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ABSTRACT

Motion planning for a point robot is studied in a 2-
dimensional time-varying environment. The obstacle is a con-
vex polygon which moves in a fixed direction at a constant
speed. The point to be reached (referred to as the destination
point) also moves along a known path. The concept of ‘acces-
sibility’ from a point to a moving object is introduced, and it
is used to define a graph on a set of moving obstacles. The
graph is shown to exhibit an important property, that is, if the
moving point is able to move faster than any of the obstacles,
a time-minimal path is given as a sequence of edges in the
graph. An algorithm is described for generating a time-
minimal path and its execution time is analyzed.

Keywords and phrases : time-varying environments, visibil-
ity graphs, accessibility graphs, motion planning.

1. INTRODUCTION

The visibility graph [Ghosh87] has been an important
combinatorial structure in planning paths among stationary
polygonal obstacles and related problems [Loza79, AsanS85).
The path planning problem is one of finding a path that con-
nects a given start and destination points in an environment
that contains a pre-defined set of obstacles so that the path is
collision-free. For a survey of research on motion planning, see
[Whit85, Yap86]. One important property of the visibility
graph is that shortest paths are given as a finite sequence of
edges of the graph.

In this paper, we expand on the concept of accessibility,
which is a generalization of the visibility concept [Fuji88]. We
make use of accessibility to represent moving objects for the
purpose of planning the motion of a robot. The robot is
assumed to move in a two-dimensional world in which polygo-
nal obstacles, as well as the destination point, are in motion.
The accessibility graph is a generalization of the visibility
graph. Paths to the destination point are found as a sequence
of edges of the graph. In fact, when all the obstacles have zero
velocity - i.e., when they don’t move, the accessibility graph
becomes the visibility graph of these polygonal obstacles.
Most importantly, we prove that the accessibility graph has a
property which is analogous to the visibility graph, in that,
time-minimal paths are constructed as a sequence of edges of
the graph.
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Previous work dealing with moving obstacles includes the
following. Reif and Sharir [Reif85] show that motion planning
in a three-dimensional environment containing moving obsta-
cles is PSPACE-hard given bounds on the robot’s velocity, and
NP-hard without such bounds. Canny and Reif [Cann87]
show that motion planning for a point in the plane with a
bounded velocity is NP-hard, even when the moving obstacles
are convex polygons moving at constant linear velocity
without rotation. These results indicate that motion planning
with moving obstacles is computationally harder than motion
planning with stationary obstacles. Nevertheless, there are
some approaches at solving the problem. These approaches
are successful in a limited domain.

Kant and Zucker [Kant86] decompose the problem of
motion planning with moving obstacles into two parts. In the
first part, they plan a path among the stationary obstacles
while ignoring the moving obstacles. In the second part, a
graph is used to define regions through which the robot may
not pass when following the path computed in the first part.
The positions of these regions influence the choice of the velo-
city. Erdmann and Lozano-Perez [Erdm87] make use of stacks
(i.e., piles) of two-dimensional Configuration Spaces. These
spaces are created each time some object changes its velocity.
A path consists of a sequence of vertex-to-vertex transitions
between two adjacent elements of the piles. None of these
approaches deals with the case that the destination point can
also be in motion.

We study the case where the robot can move faster than
the obstacles. Given a velocity (i.e., a speed and a direction to
proceed), a robot can travel a certain distance before it meets
with some obstacle (or it may not meet any obstacle at all).
Let us call such a point, if any, the collision point with respect
to the velocity. The collision points around the start point,
with respect to a certain speed, can be decomposed into sub-
sets which we call collision fronts. They consist of a number
of curve or line segments. Having computed collision fronts at
the start point, the robot moves to an endpoint of one of the
collision fronts, say E. At E, the robot is coincident with one
of the vertices of the obstacles. Next, we compute another col-
lision front with E as a start point. Now, the robot moves
from E to one of the endpoints of the collision fronts that are
generated about E. We repeat this until the goal point is
finally reached.

Dealing with moving obstacles and a moving destination
point is of current interest in robotics. The ability to avoid
moving obstacles leads to an increase in the mobility of a
robot for navigation. It also results in a higher productivity
for factory manipulators. By allowing the destination point to
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move, we are able to consider a larger class of applications.
For example, suppose that the robot arm must pick up an
object that lies on a conveyer belt. As another example, con-
sider an autonomous vehicle whose goal is to catch up with
another vehicle that is in motion.

