PATH PLANNING AMONG MOVING OBSTACLES USING SPATIAL INDEXING

Kikuo Fujimura
Hanan Samet

Computer Science Department and
Center for Automation Research
University of Maryland
College park, MD 20742, USA

ABSTRACT

A method is presented for planning a path in the pres-
ence of moving obstacles. Given a set of polygonal moving
obstacles, we focus on generating a path for a mobile robot
that navigates in the two-dimensional plane. Our methodol-
ogy is to include time as one of the dimensions of the model
world. This allows us to regard the moving obstacles as being
stationary in the extended world. For a solution to be feasi-
ble, the robot must not collide with any other moving obsta-
cles, and, also, it must navigate without exceeding the
predetermined range of velocity, acceleration, and centrifugal
force. We use a spatial index to facilitate geometric search for
the path planning task. Computer simulation results are also
presented to illustrate the feasibility of this approach.

1. INTRODUCTION

Planning a collision-free path is one of the fundamental
requirements for a mobile robot to execute its tasks [Broo86,
Davi83, Crow85, Mora83]. Much of the prior work on this
topic is concerned with methods for generating a path among
stationary obstacles {Loza79, Broo83, Kamb86]. It should be
clear that a robot that can cope with moving obstacles will be
capable of performing a much larger and more complex class
of tasks. For example, the capability of handling moving
objects is essential in implementing concurrent motion for
multiple robots.

The robot motion planning among stationary obstacles
may be divided into two stages, i.e., the determination of a
collision-free path and then the determination of control
(velocity, acceleration, etc) along the fixed path. When obsta-
cles are moving, we cannot simply separate these two stages.
For example, a collision-free path for a robot that moves at
some velocity may not be collision-free if it moves at a
different velocity. Here we present a method to plan motion
in the presence of moving obstacles, i.e., determine a path and
velocity along the path such that the path is collision-free.

1.1. Statement of the problem

Our objective is to navigate a mobile object from the
start position to the goal position in the presence of a given
set of moving polygonal obstacles on a two-dimensional plane.
We require that the mobile object move on a flat two-
dimensional plane, avoid obstacles, observe a predetermined

The support of the National Science Foundation under Grant DCR-86-05557 is
gratefully acknowledged.

CH2555-1/88/0000/1662$01.00 © 1988 IEEE

1662

range of velocity and acceleration, and not negotiate any
curve beyond a velocity that exceeds a predetermined upper
limit on the allowable centrifugal force. We also assume that
all the information regarding obstacles (such as shapes, move-
ment directions, etc.) is known a priori to the robot. We
consider the mobile robot to be a point. In addition, we
assume that each obstacle is a polygon which moves at a con-
stant speed without rotation. These assumptions are not
essential to our method, but they make our presentation
simpler. We also consider planning a path in the presence of
some uncerainty in the movements of obstacles.

1.2. Space-time

Our approach to the problem is to use a three-
dimensional space in which time is the third dimension. This
space is usually called space-time. An object, say O, moving
in a two-dimensional plane can be regarded as a three-
dimensional stationary object whose volume is the trajectory
that is swept as it moves. If a point (z,y,t) is inside that
volume in space-time, then the two-dimensional point (z,y) is
occupied by object O at time t. Therefore, an interference
between two objects in three-dimensional space means that a
collision has occurred in the two-dimensional plane. Note
that two different objects which occupy the same location at
different times don’t collide and will occupy different locations
in space-time.

Now, our task becomes one of finding a collision-free
path in space-time. Given a start position, time, and goal
position, the search process generates a path for the mobile
object that connects the start position to the goal position.
Minimizing the ¢ value of the goal position will be a main
concern in the problem of time optimal path generation.
Since our third dimension is time, we have to be careful so as
not to choose an unrealistic path—e.g., traveling in the nega-
tive time direction. Moreover, the path must satisfy the
predefined conditions with respect to velocity, acceleration,
and curvature.

