
P A T H PLANNING AMONG MOVING OBSTACLES USING SPATIAL INDEXING

Kikuo Fuj imura
Hanan Samet

Computer Science Depar tment and
Center for Automation Research

University of Maryland
College park, M D 20742, USA

ABS TR A C T

A method is presented for planning a pa th in t h e pres-
ence of moving obstacles. Given a se t of polygonal moving
obstacles, we focus on generating a pa th for a mobile robot
t h a t navigates in t h e two-dimensional plane. O u r methodol-
ogy is t o include t ime as one of t h e dimensions of t h e model
world. T h i s allows u s t o regard the moving obstacles as being
s ta t ionary in t h e extended world. For a solution to he feasi-
ble, the robot must no t collide with any o ther moving obsta-
cles, and , also, i t mus t navigate without exceeding t h e
predetermined range of velocity, acceleration, and centrifugal
force. W e use a spatial index to facilitate geometric search for
t h e pa th planning task. Computer simulation results are also
presented to illustrate t h e feasibility of this approach.

1. INTRODUCTION
Planning a collision-free pa th is one of t h e fundamenta l

requirements for a mobile robot to execute i ts tasks [Broo86,
Davi85, Crow85, LIora831. Much of t h e prior work on this
topic is concerned with methods for generating a path among
stationary obstacles iLoza79, Broo83, Kamb861. I t should be
clear t h a t a robot t h a t can cope with moving obstacles will be
capable of performing a much larger and more complex class
of tasks. For example, t h e capability of handling moving
objects is essential in implementing concurrent motion for
multiple robots.

T h e robot motion planning among stationary obstacles
may he divided into two stages, i.e., t h e determination of a
collision-free pa th and then the determination of control
(velocity, acceleration, etc) along the fixed pa th . When obsta-
cles a re moving, we cannot simply separate these two stages.
For example, a collision-free pa th for a robot t h a t moves a t
some velocity may not be collision-free if i t moves a t a
different velocity. Here we present a method to plan motion
in the presence of moving obstacles, i.e., determine a pa th and
velocity along the pa th such t h a t t h e pa th is collision-free.
1.1. Statement of the problem

Our objective is t o navigate a mobile object from the
s t a r t position t o t h e goal position in t h e presence of a given
se t of moving polygonal obstacles on a two-dimensional plane.
W e require t h a t the mobile object move on a flat two-
dimensional plane, avoid obstacles, observe a predetermined

T h e support of the National Science Foundation under Giant DCR-86-05557 is
gratefully acknowledged.

range of velocity and acceleration, and not negotiate any
curve beyond a velocity t h a t exceeds a predetermined upper
limit o n t h e allowable centrifugal force. W e also assume t h a t
all the information regarding obstacles (such as shapes, move-
m e n t directions, etc.) is known a priori to t h e robot. We
consider t h e mobile robot t o be a point. In addition, we
assume t h a t each obstacle is a polygon which moves a t a con-
s t a n t speed wi thout rotation. These assumptions a re n o t
essential to our method, b u t they make our presentation
simpler. W e also consider planning a pa th in t h e presence of
some uncerainty in t h e movements of obstacles.

1.2. Space-time
Our approach t o the problem is t o use a three-

dimensional space in which t ime is t h e third dimension. T h i s
space is usually called space-time. An object, say 0 , moving
in a two-dimensional plane can be regarded as a three-
dimensional stationary object whose volume is the trajectory
t h a t is swept as i t moves. If a point (z,y,t) is inside t h a t
volume in space-time, then the two-dimensional point (z,y) is
occupied by object 0 a t t ime t . Therefore, a n interference
between t w o objects in three-dimensional space means t h a t a
collision has occurred in t h e two-dimensional plane. Note
t h a t t w o different objects which occupy the same location a t
different times don’t collide and will occupy different locations
in space-time.