Throughout our paper, a goal point in motion is called
the destination point, and the term point robot is used to
refer to a point to be moved from the start point to the goal
point.

The rest of this paper is organized as follows. In Section
2, we define the motion that obstacles are permitted to take,
and introduce the concept of accessibility. Section 3 describes
the procedure to find a path and its time-optimality. Section
4 contains an analysis of the execution time of the algorithm.
Section 5 contains a few concluding remarks.

2. THE ACCESSIBILITY GRAPH

Throughout this paper, O, G and R are used to denote
the start point, the destination point and the point robot,
respectively. First, we define the motions of the obstacles, the
point robot, and the destination point.
Motion of an Obstacle: An obstacle is a convex polygon
which moves in a fixed direction at a constant speed. We call
such a straight motion a movement. To ease the explanation,
we treat the line-segments (edges) that constitute polygons as
the basic units of our discussion. A movement is defined by a
tuple (L,dy,v.) which represents the motion of line-segment L
in direction d;, at speed v;. We will consider an environment
which contains a finite set of movements, M={M,M,,...,.M,},
where each M; represents a movement as defined above. Note
that M corresponds to the motions of all the edges in the
environment; not just one polygon. Hence, if a polygon P;
consists of ; edges (thus vertices), then n = l;+ly+ - - -+,
where k is the number of polygons in the environment. Also,
note that throughout this paper, stationary obstacles are
treated as obstacles with zero velocity, i.e., we treat both sta-
tionary and moving obstacles uniformly.
Motion of a Point Robot: After leaving the start point at a
start time, R can take any motion as long as its speed doesn’t
exceed a given maximum speed. We assume that the max-
imum speed of R is greater than that of any of the obstacles
and that of the destination point.
Motion of a Destination Point: The motion of the destina-
tion point consists of a finite series of movements. Within a
movement, it moves in a constant direction at a constant
speed.

Now, let us define the concepts of accessibility, accessible
vertex set, collision front, and accessibility graph.

L at time ¢(P,) P,

collision front
L at time t(P,)

L at time ¢,

Figure 1

_moving towards the indicated directions. First, S is inserted in’
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Accessibility: Consider a set of movements
M={MM,,...M,} and G, the destination point. Let R be
a point robot located initially at O at time t,. Suppose that
R starts moving at time t, at a speed v. After it starts mov-
ing, the direction of the movement remains fixed. A point V
(V is either the destination point or a vertex of a polygonal
obstacle) is said to be accessible from O, if there exists a
direction of the motion of R such that R meets V without a
prior interception by any other movements. We say that V
and R meet if there exists a location X through which both
V and R pass at the same time ¢, where to<<t. The location
X is called an accessible point of V. ¢ is called the
accessible time of X with respect to V and is denoted by
t(V). The accessible point of a vertex varies for different
values of the speed and the initial location of R. Note that
the accessible point of a stationary vertex V is V itself, if
applicable.

Accessible Vertex Set: Let VS be the vertices of the given
polygonal obstacles in motion M, and let O, to, v be as in the
definition of accessibility. The set of accessible points
corresponding to vertices in VS with respect to O, o, v is
called the accessible vertex set and denoted as AVS(M,0,tq,v).
Since some vertices in VS may not be accessible from O, the
size of AVS is at most |VS|.

Collision Front: Let V, V; be an edge of an obstacle and let
P, and P, be accessible points corresponding to V, and V;,
with respect to R’s initial location O, start time ¢o, and speed
v. It can be shown that if R keeps moving in a direction that
places it within the angle formed by lines OP, and OP; at
speed v, then R will eventually collide with edge V,V} at
some point. The set of these collision points with respect to
edge V,V, forms a (curve) segment, which is called a
collision front of edge V,V; (Figure 1). On the other hand,
when R keeps moving outside the angle formed by OP, and
OP, at speed v, then R does not meet V, V; in motion.
Accessibility Graph: Let O be a start point (i.e., the point
at which R is initially found), ¢o be a start time, and G a des-
tination point. With each accessible point, X, we also associate
a time value, say ¢(X), to denote X’s corresponding accessible
time. We define a directed graph called the
accessibility graph, or AG(M,0,G,tg,v), by the following con-
struction:

(1) Insert O in the vertex set of AG, and set its default

accessible time to tq.

(2) For every newly added vertex V in the set of vertices
in AG, consider the accessible vertex set with V as the
initial point, ie, AVS(MV,((V)v). Insert the
elements of this AVS in the vertex set of AG, and the
edges from V to these points in the edge set of AG.