1.3. Related work

There are some approaches that examine the moving
objects. Samet and Tamminen [Same85a] describe a way to
add the time dimension to a CSG. By converting a CSG tree
to the bintree representation, dynamic collision detection can
be efficiently performed. The problem of collision detection is
also discussed by Esterling and Rosendale [Este83]. They
divide the time dimension as well as the other dimensions
recursively to quickly locate the collision point between two
moving objects. Kant and Zucker [Kant86] attempt to

determine an appropriate velocity along a fixed trajectory.
They employ static path planning techniques to solve a fixed-
path trajectory planning problem in time-varying environ-
ment. Reif and Sharir [Reif85] have made the first theoretical
step toward the dynamic path planning problem. They prove
that a path among a set of moving polygons can be found in
polynomial time with respect to the total number of vertices
of the obstacle polygons. Erdmann and Lozano-Perez
|[Erdm86] describe a planner for moving objects that con-
structs a configuration space each time the environment
changes. Their method is based on stacking two-dimensional
planes, where each plane represents a configuration space at
some time. In this approach, two adjacent planes are
inspected to see if a path exists between these two planes.
Bolles and Baker [Boll85] construct a three-dimensional solid
from an image sequence for motion analysis. Our method also
incorporates time explicitly in the model world, which makes
it easier to analyze factors like velocity and acceleration. To
substantially facilitate geometric search, we use a spatial
index. This is described in Section 2. Section 3 describes the
search strategy, and Section 4 contains experimental results.
Section 5 contains some concluding remarks.

2. SPATIAL INDEXING

We assume that the motion of the obstacles doesn’t
involve rotation. As long as a polygon moves at a constant
speed without rotation, the trajectory (i.e., the volume swept
by the polygon) becomes a polyhedron in three dimensions. A
polyhedron can be modeled in terms of its vertices, edges, and
surfaces. The representation method based on the relation-
ship between these three geometric entities is usually called
the boundary representation [Requ82]. Boundary representa-
tions are desirable for retrieving topologically connected infor-
mation; however, they still require some supplementary work
to perform geometric operations such as neighborhood
finding. Since neighborhood search accounts for the major
part of path search process, we use a spatial index to facilitate
its computation. A tree structure serving as an index to the
model world yields efficient access to a location.

Both the mobile object and the obstacles are defined in a
world with bounded z, y, and ¢ values. A point in the space
is represented by (z,y,¢), where 1<z <22, yl1<y<y2, and
t1<t<t2 =z and y are measured in terms of distance while
t corresponds to time. Usually, it is convenient to let
zl=yl1=t1=0 and z2=y2. Note that time is also bounded.
In this world, every motion of an object on the two-
dimensional plane during the time period between {1 and {2
is represented as a three-dimensional object. Our index tree is
built by repeatedly subdividing three dimensional space-time
into eight subspaces of equal size called cells, until each cell
satisfies either of the following conditions:

(A) A cell contains part of the trajectory of a ver-
tex of an obstacle.

(B) A cell doesn’t contain any part of the trajec-
tory of a vertex, but contains part of the tra-
jectory of an edge of an obstacle.

(C) A cell doesn’t contain any part of the trajec-
tory.

(D) A cell is entirely contained in the trajectory.

The cells defined by these criteria are respectively called

vertex cells, edge cells, empty cells, and full cells. Similar
methods based on regular decomposition of the space have

1663

been studied in the octree domain [Meag82, Same85b, Ayal85,
Carl85].

Figure 1 illustrates the concept of the index tree
described above. Suppose that an object moves in the z
direction (Figure 1a). A solid line and a dashed line depict
the initial and final position of the object. Figure 1b shows
the volume swept by the object in space-time. The index tree
for this three-dimensional image is shown in Figure 1d, where
the cell numbering convention of Figure lc is used. An index
tree must be built corresponding to the volume swept by the
motion of objects along the given trajectories. Building an
index tree can be performed in the following way. Initially,
the entire universe is treated as a sigle cell which is
represented as a tree containing one node. If any of condi-
tions (A)-(D) are violated by this cell, then the cell is subdi-
vided and resulting cells are checked for violation of condi-
tions (A)-(D). This process is applied recursively. For detailed
discussion of this conversion, see [Ayal85, Fuji85]. Note that
we don’t decompose the universe to the voxel level as in
[Meag82].

3. PATH SEARCHING

This section describes how the search procedure gen-
erates a collision-free path using the index tree introduced in
Section 2.