Now, o u r task becomes one of finding a collision-free
pa th in space-time. Given a s t a r t position, t ime, and goal
position, t h e search process generates a pa th for the mobile
object t h a t connects t h e s t a r t position t o the goal position.
Minimizing the t value of the goal position will be a main
concern in t h e problem of t ime optimal path generation.
Since o u r third dimension is time, we have t o be careful so as
n o t t o choose an unrealistic path-e.g., traveling in t h e nega-
tive t ime direction. Moreover, t h e pa th must satisfy the
predefined conditions with respect to velocity, acceleration,
and curva ture

1.3. Related work
T h e r e a re some approaches t h a t examine the moving

objects. Samet and Tamminen [Same85a] describe a way to
add t h e t ime dimension t o a CSG. By converting a C S G tree
t o t h e bintree representation, dynamic collision detection can
be efficiently performed. T h e problem of collision detection is
also discussed by Esterling and Rosendale [Este83]. T h e y
divide the t ime dimension as well as the o ther dimensions
recursively to quickly locate the collision point between two
moving objects. K a n t and Zucker (Kant861 a t t e m p t t o

1662
CH2555-1/88/0000/1662$01.00 0 1988 IEEE

determine a n appropriate velocity along a fixed trajectory.
T h e y employ static pa th planning techniques t o solve a fixed-
pa th trajectory planning problem in time-varying environ-
ment . Reif and Sharir [Reif851 have made the first theoretical
s tep toward t h e dynamic pa th planning problem. T h e y prove
t h a t a pa th among a se t of moving polygons can be found in
polynomial time with respect t o the to ta l number of vertices
of t h e obstacle polygons. Erdmann and Lozano-Perez
[Erdm86] describe a planner for moving objects t h a t con-
s t ruc ts a configuration space each time the environment
changes. Thei r method is based on stacking two-dimensional
planes, where each plane represents a configuration space a t
some time. In this approach, two adjacent planes are
inspected t o see if a pa th exists between these two planes.
Bolles and Baker [Bo11851 construct a three-dimensional solid
from an image sequence for motion analysis. Our method also
incorporates t ime explicitly in the model world, which makes
i t easier t o analyze factors like velocity and acceleration. To
substantially facilitate geometric search, we use a spatial
index. T h i s is described in Section 2. Section 3 describes t h e
search strategy, and Section 4 contains experimental results.
Section 5 contains some concluding remarks.

2. SPATIAL INDEXING
We assume t h a t the motion of t h e obstacles doesn’t

involve rotation. As long as a polygon moves at a constant
speed without rotation, t h e trajectory (i.e., the volume swept
by t h e polygon) becomes a polyhedron in three dimensions. A
polyhedron can be modeled in terms of i ts vertices, edges, and
surfaces. T h e representation method based on the relation-
ship between these three geometric entities is usually called
t h e boundary representation [RequSP]. Boundary representa-
t ions are desirable for retrieving topologically connected infor-
mation; however, they still require some supplementary work
t o perform geometric operations such as neighborhood
finding. Since neighborhood search accounts for t h e major
p a r t of pa th search process, we use a spatial index to facilitate
i ts computation. A tree s t ruc ture serving as a n index t o the
model world yields efficient access to a location.

Both the mobile object and t h e obstacles are defined in a
world with bounded z , y , and 1 values. A point in the space
is represented by (z ,y , t) , where 2 1 < 2 < 2 2 , y l < y < y 2 , and
t 1 <t < t 2 . I and y are measured in te rms of distance while
t corresponds t o t ime. Usually, i t is convenient t o let
z l = y l = t l = O and z 2 = y 2 . Note t h a t time is also bounded.
In this world, every motion of a n object on the two-
dimensional plane during the time period between t l and t 2
is represented as a three-dimensional object. Our index tree is
built by repeatedly subdividing three dimensional space-time
in to eight subspaces of equal size called cells, unti l each cell
satisfies either of t h e following conditions:

(A) A cell contains p a r t of the trajectory of a ver-
tex of an obstacle.

(B) A cell doesn’t contain any p a r t of the trajec-
tory of a vertex, bu t contains par t of the tra-
jectory of an edge of an obstacle.

(C) A cell doesn’t contain any p a r t of t h e trajec-
tory.