This graph can be infinite. Note that for a given set of
M, O, and G, AG varies for different values of g and v. For
stationary M, AG is the same as the visibility graph of M.

Figures 2a and 2b demonstrate how to construct an
accessibility graph. S and G are the starting point and the
destination point, respectively. ABC and DEFG are obstacles

the vertex set of the accessibility graph (step (1)). B, C, and F
are accessible from S at P, Q, and U, respectively, ie.,
AVS(M,S,t(S),v) = {P, Q, U}. Therefore, P, Q, and U are
inserted in the vertex set of the accessibility graph. Accord-




ingly, SP, SQ and SU are inserted in the edge set of the acces-
sibility graph (step (2)). Next, let us take Q as a newly'added
vertex in step (2) of the construction (Figure 2b). Vertices A,
B, E, and F are accessible at X, Y, V, and W, respectively, ie.,
AVS(M,Qt(Q)v) = {X, Y, V, W}. Thus, X, Y, V, and W
are inserted in the vertex set of the graph, and QX, QY, Qv,
and QW are inserted in the edge set of the graph. This pro-
cess is applied to other vertices such as P, U, etc.

G -—
[ 1D H
M meaens o E =
Figure 2a

Construction of the
Accessibility Graph

Figure 2b

3. TIME-MINIMAL PATHS

In this section, we first describe a procedure that finds a
path to the destination point using AG as defined in the pre-
vious section. Next, we prove that the path found by the pro-
cedure is time-minimal. In this process, we use a priority
queue of vertices where the accessible time of each vertex
serves as the vertex’s priority.

Procedure FindPath:
(1) Push the starting vertex O onto the queue.

(2) Pop a vertex, say V, whose associated accessible time is
the youngest.
(3) If V in step (2) is G, then report the path and exit;

otherwise, push all the vertices that are adjacent to V
in AG onto the queue, and repeat steps (2) and (3).

Figure 2c is an example of planning 2 path using
FindPath. S and G are the start and destination point, respec-
tively. Triangle ABC is an obstacle moving towards the right,
and rectangle DEFH is an obstacle moving towards the left.
Points Q, V, and T are the accessible points of C from S, of E
from Q, and of D from V, respectively. The dashed objects
show the locations of the corresponding obstacles at the indi-
cated times. Note that while the robot is moving between V
and T, it is coincident with some point on edge ED of obstacle

DEFH. SQVTG constitutes the final path.

\

E
DEFH at time t(V)
8 DEFH at time (T)
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ABC at time t(Q) <
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B Figure 2c

In the rest of this section, let v,,, denote R’s maximum
velocity, and O and G be the start point and the destination
point, respectively. We subdivide the paths from O to G into
two groups, i.e.,

Group 1 - paths at velocity v, in a constant direction
through a point in AVS(M,0,t,v...).

Group 2 - the other paths.

It is assumed that velocities along paths in both groups
don’t exceed v, In the rest of this paper, we assume the
following two conditions.

(A1) v, is greater than that of any of the obstacles,

(A2) The obstacles do not touch among themselves, and the
obstacles and the destination point do not touch.

Proposition 1. Given a set of movements M and a destina-
tion point G, suppose that at time £, point R and vertex V,
the common endpoint of edges UV and VW, are at location
X. Let M; and M; be the movements of UV and VW, respec-
tively, and let M, be the movement corresponding to the
motion of a new edge UW. If there exists a path starting
from X at time ¢, and terminating at G at time £, (>¢,) in
M—{M;, M;}+{M;} (ie., an environment formed by removing
two edges UV and VW and adding UW), then there exists a
path in M, starting from X at time ¢, and terminating at G
at time f,.

Proof: Let « be a path from X to G in M—-{M;, M; }4+{M;}.
There are two cases depending on whether or not o collides
with M; (or M;)in M.

(Case 1): o doesn’t collide with M; nor M;in M.

a is a collision-free path in M because it cannot collide
with M, without first colliding with either M; or M; which is
impossible. Thus a satisfies the proposition.

(Case 2): a collides with M; (or M;) in M.