3.1. Control Points

We define a point called a C-point (control point) in the
space. The sequence of these C-points forms a skeleton of the
final path. We consider a C-point as an ordered pair consist-
ing of a 2D location (i.e., (z,y)) and a t-value. A t-value
represents the time at which the mobile object passes that C-

(a)

Figure 1

a; An object moving in the x direction.

b) The time-space image of the object in (a).

¢} The cell numbering convention in an octree structure.

d) A tree representation of the space (b). V and E represent a vertex cell
and an edge cell, respectively.

point. The z and y values of a C-point take on a discrete
value. Let a square denote the projection of a cell onto the
z-y plane. We define the arrangement of these C-points such
that the z and y coordinates of C-points lie only at either of
the following nine locations in a square, i.e., one at the center,
one at each of its four corners (for a total of four) and one at
the middle of each edge (for a total of four). The f-value is
assigned in the search stage. In other words, the search pro-
cedure first chooses the next location to go to from the nine
types described above. Then it determines appropriate velo-
city. This determines the f-value at that C-point. Since we
have a choice as to the velocity (or acceleration) value, the
t-value at each C-points can vary depending on velocity
values that have been chosen. Two identical sequences of C-
points with different sets of t-values, hence, represent two
different motions.

In order to make our search feasible, we pose two restric-
tions with respect to the choice of acceleration. The mobile
object can change its acceleration and direction only at the
C-points, while it retains the same acceleration between two
C-points. This is one constraint we impose on our path.
Another constraint is that we assume that acceleration takes
on discrete values. These restrictions are necessary, since oth-
erwise there can be infinite possibilities as to when and where
to change acceleration. Since we can let the acceleration be 0,
navigating at a constant speed is also allowed.

‘Nine C-point locations in a cell’ seems a severe restric-

Obviously, the more C-points in the plane, the more
degrees of control we gain. However, since our solution is
based on search, having too large a branching factor can
easily lead to a combinatorial explosion, and thus a smaller
number of C-points is desirable. On the other hand, with too
small a number of C-points, frequent changes in direction and
speed in a short range are not realizable; hence, the search
process may fail to find a feasible path. Thus, choosing the
C-point configuration is an important decision in this
approach. Using the index tree, the space is organized using
various sizes of cells. Larger blocks of cells are used to
represent areas having a lower density of obstacles while an
area with many obstacles is divided further into smaller cells.
Therefore, C-points are naturally distributed such that the
area of importance, i.e., in the vicinity of obstacles, has a
higher density of C-points, while the area far from the obsta-
cles has a relatively sparse distribution of C-points.

tion.

The main search procedure is as follows.

1. Push the start point onto the queue.

2. While the queue is not empty, perform the
following:
Remove the lowest cost element from the queue.
If it is the goal point, then report the path and
exit the procedure. Examine all the neighboring
C-points (described below) and put the ones that
satisfy the path conditions (described in Section
3.2) into the queue.

3. Report that the procedure has not found the goal
(described in Section 3.3).

In the second step of the procedure, we need to inspect
all the neighboring candidate C-points. Neighboring C-points
are all the C-points in the cells that share an edge with the
cell in which the current C-point is found. Our definition of
the neighborhood does not use geometric distance. Instead, it

1664

uses a cell-wise neighborhood which somehow reflects the
“density” of the obstacles. In other words, we define the
neighborhood so that in an area where there are few obsta-
cles, it can be large, while in an area of high obstacle density,
we have many neighborhood points near the current point.
Considering the nature of path planning, this is preferable to
using a neighborhood based on geometric distance.

3.2. The Path Conditions

The path conditions to be satisfied at step 2 are defined
as follows. Suppose we are at some C-point, say P. The
current velocity of the mobile robot and the location of the
previous C-point are known. We now choose the acceleration
and then the C-point to which we next proceed. Once an
acceleration value has been chosen, we have to maintain it
until the next C-point. The choice of C-point must satisfy
the following path conditions.

(1) The acceleration is not out of range.

(2) The velocity at the next C-point will not be
out of range.

(3) The angle made by P satisfies the conditions
regarding the centrifugal force and the velocity
at P.

(4) The path between P and the next C-point is
collision-free.