(D) A cell is entirely contained in t h e trajectory.
T h e cells defined by these criteria a re respectively called

vertez cells, edge cells, empty cells, and full cells. Similar
methods based on regular decomposition of t h e space have

been studied in t h e octree domain jMeag82, Same85b, Aya185,
Car1851.

Figure 1 illustrates t h e concept of the index tree
described above. Suppose t h a t a n object moves in t h e z
direction (Figure la) . A solid line and a dashed line depict
t h e initial and final position of the object. Figure l b shows
t h e volume swept by t h e object in space-time. T h e index tree
for this three-dimensional image is shown in Figure I d , where
t h e cell numbering convention of Figure IC is used. An index
tree must be built corresponding t o t h e volume swept by t h e
motion of objects along t h e given trajectories. Building a n
index tree can be performed in t h e following way. Initially,
t h e entire universe is treated as a sigle cell which is
represented as a tree containing one node. If any of condi-
t ions (A)-(D) are violated by this cell, then t h e cell is subdi-
vided and resulting cells a re checked for violation of condi-
t ions (A)-(D). T h i s process is applied recursively. For detailed
discussion of this conversion, see [Aya185, Fuji851. Note t h a t
we don’t decompose t h e universe t o the voxel level as in
[Meag82].

3. PATH SEARCHING
T h i s section describes how t h e search procedure gen-

e ra tes a collision-free pa th using the index tree introduced in
Section 2.

3.1. Control Points
W e define a point called a C-point (control point) in the

space. T h e sequence of these C-points forms a skeleton of t h e
final p a t h . W e consider a C-point as an ordered pair consist-
ing of a 2D location (i.e., (z , y)) and a t-value. A t-value
represents t h e t ime at which t h e mobile object passes t h a t C-

Figure I
a] An object moviig in the x direction.
b The time space image of the object in (a).
e) The cell numbering convention in an octree structure.
d) A tree representation of the space (b). V and E represent a vertex cell

and a n edge cell, respectively.

1663

point. T h e z and y values of a C-point take on a discrete
value. Le t a square denote the projection of a cell o n t o t h e
s-y plane. W e define the arrangement of these C-points such
t h a t t h e z and y coordinates of C-points lie only a t either of
t h e following nine locations in a square, i.e., one a t the center,
one a t each of i ts four corners (for a to ta l of four) and one a t
t h e middle of each edge (for a total of four). T h e t-value is
assigned in t h e search stage. In o ther words, the search pro-
cedure first chooses the next location to go to from t h e nine
types described above. T h e n it determines appropriate velo-
city. T h i s determines t h e t-value at t h a t C-point. Since we
have a choice as t o t h e velocity (or acceleration) value, t h e
t-value a t each C-points can vary depending on velocity
values t h a t have been chosen. T w o identical sequences of C-
points with different se t s of t-values, hence, represent two
different motions.

In order to m a k e our search feaslble, we pose t w o restric-
t ions with respect t o the choice of acceleration. T h e mobile
object can change i ts acceleration and direction only a t t h e
C-points, while i t retains t h e s a m e acceleration between two
C-points. T h i s is one constraint we impose on our pa th .
Another constraint is t h a t we assume t h a t acceleration takes
o n discrete values. These restrictions a re necessary, since oth-
erwise there can be infinite possibilities as t o when and where
t o change acceleration. Since we can let the acceleration be 0,
navigating at a cons tan t speed is also allowed.

‘Nine C-point locations in a cell’ seems a severe restric-
tion. Obviously, the more C-points in the plane, the more
degrees of control we gain. However, since our solution is
based on search, having too large a branching factor can
easily lead t o a combinatorial explosion, and t h u s a smaller
number of C-points is desirable. O n the o ther hand , with too
small a number of C-points, frequent changes in direction and
speed in a shor t range are not realizable; hence, t h e search
process may fail to find a feasible pa th . T h u s , choosing the
C-point configuration is an impor tan t decision in this
approach. Using t h e index tree, t h e space is organized using
various sizes of cells. Larger blocks of cells a re used to
represent areas having a lower density of obstacles while a n
a rea with many obstacles is divided fur ther into smaller cells.
Therefore, C-points are naturally distributed such t h a t t h e
area of importance, i.e., in the vicinity of obstacles, has a
higher density of C-points, ,while t h e a rea far from t h e obsta-
cles h a s a relatively sparse distribution of C-points.

