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Abstract— A similarity join operation A x. B takes two sets datasets using a Graphics Processing Unit (GPU). LSS takes
of points A, B and a value ¢ € R, and outputs pairs of points advantage of a modern GPU’s ability to perform simple
p € A q € B, such that the distanceD(p, ¢) < e. Similarity joins - 5ithmetic operations at a high throughput. As GPUs can only

find use in a variety of fields, such as clustering, text miningand f imole dat fi h t the similarit
multimedia databases. A novel similarity join algorithm cadled perform simple data operalions, we have cast the similarity

LSS is presented that executes on a Graphics Processing Uniti0in operation as asort-and-searchproblem. That is, our
(GPU), exploiting its parallelism and high data throughput As algorithm only requires simple sort and search routinesciwvh

GPUs only allow simple data operations such as the sorting @ have been implemented on the GPU. LSS creates several
searching of arrays, LSS uses these two operations 0 cast agnacefilling curves, built over one of its input datasetthén

similarity join operation as a GPU sort-and-search problem . L
It first creates, on the fly, a set of space-filling curves on one performs interval searches for each point in the other @atas

of its input datasets, using a parallel GPU sort routine. Nex ~ BY generating multiple space-filling curves, we are able to
LSS processes each point of the other dataset in parallel. For reduce the size of the interval searches, thereby producing

eachp, it searches an interval of one of the space-filling curves significant speedups. We have applied LSS to large high-
guaranteed to contain all the pairs in whichp participates. dimensional datasets, and have shown at least an order of

Using extensive theoretical and experimental analysis, LS . . . .
is shown to offer a good balance between time and work magnitude improvement when compared against two promi-

efficiency. Experimental results demonstrate that LSS is stable  Nent techniques in the literature. S
for similarity joins in large high-dimensional datasets, and that In this paper, we focus on a variant of the similarity join

it performs well when compared against two existing prominet  problem, whereAd, B € R are both point datasets drawn
similarity join methods. from a high-dimensional vector space of dimensioa N, and
D(-,-) is aMinkowskj or normedmetric. We also assume that
both A and B are initially unsorted point sets. If both and B

A similarity join A x. B takes two sets of object$, B and  refer to the same dataset, the problem is known asl&join
avaluee € R, and outputs pairs of pointg, ¢),p € A,q € B, gperation. An alternate formulation of the similarity seiing
such thatD(p, q) < ¢, where D(-,-) is an arbitrary distance proplem [6], [7] requires the computation of the approxienat
measure. The similarity join has important applications igy exactk-nearest neighbors iB to each point inA. LSS can
knowledge discovery [1], including clustering, text migin pe easily modified to accomodate this and other formulations
image and multimedia databases, and geographic informatig the similarity join problem.
systems (GIS). In these domains, a similarity join is perfed  The rest of the paper is organized as follows. In Section Il
by transforming the set of objects to be searched into a higlja present an overview of related similarity join technigue
dimensional feature vector representation via the apdioa e also briefly describe several other database operatias t
of a suitable technique, such as feature vector extrac2hn [have been implemented on a GPU. Next, in Section IlI, we
K-L transformation [3], or embedding [4]. The similarityifo provide a brief overview of a programming paradigm that is
is then performed on the vector representation of the afjjeciyjtable for GPUs. In Section IV, we describe a quadtree-
if two objects are within distance of each other, they are pased data structure for the GPU, which is used in Section V
consideredsimilar in the original domain. Unfortunately, thetg describe our similarity search algorithm and its vadas.
vector representation is usually high-dimensional, salaiity  Experimental results are discussed in Section VI. Finatiy,

join processing suffers from theurse of dimensionality5].  section VI, we offer concluding remarks and possible aenu
In this paper we present a novel algorithm, named LSS, that future research.

performs fast similarity join operations on high-dimensb

I. INTRODUCTION

II. RELATED WORK

This work was supported in part by the U.S. National Sciencengation T . .
under Grants EIA-00-91474, CCF-05-15241, and 11S-071358d well as  Similarity join operations can be classified based on the