Checking that conditions (1) and (2) are satisfied is straight-
forward. We can choose an acceleration within the range, and
then compute the velocity of the next C-point from the
current values of velocity and acceleration, and the distance
between the current and next C-points.

As for condition (3), the following formulation is used for
estimating the centrifugal force. We assume that the robot
negotiates a curve having a curvature which depends on the
angle formed by the two lines meeting at the C-point (e.g.,
point C in Figure 2). We consider a small distance {constant
for all curves) between a C-point and the points where the
robot begins to deviate from a trajectory which would have
taken it to the C-point. We denote this distance by d (Figure
2). Then the radius r is

r=d Xtan(%),

where « is the angle made by two line segments that meet at
the C-point. We assume d to be sufficiently small in com-
parison with the distance between the two C-points. Then

[¢]

Figure 2.

A path (dashed line) is approximated by two line segments AC and BC.

requirement (3) can be expressed as

L Constant,

r
where v is the current velocity and m is the mass of the

robot. This means that on each curve we are required to
satisfy the inequality
2
— _<c¢
@
tan(—
()

for some constant C.

As to condition (4), cells containing the path segment
connecting the current C-point and the next C-point are
inspected for intersection points. If there is an intersection,
then the next C-point is not qualified as a candidate C-point.

Regarding cost estimation in step 2 of the above search
procedure, we can use different criteria depending on which
aspects we wish to optimize. Here, we describe an estimation
function used in our implementation that optimizes time. We
define a function f at the current control point, say CP, by

J(CP)—g(CP)+h(CP),
where ¢ is the t-value associated with CP, ie., the time
elapsed so far, and & is equal to the distance between CP and
the goal point, divided by the maximum velocity of the robot.
The function g is the cost of the path so far from the start
point, and h represents the heuristic estimate of the cost of
the remaining path from CP to the goal. Since h never
overestimates the actual time cost from CP to the goal point,
this A* heuristic search process having f as its estimate is
admissible, i.e., the procedure is guaranteed to compute a
time-optimal solution in this search space [Nils80]. In the
next section, we will present some results obtained by using
this heuristic. As an alternative, it is possible to use estima-
tion functions based on distance traveled or energy consumed.

3.3. Search Failure

One drawback of this method is that it is possible that it
does not find a solution in the search space. This can be
interpreted as indicating either that a feasible solution doesn’t
exist at all, or that it doesn’t exist in this search space. In the
latter case, some possible reasons are that the arrangement of
C-points is too coarse, the discretized acceleration values are
not appropriate, etc.

One way to remedy this drawback is that when the ini-
tial number of C-points is not enough to compute a solution,
we can gradually increase the number of C-points in the
search space, until a path is finally found or a predetermined
resolution limit is reached. Instead of increasing the C-points
uniformly over the universe, we can selectively expand the C-
points. For example, we can have more C-points in areas
which have more obstacles than a given threshold. This
scheme can be realized by deepening the tree by one level at
each search failure. This has an effect of dividing a cell into
eight smaller cells, resulting in more C-points. Since deepen-
ing an index tree does not require much work, this method is
simple to implement. However, the granular nature of time
as well as distance requires us to have a pre-defined resolution
limit in our search space.

3.4. Uncertainty

We have earlier assumed that all the movements of the
obstacles are precisely known. However, the movements of
the obstacles may be availble with some uncertainty in the
velocity or the direction. For example, the velocity of an obs-

-

tacle is known to be between v, and v, In such a case, we
are still able to construct a 3D volume that represents the
union of all the possible trajectories. If the difference between
vy and v, are not prohibitively large, we can use the same
search procedure to plan a path as before.

4. EXPERIMENTAL RESULTS

In this section we present some experimental results
obtained using the technique described in Sections 2 and 3.

Suppose that our testbed is a 512 [m] by 512 [m] world
and that the time dimension varies between O [sec] and 512
[sec]. Figures 3 illustrates this example for three different velo-
cities of a robot. Let A in the figures be an obstacle moving
at 0.5 [m/sec] in an easterly direction. B is a stationary
object. The start and goal points are denoted by S and G
respectively. In the following cases, acceleration is chosen
among the values 1.0, 0.5, 0.0, -0.5 and -1.0 [m/sec?). In addi-
tion, we require that the velocity at the start and goal points
be 0. Figure 3 shows three trajectories and their velocity tran-
sition graph.

