

In Proceedings of the 7th ACM SIGSPATIAL Workshop on Location Based Social Networks (LBSN’14), Dallas, TX, November 2014, pp. 49-56.

A Look into Twitter Hashtag Discovery and Generation​1

Eric Krokos Hanan Samet Jagan Sankaranarayanan

Department of Computer Science
University of Maryland, College Park

College Park, MD 20740
{ekrokos,hjs,jagan}@umiacs.umd.edu

ABSTRACT
Twitter is a micro-blogging site that allows users and companies
to post brief pieces of information called “Tweets”. Some of the
tweets contain keywords such as “Hashtags” denoted with a “#”,
essentially one word summaries of either the topic or emotion of
the tweet. The goal of this paper is to examine an approach to
perform hashtag discovery on Twitter posts that do not contain
user labeled hashtags. The process described in this paper is
geared to be as automatic as possible, taking advantage of web
information, sentiment analysis, geographic location, basic
filtering and classification processes, to generate hashtags for
tweets. Hashtags provide users and search queries a fast and
simple basis to filter and find information that they are interested
in.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information Storage
and Retrieval

General Terms
Algorithms, Design

Keywords
Twitter, News, Hashtags, Topic Classification, Sentiment
Analysis, Web, Tweet, Natural Language Processing

1 ​This work was supported in part by the NSF under Grants
IIS-10-18475, IIS-12-19023, and IIS-13-20791 and by Google
Research and NVIDIA.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or
a fee.

ACM SIGSPATIAL LBSN'14, November 4, 2014, Dallas, TX,
USA © 2014 ACM. ISBN 978-1-4503-3140-1/14/11 ... $15.00
http://dx.doi.org/10.1145/2755492.2755500

1. INTRODUCTION
1.1 Motivation
The use of Twitter has exploded over recent years along with
other micro-blogging sites. Twitter allows users to post
140-character “Tweets” that they share with other users. The
tweets can range from topics about a user’s opinion, their daily
life, a new product being released, or even the News. In the last
few years, social media has greatly changed the way news is
gathered and reported. In particular, in the Egyptian 2011
revolution, Twitter and other social media services were the
primary methods that reporters and news agencies reported on
the unfolding events [11]. According to Twitter, they receive
roughly 500 million tweets per day, or about 5,700 per second,
as of the writing of this paper in 2013 [8]. With this amount of
data being generated each day, it’s not a surprise that scientists
and news reporters alike are interested in looking into this data.
However, filtering through the data to find what you want is a
huge problem. Hashtags provide a shortcut in filtering, in that
users can query on certain hashtags and get tweets labeled with
that hashtag. Unfortunately, most tweets do not contain hashtags
and this makes filtering and searching for information more
difficult.

1.2 Limitations
The huge corpus of data generated by Twitter users presents
many challenges. The nature of computer chat makes using
Twitter data very difficult. Online society and language is very
different from normal everyday language in that the rules of
grammar and spelling don’t necessarily apply. The fact that
Twitter enforces a 140-character limit on tweets forces users to
be creative in how they write their posts. Instead of writing out a
whole name or word, users will often abbreviate or just leave out
words all together. The number of different ways users can write
words or misspell them creates a feature explosion problem. For
example, the presented algorithm has counted 12 different ways
of spelling Obama, with variations of capitalization,
exaggeration, spellings, and the lacking of spaces between
words. Another problem is the unique language that has
developed on the internet, with words and groupings of words
being converted to shorthand such as “Laugh out loud”
represented as “lol” or “glhf” as “Good luck, have fun”. There
are many different examples of this and many people have their
own unique variations of this shorthand.

If a user wants to post more than the 140-character limit, Twitter
does allow the use of web links within a tweet, allowing a
viewer to click the link and get more information elsewhere.
These links can go to anywhere on the internet, posing
interesting issues. First, many links only exist for a certain
period of time, after which they expire and the link is no longer
valid. Another problem is that certain links may take you to
harmful websites.

 49

mailto:%7Bekrokos,hjs%7D@umiacs.umd.edu
http://dx.doi.org/10.1145/2755492.2755500

1.3 The Approach
The goal of this paper is to present a method to label and
generate hashtags for tweets that do not have hashtags. By
labeling tweets with hashtags it allows the filtering and
searching of data to be much easier. The first task was to gather
a large collection of tweets. A simple Java program using the
Twitter4J library was used to log into Twitter and collect tweets
from the Twitter stream. In all, it gathered roughly 150,000
tweets over the course of a few months with the requirement the
tweets be in English.

After gathering a large amount of Twitter data, the first thing to
do was to analyze and format the data. The first thing done was
check to see if there were any links and visit them. The Java web
package was used to visit the links and retrieve the html data.
The idea is that we want to expand upon the information given
in the tweet with the web data. Given the expanded set of web
data, we run a spell checker on the text. The purpose is to
consolidate the different spellings of the same word. Now we
remove unimportant words such as “the”, “to”, “and”, to reduce
the word feature space. After, we generate word stem-pairs, in
particular 2 and 3 pair. This is so that if the words Barack and
Obama both occur in a sentence, a word called BarackObama
will be created. Next, to make sure the algorithm is not cheating,
any hashtags included in the raw tweets are removed. Once the
hashtags have been removed, we perform a basic sentiment
analysis that looks for keywords or expressions (such as
emoticons) in a tweet and assigns 1 of 18 emotions to that tweet.
If the tweet contains a hashtag, then the same emotion
previously assigned to the tweet is assigned to the hashtag. Each
tweet is collected with a latitude and longitude pair and is
mapped to one of the top thousand most populated cities and
countries. This is allows us to filter on hashtags and tweets
based on their locations.

