2. Section 3 describes t h e  
search strategy, and Section 4 contains experimental results. 
Section 5 contains some concluding remarks. 

2. SPATIAL INDEXING 
We assume t h a t  the  motion of t h e  obstacles doesn’t 

involve rotation. As  long as a polygon moves at a constant 
speed without rotation, t h e  trajectory (i.e., the volume swept 
by t h e  polygon) becomes a polyhedron in three dimensions. A 
polyhedron can be modeled in terms of i ts  vertices, edges, and 
surfaces. T h e  representation method based on the  relation- 
ship between these three geometric entities is usually called 
t h e  boundary representation [RequSP]. Boundary representa- 
t ions are desirable for retrieving topologically connected infor- 
mation; however, they still require some supplementary work 
t o  perform geometric operations such as neighborhood 
finding. Since neighborhood search accounts for t h e  major 
p a r t  of pa th  search process, we use a spatial  index to facilitate 
i ts  computation. A tree s t ruc ture  serving as a n  index t o  the  
model world yields efficient access to a location. 

Both the mobile object and t h e  obstacles are defined in a 
world with bounded z ,  y ,  and 1 values. A point in the  space 
is represented by (z ,y , t ) ,  where 2 1 < 2 < 2 2 ,  y l < y < y 2 ,  and 
t 1 <t < t 2 .  I and y are measured in te rms  of distance while 
t corresponds t o  t ime. Usually, i t  is convenient t o  let 
z l = y l = t l = O  and z 2 = y 2 .  Note t h a t  time is also bounded. 
In this world, every motion of a n  object on the  two- 
dimensional plane during the  time period between t l  and  t 2  
is represented as  a three-dimensional object. Our index tree is 
built by repeatedly subdividing three dimensional space-time 
in to  eight subspaces of equal size called cells, unti l  each cell 
satisfies either of t h e  following conditions: 

(A) A cell contains p a r t  of the  trajectory of a ver- 
tex of an obstacle. 

(B) A cell doesn’t contain any p a r t  of the  trajec- 
tory of a vertex, bu t  contains par t  of the tra- 
jectory of an edge of an obstacle. 

( C )  A cell doesn’t contain any p a r t  of t h e  trajec- 
tory.  

(D) A cell is entirely contained in t h e  trajectory. 
T h e  cells defined by these criteria a re  respectively called 

vertez cells, edge cells, empty cells, and full cells. Similar 
methods  based on regular decomposition of t h e  space have 

been studied in t h e  octree domain jMeag82, Same85b, Aya185, 
Car1851. 

Figure 1 illustrates t h e  concept of the  index tree 
described above. Suppose t h a t  a n  object moves in t h e  z 
direction (Figure la ) .  A solid line and  a dashed line depict  
t h e  initial and final position of the  object.  Figure l b  shows 
t h e  volume swept  by t h e  object in space-time. T h e  index tree 
for this three-dimensional image is shown in Figure I d ,  where 
t h e  cell numbering convention of Figure IC is  used. An index 
tree must  be  built corresponding t o  t h e  volume swept by t h e  
motion of objects along t h e  given trajectories. Building a n  
index tree can be performed in t h e  following way. Initially, 
t h e  entire universe is treated as a sigle cell which is 
represented as a tree containing one node. If any  of condi- 
t ions (A)-(D) are violated by this cell, then t h e  cell is subdi- 
vided and  resulting cells a re  checked for violation of condi- 
t ions (A)-(D). T h i s  process is applied recursively. For  detailed 
discussion of this conversion, see [Aya185, Fuji851. Note t h a t  
we don’t  decompose t h e  universe t o  the  voxel level as in 
[Meag82]. 

3. PATH SEARCHING 
T h i s  section describes how t h e  search procedure gen- 

e ra tes  a collision-free pa th  using the  index tree introduced in 
Section 2. 

