
Motion Planning in a Dynamic Domain*

Kikuo Fujimura Hanan Samet
Center for Engineering Systems Advanced Research

Oak Ridge National Laboratory
P.O. Box 2008

Building 6025. MS-6364

Center for Automation Research and

Oak Rid& TN’37831-6364

ABSTRACT
Motion planning is studied in a time-varying

environment. Each obstacle is a convex polygon that moves
in a fixed direction at a constant speed. The robot is
a convex polygon that is subject to a speed bound. A
method is presented to determine whether or not there is
a translational collision-free motion for a polygonal robot
from an initial position to a final position, and to plan such
a motion, if it exists. Our method makes use of the concepts
of configuration spaces and accessibility. An algorithm is
given for motion planning in such an environment and its
time complexity is analyzed.
Keywords and Phrases: time-varying environments,
configuration spaces, accessibility, finite-sized robots, and
motion planning.

TIME-VARYING ENVIRONMENTS
We consider the problem of motion planning in a 2-

dimensional time-varying environment. The environment
contains a number of moving polygonal obstacles whose
motions are known. Each obstacle is a convex polygon
that moves in a fixed direction at a constant speed. We
treat edges constituting polygons as the basic units for
our discussion, and we use the term m o v e m e n t to denote
the straight motion of an edge. We assume that the
environment is known completely (i.e., the shapes and
trajectories of the obstacles are given a priori) and that the
robot is subject only to a maximum speed that is greater
than any of the obstacles’ speeds. We would like to know
whether there exists a colllision-free translational motion
for a polygonal robot from an initial position to a final
position, and if there is, we would like to find a motion
that takes the robot to the final destination in the shortest
time.

Many studies on motion planning concern the following
two aspects of the problem:
(1) decide whether or not there exists a motion given an

environment, and find a path if there is one, and
(2) optimize a motion in terms of some criterion (e.g., path

length, number of turns, etc).
Note that time plays a crucial role in a time-varying

environment. As an example, suppose that a robot is
located inside a room that contains a number of moving
and stationary obstacles. The room also has a door that is
open for a certain period of time and the robot must pass
through the door before it closes. The arrangement of the
obstacles inside the room may be contrived in such a way
that the robot can move to the door in time only if it makes
a time-minimal motion to reach the door.

Computer Science Department and
Institute for Advanced Computer Studies

University of Maryland
College Park, MD 20742

In this paper, we show how to find a translational
time-minimal motion for a convex polygonal robot in an
environment that contains moving obstacles. We assume
that the robot can move faster than any of the obstacles.
Section 2 reviews some prior research that serves as a basis
for our approach. Section 3 describes motion planning
among moving obstacles. Section 4 presents our algorithm
as well as analyzes its execution time. Section 5 compares
our work with some previous work, and Section 6 contains
a few concluding remarks.

BACKGROUND
In this section, we review the concepts of a

They are used in configuration space and accessibility.
Sections 3 and 4.

Overview of the Configuration Space
One formulation for motion planning a.mong stationary

obstacles has been to use the configuration space [Upud76,
Lo2a791. This is a transformation from a physical space
in which the robot is a polygon (or a polyhedron in
3-dimensions) into another space in which the robot is
treated as a point. Intuitively, the configuration space is
obtained by shrinking the robot to a point, while growing
the obstacles by the size of the robot. Formally, the
configuration space is described as follows. The position
and orientation of a rigid object, say A , in the plane (or
physical space) can be specified by a 3-tuple (z, y, e) in a
3-dimensional space, called the configuration space of the
objcct and denoted by CspaceA. Here (z, y) represents the
position of a reference poin t of A in physical space, and 0
reliresents the angle made by a reference angle of A relative
to the z-axis. When the orientation of the object is fixed,
its configuration space is 2-dimensional because the pair
(z,y) is sufficient to specify the location of A in physical
space.

In CspaceA, some points correspond to placements of
A in which A overlaps other objects in physical space.
Such poink in CspaceA are called illegal, while points in
CspaceA that correspond to placements of A where A does
not, overlap with any of the other objects in the physical
space are called legal.

More spccifically, the set of points in C s p a c e ~ that
correspond to the placements of A where A overlaps with
object B in physical space is called a Cspace obstacle f o r A
due i o B and denoted by COA(B) . ,The problem of motion
planning for A in physical space is transformed into the
problem of finding a path for the point in the configuration
space such that every point on the path is legal.