Now that the Twitter data has been filtered and configured, we
need to calculate the importance of each word. The TF-IDF of
each word is calculated for each Tweet. If we are generating
hashtags that didn’t exist in the initial corpus, the most
important word (the highest score) is chosen as a hashtag for the
tweet. Then a feature vector, where each dimension is a word, is
created for each Tweet. Additional features are included for the
nearest major city to the location of the tweet, which allows the
system to incorporate the geographic location of the tweet as
context. A classifier is trained on the feature vector and is used
to match each tweet with at least one hashtag.

1.4 Evaluation
Evaluation of the success or failure of the algorithm is difficult
because of the lack of ground truth. What we do know is that
certain tweets have hashtags associated with them. If the
algorithm is able to generate the same hashtag for a tweet, even
with the hashtag label removed from within the tweet, then that
is considered a success. After generating hashtags for the tweets,
a human interpretation of the correctness of the hashtag
assignments is still required.

1.5 Paper Structure
The rest of the paper is organized as follows: Section 1 reviews
previous work on topic classification and hashtag discovery.
Section 2 discusses goals and approaches, while Sections 3 and
4 presents an evaluation of the work done and how the results
are generated. Section 5 provides concluding remarks.

2. BACKGROUND AND RELATED
WORK
2.1 Topic Classification
Topic Classification is a mature field in Natural Language
Processing (NLP). It involves a corpus of documents with each
word in the document being represented as a multi-dimensional
vector. The more words in the documents, the higher the
dimensionality of the vectors. A common example of Topic
Classification is the Spam / Not Spam problem. The idea is,
given a document, to classify it as Spam or Not Spam. Starting
with a large collection of pre-labeled documents, feature vectors
are constructed for each in a preprocessing phase. Typically, a
variant of Term Frequency – Inverse Document Frequency
(TF-IDF) is used. Essentially, if a word is common in a
document or is common across all documents, it is given a very
low value, signifying low importance. If a word occurs rarely in
a document or rarely across all documents, it’s typically given a
high score. Another example of Topic Classification is the
multi-class classification. This type of classification is used
when the document type span more than 2 topics. For example,
the documents you want to classify may have the topics, Action,
Adventure, Sci-Fi, Mystery, etc. There are many classifiers to
choose from to handle multi-class classification; they range from
simple clustering algorithms such as K-Means or
K-Nearest-Neighbor to more complex ones such as Naïve Bayes
or Support Vector Machines (SVMs). Once the classifier and
type of classification are selected, a training and testing set of
data are generated, typically dividing the data corpus into 70%
for training, 30% for testing. You train your classifier on the
training set, and then evaluate its performance on the testing set.

2.2 Twitter work and Sentiment Analysis
While it appears there is little work done on Twitter hashtag
discovery, there has been plenty of work using Twitter data [4,
11, 13]. For example, there’s been work on doing real-time
event detection using Twitter data [6, 12, 19]. The idea is to be
able to figure out if an event is occurring and any other
additional information based on different attributes of twitter
posts. Other work has been done on the sentiment analysis of
tweets [1]. The idea behind this work is they have a large dataset
of words, hashtags, patterns of words, and emoticons or smiles
associated with a set of emotions. Using this dataset, the authors
go through each tweet and each word and see if there is a
matching between the word and a sentiment in the dataset.

3. GOALS AND APPROACHES
3.1 Tweet Gathering
The Twitter data was gathered using a program written in Java
using the Twitter4j library. The library requires a Consumer key
and secret key, along with an access token and token secret. A
twitter stream is set up that collects tweets from a pre-selected
set of users. When a tweet is received, it contains the user name,
user id, raw tweet information, any hashtags associated with it,
and other information. Once the information we’re interested in
is gathered, it’s stored for use at a later time. The system was
setup to run for 1 hour intervals in case of connectivity loss.
Overall it collected 150,000 tweets over the course of a few
months.

3.2 Web Gathering
Twitter allows the addition of links into a tweet. For us this is a
huge benefit because it allows more data to be associated with a

 50

potential hashtag beyond the normal 140 character limit. First,
the algorithm has to determine if a tweet contains a link.
Fortunately, the links all start with “http” or “https” which
makes finding the location of the link easier. Once a tweet is
known to have a link in it, the Java URL library is employed to
follow that link. What we want to do is expand the information
given in the tweet by appending it with text from the link, so
what we’re interested in is everything within the paragraph
brackets of the html (<p> </p>). The algorithm gets all the
information between all the paragraph brackets and then
continues to process it. This strategy has been used in the
TwitterStand [3, 6, 19] system which looks for newsworthy
tweets from reliable tweeters and associates them with a map at
the location that serves as the geographic focus of the tweet.
The results are displayed on a map and are part of our work on
developing spatial browsers for spatial data that is expressed
geometrically with lat-long coordinate values (e.g., QUILT [16,
20] and the SAND Browser [2, 15]) and textually (e.g.,
STEWARD [9], NewsStand [14, 17, 18, 21]).