Without loss of generality, let L denote the edge with
which o collides. We construct an alternative path A such
that 8 is collision-free in M in the following manner. Let Y be
the location of the occurrence of the last collision of a with L
(See Figure 3). Starting at time ¢, define 3 as the shortest
path followed by R from X to Y. This means that until
reaching Y, R is always coincident with some point on L.
This path is shorter than the corresponding path-segment of
a. To see this, note that the shortest distance between two
points is a straight line. After Y, R follows the remaining
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Figure 3

points is a straight line. After Y, R follows the remaining
part of path a. R reaches G at the same time regardless of
whether path o or path 3 is used. Along path 8, R moves at
a slower speed than v, from X to Y. To see this, consider
two paths from X to Y, namely « and 3, both starting and
arriving at the same time. Since path 3 is shorter than path
«, the velocity of R between X and Y must be less than v,
-

As a special case of this Proposition, we consider a case in

which an obstacle is just a single edge. We have the following
proposition, and its proof is similar to the proof of Proposition
1.
Proposition 1. Assume the same environment as in Proposi-
tion 1 except that UV is a single edge obstacle. Suppose that
at time £, point B and vertex V are at location X. If there
exists a path starting from X at time ¢, and terminating at G
at time ¢, in M-{M;}, then there exists a path in M, starting
from X at time ¢, and terminating at G at time ¢,.

Proposition 2. Let my be a collision-free path from O to G.
Let 7y be in Group 2. There exists a collision-free path from
O to G in Group 1, say m;, which will be identical to my start-
ing at some point J. The speed along some portion of
before J is less than vp,,.

Proof: Let A be a region such that every point in it is accessi-
ble from O when R moves at velocity vy,,, and let I be the
complement of A (i.e., its points are not accessible from O
when R moves at v, (Figure 4a). Let Z be a point at which
path 7, crosses from A to I (Figure 4b).

In the first part of the proof, let us assume that there is
only one collision front about O. Let Vy and V, denote the
two endpoints of the collision front (Figure 4b). The inaccessi-
ble area is bounded by the collision front formed by V; and
V, and the two infinite lines extending from O to V, and 0
to Vs, respectively. Without loss of generality, let Z lie on the
line that passes through V. The case that Z lies on the colli-
sion front V;V, can be handled in a similar manner. Consider
path m,. On this path, R first moves from O to V) at Upey
Next, let R move along a straight line from V; to some point
J on path 7, (denoted as a dotted line in Figure 4b). We now
show that there exists a point J on m, such that R can move
from V) to J at a speed less than v, Note that the path
length from O to Z along s is longer than 0Z. Therefore,
when R’s speed along 7o is fast (e.g., Uma), & point J near Z
will satisfy this property. When R’s speed along m, is slow, it
is possible that path length OJ is even shorter than ov,J

along path m;. Now, all that remains is to show that the sub-
path of m; between V) and J is collision-free. Suppose that it
is not collision-free. Therefore, there exists a point C on an
obstacle initially in / which will intersect the line V;J at some
point Y. Since the path on the infinite line OV is collision
free, C' can only intersect the extension of line OV, at some

. . |4
point @ at a time later than 19 + t(V,) where ¢(V,) is the

Umax

accessible time of V. The speed of R along m, from V, to J
can be chosen so that R will pass Y before C reaches it. This
can be seen by appealing to the triangle inequality (with
respect to @QV;Y). Recall that the motion of all the obstacles
(such as C') are known a priori and that the speed of the obs-
tacle is less than vg,, Hence, we have a contradiction and
thus the subpath of 7, between V| and J is collision-free.

Next, we consider the case where there is more than one
collision front generated at O. If there are n collision fronts,
then there are at most n inaccessible areas. Let us use I; to
denote an inaccessible area behind collision front CF; (Figure
4c). There are 2n choices for path m; - two for each collision
front. For each of the collision fronts, CF;, there is a range of
speed values [v,,-€;, ¥pa) such that the corresponding path
my; joins path m, at point J;. Pick a value of the velocity v,
such that v, is in each of [U;a-€;, Umax): Choose the path my;
such that J; is reached at the earliest time. Now we must
show that this path is collision-free. Suppose that it is not. In
this case, the obstacle must come from some inaccessible area
I; (j74). This means that a path that exits from an accessible
point of CF; will join path 7, at an earlier time, which is a
contradiction. m

Figure 4b

1113

R ol




Theorem: A time-minimal path is given as a sequence of
edges of AG(M,0,G,ty,v,,).

As a result of this theorem, R moves at the maximum
velocity along a time-minimal path. In other words, if a path
contains some portion during which R moves at a slower
speed, then that path is not time-minimal. We prove the
theorem by induction on 7, the total number of movements in
the given environment.