* The support of the National Science Foundation under Grant IRI-88.02457 is gratefully ackiiowledged. This work is
supported in part by an appointment to thc U.S. Department of Energy Postgraduate Research Program administered by
Oak Ridge Associated Universities and by the Engineering Research Program of the Office of Basic Energy Sciences, of
the U.S. Department of Energy, under coiitIact No. DE-AC05-840R21400 with Martin Marietta Energy Systems. Inc.

CH2876-1/90/0000/0324$01.00 0 1990 IEEE 324

Figure 1 illustrates the concept of configuration space
in a 2-dimensional space. In Fig. la, P and Q are fixed
objects in physical space, and R is the robot to be moved.
We assume that the orientation of R in the physical space
is fixed. Figure I b represents R's configuration space or
CspaceA. The two objects delineated by thick lines are
COR(P) and COR(Q) with respect to the reference point
of R in Fig. la.

U
t reference point

(a) physical space

(b) configuration space

Fig. 1. Physical space and its configuration space.
Obstacles delineated by thick lines represent configuration
space obstacles corresponding to the shaded obstacles with
respect to the reference point in R.

As in our problem, when the orientation of the robot,
say A, is fixed, CspaceA is 2-dimensional. Also? when both
A and B are convex polygons, CspaceA(B) is a convex
poly on and the shape is given by taking the convex hull of
wer-trB) - wert((A)o). Here wert(X) is the set of vertices of
thepo1ygonX;X-Y = {z-ylz in X and y inY};
and (X) , is the polygon X in its initial configuration, where
its reference vertex is at the origin [Loza83 . For an n-sided
polygon A and an m-sided polygon B , C d A (B) is at most
(n + m)-sided (Kede851.

As a result of the expansion of obstacles, configuration
space obstacles may overlap. In a time-varying
environment, it is possible for two configuration space
obstacles that do not overlap at their initial positions to
begin to overlap for a certain period of time, then cease to
overlap and move away from each other. This happens even

. when physical obstacles do not overlap at all. This motion
of two overlapping obstacles can act as a gate-opening for
a point-robot in configuration space when the robot needs
to pass through between the two obstacles.

Alternatively, we can think of a situation in which a
gate closes (e.g., two obstacles begin to overlap, thereby
preventing the robot from passing through between them).
In such a situation, if the robot is to pass through between
the obstacles, then it must arrive at the gate just as it closes.
Also, when two obstacles start overlapping, it is possible for
the robot to be crushed between the obstacles. When the
robot cannot escape from being crushed, the planner needs
to report that there is no collision-free motion.

Overview of the Accessibilitv Avvroach
Fujimura and Samet [l?uji89b] propose an algorithm to

produce a time-optimal motion for a point-robot among
non-overlapping moving obstacles, assuming that the point-
robot can move faster than the obstacles. This approach
makes use of the concepts of accessibility and collision front.
These concepts are used in this paper and are reviewed
briefly below.

Accessibility: Let R be a point robot located initially
at 0 at time to. Suppose that R starts moving at time to
at a speed w. After R starts moving, it moves in a fixed
direction. A point V (V is either the destination point or a
vertex of a polygonal obstacle) is accessible from 0 if there
exists a direction of the motion of R such that R meets
V without prior interception by any other movement. We
say that V and R meet if there exists a location X through
which both V and R pass at the same time t (t o < t) . The
location X is called an accessible point of V . The time t
is called the accessible t ime of X with respect to V and is
denoted by t(V). The accessible point of a vertex varies for
different values of the speed and the initial location of R.
Note that the accessible point of a stationary vertex V is
V itself, if applicable.

Collision Front: Consider an environment that
contains one movement of an edge, L. Let V, and vb be the
two endpoints of L; and let Pa and Pb be accessible points
corresponding to v, and vb, respectively, with respect to
R's initial location 0, start time t o , and speed w. The set
of accessible points corresponding to all points in L forms a
segment. This segment is known to be either a straight line
or a quadratic curve [Fuji89a]. We will call this segment a
collision front of L (with respect to 0, t o , and U). Figure 2
contains an example of the collision front. It can be shown
that Pa and Pb are the two endpoints of the collision front.
For an environment that contains more than one movement,
there can be more than one collision front, each of which
corresponds to some movement. In this case, however, it is
possible that only a part of an obstacle is accessible. Notice
that if two moving obstacles (e.g., edges) do not collide,
then the corresponding collision fronts do not intersect.