One lesson learned during this research is that adequate
anti-virus and internet security software is important when
downloading content linked from tweets. While gathering data
from the web, a couple of tweets had links that contained
websites with viruses and other forms of malicious software.

For each block of text that was gathered from the web, a count
was kept of the number of times that exact block of text was
encountered. The reason for this was if a link or page was
broken, the connection would often return the same or similar
error. For example, these are some of the errors or blocks of text
returned and the number of times they were encountered.

● (232) FORGOT YOUR ?

● (116) ADD THIS TWEET TO YOUR WEBSITE BY
COPYING THE CODE BELOW.

● (116) HMM, THERE WAS A PROBLEM
REACHING THE SERVER.

● (132) FOR YOUR SMART PHONE AND START
EXPLORING THE WORLD AROUND YOU!

The web data for each tweet was appended to its raw tweet only
after all the web data for all tweets was gathered. Once the
histogram of the number of times each text block was
encountered is filled, then the appropriate web data associated
with each tweet is appended. The reasoning behind having this
system is that we don’t want to add information to a tweet that is
common across many tweets or common across only the tweets
with links. Also, since it’s hard to know if a link is broken, this
provides a “learned” way of finding out. For the purposes of this
algorithm, if a block of text occurred more than 5 times, it’s
considered spam or unimportant text.

3.3 Spell Checking
The tweets gathered were filtered so that the algorithm only kept
the ones that were in English. Given that, performing spell check
on the words gathered from Twitter is still an extremely difficult
task because of the unique way the internet uses language.
Twitter forces uses to conform to a 140-character limit on their
messages. Users get around this by using a variety of tricks such
as using shorthand or purposely leaving out letters in words
while leaving the main idea intact. Another difficulty is the use
of symbols in the messages. To emphasize certain words or to
portray emotional information, a user may put emoticons or
other symbols in their messages.

The first step is to remove the symbols and emoticons from the
text. This is a relatively simply process in Java as all we need to
do is to make sure all the characters within the tweet are
alphabetical or numerical, and remove all those that are not.
From there, a spell checker is employed. A large file of words is
loaded into a library called Jazzy. Given a word and a number
of steps, the library will modify the given word within n steps to
match a word within its database. The higher the value of n, the
more “adventurous” the spell checker.

The main problem faced with this is the fact that many words
used on Twitter are not actually words. For example, “Lol” and
“glhf” are not words. Without adding those words into the spell
checker, the library would attempt to correct those words. For
example, before adding “Lol” into the database, “Lol” would be
corrected to “Look” if n was set to 2. What was done was
different words used on the Internet from various websites were
gathered and added into the dictionary. All of the words added
were screened by a human. Initially this process was going to be
done automatically, by seeing how many times a unique word
occurs. For example, if the word “Lol” occurred more than 5
times, then we would say it’s a word. The problem with this is
that when you encounter “Oboma” rather than “Obama”. The
word “Oboma” was found 23 times in a corpus of 150,000
tweets. “Oboma” is not a word, and we want to make sure
“Oboma” is corrected to “Obama”. It would be a challenge to
figure out at what threshold to accept a word.

3.4 Stemming
Word stemming was also considered but later rejected. The
primary purpose for spell checking is to reduce the word
dimensionality by fixing misspelled words so that they can be
compared correctly. Stemming would not solve this, for
example, if you set the stem to be “Oba”, “Oboma” and Obama
would not be in the same stem, unless the stem was of length 2
to generate the stem “Ob”. Of course, by making the stem this
length, you allow many other words to fit into the stem “Ob”.
While this would reduce the dimensionality of the words, it
removes crucial details from an already restricted dataset (the
140-character limit). This sentence stemming process were
employed with all tests and not evaluated on its own.

3.5 Sentence Stemming
Even though the notion of word stemming was rejected,
sentence stemming is very important. Sentence stemming is the
process of taking 2 or more words in a tweet, and combining
them into a single word. The idea is that if two words occur in a
tweet, and they are mutually important, then it’s important to
make that a feature. For example, if Obama and Washington
occur, then a new word called ObamaWashington is added to
the tweet. We want to emphasize that these two words occurred
together, rather than Obama and Hillary. The idea is this that can
filter or encourage certain hashtags to be associated with the
tweets. For the purposes of this paper, length 2 and 3 n-grams of
the tweets were used. The n-gram computation was performed
on the raw tweet and any web data gathered.

This process exploded the number of features, rather than having
a feature for every word, now there is a feature for every pair
and triple of words. The hope was that while making everything
more computationally expensive, it would give key insight into
important features in a tweet.

3.6 Geo-Location
An important component of a tweet’s context is geographic
location. When the tweets were gathered, the latitude and

 51

longitude of the tweet were recorded. The idea is that the
physical location of where a tweet originates may prove helpful
in eliminating or grouping together certain hashtags. For
example, the hashtag “President” refers to one person in the
United States, and another in Russia. The top 500 populated
cities and their country pair are saved in an offline data-file with
their latitude and longitude. Each tweet is clustered to its closest
city and country. When comparing a hashtag with a tweet, the
closer the associated hashtag is physically with the tweet, the
higher the score associated with that tweet. If a hashtag is
commonly used at locations far away from where the query
tweet is located, then it will receive a lower score and be less
likely to be assigned to that tweet.