Proof: (Base Step): In the base case in which n=0, G is
accessible from O, the start point, since there are no obstacles
(stationary or moving) in the scene. Recall that we treat sta-
tionary obstacles as obstacles with zero velocity. Thus, G’s
accessible point, X, is in AVS(M,0,t0,04), and the procedure
terminates with path OX along which R moves at Vmax- [NOW
we show that path OX is time-optimal. Suppose that it is
not. Let v be a time-optimal path and Y be the point at
which R reaches G. Path v can be extended to point X such

that R is always coincident with G from Y to X. Now, there
are two paths from O to X, i.e.,, OX and « plus its extension,
both of which reach X at the same time. This is a contradic-
tion since R moves at v,,,, along straight line OX.
(Inductive step): Next, we consider an environment which
contains n movements. We assume that the theorem holds for
an environment with n-1 movements. If G is accessible from
O, then the theorem obviously holds as in the case of n=0.
Therefore, assume that G is not accessible from O. The
theorem follows from the following two properties which are
proved below. Let V be a point in AVS(M,0,t0,v,,). First,
we prove that a time-minimal path from V to G in M con-
sists of a sequence of edges in AG(M, V.G,t(V),0.). Second,
we prove that for any path in Group 2, a better path in Group
1 exists. Thus a path in Group 2 is never time-minimal.
(Proof of the first property):

Let V be an accessible point (from Q) of a vertex in
movement M;. Note that at time ¢(V), R is on a vertex of
some polygon. Suppose that L; and L; are two edges that are
incident on the vertex. We remove L; and L; from the
polygon and instead introduce a new edge L, which connects
two endpoints of L; and L; that are not incident at the vertex.
This results in a polygon which has one less edge than before.
By the induction hypothesis, a time-minimal path ~ exists
from V to G in M—{M; M;}-+{M,}, which consists of the
edges of AG(M-{M;, M;}+{M,}, V, G, ¢(V), Vmax), Where
M;, M;, and M, are the movements of L;, L;, and L, respec-
tively. We show that this path ~ is also a collision-free path in
M. In other words, v doesn’t collide with M; or M;.

Assume that ~y collides with M;. Since R is located at V,
we can use Proposition 1 to construct a path 4" in M which
terminates at G at the same time as ~ in M—{A/I,,/\/IJ} +
{M;}. In case M; is a single edge, then Proposition 1’ is
applied and M-{M;} is used in place of M-{M;, M;}+{M;} in
the following argument. ~’ must be one of the time-minimal
paths from V to G in M-{M;, M;}+{M,}, as it terminates at
G at the same time as . However, .4’ contains a path-
segment, along which R moves at a slower speed than v,,,, (as
noted in the proof of Proposition 1). Therefore, by the induc-
tion hypothesis, 7’ cannot be a time-minimal path from V to
G in M-{M;, M;}+{M,}. Since v and 4 terminate at G at
the same time, 7 is also not a time-minimal path, which is a
contradiction (recall our initial assumption was that 7 Is time-
minimal). Thus, path v doesn’t collide with M; and is a

collision-free time-minimal path from V to G m M as well.
This can be seen by noting that if a collision-free path is
time-minimal M-{M;, M;} +{M,}, then it is also time-
minimal in M.

We now show that a path from V to G in M, say =, con-
taining a segment during which B moves at a velocity less
than v, .. will terminate at G at a time later than 4. By the
induction hypothesis, in M—{M;,M;}+{M;}, = terminates at
G later than ~. Since 7 is also a path in M, as we showed
above, 7 terminates at G later than ~ in M, and thus 7 is not
time-minimal in M. Thus our first property has been proved.
(Proof of the second property):

Assume that there exists a path o in Group 2. We show
that there exists a path in Group 1 which reaches G earlier
than a. Let 8 be a path from O to G constructed in the fol-
lowing manner. After leaving O at time t,, 8 moves to one of
the vertices in AVS(M,0,t,v,,,) (let us call this vertex V) at
velocity vy, and then turns to rejoin path o at a velocity v
less than v,,. Proposition 2 assures that this rendezvous is
possible. After rejoining a, the remaining parts of path 3 are
identical to path @, and A terminates at G at the same time as
a. On the other hand, there exists a time-minimal path ~
from V to G in M, as described in the first property. Since 8
has a path-segment along which R moves at a slower speed
than vp,,, B is not time-minimal from V to G and f ter-
minates at G later than 4. This implies that we can construct
a path in M that terminates at G earlier than by con-
catenating paths 8 and path v at V. Thus our second pro-
perty has been proved.