V a
Fig. 2. Collision front.

An alternative way of looking at the significance of a
collision front is as follows. Suppose that R departs 0 at
time t o and keeps moving at a constant speed w along a
ray, say I , emanatin at 0. R does not meet any of the
obstacles in motion ifand only if I does not intersect any of
the collision fronts. The collision front of a stationary edge
L is L itself or subsets of L.

Previously, we demonstrated the following result
Fuji89bI. Along a time-optimal motion, the point-robot

!9 rst moves straight from a start point to one of the

325

endpoints of the collision front, say V, at its maximum
speed. From V, it moves in the direction of another
endpoint of the collision front generated at V having V as
the start point while again moving at a maximum speed.
This process is repeated until the destination point is finally
reached.

MOTION PLANNING AMONG MOVING
OBSTACLES

From now on, we consider the problem of motion
planning among moving obstacles in terms of the
configuration space. In other words, the robot is
treated as a point, and obstacles may overlap. In the
following sections, we just use the term ‘obstacle’ to
mean a configuration space obstacle. In this paper, we
consider all types of overlaps between polygonal obstacles,
thereby allowing types of overlaps that are impossible
for configuration space obstacles. Thus, we are solving
a slightly more general problem than the one stated in
Section 1. As mentioned in Section 2, if obstacles do not
overlap, then the robot only needs to move in the directions
of vertices of the obstacles at its maximum speed. In an
environment that contains overlapping obstacles, splits and
merges of obstacles are critical events.

We define splits and merges in terms of movements (or
edges in motion). A m e r g e of two edges means that two
disjoint edges begin to cross each other (Fig. 3a). It is
possible that when a merge takes place, the robot is crushed
between the two closing obstacles (Fig. 3b). This means
that no matter what action is taken by the robot, it cannot
escape from being crushed. In terms of accessibility, the
event is indicated by crossing collision fronts (Fig. 3c).

(a) Edge A eventually intersects edge B. When A intersects
the pathway indicated by the thick arrow disappears.

I O R

(b) It is possible that the robot (R in the figure) is crushed
no matter what action it takes.

Collision front due to E2 Collision front due to E2

I
Collision front due to El

(c) A case in which the robot (R) cannot escape from being
crushed. The situation is indicated by crossing collision
fronts.

Fig. 3

A split of two edges, when intersecting edges cease to
intersect, requires special handling. Such an event should
not be missed, since a new pathway may be opened. For
example, suppose that edges E1 and E2 intersect. A split
occurs when a vertex of El passes E2 (or vice versa). The
location at which the split takes place is called a split point ,
and the time at which it occurs is termed a split time. Note
that even when a split of two edges occurs, the two obstacles
having those edges as their sides may still overlap. It is
important that the robot be at a split point at its split
time, if it is possible (see [Fujisga]). The question is how
the robot arrives at a split point exactly at its split time.
For this purpose, when moving obstacles overlap, we move
the robot also in the direction of the following auxiliary
points on an edge. These points serve as subgoals, in the
process of planning a motion. We use two types of subgoals
depending on whether or not the split point is accessible.
Note that when we discuss splits, we are speaking about
edges rather than obstacles.

Subgoal Type 1: Figure 4a shows two movements of
edges AB and C D that are about to split. Let S be the
point at which the point-robot R is initially found, and let
G denote the destination point. The split point P (Fig. 4b)
is not accessible from S, because edge C D lies between S
and P . Let X be the intersection point between AB and
CD. As edge C D moves, the intersection point X also
moves towards the split point P (see Fig. 4b). In general,
when an edge, say AB, crosses another edge, say CD in
motion, their intersection point makes a straight motion
(i.e., in a fixed direction with a fixed speed). We treat X
as a subgoal; in other words, R aims at X. After it reaches
X , the motion of R is identical with X until it reaches the
split point. As X serves as a point to be aimed at, we call
it a pseudo-vertex. In order to avoid confusion, we use the
term real-vertes to indicate a vertex of a polygon.

Fig. 4. P denotes the split point. In (a) and (b), the
split is not accessible from S. In (c) and (d), the split point
is accessible from S.