3.7 Term Frequency – Inverse Document
Frequency
Now that all the features have been filtered and created, we need
to calculate how important each feature is for each tweet. For the
purposes of classification, each word needs to be assigned a
value so that it can be placed into a vector and compared with
against other vectors. One of the simpler forms of TF-IDF
calculation was employed. The first thing was to count the
number of times each word was used. If the word was used in 2
documents, it got a count of 2. If the word occurred 3 times in
the 2 documents, it still was given a count of 2. This gives us an
overview of the word distribution over all the tweets or the
Document Frequency of a word. Next, we need to compute the
Term Frequency, or how many times a word occurs within a
tweet. So if a word occurs 2 times in a tweet, it gets a count of 2.
Finally, to compute the TF-IDF for a particular word in a tweet,
we take the Term Frequency of a particular word and multiply it
by the Log of the number of tweets divided by Document
Frequency of the same word.

DF(word) og()I = L wordCount
NumberOfTweets

F(word, Tweet) umber of times (word) occurs in (Tweet)T = N

FIDF(word, Tweet) F(word, weet) DF(word)T = T T * I

The idea is that if a word occurs across many documents, its
weight will be weighted lowed by the Inverse Document
Frequency. That way if the word “the” occurs in a tweet more
times than “Obama”, it won’t get a higher score than “Obama”
since clearly “Obama” is more important than the word “the”.

3.8 Sentiment Analysis
A separate feature that’s being used to calculate the hashtag
associated with a tweet is the sentiment or emotion associated
with the tweet. For example, if a tweet is about something sad or
depressing, it doesn’t make sense to associate it with a happy
hashtag, or the probability of the happy hashtag being associated
with the tweet should be lowered.

A method similar to that used in [1] is used where there is a
pre-determined database of words and emoticons associated
with a set of emotions. A database consisting of 18 emotions
was developed: Open, Happy, Alive, Good, Love, Interested,
Positive, Strong, Angry, Depressed, Confused, Helpless,
Indifferent, Afraid, Hurt, Sad, Lonely, Silly, and None.

Each emotion is associated with a set of words and emoticons.
When evaluating the sentiment of a tweet, the words for each
emotion are compared with each word in the tweet. If the word
exists in the tweet, then the emotion gets a +1 vote. The emotion
with the highest vote wins and the score associated with the
emotion is stored as the value for that emotion.

The primary reason for using a pre-defined database of emotions
and words associated with them is because there is no fixed set
of emotions with each tweet. Otherwise a clustering algorithm or
something similar could be used to learn words associated with
each sentiment. The database consists of at least 15 words with
each emotion, with an average of 40 words or emoticons
associated.

When a tweet is associated with a sentiment, any hashtag
associated with the tweet gets a vote for that sentiment. If a
hashtag is used in multiple tweets and if the tweets have
different sentiment types, then the sentiment with the highest
score is assigned, but the value of the sentiment assigned is
subtracted by the lesser value to indicate that the sentiment type
is not as strongly associated with the hashtag.

3.9 Hashtag Generation
The goal of this paper is to design an algorithm to assign each
tweet with an appropriate hashtag. So far we’ve only been
working with tweets that already contain hashtags. The main
reason is that we know for certain that those hashtags go with
those tweets. However, this may not be enough as you may still
have tweets that would need hashtags that are not covered by the
given hashtags, or all of the current hashtags would be
inappropriate to assign to some tweets. To get around this, for
those tweets that do not have hashtags already associated with
them, we generate “guess” hashtags and assign them. The
guessed hashtag is the most important word, or highest scoring
word from the TF-IDF stage. The reason is that this word is
hopefully the most interesting word in the tweet or the most
descriptive. As these hashtags are being generated, if a hashtag
is generated that has already been generated or already exists, its
feature vector is combined with the others to form a single
feature vector representing the hashtag. The vectors are
combined by taking the average of the values for each word in
the vectors and the sentiment values and types are combined as
described earlier along with the geographic locations.

3.10 Classification
Given all of the filtered and gathered tweet data, along with the
generated hashtags and calculated feature vectors, it’s now time
to classify and assign hashtags to tweets. We decided to
compare the results of three different classifiers, a weighted
voting classifier, a nearest neighbor classifier, and a support
vector machine classifier. The main criterion was that the
classifiers had to be able to perform multi-class classification.
The main difference between these classifiers is that the
weighted voting classifier and the nearest neighbor can produce
more than one hashtag per tweet.