T h e main search procedure is as follows

1. P u s h t h e s t a r t point o n t o t h e queue.
2. While t h e queue is no t empty , perform the

following:
Remove t h e lowest cost element from t h e queue.
If i t is t h e goal point, then report the pa th and
exit t h e procedure. Examine all t h e neighboring
C-points (described below) and p u t t h e ones t h a t
satisfy t h e pa th conditions (described in Section
3.2) in to the queue.

3. Repor t t h a t t h e procedure has n o t found t h e goal
(described in Section 3.3).

In t h e second s tep of t h e procedure, we need t o inspect
all t h e neighboring candidate C-points. Neighboring C-points
are all t h e C-points in t h e cells t h a t share an edge with t h e
cell in which t h e current C-point is found. Our definition of
t h e neighborhood does n o t use geometric distance. Instead, i t

uses a cell-wise neighborhood which somehow reflects t h e
“density” of the obstacles. In o ther words, we define t h e
neighborhood so t h a t in a n a rea where there a re few obsta-
cles, i t can be large, while in a n area of high obstacle density,
we have many neighborhood points near the current point.
Considering t h e na ture of pa th planning, this is preferable t o
using a neighborhood based on geometric distance.
3.2. The Path Conditions

T h e pa th conditions t o be satisfied a t s tep 2 are defined
as follows. T h e
current velocity of t h e mobile robot and t h e location of t h e
previous C-point are known. W e now choose the acceleration
and then t h e C-point t o which we next proceed. Once an
acceleration value has been chosen, we have t o maintain i t
unti l t h e next C-point. T h e choice of C-point mus t satisfy
the following pa th conditions.

Suppose we are a t some C-point, say P .

(1) T h e acceleration is not o u t of range.
(2) T h e velocity a t t h e next C-point will no t be

o u t of range.
(3) T h e angle made by P satisfies t h e conditions

regarding the centrifugal force and the velocity
a t P .

(4) T h e pa th between P and the next C-point is
collision-free.

Checking t h a t conditions (1) and (2) are satisfied is straight-
forward. W e can choose an acceleration within t h e range, and
then compute t h e velocity of t h e next C-point from t h e
current values of velocity and acceleration, and the distance
between t h e current and next C-points.

As for condition (3), t h e following formulation is used for
estimating t h e centrifugal force. W e assume t h a t the robot
negotiates a curve having a curvature which depends on t h e
angle formed by the t w o lines meeting a t t h e C-point (e.g.,
point C in Figure 2). W e consider a small distance (constant
for all curves) between a C-point and the points where t h e
robot begins t o deviate from a trajectory which would have
taken it t o the C-point. We denote this distance by d (Figure
2). T h e n t h e radius r is

r =d x t a n (Y) , 2

where a is t h e angle made by two line segments t h a t meet a t
t h e G p o i n t . W e assume d to be sufficiently small in com-
parison with t h e distance between the t w o C-points. T h e n

0

r

A d C

Figure 2.

A path (dashed line) is approximated by two line segments AC and BC.

1664

requirement (3) can be expressed as

- < Constan t , muZ
r

where v is t h e cur ren t velocity and m is t h e mass of the
robot. T h i s means t h a t on each curve we are required t o
satisfy t h e inequality

<G V 2

t a n (Y)
2

for some cons tan t G .
As t o condition (4), cells containing t h e pa th segment

connecting the current C-point and the next C-point are
inspected for intersection points. If there is a n intersection,
then the next C-point is no t qualified as a candidate C-point.