NVIDIA Corporation and Microsoft Research. availability of a multidimensional indexing structure ooth
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A and B [8] or on neither [9], [10]. If a multidimensional small instruction set, which consisted mostly of registex-m
index is not present, it is usually constructed on the fly migiri nipulation operators. Later, higher-level languages [23¢h
the algorithm’s execution, although if the indexing sturet as Cg and GLSL made shader programming more accessible
is dependent om, as in [9], [10], [11], [12], it may not be to programmers, as they required a less intimate knowlefige o
possible to reuse the index for future similarity join ogayas the workings of the graphics hardware. With the introductio
on the dataset. A variety of data structures have been usdd\VIDIA's CUDA [24], the implementation-specific details
for similarity join processing, including quadtrees [1(13], of shader programming are almost fully hidden behind a high-
R-trees [8], hash functions [6], space-filling curves [18)d level abstraction. In this paradigm, GPU programs, called
e-kbd trees [12]. kernels are written in an extended form of C or C++, and
Two recent methods are based on the application of gridse executed in parallel by matiyreadsrunning on the GPU.
to multidimensional point datasets. Ti#silon Grid Order Even though CUDA provides a good measure of abstrac-
(EGO) [9] method works by first partitioning the initially tion to programmers, we point out that serial and parallel
unsorted data into aasized gridG. The join algorithm then programming paradigms are different in their focus, which
processes each celiin the grid, and examines every cell@ makes efficient serial algorithms unattractive candiddibes
within a distance: from ¢. The EGO join method’s novelty is parallel machines. In a parallel paradigm, the fastest ostmo
a heuristic, termedrab steppingthat minimizes the number time-efficientalgorithm is not necessarily the mostork-
of times a neighboring cell is read by the algorithm. Thefficient For example, suppose we are given datasets,
Generic External Space Sweep (GEB®}hod of Dittrich and each containing: points, and a distance, and we wish
Seeger [10] is an adaptation of tivultidimensional Spatial to compute A x. B. In a parallel machine withO(n?)
Join (MSJjalgorithm of Koudas and Sevcik [13]. A hypercuberocessors, the join can be executedlfil) time by naively
with side lengthe is constructed around each multidimensionaxamining each of the? pairs. This naive algorithm is time-
input point. The similarity join problem is thus transforch® efficient, even though it is not work-efficient. Our simple
a spatial intersectior[13] problem. example illustrates that in a parallel machine with enough
LSS maps one of its input datasets to a set of space-fillipgocessors, time and work efficiencies atecoupled Serial
curves [14], [15], [16]. Bern [15] used a set 2 space-filling algorithms almost exclusively focus on making algorithms
curves to computé(+/d) approximate nearest neighbors to avork-efficient, as in a serial algorithm, work efficiency edes
query point. Chan [16] improved upon Bern'’s original formuto time efficiency. This makes them unsuitable for execution
lation by reducing the number of space-filling curvegx@i), on parallel machines like GPUs.
to obtainO(d%) approximate nearest neighbors. Lietoal. [7] As GPUs have much fewer processors (tham?)), we
applied this method to perform similarity searching in highsee an interesting tradeoff between time and work efficesci
dimensional datasets, though their formulation of sintyais  Our proposed algorithm creates a set of space-filling cuoves
based on finding an approximate nearest neighbor to a quene of its input point sets, which makes our algorithm more
point. In this paper, we adapt the set of space-filling cutees work-efficient. However, we did not use a multidimensional
be created on the fly on a GPU from an input dataset. This datdexing structure [4] like an R-tree or quadtree, which \dou
structure reduces the similarity join ©(d) parallel sorts on make our algorithm even more work-efficient at the expense
one of the input datasets, ait{dataset sizebinary searches of time efficiency. Our algorithm strikes a balance between

and interval searches. time and work efficiencies and is well-suited for the GPU.
We use a GPU-basehitonic sort[17] algorithm, similar
to that of the GPUSort toolkit of Govindarajet al. [18]. IV. THE SET OF Z-LISTS DATA STRUCTURE