The weighted vector classifier works by taking two vectors, one
representing the tweet, the other representing a tentative hashtag.
For each word in the feature vectors, if the words are in common
(meaning the feature values are not zero), then the average value
between the vectors for that word is calculated and added to an
overall score. If the vectors do not share the word in common
then something more complicated happens. If the tweet vector
contains the word but the hashtag vector does not, then 40% of
the value of the word in the tweet vector is subtracted from the
overall score. If the hashtag vector contains the word and the
tweet vector does not then the hashtags vector word value
multiplied by one over the length of the hashtag vector is
subtracted from the overall score. The idea behind these
operations is if the tweet does not contain a word that the
hashtag vector does then it should lose more score than if the
hashtag vector not containing it. It’s more important that the

 52

tweet vector matches with the hashtag vector more than the
hashtag vector matches the tweet vector. Also, the hashtag
vector is likely to have less zero valued features than the tweet
since a hashtag consists of the values of multiple tweets. In the
end, if the resulting score is above zero, then the hashtag is
assigned to the tweet.

The Distance classifier works by assigning the closest matching
hashtags to a tweet. Given a tweet vector and a hashtag vector,
the distance between their vectors is calculated. The main
problem is most vectors are very close together in high
dimensional space. It has been shown that in very high
dimensionality, the vectors converge. This phenomenon is also
known as the “Curse of Dimensionality” [5]. More important is
the fact that most values in the vectors are going to be zero,
making the distances come out very close. Initial tests showed
that without additional parameters, almost every hashtag will get
roughly the same score. The additional constraints were that for
the hashtag to be considered, it needed to have more than one
example tweet to reference, making more of the features in the
hashtag vector non-zero. Another constraint is that in this
scenario the sentiment and geographic locations have more
weight in pairing hashtags than in the weighted voting. The idea
is that we want to have features really wean out hashtags, so by
making the sentiment type and geographic location more
important, it will make other different hashtags even less likely.

The last classifier tested with is the Support Vector Machine.
The Java library Weka was used to train and test the classifier.
First the classifier needs to know information about the structure
of the vectors, such as which parts are features and where the
class is. Then you feed in the hashtag vector information and
train the model. Once the training is complete, the model is
saved and can be queried on test tweet vectors.

4. EVALUATION
4.1 Feasibility Plan
The method takes advantage of various libraries designed to deal
with Twitter data and classification. Given the captured tweets
and associated data, they will be filtered, cleaned, and then sent
into one of the described classifiers. Clustering and Support
Vector Machines have been well studied and have been used in
the past to have great effect and performance on classifying data
[7, 10]. The data being worked with is primarily text based and
falls into the domain of Natural Language Processing (NLP).
NLP is a well-studied and has been implemented in many
different commercial programs and systems. The challenging
part of this work is measuring accuracy and success on a
primarily unlabeled dataset.

4.2 Empirical
4.2.1 Metrics
The metrics for determining how well the classification was
handled is limited. Proportionally few of the tweets collected
came with user-given hashtags. Those hashtags are the only
“truth” known. For any other tweet, an assigned hashtag is
purely the result of the output of the program and there is no
comparison or automatic check that can be made. Rather, a
human evaluation of the generated and assigned hashtags to
unlabeled data is required and performed. For the labeled
Twitter data, the number of correct hashtags and number of
misclassified hashtags are kept to evaluate how well the
classifiers are doing. Note that the hashtags being used for this

numeric evaluation are those given from real users, not the
automatically generated hashtags. For example, a particular
tweet could have the hashtags [“Weather”, “Sunny”] assigned to
it from a Twitter user. If the classifier labels that tweet with the
hashtag [“Weather”], then it got half of the correct hashtags. If it
generated [“Weather”, “Obama”] then it got half the correct
hashtags, but also generated an incorrect hashtag for the tweet.
In a perfect world, the classifiers would only generate the
correct hashtags for the appropriate tweets and would not use
any hashtags that were not pre-labeled to those tweets. However,
due to the nature of words, it may be that for the previous
example, “Obama” is actually a correct usage of the hashtag
because Obama talked about the weather. Even so, it’s difficult
to determine that automatically and so it will be counted as
incorrect. However, this will be taken into consideration during
the human evaluation.

For the human evaluation, each set of hashtags for each of the
different configurations of the program will be looked over and
have a sanity check. Unfortunately, there are thousands upon
thousands of tweets, so an overall evaluation of the output will
be given along with a few sample successful and incorrect
hashtag assignments.

4.2.2 Results
The results are presented as follows: the classification program
was run with or without certain properties such as having spell
check enabled and using sentiment analysis, using the
geo-locations, or keeping the hashtag word in the tweet for each
of the classifiers; Weighted Voting, Distance, and SVM. This
shows which features worked best and in what combination for
each classifier. For the set of tweets that did not have spell
check, there were 663,181 features. The tweets that did have
spell check had their feature space reduced to 50,083 features.
Both the Weighted Voting and Distance classifiers took on
average 3 hours to run a single test. The SVM classifier is
discussed next.

4.2.2.1 SVM Classifier
The first thing to note is the lack of any results using the Support
Vector Machine. The reason is the SVM failed to generate
worthwhile results within a timely manner. The SVM was
trained with the same amount of data as the other classifiers over
the course of a few days, making it the longest to train and test.
After the model was generated and saved, it was evaluated using
the same data as it was trained with. In the end, most tweets
were assigned a seemingly random hashtag without any
intelligence about it. The reason is that the multi-class SVM is
only able to output a single class, or hashtag, limiting its
usefulness. One reason for the bad performance of the classifier
is probably the size of the feature space. As stated previously s,
there were over half a million words that the SVM had to
classify on, making it too large with not enough examples of
each word, to make any intelligent decisions.