G

2N
7 \
g N\
4

’ .
’

Case 1: max speed=4[m/s|

Case 2: max speed=3[m/s]

Case 3: max speed=2{m/s]

[m/sec]
Velocity

Time

N [see]
R

Figure 3
A is a moving object heading in an easterly direction and
B is a stationary object.

1665

(Case 1) If the mobile robot is fast enough, it will proceed to
the right of A, to the left of B and get to the goal. The max-
imum speed s 4 {m/s].

(Case 2) If the mobile robot is not fast enough, it will not able
to proceed to the left side of B, and it will have to go to the
right side of B. The maximum speed is 3 {m/s].

(Case 3) If the mobile robot is much slower, it will let A go by
first. The maximum speed is 2 [m/s].

Figure 4 shows a solution dealing with three moving obs-
tacles at the same time. One obstacle O; moves in easterly
direction at 0.5 [m/sec] as in the previous example. There are
two more triangular obstacles, O, and Og, whose velocities are
1.4 [m/sec] and 1.0 {m/sec], respectively. .S and I represent
the start and goal points. In this example, the maximum speed
of the robot is 4.5 [m/sec|. Note that the robot starts
decelerating at D to avoid a collision that would have occurred
if it had proceeded at the same speed. This has an effect of
letting obstacle O, go by first. The dashed lines show the
position of obstacle O, at the time F. This technique of
avoiding obstacles characterizes path planning among moving
obstacles and can only be realized by taking the velocity and
acceleration of the robot into consideration.

T

~
Ltlm faec] 1.0(m /sec|

c 0, 0.5[m /sce]

Velocity

(m /sec]

2.0

Figure 4

A robot with three moving obstacles. . .
The robot starts decelerating at D to avoid a collision.

Dashed lines show an obstacle at time F

1666

5. CONCLUDING REMARKS

An approach has been proposed to solve the path plan-
ning problem for a mobile robot within an environment that
contains moving obstacles. By adding time as an additional
dimension to the world, a simple formulation was obtained.
We have discussed the use of a spatial index which makes
good use of this formulation. The spatial index is based on a
cell decomposition scheme in which each cell has a simple
geometry, l.e., it contains at most one vertex or one edge of
an obstacle.

In this paper, we restricted our attention to the three
most fundamental factors in navigation, that is, velocity,
acceleration, and centrifugal force. These factors are essential
in any path planning application for a vehicle that moves on
land, on sea, or in air. Also, these factors form the basis for
further considerations, such as optimization of the path with
respect to energy consumption, etc. To model these factors,
we introduced conditions which are imposed on a path in the
search procedure. Our experimental results showed that a
reasonable path is obtained using this formulation.

An important goai in path planning is to avoid being
concerned with details that don’t affect the choice of the path.
In this aspect, hierarchical structures are promising in two-
dimensional path planning [Kamb86]. Since the search space
in a time-varying environment tends to become greater than
that for stationary path planning, this comment is even more
applicable to our problem. For this reason, we used a spatial
decomposition with respect to the time dimension as well. In
such a case, a large block means that it is located in an area
where there is not much motion within some time period or
within some distance. Hence the planner is not affected by
the motions of distant obstacles, thus facilitating the planning
procedure. If we simply stack two-dimensional planes as in
[Erdm86), the path planner will miss this computational
aspect since it has to consider every motion of the obstacles in
the world, even though some of them are relatively remote
from the robot and would not have affected the path planning
operation.

However, large empty blocks mean large separations
between C-points which could result in a zig-zagging path. In
such a case, some smoothing mechanism may be necessary.

Our approach indicates that we can incorporate other
time-varying factors into the path planning process. As a
matter of fact, navigation is also affected by various road or
field conditions. Although the method presented in this paper
will itself be useful in some applications such as an unmanned
carrier in a factory, more advanced and intelligent robot plan-
ning will become possible if it is combined with the ability to
understand motion of moving objects in the outside world,
and to utilize knowledge as obtained through spatial informa-
tion systems.

ACKNOWLEDGMENTS
We would like to thank Azriel Rosenfeld for his comments.