Govindarajuet al. [19], [18] show that a GPU can speed up We now describe the Set of Z-Lists (SZL) data structure
sorting and other database predicate operations. In additiand mention some of its interesting properties, which métkes
Sun et al. [20] propose techniques for spatial selection anglitable for similarity join operations on the GPU. Lgt R¢
join operations aided by the GPU. Their method relies dme a set of: points in ad dimensional space. Without loss of
GPU algorithms to compute fast 2D and 3D polygon intersegenerality, we assume th&tis contained in ai-dimensional
tions. Unfortunately, their work is limited to low-dimemsial hypercube of unit side length. We defig(p) : RY — N
datasets. Bandit al. [21] adapt the work of Sumt al. to a as a mapping of a poing to its location on aZ-order, or
commercial database system — in their c@Bmcle Spatial  Morton order [25], [14], [4], space-filling curve onS. The
mappingZ(p) € N is a bit-interleavedrepresentation of the
Il. THE GPUAS A PARALLEL MACHINE d coordinate values of. Furthermore, given two points
A GPU can be viewed as a parallel SIMD machine withnd ¢, we define aZ-ordering relation p <z ¢, based on
a limited instruction set. Modern GPUs allow for userthe relative positions op and g on the Z-order space-filling
programmablepixel and vertexshaders, thereby transformingcurve:p <, ¢ <= Z(p) < Z(q). The following lemma
the GPU into a general-purpose parallel computing devistates a property oKz, which will be used later to show our
of limited functionality. Early programmable shaders fgatl algorithm’s correctness.
an assembly-like language for manipulating data as it movedLemma 4.1:Let p, ¢ € N¢ be points such that # ¢ and
through the graphics pipeline [22]. These languages hady alominatesp. That is, V%, p; < ¢;, wherep;, ¢; are theith
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dimensions ofp, ¢, respectively. We have that=<7 q. interval of Zg. That is, searching regio® on Zs reduces
Proof: Without loss of generality, we will prove theto examining all points inZs spanned by the search interval
above lemma foel = 2. An integern can be represented as[Z(p”(~9)), Z(p"(©))] for containment inR.
n = %,;d;2%, whered; is the ith bit in the binary notation Lemma 4.2:Let S be a set of pointss R¢, and let Zg
of n. We define aninteger dilation function F, such that be a Z-list onS. Let p and ¢ refer to the antipodal points
E(n) = %;d/4% That is, E(n) spreads the bits of apart of a hypercubeR € R?, such thatp is the closest point in
with zeros. For example®(111) = 10101, wherelll and R to the origin. The interval spanned B¥(p),Z(q)] in Zs
10101 are binary numbers. encompasses all the points frashcontained inR.
Let ¢ = (z,y) € N2. Note thatZ(q) is the mapping of; to Proof: From Lemma 4.1. [ ]
a Z-order space filling curve defined Wy(xz) +2- E(y). For Note that the search interval may contain many points from
every pointp = (2/,y'), wherez’ < 2 andy’ < y, we can see S that are not contained i®. For example, Figure 1 shows
thatZ(p) < Z(q) becausds(2’)+2-E(y') < E(z)+2-E(y). a regionR, with antipodal pointsx and 3, that crosses the
Note that the above condition still holds for the case whémunding box'smedial axis The search interval spanned by
' =z (ory’ = y), becausé&(y') < E(y) (or E(z') < E(x)). Z(«) and Z(3) encompasses points i, j, f, and h, even
m though only point§ andh are contained inR.
We assume that the Z-ordering relation betweeand ¢ As every point in the search interval will be examined, a
can be determined ii¥(d) time. Finally, we defineZ(S) : configuration like that in Figure 1 will cause the searchrivaé
S c R?* — N as atotal orderingof the points inS, based on to be very large, resulting in too much wasted work. We
the Z-ordering relation. We refer t(S) as aZ-list Zs of S, therefore require a method of reducing the span of the search
where Zg[i] is theith point in Zg. intervals for arbitrary region searches &, without sacrific-
A set of objects can be sorted on the GPUGIw log?n)  ing time efficiency. Tropf and Herzog [27] show that the skarc
time using a parallel sorting network [19]. We use suchmterval spanned byZ(p” (=), Z(p”(©))] can be broken into
a network, thebitonic sort [17], to produce Z-lists on the a setR* of sub-intervalssuch thatR* only encompasses those
GPU. Our version of the bitonic sort algorithm orders pointgoints that are contained iR. Although this technique leads to
according to the Z-ordering relation, and producesafrom a more work-efficient algorithm, it requires a binary sedrele
S in O(d?nlog®n) time. The resulting representatiof is on Zs and the repeated computation of two tree operations,
similar to alinear quadtred26], although in contrast to linear termed LTMAX and BGMIN. It is therefore not suitable for
qguadtreesZs’s search hierarchy is implicit. the GPU.
Instead, we use a quadtree-like data structure calle®béte
° of Z-Lists (SZL)15], [16], [7]. To describe the utility of the
g° & k i SZL data structure, we must first defineegions the regions
corresponding to blocks produced by a quadtree or any other
e regular space decompositiqd].
el Definition 4.3 ([7], [28]): An r-region is an open-ended
f Ne hypercube inR? with side lengthr = 2!=™ with sides
| [a17, (a1 +1)r)x. .. x[aqr, (ag+1)r), wherea; ...aq, m € N.
o As seen in Figure 1, an intervd¥ («), Z(3)] may encom-
B pass many points that are not containedirHowever, ifR is
d an r-region, that interval will contain only (and all) thgseints
that are contained iR. The key idea behind the SZL data
structure is to produce multiple Z-lists, each slightlyftad,
’ g ‘ e‘ ml Kk ‘ i ‘ j ‘ h ‘ fld ‘ | ‘ n ‘ c ‘ so thgt. in at least one of the Z-lists, the smallest r-region
i containingR is not much larger thamk.
We now describe the Set of Z-Lists data structure. Let