4.2.2.2 Distance Classifier
The next set of tests was run using the K-Nearest-Neighbor
classifier. For the purposes of this experiment the top 7 hashtags
were assigned to a particular tweet. Given a hashtag and tweet
pair, the distance between the vectors representing them was
calculated and the pairs that had the smallest distances were
output. Figure 1 shows the percentage of correct hashtags
assigned to a tweet along with the number of incorrectly
assigned hashtags. The number of incorrectly assigned hashtags
is divided by 100 to make the charts easier to see.

 53

Figure 1: Shows the output for the Distance classification. The
percent of correct hashtag assignments is relatively low, on
average 25% of the hashtags are correctly labeled. However,

many of the tests show on average low incorrect hashtag
assignments.

Figure 1 shows the results of using the Distance classifier to
assign user defined hashtags to their respective tweets. On
average, the number of correct assignments is low, roughly 25%.
However, the number of incorrect hashtag assignments is also
on average low (compared to the Voted classifier). It appears
that the spell checking feature is what’s causing the incorrect
hashtag assignments. Although, it does appear that by adding
spelling, you on average receive a 1% increase in correct
hashtag assignments, but at the cost of a large number of
incorrect assignments.

The next set of tests is exactly the same except for the hashtags
left in the tweets. This was to see how well the classifier does
when the “correct answer” is within the tweet.

Figure 2: Shows the output for the Distance classification with
the hashtags left in the tweets. The correct percentages are
exactly the same as in (Figure 1), but with the number of

incorrect hashtags increasing very slightly.

Figure 2 shows the results of the same Distance classifier,
except for the hashtags left in the tweets. This set of tests gave
the same output for the number of correct assignments.
However, when leaving the hashtag in the tweet, the number of
incorrect assignments increased very slightly. The reason for the
increase in error is not entirely understood. A conjecture is that
since the increases are only on those tests using spell check, it’s
possible that the hashtags are being changed to a different word.
By changing the hashtags to a different or totally random word
(in the case of very abstract hashtags), it can make the
classification of a particular tweet very difficult as it has to now
deal with these strange new words. A future change would be

not run the spell checker on the hashtags within a tweet or to
develop a more sophisticated spell checking system.

4.2.2.3 Voting Classifier
The last set of tests were run using the Voting classifier. The
classifier assigned a score to each hashtag and assigned a
hashtag to a tweet as long as the final score was above zero.

Figure 3 shows the output from the Weighted Voting algorithm.
It shows that most of the time, it correctly re-classified the right
hashtags with the right tweets. However, it shows massive
amounts of incorrect hashtags being labeled with tweets. It does
turn out that many of the incorrectly labeled tweets fall into the
category of actually fitting with the tweet. For this particular
data-set, most of the tweets are about jobs, so many of the
hashtags added to the tweets were job related.

Figure 3: Hashtag Weighted Voting classification of the twitter labeled
data. The Y-axis shows the different features used in the classification

process. The X-axis shows the percent the classification got correct and
the number of incorrect hashtags assigned divided by 100 for ease of

viewing.

Figure 4: Shows the output for the Weighted Voting classification,

exactly the same as in (Figure 3) except the hashtags in the tweets were
kept. This is primarily a sanity check; we expect that the correct

percentage should be the same or higher, and the incorrect number to be
lower.

Figure 4 shows the results of the Weighted Voting classifier on
the twitter data except that the hashtags were left in the raw
tweet. By leaving the hashtag in the raw tweet, it gives the
classification algorithm the feature that it can “cheat on”. We
expect, and is shown, that the correct percentage is the same or
higher, with the incorrect number lower than in the last test
(Figure 3). To make comparing the number of incorrect labeling
easier, (Figure 5) below shows the comparison with the kept and
not kept hashtags.

 54

Figure 5: Shows the comparison of the number of incorrect labeling of
hashtags in the dataset that kept the hashtags in the tweets compared to

the dataset that removed them.

Figure 5 shows that when we keep the original hashtag in the
tweet when performing the hashtag discovery, the number of
incorrect hashtag labeling slightly decreases. What all these
results show is that the voting clustering classifier maintains a
high level of correctness, in that it will correctly assign tweets
their original hashtags. However, it also assigns a lot of
erroneous, extra, or not previously labeled hashtags to tweets,
producing the large number of incorrect labeling shown in
Figures 3 and 4.

Overall, it can be summarized that the distance classification is
more conservative in assigning hashtags, and that the voting
classifier is more generous when assigning hashtags.

4.2.2.4 Generated Hashtag Results
Our goal was was to be able to assign hashtags to tweets that did
not already have hashtags associated with them. As previously
stated, there is no good way to evaluate how well the unlabeled
tweet hashtag assignment performed other than by looking at
them manually. A list of well assigned tweets (in quotes) and
their assigned hashtags (in brackets) are presented below. Note
that these tweets did not have any hashtags before running the
algorithm.