From the first property, we have that the time-minimal
path from V to G consists of edges in AG(M, V.Gt (V),v104)
which is a subgraph of AG(M,0,G,tg,vns). From the second
property, a time-minimal path from O to G must contain
edge OV, which is an edge of AG(M,0,G,tg,v,,,). Thus the
time-minimal  path is a  sequence of edges of
AG(M,0,G,tg,v,,) =

4. EXECUTION TIME

We now analyze the time required to generate a
collision-free path using the algorithm described in Section 3.
First, we show that the shape of the collision front is either a
parabola, hyperbola or an ellipse. Without loss of generality,
we consider a line segment L lying parallel to the y-axis. Let
(20,50) be the location of one of L’s endpoints at the start
time, ! be the length of L, v; be the velocity of L, v be the
velocity of the robot, and 8 be the angle formed by the direc-
tion of the movement and the z-axis (Figure 5). Suppose that
a point P at (zo,Y) in L is accessible from the origin (0,0) at
point A at (z,y). z and y must satisfy:

IFigure 5
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t(A )= :2+y2_ (3_102):‘(3/‘)/) (l)
y=(z-z¢)tanf+Y (2)
yo< Y <ygtl )

The points (2,y) that satisfy (1) and (2) form the collision
front. These equations define a quadratic relationship - ie.,
the collision front lies either on a parabola, hyperbola, or
ellipse. (The curve degenerates to a straight line when the
direction of the movement is parallel to L.) Also, we can show
that the origin is on the same side as one of the foci of the
curve. Generally, the two endpoints of a collision front (acces-
sible points) can be computed by setting Y to yo and yo+! in
equations (1) and (2).

Having computed two endpoints of the collision front of a
single movement, we must now compute all the endpoints of
the collision fronts (AVS) when the robot is at a given start
point with a given velocity v. For a set of polygonal obstacles
with n vertices, there are n candidate points. However, some
points may not be accessible from the start point since some
other movement intercepts the accessibility of that point. We
now show that it takes O(nlogn) time to compute AVS. The
set of accessible points is determined by using a similar tech-
nique to that used to compute the visibility of a given set of
line segments. This is also known as a plane-sweep algorithm
[Prep85). This is a two-step process. The first pass sorts all
the vertices, say in a clockwise direction with respect to O.
This sorting process takes O(nlogn) time. The second pass
rotates a line about O. It halts each time the line intersects a
vertex, and checks whether or not the collision front associated
with the vertex is accessible from O. This process can be
achieved in O(logn) time by using a 2-3 tree [Aho74] to main-
tain the active collision fronts based on their distance from O.
In this way, the closest collision front is marked as accessible
from O. Since it takes at most O(nlogn) time to build the
initial 2-3 tree and O(logn) time for each update at a vertex,
the determination of accessibility of n candidate points takes
O(nlogn) time. Therefore, given a start point and a set of
candidate points, it takes O(nlogn) time to compute accessi-
ble vertices from the start point.

At this point, note that as a result of our theorem, a path
that meets with the same vertex of an obstacle more than once
is not time-minimal. As there are n vertices in the environ-
ment, an AVS needs to be generated at most n times before a
time-minimal path reaches the destination point. This obser-
vation leads to an asymptotic computation time of O(n%logn)
to compute a path using procedure FindPath. Note that for

stationary polygonal obstacles, a shortest length path can be
computed using the visibility graph in O(n®) time [Welz85)
and O(E+nlogn) time [Ghos87), where n is the total number
of vertices in all the obstacles and E' is the number of edges in
the visibility graph.

5. CONCLUDING REMARKS

Time-optimal trajectory planning has been an important
subject in robotic control [Saha84, Bobr85, Cann88]. We have
studied the problem of moving a point robot among the obsta-
cles moving at constant velocities in the plane. We have dis-
cussed a case where the robot can move faster than the obsta-
cles and the destination point. Making use of the concept of
accessibility, we have demonstrated an O(n2logn) algorithm

to find a path, and proved that the path found is time-
minimal. Because of its time optimality, the accessibility
graph is expected to be an important tool in motion planning
in dynamic environments, just as the visibility graph played a
key role in the studies of motion planning among stationary
obstacles. However, an extension to a path finding problem for
a finite-size robot in dynamic environments doesn’t seem to be
straightforward as is the case with stationary obstacles.
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