Z(@) Z() v(j) : N — R? be a function that produces a translation
vectorT(dLH) for 0 < j < d, and recall thatS”(®) refers

Figure 1. A set of pointge—n, sorted based on their positions on a Z-orde&0 the translation of all points i by T(a) The Set of Z-
space-filling curve . ’ . - ’ )
Lists is a collection ofl + 1 Z-lists on S, such that the points

It is possible to useZs to perform region searches inin list j have been translated hy(j) and then sorted. The
R% on S. Let pT(® refer to the translation of a point SZL data structure has the following important property.
by « units across all dimensiong;(«) is referred to as a Lemma 4.4 ([16]):Let R.(p) refer to ad-dimensional hy-
translation vector p”(—<) andp”(©) are twoantipodalpoints Percube with side length - ¢, centered ap, and supposel
of a d-dimensional hypercub& centered ap, wherepT(—<) is even (for oddd, replaced by d + 1). Givenp € S and
is the closest point iR to the origin. The following lemma ¢ such thatd < e < 575, there exists &, 0 < j < d,
shows that the points i contained inR can be obtained by such thatR.(p*?)) is contained in an r-region satisfying
examining only those points contained in a particidaarch 7777 < € < @i

3
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That is, for reasonable values of there exists a Z-list in interval of p (line 9). The minimum search interval satisfies
the SZL of S such that the side length of the smallest r-regiotine following property:vgl:o(mg — Mmy) < (mf, — mi).

R™ containingR.(p) is no more tharO(d) times bigger than MININTERVAL also returns theurve identifierof the Z-list
e. Note thatR™ in turn bounds the search interval spannethat provided the minimum search intervalfThe minimum
by R.(p), as the search interval dR.(p) can be no larger search interval’s starting and ending offsets,(andmg), as
than the search interval aR*. Hence, we are assured thatvell as its curve identifier, are stored in tié,, M3, andR
the search interval oR.(p) is likewise of a reasonable size,arrays respectively, in the offset positiorworresponding tg.
so examining the search interval spannedHyp) for points The algorithm then invokes procedureAYK INTERVALS,
closer thare will not entail too much wasted work. This leadswhich computes, for each poiptin B, the distances to the
to an efficient similarity join algorithm. points spanned by the minimum search intervap ¢fine 11).
WALK INTERVALS is listed as Algorithm 2. The minimum
search intervals of all points € B are examined in parallel
(lines 2 — 11). For each, the procedure iterates over each
point ¢ € A between the minimum search interval starting
\ and ending offsets\/,, [i] and Mgli], in curve R[i] (lines 5
—10). If D(p, q) < ¢, the pair(p, ¢) is added to the result list
\ \ L. Finally, once the minimum search intervals of all points in
B have been examined, the resliltis reported (line 12).