Successful Labeling and sentiment classification:

● “Good Morning. In my way to church” [CHURCH,
JESUS, MORNING, SUNDAY] Sentiment: HAPPY

● “I wish I had a friend I can just go over all the time”
[FRIEND, HANG, TRIPS] Sentiment: SAD

● “Come one come all here at my church's Thanksgiving
Outreach to the community. @ Downtown Los
Angeles” [WELOVELA] Sentiment: NONE

● “What a small world” [DISNEYLAND, DEJAVU,
NEIGHBORHOOD] Sentiment: None

● “Great news!” @shayan4congress: ICYMI: Historic
nuclear deal reached with Iran in Geneva” [CNN,
DEAL, IRANTALKS, MIDEAST, NUCLEAR,
TALKS] Sentiment: HAPPY

● “Historical nuclear deal with Iran. peace with Obama.
War with Republicans. just one reason why I voted for
this man.” [REMARKABLE, IRANTALKS, CBC,
CNN, IRAN] Sentiment: NONE

● “@CNN: More than 11,000 Syrian children killed in
civil war, report says. Horrible” [ASSAD,
CHILDREN, HURT, HORRIBLE, WAR, MIDEAST,
SYRIA, TALKS] Sentiment: NONE

Bad Labeling:

● “A Kiss on the forehead is One of the Sweetest thing
in the world” [ASSAD, GENEVA, SYRIA,
MIDEAST] Sentiment: HAPPY

● “I'm at John Keells Computer Services”
[HEALTHCARE, JOB, TWEETMYJOBS]
Sentiment: NONE

● “Just played a soccer game in twenty degree weather”
[GUATEMALA, SOCCER, NHL] Sentiment: NONE

Overall, when the hashtag assignments are correct, they can be
very surprising and show that the system works very well. When
the classifications are wrong, they’re usually very wrong. After
going through all the results there are a few trends that we
noticed that lead to incorrect classifications. Overall, most
tweets were correctly labeled. The ones listed above were
among the most interesting because they were labeled with
hashtags that are words not present within the tweet itself.

First, it appears that most tweets that include the word “world”
usually are given hashtags associated with the Mid-East or
Syria. This is because most tweets that have the word “world” in
them are associated with the conflicts is Syria and the Nuclear
talks in Iran. Another trend is many tweets were assigned the
hashtags Healthcare, Job, and Tweet-My-Jobs. After looking at
the labeled tweets that have those hashtags, a few things stand
out. Either those tweets are extremely short, only having one or
two words within them, or they have no words and only have the
hashtags in the tweet. What this means is that if you remove the
hashtags from the tweet, you have no words or text in the tweet.
When you develop of the vector that represents the tweet, all the
values are zero, making any distance or score calculation very
close to passing. This is reflected in the score and distance
calculations as all those hashtags have very low scores (just
enough to be accepted), and very low distances (making them in
our system, very good hashtags). A way to correct this is to not
allow tweets with hashtags to be used as training data as long as
it contains text in the tweet after the hashtags are removed, and
there are numerous examples. Lastly, for the last bad example
shown, two out of the three hashtags make sense. After looking
for tweets that had Guatemala, there were two that had talked
about soccer. So this means that, while Guatemala does fit the
criteria for being about soccer; it’s not really appropriate for this
tweet.

The tweets presented in the good and bad examples are only a
small subset of the good and bad tweets. Overall, the tweets that
had incorrect hashtag labeling had similar problems as the ones
given. The tweets presented were meant to give an average
overview of the types of tweets correctly and incorrectly labeled
and overall why the labeling succeeded or failed.

Given all the different combinations of features used when
labeling hashtags, it turns out that those that did not use the spell
checker turned out better than those that did. The main problem
is probably that the spell checker reduces the feature space too
much, and probably incorrectly spell checks words, removing or
altering important words within a tweet. The feature that seemed
most important was the sentiment analysis as it seemed to help
prune inappropriate hashtags. At the moment, the geographic
location feature did not seem to make much of an impact. The
reason is probably that since most of the tweets were filtered to
be in English as we used the location of the tweeter, the tweets
primarily fell within English speaking countries, primarily the
United States of America.

 55

5. CONCLUSION
The goal of this project was to explore and develop a system to
discover hashtags for unlabeled tweets. The purpose is to allow
the filtering and search of specific tweets based on the hashtags.
Different features of tweets were used such as the words, the
sentiment of the tweet, and the location of the tweet, to help
assign hashtags to them. Overall, the algorithm was successful
in that it was able to appropriately label tweets with hashtags
that it were not previously associated with the tweet. It was able
to generate new hashtags to map to tweets if none of the
user-generated tweets applied. However, there were mistakes
and incorrect hashtag assignments generated in the algorithm.
Given the nature of clustering algorithms, the more data given to
the system, the better is will perform. Therefore, in the future, if
there is more data given to train the classifier, the there is reason
to expect that the system would do better.

6. REFERENCES
[1] D. Davidov, O. Tsur, and A. Rappoport. 2010. Enhanced

sentiment learning using Twitter hashtags and smileys. In
Proceedings of the 23rd International Conference on
Computational Linguistics: Posters​ (COLING '10).
Association for Computational Linguistics, Stroudsburg,
PA, 241-249.

[2] C. Esperança and H. Samet. Experience with SAND/Tcl: a
scripting tool for spatial databases. ​Journal​ of Visual
Languages and Computing, 13(2):229–255, Apr. 2002.