326

Consider polygons ABCD and EFHJ in Fig. 5.
ABCD and EFHJ are about to separate. Edges AD and
FH, and edges DC and FH split. Figure 5b shows the
moment when these three edges split. At that moment,
the split point V coincides with vertex D and lies on edge
FH. Let us take the intersection point X of edges FH and
AD as our subgoal. The intersection point of edges DC and
FH is also a candidate for the subgoal, but this point is not
accessible from S, the current location of the point-robot.
(The procedure to determine accessible subgoals from the
current robot location is described in the next section.)
Intersection point X is chosen as a subgod because it
converges to the split point V. In fact, any point that
lies in the free space (i.e., outside any of the obstacles) and
converges to the split point can serve as a subgoal. It can
be shown that of all the points that converge to the subgoal
when the split point is not accessible, X moves the slowest.
This means that if subgoal X moves faster than the robot,
then all other choices of a subgoal would move faster than
the robot.

E J

(a) Two obstacles are about to split.

E J

+ I
H

(b) The moment of split. V is the split point.

Fig. 5

Note that this type of subgoal may chain, as shown
by the example in Fig. 6. In this case, polygon ABC
intersects with stationary polygon DEFHIJ. Suppose
that the robot (initially located at S in Fig. sa) needs to
reach point G. In Fig. 6a, edges AC and BC intersect with
edge DE. The two intersection points can be considered
as a subgoal. In this case, only one intersection (the
intersection of AC and D E) is directly accessible from S.
This subgoal moves along edge D E (Fig. 6b) until it reaches
vertex E , where a split of edges AC and D E takes place.
Next, we consider the intersection between edges AD and
EF. The intersection point can then be considered as a
subgoal (Fig. 6c) until a split of edges AC and EF occurs.
Finally, the intersection point of edges AC and FH serves
as a subgoal (Fig. 6d). In summary, we can consider this
chain of intersection points as a path that eventually leads
the robot to the split point of two obstacles at its split time.

G
0

Fig. 6. A subgoal chain.

Subgoal Type 2: Figures 4c and 4d show another
type of split. A split occurs when edge CD passes through
P. P in Fig. 4d is the split point, and Y is a point on
edge AB that passes through P. In this case, the split
point P is accessible from the current location of the robot.
We consider Y as a subgoal, since it converges to the split
point. Such a point on an edge is also termed a pseudo-
vertex. We aim the robot at Y. Once it reaches Y, the
motion of the robot is identical to that of Y until it reaches
the split point. It is always possible to follow Y because
the speed of Y is the same as that of the obstacle on which
Y is found. In this case, the intersection point X could
have also been used as a subgoal. However, it is possible
that X moves faster than the maximum speed of the point
(depending on the angles between the two edges), and in
this case, X cannot serve as a subgoal. Note that in Fig. 4a,
it is not possible for the robot to aim at point Y because
the path would be obstructed by edge CD itself.

Figure 7 illustrates this type of subgod using two
polygons. Rectangle ABCD moves in direction d and
triangle EFH is a stationary obstacle. Vertex F is a split
point whose split time is the instant at which edge BC
passes vertex F . Y is the pseudevertex on edge BC and
y indicates Y’s trajectory. Suppose that S is the starting
point of the robot R. Motion A, a straight-line motion
from S to F , seems to be a natural choice for R’s motion
in approaching the split point. Along SF, R moves at a
constant speed such that R can reach the split point exactly
at its split time. This motion A can also serve as a subgoal
that R can aim at. Clearly, there may be many ways of
moving a robot from a current position to a split point at
its split time. Our strategy is first to move to a subgoal
with a maximum speed, and then to follow the motion of
the subgoal. This choice of motion for the robot makes it
easier to design an algorithm.

When polygonal obstacles do not overlap, the robot
can reach the final destination without having to visit
the same vertex of a polygonal obstacle more than once
[Fuji89b]. However, in a situation that allows overlap
among obstacles, the robot may have to visit the same
vertex more than once. Figure 8 illustrates such a situation.
Triangle ABC is an obstacle that is moving towards the
right. DEF and H J K are stationary obstacles. S is the
starting point for the robot R. We assume that edge DE

327

-

is sufficiently far from S so that moving toward D E is not
an adequate solution. We assume that edge H J is also
sufficiently far from S. Figure 8a shows the moment when
R arrives at vertex C. After leaving vertex C , R moves to
F and meets with vertex C again (Fig. 8b). Next, R moves
to vertex K (Fig. 8c). after which it meets with C again , v , I

(Fig. 8d).

e j-’
S

H E

L

D
.G

Fig. 7. Example of an alternative motion.

H J

F \

\ I

Fig. 8. A scene where the robot visits the same vertex
more than once.