Regarding cost estimation in s tep 2 of the above search
procedure, we can use different criteria depending on which
aspects we wish t o optimize. Here, we describe an estimation
function used in o u r implementation t h a t optimizes time. W e
define a function f at t h e current control point, say CP, by

where g is t h e t-value associated with CP, i.e., the t ime
elapsed so fa r , and h is equal t o the distance between CP and
t h e goal point, divided by the maximum velocity of the robot.
T h e function g is the cost of the pa th so far from t h e s t a r t
point, and h represents the heuristic estimate of t h e cost of
the remaining pa th from CP t o the goal. Since h never
overestimates the actual t ime cost from CP t o the goal point,
this A* heuristic search process having f as its estimate is
admissible, i.e., the procedure is guaranteed to compute a
time-optimal solution in this search space [NilsBO]. In t h e
next section, we will present some results obtained by using
this heuristic. As an alternative, i t is possible t o use estima-
tion functions based on distance traveled or energy consumed.

3.3. Search Failure
O n e drawback of this method is t h a t i t is possible t h a t i t

does not find a solution in the search space. T h i s can be
interpreted as indicating either t h a t a feasible solution doesn't
exist a t all, or t h a t i t doesn't exist in this search space. In t h e
latter case, some possible reasons a re t h a t the arrangement of
C-points is too coarse, the discretized acceleration values are +

not appropriate, etc.

One way t o remedy this drawback is t h a t when the ini-
tial number of C-points is not enough to compute a solution,
we can gradually increase the number of C-points in t h e
search space, unti l a pa th is finally found or a predetermined
resolution limit is reached. Instead of increasing t h e C-points
uniformly over the universe, we can selectively expand the C-
points. For example, we can have more C-points in areas
which have more obstacles than a given threshold. T h i s
scheme can be realized by deepening the tree by one level a t
each search failure. T h i s has an effect of dividing a cell into
eight smaller cells, resulting in more C-points. Since deepen-
ing an index tree does not require much work, this method is
simple t o implement. However, the granular na ture of t ime
as well as distance requires us t o have a pre-defined resolution
limit in our search space.

3.4. Uncertainty
We have earlier assumed t h a t all t h e movements of the

obstacles are precisely known. However, the movements of
the obstacles may be availble with some uncertainty in t h e
velocity or the direction. For example, the velocity of an obs-

f (GP)=9 (cp)+h (CP),

tacle is known to be between v1 and v2 . In such a case, we
are still able to construct a 3D volume t h a t represents t h e
union of all t h e possible trajectories. If t h e difference between
w 1 a n d v 2 are n o t prohibitively large, we can use t h e same
search procedure to plan a pa th as before.

4. EXPERIMENTAL RESULTS
In this section we present some experimental results

obtained using t h e technique described in Sections 2 and 3.
Suppose t h a t o u r testbed is a 512 [m] b y 512 [m] world

and t h a t t h e t ime dimension varies between 0 [sec] and 512
[sec]. Figures 3 i l lustrates this example for three different velo-
cities of a robot. Le t A in t h e figures be a n obstacle moving
a t 0.5 [m/sec] in a n easterly direction. B is a stationary
object. T h e s t a r t a n d goal points are denoted by S and G
respectively. In t h e following cases, acceleration is chosen
among t h e values 1.0, 0.5, 0.0, -0.5 and -1.0 [m/secz]. In addi-
t ion, we require t h a t t h e velocity at t h e s t a r t and goal points
be 0. Figure 3 shows three trajectories and their velocity tran-
sition graph .

G

S

~ Case 1: max speed=4[m/s]

-- - Case 2: max speed=3[m/s]

Case 3: max speed=Z[m/s] - - - - - -

'.O t /-----I
I I - - -

ne

100

Figure 3
A is a moving object heading in a n easterly direction and
B is a s ta t ionary object.

I665

(Case 1) If t h e mobile robot is fast enough, i t will proceed t o
t h e right of A , to the left of B a n d get t o t h e goal. T h e max-
imum speed is 4 [m/s].

(Case 2) If t h e mobile robot is no t fas t enough, i t will n o t able
to proceed to t h e left side of B , and it will have to g o to t h e
right side of B . T h e maximum speed is 3 [m/s].

(Case 3) If t h e mobile robot is much slower, i t will let A go by
first. T h e maximum speed is 2 Im/s].