Our algorithm’s correctness is ensured by Lemma 4.2.
Furthermore, as discussed in Section 1V, Lemma 4.4 provides
a bound on the size of the minimum search intervalppf
which in turn bounds the work done by the algorithm. The
algorithm’s time complexity is the sum of the time taken to
build an SZL onA, obtain the minimum search interval for
each pointinB, and compute the actual distances to the points
contained in the minimum search intervals. For the sake of
simplicity, we will assume thatl and B are both drawn from

Figure 2 shows the SZL’s organization as it is stored on ttgeuniform distribution. Furthermore, without loss of gealéy,
GPU. All the data structures are stored as simple arrays. Twe will assume that the GPU can exechtthreads in parallel.
SZL on S is stored as a set of arrays, such ttsv7)) is Letm = |A| andn = |B|, and letf(d, ¢) denote theaverage
the j** Z-list in the SZL. Each Z-list in the SZL stores theminimum search interval for each point i, wheree is small
index position of its corresponding point if. (given by Lemma 4.4). The total time complexity is

V. LSS: A GPUBASED SIMILARITY JOIN

The pseudocode of our similarity join algorithm is listed as . o
Algorithm 1. The inputs to our algorithm are the point set¢/hich arises fromO(d) parallel bitonic sorts ofA, O(d)
A and B, and the value:. It returns a list of pairs(p,q), Pinary searches for each point i§, and O(f(d,¢)) distance
wherep € A,q € B,D(p.q) < €. D(p,q) refers to any Computations for each point ds.
normed distance measure, such as the(Euclidean) orL .,
(Chessboard) metric. Algorithm 1
Our algorithm begins by building the set @ + 1) Z-lists Procedure SIMILARITY JOIN[A, B, €]
on A using procedure ARALLEL SORT, the parallel bitonic Input: A, B € [0,1]¢, € € [0,1]
sort described in Section IV (lines 1 — 3). Note that in costtraOutput: A list of pairs (p, q),
to [10], [9], the SZL onA does not depend an Once created, wherep € A, g€ B, D(p,q) < ¢
it can used with any other datasBtand any value of. After 1. for j€0...d do
the SZL on A has been constructed, LSS then performs 2 Z 4[§] « PARALLEL SORT(A"())

12 3. .. n

Z(S)

%0
oy N\

2(s"™) // // \\

(S v(d)y

-<«——ndex

2(s[10] 2(s1231 V@)

Figure 2. Organization of SZL oS, on the GPU

O(dQ% log? m) + O(d% logm) + O(%f(d, €), (1)

region search for each point @, in parallel (lines 4 — 11). 3. end-for
For each pointp € B, we first find the offset positions of 4. for i € 1...|B| pardo
Z(p*@)-T()) and Z(p*@W+T() in each of thed + 1 curves, 5. p — BJi]

as shown in lines 6— 8. These positions are obtained usifig
the GETINTERVAL procedure, which finds the search intervar.
[m3,,m}] by invoking two binary searches ofs|j], using
Z(p*W=T()) andZ (p*@W)+7()) as search keys. After afl+-1 8.
search intervals op have been computed, the algorithm uses.
procedure MNINTERVAL to find the interval[m,, mg] that
spans the fewest number of points, called tiaimum search 10.

4

for j€0...d do
[, mp] —
GETINTERVAL(Z 4[], p?@)=T(©), pr)+T(e))
end-for
(]Vjoz [Z]v ]\/[5 [Z]v R[Z]) —
MININTERVAL([m0, m2], ..., [md, m%))
end-for
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11. WALKINTERVALS(Zg4, M,, Mgs, R, |B|) and the size ofB. Then, for eachp € B, the algorithm

12. return estimates the size gf's output buffer as equal to the size
of its minimum search interval, which is then stored in the
Algorithm 2 PS array (lines 1 — 3). Next, an in-place parallel exclusive

prefix-sum procedure [29] computes for eaghe 1...n,
PS[j] = ((>°1_, PS[i])—PS[j]) (line 4). PS[j] now contains
point B[j]'s starting offset in the output buffer.