In general, a vertex of an obstacle can be treated as
a new vertex after it has moved through the inside of an
obstacle (e.g., vertex C in Fig. 8). Let us call a vertex l ive
when it is not covered by any of the obstacles, and let a
live-period of a vertex be a time interval during which the
vertex is live. In Fig. 8, vertex C has the following three
live-periods. The period before C intersects edge D F . The
period after C intersects edge E F , and before it intersects
edge HI<. The period after C intersects edge J K . The
robot does not have to visit the same vertex more than
once while the vertex is in the same live period.

So far we have introduced two types of new subgoals
and defined motions to be taken when a split occur. As
noted in Fig. 7, there are other ways of moving the point to
a split point at its split time. We treat the motion defined
in Section 3 as a canonical form for motion planning. It
can be shown that whenever there is a motion to reach the
split point at its split time, there is a canonical motion to
reach the same split point.

In our approach, a motion from a given start point to
a destination point takes place as follows. After the robot
leaves its start point, it moves to one of the subgoals in
a shortest time. After it reaches a subgod, it follows the
motion of the subgoal to its split point. After the split time,
the robot again moves to another subgoal in a shortest time.
This process is repeated until the robot eventually reaches
the final destination point.

ALGORITHM
We now describe an algorithm to find a collision-free

motion and analyze its complexity. Let n be the total
number of vertices in the original environment. The number
of total vertices in the configuration space produced from
the given environment is O(n) , assuming a bounded number
of vertices of the robot [Kede85]. Let k be the total number
of merges and splits that occur between a vertex and an
edge. The value of k depends on the nature of the obstacles.
It is zero when configuration space obstacles (i.e., enlarged
obstacles) do not overlap at any instance of time. In the
worst case, the size becomes O(n2) , since every obstacle
can overlap every other obstacle.

When
obstacles do not overlap as in [Fuji89b], the robot need
only move in the directions of the vertices of the polygonal
obstacles along a straight line at its maximum speed. If
obstacles do overlap, then the robot also needs to move
in the direction of the two types of subgoals. After the
robot reaches a subgoal, it moves along it until it comes
to a split point. At a split point, it needs to change its
direction towards its next objective (a vertex of an obstacle
or another subgoal), until it reaches its final destination
point. During this process, the robot may encounter the
same vertex of a polygonal obstacle more than once, if
necessary.

DescriDtion
(1) Create configuration space obstacles from the given set

of physical polygonal obstacles and the given polygonal
robot. See [Loza83, Whit861 for a detailed algorithm. It
takes O(n , +m) time to create a configuration space for
an input polygon of n, vertices and a polygonal robot
with m vertices. Therefore, it takes O(nl + ... ni + ml)
time to create configuration space obstacles from a
given environment with a total of 1 obstacles. Thus,
it amounts to O(n) time, assuming that the number of
vertices of the robot is bounded.

(2) Enumerate all the pseudo-vertices. This can be done
naively by checking each vertex against all the edges
in the environment. By doing so, all the split points
and split times are determined. From a split point
and its split time, a pseudo-vertex and its motion are
also determined. At the same time, determine the live-
periods of each real-vertex. A real-vertex has up to
O(n) live-periods, since a real-vertex can be covered by
obstacles at most O (n) times. Since the total number
of live-periods of real-vertices does not exceed the total
number of merges and splits, it is O(k).
When a vertex of an obstacle intersects an edge, the
intersection point on the edge becomes a pseudo-vertex.

The idea behind our algorithm is as follows.

328

Since there are k such intersections, the number of
pseudo-vertices is O(k). It is also necessary to identify
the trajectory of a pseudo-vertex. Since a pseudo-vertex
is always coincident with a point on an edge, its motion
is determined by that edge. However, it is necessary to
determine when and where the pseudo-vertex starts. To
determine the starting point, the trajectory is checked
against all edges in the environment. This takes O(n)
time.

(3) There are n + k real and pseudo-vertices. Let N =
n + k. Sort the real and pseudo-vertices in a clock-wise
manner with respect to the current point. This takes
O(N log N) time.

(4) Rotate a ray emanating from the current point about
the current point. The ray halts each time it intersects
a vertex. At this time, check whether the vertex is
accessible from the current point. This can be done by
using a balanced binary tree (e.g., a 2-3 tree [Aho74]).
After O(N1ogN) time, all accessible vertices from
the current point are determined. If no vertices are
accessible, then the current point is a dead end.