Figure 4 shows a solution dealing with three moving obs-
tacles a t t h e s a m e time. O n e obstacle O1 moves in easterly
direction at 0.5 [m/sec] as in t h e previous example. T h e r e a re
t w o more triangular obstacles, 0, and O,, whose velocities a re
1.4 [m/sec] and 1.0 [m/sec], respectively. S and I represent
t h e s t a r t and goal points. In this example, t h e maximum speed
of t h e robot is 4.5 [m/sec]. Note t h a t t h e robot s t a r t s
decelerating at D to avoid a collision t h a t would have occurred
if i t had proceeded a t the same speed. T h i s has a n effect of
lett ing obstacle 0, go by first. T h e dashed lines show t h e
position of obstacle 0, at t h e t ime F . T h i s technique of
avoiding obstacles characterizes p a t h planning among moving
obstacles and can only be realized by tak ing the velocity and
acceleration of t h e robot in to consideration.

t Velocity

IW
[a c c]

5. CONCLUDING REMARKS
A n approach h a s been proposed to solve the pa th plan-

ning problem for a mobile robot within a n environment t h a t
contains moving obstacles. By adding t ime as a n additional
dimension to the world, a simple formulation was obtained.
W e have discussed t h e use of a spatial index which makes
good use of this formulation. T h e spatial index is based on a
cell decomposition scheme in which each cell has a simple
geometry, i.e., i t contains a t most one vertex or one edge of
a n obstacle.

In this paper, we restricted o u r attention t o t h e three
most fundamenta l factors in navigation, t h a t is, velocity,
acceleration, and centrifugal force. These factors a re essential
in a n y pa th planning application for a vehicle t h a t moves on
land, o n sea, or in air. Also, these factors form t h e basis for
fur ther considerations, such as optimization of t h e pa th with
respect to energy consumption, etc. To model these factors,
we introduced conditions which are imposed on a pa th in t h e
search procedure. Our experimental results showed t h a t a
reasonable pa th is obtained usinK this formulation.

An impor tan t goal in pa th planning is t o avoid being
concerned with details t h a t don’t affect the choice of t h e pa th .
In th i s aspect, hierarchical s t ruc tures a re promising in twc-
dimensional pa th planning [Kamb86]. Since t h e search space
in a time-varying environment tends t o become greater than
t h a t for s ta t ionary pa th planning, this comment is even more
applicable t o our problem. For this reason, we used a spatial
decomposition with respect to t h e t ime dimension as well. In
such a case, a large block means t h a t it is located in a n area
where there is n o t much motion within some time period or
within some distance. Hence t h e planner is no t affected by
t h e motions of d is tan t obstacles, thus facilitating t h e planning
procedure. If we simply stack two-dimensional planes as in
[Erdm86], t h e p a t h planner will miss this computational
aspect since i t has to consider every motion of t h e obstacles in
t h e world, even though some of them are relatively remote
from t h e robot and would not have affected the pa th planning
operation.

However, large empty blocks mean large separations
between C-points which could result in a zig-zagging pa th . In
such a case, some smoothing mechanism may be necessary.

Our approach indicates t h a t we can incorporate o ther
time-varying factors into the pa th planning process. A s a
m a t t e r of fact , navigation is also affected by various road or
field conditions. Although the method presented in this paper
will itself be useful in some applications such as an unmanned
carrier in a factory, more advanced and intelligent robot plan-
ning will become possible if i t is combined with t h e ability to
understand motion of moving objects in the outside world,
and to utilize knowledge as obtained through spatial informa-
tion systems.

ACKNOWLEDGMENTS
W e would like t o thank Azriel Rosenfeld for his comments

Figure 4
A r o b o t w i t h t h r e e m o v i n g obs tac les .
T h e r o b o t s t a r t s dece le ra t ing at D t o avo id a collision.

D a s h e d l ines s h o w a n o b s t a c l e a t time F

REFERENCES
[Aya185] - D. Ayala, P. Brunet, and I. Navazo, Object
Representation by Means of Nonminimal Division Quadtrees
and Octrees, ACM Transactions on Graphics 4 , l (January
1985), 41-59.