The algorithm now processes a chunk of the output, such
that the size of the chunk does not exceedFBERSIZE
(lines 6 — 11). In the while loop; refers to the index of the

Procedure WALK INTERVALS[Z 4, M., Mg, R, n]

Input: Z, — SZL onA

Input: M, Mg — minimum search interval offset arrays
Input: R — curve identifier array

Input: n — number of points to process

1. L < {} (x GPU-based buffex)

2. foriel...n pardo first point in B whose output is to be computed. The algorithm
3 p «— Bli] now obtains the offsef of the last point inB whose output

4 r «— R[i] will fit in the chunk by performing a binary search ¢S with

5. for j € M,li] ... Mgli] do the search key: = ¢ + BUFFERSIZE (lines 7 — 8). Procedure
6 q «— A[Za]r][j].index] BINARY SEARCH returns the offset position of the first point
7 if D(p,q) < e then whose output buffer offset is greater or equal toAt this

8 Add (p,q) to L point, the offset intervali, j — 1] refers to the range of offsets

9. end-if

in B that would be processed in this iteration of the while
10. end-for loop. Line 9 invokes Procedure AMK INTERVALS to report
11. end-for all results in the chunk, except that it now uses g array
12. ReportL to determine the proper offset where the result of a pointld/ou
13. return be written. Note that the result buffer may contain a numifer o

A O Size C . empty positions that do not contain an output pair. To remove
- Output Size Constraints these empty positions, we can apply a paratlempaction
In general, GPU programming architectures do not allogigorithm, described in [30].

asynchronous data transfer between the CPU and GPU; datRgie that Algorithm 2 assigns a thread to each point in

transfer is blocking and costly. Therefore, the similajiyn 5 An alternate approach more suited for GPUs would be to
algorithm must store its results in a GPU-based buffer andsijgn a thread to each of pair in the result set. Using this
report them inchunks These chunks must be reasonably |ar9%pproach, we now briefly describe the steps performed by the

in order to offset the overhead involved in the data tramsfq&h thread executing on the GPU. It first performs a binary
but small enough to fit in the GPU’s memory. To determingagrch on thePS array, with & as the search key, in order

appropriate sizes for these chunks, several key problenss mi sptain the identity of a paifp, q), wherep € A,q € B.

be addressed. First, given an instance of a similarity jojp D(p.q) < e, the thread stores the pair in theh index
problem A x. B, we cannot easily estimate the number ofsition of the result buffer. and terminates.

pairs in the result, so we do not know if the entire result will
fit in the GPU’s memory. Second, each point®fmay have
different numbers of points from in its result, so the output Algorithm 3
buffer must accommodate the varying result size requirésnefProcedure WALK INTERVALSCHUNKED[Z 4, M, Mg, R, n]
of each point. Finally, we need to ensure that no two GPlput: Z4 — SZL onA
threads write their results to the same location in the autpimput: M, Mz — minimum search interval offset arrays
buffer, which would lead to race conditions. Input: R — curve identifier array
We address the aforementioned problems by assigningngut: n — number of points to process

large enough output buffer space to each pgirg B, such 1.
that it cannobverflow Specifically,p is assigned a buffer with 2.
size equal to that of its minimum search interval, as thel tota.
number of output pairs in whicp participates cannot exceed4.
that size. Also, we avoid race conditions by assigning eadh
thread an non-overlapping output buffer space, which isedof.
using anexclusive prefix-suraperation [29], [30]. 7.
To implement chunked output, we replace line 11 of AlS.
gorithm 1 with an invocation of Procedure AbK INTER-
VALSCHUNKED, which is listed as Algorithm 3. We set the9.
constant RIFFERSIZE to the largest number of output pairs
that can be stored in the GPU’s memoryUm-ERSIZE is

10.
calculated on the fly by accounting for the total physicdll.
memory available on the GPU, the size of the Z-list 4n 12.

for i €1...n pardo
PS[i] — Myli] — My|i
end-for
PS «— PARALLEL PREFIXSUM(PS)
i« 0
while ¢ < n do (x process chunk)
k «— PS[i]+ BUFFERSIZE
j « BINARY SEARCH(PS, k)

WALK INTERVALS(Z 4, My[i...5 — 1],
Mgli...j—1], R[i...j —1], j —1i)
1]
end-while
return
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B. Input Size Constraints algorithm would still produce the correct output with one or