(5) Maintain a priority queue of vertices, where the priority
corresponds to the accessible time ofthe vertex. Choose
the vertex whose associated time is the youngest, say
Y . If Y is the destination point, then stop. When y
is a real-vertex, repeat steps (3) and (4) with y as the
current point. When Y is a pseudo-vertex, pi& the
split point 2, and time associated with 2, and repeat
steps (3) and (4) with 2 as the current point.

(6) Repeat steps (3), (4) and (5) at most N times.
Figure 9 is a simple example of motion planning for a

triangle robot R) among two rectangular mavin obstacles
(P and Q). '!'he five parts of Fig. 9a show t i e motion
in CspaceR, and the five parts of Fig. 9b show the
corresponding motion in physical space. R first moves to
X (see Fig. 9a (ii), (iii)), a pseudo-vertex. After R reaches
X , it stays on X until it reaches Y , which is a split point.
After P and Q have separated, R moves in the direction
of real-vertex in the scene until it reaches the destination
point G. Note that in Fig. 9b (iii) and (iv), the robot R
touches both of the obstacles P and Q.

The execution time required for each step in the
procedure is noted with each step. Altogether, it takes
O(n2) + O(&) + O (N Z log N) = O((n + k)' log(n + k)) to
produce be as large as nz,
and thus, the worst-case execution time is log

motion. The value of k

PRIOR WORK
Dynamic motion planning has been shown to be

ComPUtationallY harder than motion Planning in a
stationary environment. canny and Reif [Cann871 Show
that the problem is NP-hard when some obstacles can
move faster than the robot. Reif and Sharir [Reif851 show
that the problem is solvable in a polynomial time when
the number of obstacles is bounded. Kant and Zucker
[Kant86] use a two-step algorithm. They plan a path to
avoid stationary obstacles in the first step, and determine
a velocity profile along the path to avoid moving obstacles
in the second step. Erdmann and Lozano-Perez Erdm861

space-time. These slices represent configuration spaces at
particular times. The times are those instants at which
some moving obstacle changes its velocity. A path of the
robot consists of a set of path-segments which Starts at
a vertex of an obstacle in one slice and terminates at a
vertex of an obstacle in the next slice. Their approach is
successful when the t o p o b ' of the free space does not
change (i.e., the obstacles are not allowed to merge or Split
as opposed to our approach) and requires O (m 3) time,
where n is the total number of edges in the environment
and T is the number of slices constructed. None of the above
approaches consider splits and merges of moving obstacles.

Kedem and Sharir [Kede85] have studied the
complexity of motion planning among stationary obstacles
with robot under translation. They developed an algorithm
that runs in time O(n log' n), where n is the total number of
corners in the obstacles. Bhattacharya and Zorbas [Bhat88]
have proposed a new approach that takes O(n1ogn) to
compute a translational motion among stationary convex
polygons. Finding a shortest path among stationary
obstacles for a point-robot takes O(n') time [Asan85,
Gosh87, Welz851.

represent the motions of the obstacles its a set o I slices in

final position

*S

initial position (ii) (iii) (iv) (VI

(a) configuration space
(i)

(0 (ii) (iii) (iv)
(b) physical space

Fig. 9. A motion in a time-varying environment. Subfigures (i)-(v) in (a) show a motion in configuration space, while
subfigures (i)-(v) in (b) show the corresponding motion in physical space.

329

CONCLUDING REMARKS

Motion planning for a convex robot has been described.
The concepts of configuration spaces and accessibility have
been used to produce an algorithm to find a collision-
free motion among moving polygons in a 2-dimensional
plane. Our algorithm takes O ((n + k)210g(n + k)) . to
determine a motion, where n is the number of total vertices
and k is the number of occurrences of overlaps in the
configuration space. In addition to vertices in the input
obstacles, two types of pseudo-vertices are introduced to
handle configuration space obstacles. We have assumed
that the obstacles move in fixed directions at constants
speed. Our approach can be extended to allow piecewise
linear motions of the obstacles. See [FujiSSa] for more
details.

In our formulation, we permit arbitrary overlaps among
moving obstacles. This situation is not allowed by the
conventional approach to configuration space obstacles.
Thus, we have solved a more general class of the problem. It
is not clear yet whether it is possible to reduce the amount
of computation for motion planning by examining the types
of overlaps produced by configuration space obstacles.