REFERENCES

[Ayal85] - D. Ayala, P. Brunet, and I. Navazo, Object
Representation by Means of Nonminimal Division Quadtrees
and Octrees, ACM Transactions on Graphics 4, 1(January
1985), 41-59.

[Boll85] - R. C. Bolles and H. H. Baker, Epipolar-Plane Image
Analysis: A Technique for Analyzing Motion Sequences,
Proceedings of the Third Workshop on Computer Vision:
Representation and Control, Bellaire, Michigan (October
1985), 168-178.

[Broo83] - R. A. Brooks, Solving the Find-Path Problem by

Good Representation of Free Space, IEEE Transactions on
Systems, Man, Cybernetics 13, 3(March/April 1983), 190-197.

[Broo86] - R. A. Brooks, A Robust Layered Control System
for a Mobile Robot, IEEE Journal of Robotics and Automation
2, 1(March 1986), 14-23.

{Carl85] - I. Carlbom, I. Chakravarty, and D. Vanderschel, A
Hierarchical Data Structure for Representing the Spatial
Decomposition of 3-D Objects, IEEE Camputer Graphics and
Applications 5, 4(April 1985), 24-31.

[Crow85] - J. L. Crowley, Navigation for an Intelligent Mobile
Robot, IEEE Journal of Robotics and Automation 1, 1{March
1985), 31-41. '

[Davi85] - L. S. Davis, F. Andresen, R. Eastman, and S. Kam-
bhampati, Visual Algorithms for Autonomous Navigation,
Proceedings of IEEE International Conference on Robotics
and Automation, St. Louis, Missouri (March 1985), 856-861.

[Erdm86] - M. Erdmann and T. Lozano-Perez, On Multiple
Moving Objects, Proceedings of IEEE International Confer-
ence on Robotics and Automation, San Francisco, California
(April 1986), 1419-1424.

[Este83] - D. M. Esterling and J. Van Rosendale, An Intersec-
tion Algorithm for Moving Parts, Proceedings of NASA Sym-
postum on Computer Aided Geometry Modeling, Hampton,
Virginia (April 1983), 119-123.

[Fuji85] - K. Fujimura and T. L. Kunii, A Hierarchical Space
Indexing Method, Proceedings of Compuler Graphics 85,
Tokyo, (April 1985), T1-4, 1-14.

[Kamb86] - S. Kambhampati and L. 8. Davis, Multiresolution
Path Planning for Mobile Robots, IEEFE Journal of Robotics
and Automation 2, 3(September 1986), 135-145.

[Kant86] - K. Kant and S. W. Zucker, Toward Efficient Tra-
jectory Planning: The Path-Velocity Decomposition, The
International Journal of Robotics Research 5, 3(Fall 1986),
72-89.

[Loza79] - T. Lozano-Perez and M. A. Wesley, An Algorithm
for Planning Collision Free Paths among Polyhedral Obsta-
cles, Communications of the ACM 22, 10(October 1979), 560-
70.

1667

[Meag82] - D. Meagher, Geometric Modeling using Octree
Encoding, Computer Graphics and Image Processing 19,
2(June 1982), 129-147.

[Mora83] - H. P. Moravec, The Stanford Cart and the CMU
Rover, Proceedings of IEEE 71, 7(July 1983), 872-884.

[Nils80] - N. J. Nilsson, Principles of Artificial Intelligence,
Chapter 2, Tioga, Palo Alto, California, 1980.

[Reif85] - J. Reif and M. Sharir, Motion Planning in the Pres-
ence of Moving Obstacles, Proceedings of Symposium on
Foundation of Computer Science, Portland, Oregon (October
1985), 144-154.

[Requ82] - A. A. G. Requicha and H. B. Voelcker, Solid
Modeling: a Historical Summary and Contemporary Assess-
ment, IEEE Computer Graphics end Applications 2, 6(June
1982), 9-24.

[Same85a] - H. Samet and M. Tamminen, Bintrees, CSG
Trees, and Time, Computer Graphics 20 (July 1985), 121-130
(also Proceedings of the Siggraph 85 Conference, San Fran-
cisco, California, July 1985).

[Same85b] - H. Samet and R. E. Webber, Storing a Collection
of Polygons using Quadtrees, ACM Transactions on Graphics
2, 3(July 1985), 182-222.