[Bo1185] - R . C. Bolles and H. H. Baker, Epipolar-Plane Image
Analysis: A Technique for Analyzing Motion Sequences,
Proceedings of the Third Workshop on Computer Vision:
Representation and Control, Bellaire, Michigan (October
1985), 168-178.

[Broo83] - R. A. Brooks, Solving the Find-Path Problem by
Good Representation of Free Space, IEEE Transactions on
Systems, Man, Cybernetics 13, 3(March/April 1983), 190-197.

[Broo86] - R . A. Brooks, A Robust Layered Control System
for a Mobile Robot , IEEE Journal of Robotics and Automation
2, l (March 1986), 14-23.

[Car1851 - I. Carlbom, I. Chakravar ty , and D. Vanderschel, A
Hierarchical D a t a Structure for Representing the Spatial
Decomposition of 3-D Objects, IEEE Computer Graphics and
Applications 5, 4(April 1985), 24-31.

[Crow851 - J . L. Crowley, Navigation for an Intelligent Mobile
Robot , IEEE Journal of Robotics and Automation 1, l (March
1985), 31-41.

[Davit351 - L. S. Davis, F . Andresen, R. Eastman, and S. Kam-
bhampati , Visual Algorithms for Autonomous Navigation,
Proceedings of IEEE International Conference on Robotics
and Automation, St . Louis, Missouri (March 1985), 856-861.

(Erdm861 - M. Erdmann and T. LozanePerez , O n Multiple
Moving Objects, Proceedings of IEEE International Confer-
ence on Robotics and Automation, San Francisco, California
(April 1986), 1419-1424.

[Este83] - D. M. Esterling and J . Van Rosendale, An Intersec-
tion Algorithm for Moving Par t s , Proceedings of NASA Sym-
posium on Computer Aided Geometry Modeling, Hampton,
Virginia (April 1983), 119-123.

[Fuji851 - K. Fuj imura and T. L. Kunii, A Hierarchical Space
Indexing Method, Proceedings of Computer Graphics '85,
Tokyo, (April 1985), T1-4, 1-14.

[Kamb86] - S. Kambhampat i and L. S. Davis, Multiresolution
P a t h Planning for Mobile Robots, IEEE Journal of Robotics
and Automation 2, 3(September 1986), 135-145.

[Kant86] - K. Kan t and S. W. Zucker, Toward Efficient Tra-
jectory Planning: The Path-Velocity Decomposition, The
International Journal of Robotics Research 5, 3(Fall 1986),
72-89.

[Meag82] - D. Meagher, Geometric Modeling using Octree
E n d i n g , Computer Graphics and Image Processing 19,
2(June 1982), 129-147.

[Mora831 - H. P. Moravec, T h e Stanford C a r t and the CMU
Rover , Proceedings of IEEE 71, 7(July 1983), 872-884.

[Nils801 - N. J . Nilsson, Principles of Artificial Intelligence,
Chap te r 2, Tioga, Pa lo Alto, California, 1980.

[Reif851 - J . Reif and M. Sharir , Motion Planning in the Pres-
ence of Moving Obstacles, Proceedings of Symposium on
Foundation of Computer Science, Portland, Oregon (October
1985), 144-154.

[Requ82] - A. A. G. Requicha and H. B. Voelcker, Solid
Modeling: a Historical Summary and Contemporary Assess-
ment , IEEE Computer Graphics and Applications 2, 6(June
1982), 9-24.

[Same85s] - H. Samet and M. Tamminen, Bintrees, CSG
Trees, and Time, Computer Graphics 20 (July 1985), 121-130
(also Proceedings of the Siggraph '85 Conference, San Fran-
cisco, California, July 1985).

[Same85b] - H. Samet and R . E . Webber, Storing a Collection
of Polygons using Quadtrees , ACM Transactions on Graphics
2, 3(July 1985), 182-222.

[Loza79] - T. Lozano-Perez and M. A. Wesley, An Algorithm
for Planning Collision Free P a t h s among Polyhedral Obsta-
cles, Communications of the ACM 22, lO(0ctober 1979), 560-
570

I667