3.1. Control Points 
W e  define a point called a C-point (control point) in the  

space. T h e  sequence of these C-points forms a skeleton of t h e  
final p a t h .  W e  consider a C-point as an ordered pair consist- 
ing of a 2D location (i.e., ( z , y ) )  and  a t-value. A t-value 
represents t h e  t ime at which t h e  mobile object passes t h a t  C- 

Figure I 
a] An object moviig in the x direction. 
b The  time space image of the object in (a). 
e) The cell numbering convention in an  octree structure. 
d )  A tree representation of the space (b). V and E represent a vertex cell 

and a n  edge cell, respectively. 
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point. T h e  z and y values of a C-point take  on a discrete 
value. Le t  a square denote the  projection of a cell o n t o  t h e  
s-y plane. W e  define the  arrangement of these C-points such 
t h a t  t h e  z and y coordinates of C-points lie only a t  either of 
t h e  following nine locations in a square,  i.e., one a t  the  center,  
one a t  each of i ts  four corners (for a to ta l  of four) and one a t  
t h e  middle of each edge (for a total  of four). T h e  t-value is 
assigned in t h e  search stage.  In o ther  words, the  search pro- 
cedure first chooses the  next location to go to from t h e  nine 
types  described above. T h e n  it determines appropriate velo- 
city.  T h i s  determines t h e  t-value at t h a t  C-point.  Since we 
have a choice as t o  t h e  velocity (or acceleration) value, t h e  
t-value a t  each C-points can vary depending on velocity 
values t h a t  have been chosen. T w o  identical sequences of C- 
points with different se t s  of t-values, hence, represent two 
different motions. 

In order to m a k e  our  search feaslble, we pose t w o  restric- 
t ions with respect t o  the  choice of acceleration. T h e  mobile 
object can change i ts  acceleration and  direction only a t  t h e  
C-points,  while i t  retains t h e  s a m e  acceleration between two 
C-points. T h i s  is one constraint  we impose on our pa th .  
Another  constraint  is t h a t  we assume t h a t  acceleration takes 
o n  discrete values. These  restrictions a re  necessary, since oth- 
erwise there can be infinite possibilities as t o  when and  where 
t o  change acceleration. Since we can let the  acceleration be 0, 
navigating at a cons tan t  speed is also allowed. 

‘Nine C-point locations in a cell’ seems a severe restric- 
tion. Obviously, the  more C-points in the  plane, the more 
degrees of control we gain. However, since our solution is 
based on search, having too large a branching factor can 
easily lead t o  a combinatorial explosion, and t h u s  a smaller 
number  of C-points is desirable. O n  the  o ther  hand ,  with too 
small  a number  of C-points, frequent changes in direction and 
speed in a shor t  range are not  realizable; hence, t h e  search 
process may fail to find a feasible pa th .  T h u s ,  choosing the  
C-point configuration is an impor tan t  decision in this 
approach. Using t h e  index tree, t h e  space is organized using 
various sizes of cells. Larger blocks of cells a re  used to 
represent areas having a lower density of obstacles while a n  
a rea  with many obstacles is divided fur ther  into smaller cells. 
Therefore, C-points are naturally distributed such t h a t  t h e  
area of importance,  i.e., in the  vicinity of obstacles, has a 
higher density of C-points, ,while t h e  a rea  far from t h e  obsta- 
cles h a s  a relatively sparse distribution of C-points. 

T h e  main search procedure is as follows 

1. P u s h  t h e  s t a r t  point o n t o  t h e  queue. 
2. While t h e  queue is no t  empty ,  perform the  

following: 
Remove t h e  lowest cost element from t h e  queue. 
If i t  is t h e  goal point,  then report  the  pa th  and  
exit t h e  procedure. Examine all t h e  neighboring 
C-points (described below) and  p u t  t h e  ones  t h a t  
satisfy t h e  pa th  conditions (described in Section 
3.2) in to  the  queue. 