Our algorithm assumes that both and B can fit in the 21 subset of the Z-lists od. Furthermore, in some cases,
GPU's memory. If this is not the case, we can applylaa the cost of creating a Z-list ol will outweigh its benefit

partitioning technique on botht and B. We split A = A; U in terms of reducing the sizes of minimum search intervals.
Ay U...UA; into j arbitrary chunks, and3 = B, U B, U Most of the time, it is enough to only create a subset of the
..U By intojk arbitrary chunks, such that a pair of chunkg + 1 space filling curves. In Section VI, we describe alternate

from A and B can fit in the GPU’s memory. We then procesformulations of the LSS algorithm, where the SZL .4fmay
pairs of chunks independently, effectively reducing thigioml contain fewer tharid + 1) Z-lists. Using extensive empirical
join A x. B into j - k subproblemsA; ». B; U 4; x analysis, we provide heuristics for choosing an approgriat
ByU ... ;12 M By U...A; x. By. This deata partitioni;g SZL size that results in improved time efficiency.

scheme has its drawbacks: jfand k are large, too many g | s variants

subproblems will bog down the execution time. In thi " di [ variati fthe st
However, we can improve the above scheme’s work ef-'" 'S SECIION, We CISCUSS Severa’ vanations o € stityla

ficiency by creating partitions in such a way as to avoil?in c_)peration, and show how the LSS algorit.hm can be easily
unnecessary work. For example, suppose that all the poimg’d'f'ed to s_upport these a_Itehrtr)late fc_>rhmulat||?nﬁ. h

of a particular chunkA;, are at leaste distance from all Comp_utmgk-nearest neighborswit smail ¢ ang_es,t €
points of another chuniB;. We know thatA,, x. B; would LSS algorithm can compute thenearest neighbors ial to

yield no results, and need not be processed. In fact, any d§8h PoInt in53. Our approach is similar to the method used
partitioning technique, such as [9], [10], [12], can be used in 7], [28], in order to computek_ exact and gpprom_mate
conjunction with the LSS algorithm. These data partiti@]inneareSt_ neighbors to a query _p_omt. We explo_|t teality-
techniques reduce the original similarity join problemointprt?servIng property of space-flllln_g_curves, which statest t
several subproblems of suitable sizes, which can then pRInts tha_t are;:lose on a space-filling curve are usuallyeclo
processed on the GPU using the LSS algorithm. Moreovd} the originalR® space. As before, the algorithm computes the

each chunk can be several hundreds of megabytes in S§ZL Za fon A. For gacrp € B, the algc;]rli)thmtgsn compu?esa
to take advantage of the parallelism and high computatio LK of k approximate nearest neighborspioby examining

throughput afforded by the GPU all the points withink index positions op in any of the(d+1)
' Z-lists in Z 4.
C. Building an SZL oM versusB Let p;, be thekth approximate nearest neighborzdn K.

‘We point out that the actual closest point top can be no

Our join algorithm’s time complexity is given by Equa B )
tion (1). However, consider what would happen if the rolef':‘?lrther thane, = D(p, px) from p- The algorithm there_fore
arches a hypercube of side lengtl, centered ap, which

of A and B were reversed; that is, the algorithm constructs air

SZL on B, and executes parallel interval searches for poin'tégu"’“"’mteed to contain the actiahearest ne!ghbors o It
in A. The resulting time complexity is given by proceeds as before, except that everyas a different search