[3] N. Gramsky and H. Samet. Seeder finder - identifying
additional needles in the Twitter haystack. In Proceedings
of the 5th ACM SIGSPATIAL International Workshop on
Location-Based Social Networks (LBSN’13), pages 44–53,
Orlando, FL, Nov. 2013.

[4] J. Huang, K. M. Thornton, and E. N. Efthimiadis. 2010.
Conversational tagging in Twitter. In ​Proceedings of the
21st ACM conference on Hypertext and hypermedia​ (HT
'10). ACM, New York, 173-178.

[5] P. Indyk and R. Motwani. 1998. Approximate nearest
neighbors: towards removing the curse of dimensionality.
In ​Proceedings of the thirtieth annual ACM symposium on
Theory of computing​ (STOC '98). ACM, New York,
604-613.

[6] A. Jackoway, H. Samet, and J. Sankaranarayanan.
Identification of live news events using Twitter. In
Proceedings of the 3rd ACM SIGSPATIAL International
Workshop on Location-Based Social Networks (LBSN’11),
pages 25–32, Chicago, Nov. 2011.

[7] A. K. Jain, M. N. Murty, and P. J. Flynn. 1999. Data
clustering: a review. ​ACM Comput. Surv.​ 31, 3 (September
1999), 264-323.

[8] R. Krikorian, Aug 16, 2013, Platform Engineering ,
https://blog.twitter.com/2013/new-tweets-per-second-recor
d-and-how

[9] M. D. Lieberman, H. Samet, J. Sankaranarayanan, and J.
Sperling. STEWARD: architecture of a spatio-textual
search engine. In Proceedings of the 15th ACM
International Symposium on Advances in Geographic

Information Systems​ (GIS’07)​ , pages 186–193, Seattle,
WA, Nov. 2007.

[10] L. M. Manevitz and M. Yousef. 2002. One-class SVMs for
document classification. ​J. Mach. Learn. Res.​ 2 (March
2002), 139-154.

[11] M. Michelson and S. A. Macskassy. 2010. Discovering
users' topics of interest on twitter: a first look. In
Proceedings of the fourth workshop on Analytics for noisy
unstructured text data​ (AND '10). ACM, New York, 73-80.

[12] Ozdikis, O., Senkul, P., and Oguztuzun, H. (2012).
Semantic expansion of hashtags for enhanced event
detection in Twitter. In ​Proceedings of the 1st International
Workshop on Online Social Systems​ .

[13] J. H. Parmelee, S. L. Bichard, 2011, Politics and the
Twitter Revolution: How Tweets Influence the
Relationship between Political Leaders and the Public,
Lexington Books.

[14] H. Samet, M. D. Adelfio, B. C. Fruin, M. D. Lieberman,
and B. E. Teitler. Porting a web-based mapping application
to a smartphone app. In Proceedings of the 19th ACM
SIGSPATIAL International Conference on Advances in
Geographic Information Systems​ (GIS’11)​ , pages 525–528,
Chicago, Nov. 2011.

[15] H. Samet, H. Alborzi, F. Brabec, C. Esperança, G. R.
Hjaltason, F. Morgan, and E. Tanin. Use of the SAND
spatial browser for digital government applications.
Communications of the ACM, 46(1):63–66, Jan. 2003.

[16] H. Samet, A. Rosenfeld, C. A. Shaffer, and R. E. Webber.
A geographic information system using quadtrees. Pattern
Recognition, 17(6):647–656, November/December 1984.

[17] H. Samet, J. Sankaranarayanan, M. D. Lieberman, M. D.
Adelfio, B. C. Fruin, J. M. Lotkowski, D. Panozzo, J.
Sperling, and B. E. Teitler. Reading news with maps by
exploiting spatial synonyms. Communications of the
ACM, 57(10):64–77, Oct. 2014.

[18] H. Samet, B. E. Teitler, M. D. Adelfio, and M. D.
Lieberman. Adapting a map query interface for a gesturing
touch screen interface. In Proceedings of the 20th
International Word Wide Web Conference (Companion
Volume), pages 257–260, Hyderabad, India, April 2011.

[19] J. Sankaranarayanan, H. Samet, B. Teitler, M. D.
Lieberman, and J. Sperling. TwitterStand: News in tweets.
In Proceedings of the 17th ACM SIGSPATIAL
International Conference on Advances in Geographic
Information Systems​ (GIS’09)​ , pages 42–51, Seattle, WA,
Nov. 2009.

[20] C. A. Shaffer, H. Samet, and R. C. Nelson. QUILT: a
geographic information system based on quadtrees.
International Journal of Geographical Information Systems,
4(2):103–131, April–June 1990. Also University of
Maryland Computer Science Technical Report TR–1885.1,
July 1987.

[21] B. Teitler, M. D. Lieberman, D. Panozzo, J.
Sankaranarayanan, H. Samet, and J. Sperling. NewsStand:
A new view on news. In Proceedings of the 16th ACM
SIGSPATIAL International Conference on Advances in
Geographic Information Systems​ (GIS’08)​ , pages 144–153,
Irvine, CA, Nov. 2008.

 56