3. Repor t  t h a t  t h e  procedure has  n o t  found t h e  goal 
(described in Section 3.3). 

In t h e  second s tep  of t h e  procedure, we need t o  inspect 
all t h e  neighboring candidate C-points.  Neighboring C-points 
are all t h e  C-points in t h e  cells t h a t  share an edge with t h e  
cell in which t h e  current C-point is found. Our definition of 
t h e  neighborhood does n o t  use geometric distance. Instead, i t  

uses a cell-wise neighborhood which somehow reflects t h e  
“density” of the  obstacles. In o ther  words, we define t h e  
neighborhood so t h a t  in a n  a rea  where there a re  few obsta- 
cles, i t  can be large, while in a n  area of high obstacle density,  
we have many neighborhood points near the  current point. 
Considering t h e  na ture  of pa th  planning, this is preferable t o  
using a neighborhood based on geometric distance. 
3.2. The Path Conditions 

T h e  pa th  conditions t o  be satisfied a t  s tep  2 are defined 
as follows. T h e  
current velocity of t h e  mobile robot and t h e  location of t h e  
previous C-point are known. W e  now choose the  acceleration 
and  then  t h e  C-point t o  which we next proceed. Once an 
acceleration value has  been chosen, we have t o  maintain i t  
unti l  t h e  next C-point.  T h e  choice of C-point mus t  satisfy 
the  following pa th  conditions. 

Suppose we are a t  some C-point,  say P .  

(1) T h e  acceleration is not o u t  of range. 
(2) T h e  velocity a t  t h e  next C-point will no t  be 

o u t  of range. 
(3) T h e  angle made  by P satisfies t h e  conditions 

regarding the  centrifugal force and the velocity 
a t  P .  

(4) T h e  pa th  between P and the  next C-point is 
collision-free. 

Checking t h a t  conditions (1) and  (2) are satisfied is straight- 
forward. W e  can choose an acceleration within t h e  range, and 
then compute  t h e  velocity of t h e  next C-point from t h e  
current values of velocity and acceleration, and the  distance 
between t h e  current and  next C-points. 

As for condition (3), t h e  following formulation is used for 
estimating t h e  centrifugal force. W e  assume t h a t  the  robot 
negotiates a curve having a curvature which depends on t h e  
angle formed by the  t w o  lines meeting a t  t h e  C-point (e.g., 
point C in Figure 2). W e  consider a small  distance (constant 
for all curves) between a C-point and the  points where t h e  
robot begins t o  deviate from a trajectory which would have  
taken it t o  the  C-point.  We denote this distance by d (Figure 
2). T h e n  t h e  radius r is 

r =d x t a n ( Y ) ,  2 

where a is t h e  angle made  by two line segments t h a t  meet a t  
t h e  G p o i n t .  W e  assume d to be  sufficiently small  in com- 
parison with t h e  distance between the  t w o  C-points.  T h e n  

0 

r 

A d C  

Figure 2. 

A path (dashed line) is approximated by two line segments AC and BC. 
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requirement (3) can be expressed as 

- < Constan t ,  muZ 
r 

where v is t h e  cur ren t  velocity and m is t h e  mass of the  
robot.  T h i s  means t h a t  on each curve we are required t o  
satisfy t h e  inequality 

<G V 2  

t a n ( Y )  
2 

for some cons tan t  G .  
As t o  condition (4), cells containing t h e  pa th  segment 

connecting the  current C-point and the  next C-point are 
inspected for intersection points. If there is a n  intersection, 
then the  next C-point is no t  qualified as a candidate C-point.  

Regarding cost estimation in s tep  2 of the  above search 
procedure, we can use different criteria depending on which 
aspects we wish t o  optimize. Here, we describe an estimation 
function used in o u r  implementation t h a t  optimizes time. W e  
define a function f at t h e  current control point,  say  CP,  by 

where g is t h e  t-value associated with CP,  i.e., the  t ime 
elapsed so fa r ,  and  h is equal t o  the  distance between CP and 
t h e  goal point,  divided by the  maximum velocity of the  robot.  
T h e  function g is the  cost of the  pa th  so far from t h e  s t a r t  
point,  and  h represents the  heuristic estimate of t h e  cost of 
the  remaining pa th  from CP t o  the  goal. Since h never 
overestimates the  actual t ime cost from CP t o  the  goal point, 
this A* heuristic search process having f as its  estimate is 
admissible, i.e., the  procedure is guaranteed to compute a 
time-optimal solution in this search space [NilsBO]. In t h e  
next section, we will present some results obtained by using 
this heuristic. As an alternative, i t  is possible t o  use estima- 
tion functions based on distance traveled or energy consumed. 