Our formulation, however, has another interpretation.
We can view obstacles as search lights projected on the
ground. The projections of the lights sweep the ground
in a scheduled manner. Given the schedule of the search
lights, our motion planning algorithms provide a way for
a culprit to move from one place to another without being
detected by any of the lights.

It should be pointed out that our approach can be
adapted to an environment with uncertainty. Such a
situation arises due to errors in the measurement of the
motion of the obstacles. Consider an obstacle that moves in
a fixed direction at a speed v , where v1 5 v 5 v2 for some
known v1 and v2. In such a case, collision fronts of two
obstacles may overlap even when the obstacles themselves
do not overlap. When we wish to plan a motion under such
uncertainty, our approach can be used as it allows overlaps
between obstacles. Note also that often the destination
point is temporarily covered by some of the obstacles. Our
algorithm could be extended to handle such a situation.

REFERENCES

[.4ho74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, T h e
Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[AsanS5] T. Asano, T. Asano, L. Guibas, J. Hershberger,
and H. Imai, “Visibility of Disjoint Polygons,”
Algorithmica 1(1), pp. 49-63 (1988).

[BhatSS] B. K. Bhattacharya and J . Zorbas, “Solving
the Two-Dimensional Findpath Problem Using
a Line-Triangle Representation of the Robot,”
Journal of Algorithms 9, pp. 449-469 (1988).

[CannS7] J. Canny and J. Reif, “New Lover Bound
Techniques for Robot Motion Planning
Problems,” Proceedings of the e l h Annual I E E E
Sympos ium o n Foundations of Computer Science,
pp. 49-60, Los Angeles, CA, October 1987.

[ErdmS’i] M. Erdmann and T. Lozanno-Perez, “On
Multiple Moving Objects, Algorithmica 9(4),

[FujiSDa] K. Fujimura, “Motion Planning in Dynamic
Domains,” Ph.D. dissertation, TR-2377,
Computer Science Department, University of
Maryland, College Park, MD, December 1989.

[Fuji89b] K. Fujimura and H. Samet, “Time-Minimal
Paths Among Moving Obstacles, Proceedings of
I E E E International Conference o n Robotics and
Automat ion 2, pp. 1110-1115, Scottsdale, AZ,
May 1989.

[GhosS7] S. K. Ghosh and D. M. Mount, “An Output
Sensitive Algorithm for Computing Visibility
Graphs: Proceedings of the 2sth Annual I E E E
Sympos ium o n Foundations of Computer Science,
pp. 11-19, Los Angeles, CA, October 1987.

[KantS6] K. Kant and S. W. Zucker, “Toward Efficient
Planning: The Path-Velocity Decomposition,”
International Journal of Robotics Research 5(3),
pp. 11-19, Fall 1986.

[I<edeS5] K. Kedem and M. Sharir, “An Efficient Algorithm
for Planning Collision-nee Translational Motion
of a Convex Polygonal Object in 2-Dimensional
Space Amidst Polygonal Obstacles,’’ Proceedings
of the S y m p o s i u m on Computational Geometry,
pp. 75-80, Baltimore, MD, June 1985.

[Loza79] T. Lozano-Perez and M. A. Wesley, “An
Algorithm for Planning Collision-Free Paths
Among Polyhedral Obstacles,” Communications
of the A C M 2(10), pp. 560-570, October 1979.

(LozaSS] T. Lozano-Perez, “The Configuration Space
Approach,” I E E E Transactions o n Computers
92(2), pp. 108-120, February 1983.

[Reif851 J . Reif and M. Sharir, “Motion Planning in the
Presence of Moving Obstacles,” Proceedings of the
26‘h A n n u a l IEEE Symposium o n Foundations of
Computer Science, pp. 144-154, Portland, OR,
October 1985.

[Upud77] S. Upuda, “Collision Detection and Avoidance in
Computer Controlled Manipulators,’’ Proceedings
of the p h International Jo in t Conference o n
Artificial Intelligence, pp. 737-748, Cambridge,
MA, 1977.

[WelzS5] E. Welzl, “Constructing the Visibility Graph for
n Line Segments in O(n2) Time,” In format ion
Processing Letters 20(4), pp. 167-171, May 1985.

[Whit851 S. H. Whitesides, “Computational Geometry
and Motion Planning, Computational
Geometry (Ed., G. T. Toussaint), North-Holland,
Amsterdam, The Netherlands, pp. 377-427, 1985.

pp. 477-522 (1987).

330