3.3. Search Failure 
O n e  drawback of this method is t h a t  i t  is possible t h a t  i t  

does not find a solution in the search space. T h i s  can be 
interpreted as indicating either t h a t  a feasible solution doesn't 
exist a t  all, or t h a t  i t  doesn't exist in this search space. In t h e  
latter case, some possible reasons a re  t h a t  the  arrangement of 
C-points is too coarse, the  discretized acceleration values are + 

not  appropriate,  etc.  

One  way t o  remedy this drawback is t h a t  when the  ini- 
tial number  of C-points is not enough to compute  a solution, 
we can gradually increase the  number  of C-points in t h e  
search space, unti l  a pa th  is finally found or a predetermined 
resolution limit is reached. Instead of increasing t h e  C-points 
uniformly over the  universe, we can selectively expand the  C- 
points. For example, we can have more C-points in areas 
which have more obstacles than  a given threshold. T h i s  
scheme can be realized by deepening the  tree by one level a t  
each search failure. T h i s  has  an effect of dividing a cell into 
eight smaller cells, resulting in more C-points. Since deepen- 
ing an index tree does not  require much work, this method is 
simple t o  implement.  However, the  granular na ture  of t ime 
as well as distance requires us  t o  have a pre-defined resolution 
limit in our search space.  

3.4. Uncertainty 
We have earlier assumed t h a t  all t h e  movements of the  

obstacles are precisely known. However, the  movements of 
the  obstacles may be availble with some uncertainty in t h e  
velocity or the  direction. For example, the  velocity of an obs- 

f (  GP )=9 ( cp )+h ( CP ), 

tacle is known to be between v1  and v2 .  In such a case, we 
are still  able to construct a 3D volume t h a t  represents t h e  
union of all t h e  possible trajectories. If t h e  difference between 
w 1  a n d  v 2  are n o t  prohibitively large, we can use t h e  same 
search procedure to plan a pa th  as before. 

4. EXPERIMENTAL RESULTS 
In this section we present some experimental  results 

obtained using t h e  technique described in Sections 2 and 3. 
Suppose t h a t  o u r  testbed is a 512 [m] b y  512 [m] world 

and  t h a t  t h e  t ime dimension varies between 0 [sec] and  512 
[sec]. Figures 3 i l lustrates this example for three different velo- 
cities of a robot. Le t  A in t h e  figures be a n  obstacle moving 
a t  0.5 [m/sec] in a n  easterly direction. B is a stationary 
object.  T h e  s t a r t  a n d  goal points are denoted by S and G 
respectively. In t h e  following cases, acceleration is chosen 
among t h e  values 1.0, 0.5, 0.0, -0.5 and -1.0 [m/secz]. In addi- 
t ion,  we  require t h a t  t h e  velocity at t h e  s t a r t  and  goal points 
be 0. Figure 3 shows three trajectories and  their  velocity tran- 
sition graph .  

G 

S 

~ Case 1: max speed=4[m/s] 

-- - Case 2: max speed=3[m/s] 

Case 3: max speed=Z[m/s] - -  - -  - - 

'.O t /-----I 
I I - - -  

ne 

100 

Figure 3 
A is a moving object heading in a n  easterly direction and  
B is a s ta t ionary  object.  
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(Case 1)  If t h e  mobile robot is fast  enough, i t  will proceed t o  
t h e  right of A ,  to the  left of B a n d  get t o  t h e  goal. T h e  max- 
imum speed is 4 [m/s].  

(Case 2) If t h e  mobile robot is no t  fas t  enough, i t  will n o t  able 
to proceed to t h e  left side of B ,  and it  will have to g o  to t h e  
right side of B .  T h e  maximum speed is 3 [m/s]. 

(Case 3) If t h e  mobile robot is much slower, i t  will let A go by 
first. T h e  maximum speed is 2 Im/s]. 

Figure 4 shows a solution dealing with three moving obs- 
tacles a t  t h e  s a m e  time. O n e  obstacle O1 moves in easterly 
direction at 0.5 [m/sec] as in t h e  previous example. T h e r e  a re  
t w o  more triangular obstacles, 0, and O,, whose velocities a re  
1.4 [m/sec] and  1.0 [m/sec], respectively. S and I represent 
t h e  s t a r t  and  goal points. In this example, t h e  maximum speed 
of t h e  robot is 4.5 [m/sec]. Note t h a t  t h e  robot s t a r t s  
decelerating at D to avoid a collision t h a t  would have occurred 
if i t  had  proceeded a t  the  same speed. T h i s  has  a n  effect of 
lett ing obstacle 0, go by first. T h e  dashed lines show t h e  
position of obstacle 0, at t h e  t ime F .  T h i s  technique of 
avoiding obstacles characterizes p a t h  planning among moving 
obstacles and can only be realized by tak ing  the  velocity and  
acceleration of t h e  robot in to  consideration. 

t Velocity 

IW 
[ a c c ]  

5. CONCLUDING REMARKS 
A n  approach h a s  been proposed to solve the  pa th  plan- 

ning problem for a mobile robot within a n  environment t h a t  
contains moving obstacles. By adding t ime as a n  additional 
dimension to the  world, a simple formulation was obtained. 
W e  have  discussed t h e  use of a spatial  index which makes 
good use of this formulation. T h e  spatial  index is based on a 
cell decomposition scheme in which each cell has a simple 
geometry,  i.e., i t  contains a t  most one vertex or one edge of 
a n  obstacle. 

In this paper,  we restricted o u r  attention t o  t h e  three 
most  fundamenta l  factors in navigation, t h a t  is, velocity, 
acceleration, and  centrifugal force. These factors a re  essential 
in a n y  pa th  planning application for a vehicle t h a t  moves on 
land, o n  sea,  or in air. Also, these factors form t h e  basis for 
fur ther  considerations, such as optimization of t h e  pa th  with 
respect to energy consumption, etc. To model these factors, 
we introduced conditions which are imposed on a pa th  in t h e  
search procedure. Our experimental results showed t h a t  a 
reasonable pa th  is obtained usinK this formulation. 

An impor tan t  goal in pa th  planning is t o  avoid being 
concerned with details  t h a t  don’t affect the  choice of t h e  pa th .  
In th i s  aspect,  hierarchical s t ruc tures  a re  promising in twc- 
dimensional pa th  planning [Kamb86]. Since t h e  search space 
in a time-varying environment tends  t o  become greater than  
t h a t  for s ta t ionary  pa th  planning, this comment is even more 
applicable t o  our problem. For this reason, we used a spatial  
decomposition with respect to t h e  t ime dimension as well. In 
such a case, a large block means t h a t  it is located in a n  area 
where there is n o t  much motion within some time period or 
within some distance. Hence t h e  planner is no t  affected by 
t h e  motions of d is tan t  obstacles, thus  facilitating t h e  planning 
procedure. If we simply stack two-dimensional planes as in 
[Erdm86], t h e  p a t h  planner will miss this computational 
aspect since i t  has  to consider every motion of t h e  obstacles in 
t h e  world, even though some of them are  relatively remote 
from t h e  robot and would not have affected the pa th  planning 
operation. 

However, large empty  blocks mean large separations 
between C-points which could result in a zig-zagging pa th .  In 
such a case, some smoothing mechanism may be necessary. 

Our approach indicates t h a t  we can incorporate o ther  
time-varying factors into the  pa th  planning process. A s  a 
m a t t e r  of fact ,  navigation is also affected by various road or 
field conditions. Although the  method presented in this paper 
will itself be useful in some applications such as an unmanned 
carrier in a factory,  more advanced and  intelligent robot plan- 
ning will become possible if i t  is combined with t h e  ability to 
understand motion of moving objects in the outside world,  
and  to utilize knowledge as obtained through spatial  informa- 
tion systems. 
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Figure 4 
A r o b o t  w i t h  t h r e e  m o v i n g  obs tac les .  
T h e  r o b o t  s t a r t s  dece le ra t ing  at D t o  avo id  a collision. 
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