region. The algorithm reports the closest points contained
O(dQﬁ log? n) + O(d@ logn) + O(ﬂf@@)_ (2) in the minimum search interval i7 4, as defined by,
k k k Computing a self-join:If A and B point to the same
Our algorithm therefore has two strategies to processdatasetS, our algorithm will report each pair twice — two
similarity join: build the SZL onA, or build the SZL onB. pointsp, ¢ € S within distancee of each other would produce
These strategies have time complexities given by Equafions (p, ¢) and (¢,p) in the result set. Fortunately, we can make
and (2). Observe that for both (1) and (2), the cost of creatim simple modification to the LSS algorithm to eliminate
the SZL dominates the other two terms. Therefore, it guplicate pairs from the result set, and at the same timedspee
advantageous to compute the SZL on the smalledodnd up the algorithm’s execution. For eaghe B, Algorithm 1
B. If |A| < |Bj|, strategy (1) is the best choice; otherwiseperforms a region search corresponding to a hyperdalmé
strategy (2) is preferred. Moreover, [if{| and |B| are nearly side length2 - ¢ centered ap, such thap”(—¢) andp”(©) are
equal, our experimental results show that it is still bestrtmte the two antipodal points ofz. We modify the algorithm to
the SZL on the smaller of the two datasets (see Section Vihstead search a hyperculé of side length, such thap and
_ _ pT(©) form the two antipodal points ak’. The algorithm also
D. Changing SZL Size ignores any pairgp, ) wherep = ¢. To ensure the modified
Our algorithm constructs the SZL a#, which consists of algorithm’s correctness, note that jif <z ¢, the pair(p, q)
(d+ 1) Z-lists on A. The SZL provides an upper bound orwould be in the result set; otherwisg, p) would be reported.
the size of the search interval for each pointBn However, Moreover, asR’ is smaller thanR, this simple modification
creating the SZL required + 1 invocations of the parallel results in smaller minimum search intervals, which traresa
sorting algorithm. If we reduce the size of the SZL, we mighb a more time-efficient algorithm.
be able to reduce the algorithm’s total running time. Using other space-filling curvesinstead of using the
First of all, we point out that the correctness of ouZ-order for building curves in the SZL, other space-filling
algorithm does not depend on the SZL's size. That is, tleirves could be used, such as Hilbert curves [4]. We can
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TABLE |

Enterprise Linux 3; one processor was dedicated to running
PROPERTIES OF THECOREL IMAGE FEATURES DATASETS

the experiments. We executed LSS on a NVIDIA GeForce

Dataset Size | Dimensions 8800 GTX, with 128 stream processors and 768MB of device
ColorHistogram | 68,040 32 memory. It was implemented using the C++ interface of
Cglorl\q_omtents 23:828 196 the NVIDIA CUDA Toolkit version 0.9, and was executed

ooc lexture , . . . .

LayoutHistogram| 66,616 3 with the NVIDIA Display Driver version 100.14.10. The

EGO [9], [11] and GESS [10] algorithms were implemented
in C++, and were allowed buffer sizes large enough to fit

define theHilbert-ordering relation analogously to the z- the entire dataset in main memory. We incorporated some
ordering relation (Section IV)p < ¢ <= H(p) < H(q). of the mprovements to the EGO algorithm sugg_ested by
Unfortunately, the Hilbert curve does not satisfy Lemma, 4.f@lashnikov and Prabhakar [11]. The GESS algorithm was
as adapted to the Hilbert-ordering relation. That is, if inpg IMPlemented using a Hilbert space-filling curve [4], and the
dominates another point, it is not always true thap <y g. SiZ€ of the algor_lthm's sort codes were limited 266 k_)ytes_.
As a result, it would not be sufficient to only examine th&loreover, we adjusted the value bin the GESS algorithm in
minimum search interval spanned by the search regig). order to ensure good performance. The times reported in our
All the points spanned by the minimum search interval &xperiments is the sum total of the index construction titg2,
the smallest r-regionR* containing R.(p) would need to time, gnc.ijo.ir_l processing time. In practice, we fc_Ju_nd I/Oets'm_
be examined, leading to more distance computations than {R&€ insignificant when compared to the actual join procggsi
original algorithm using the Z-ordering relation. In addit, tMes, so they are not shown separately in our experimental
computing H (p) takes more computation time thafi(p) results. Furthermore, all our experiments used the Eualide
which would further slow the similarity join. (L) distance metric.

However, as Hilbert curves have better locality-preseagvin
behavior, using Hilbert curves for the SZL would improve_.

. S 10000 ‘
the approximaté:-nearest neighbors variant discussed earlie§ 000 g cEss v o
EachK, computed by the algorithm would be more accurateg % 2 el e et
and thus improve eact), estimate. S C e
Producing sorted outputOur join algorithm can be used £ 1 oo v ] 2 w0 7 :
in complex query processing scenari@sg cascading join & ! GESS 2 1 g H_e_H/E/E/E/E
operations [31]), where it is beneficial for the similarityi " *“1000 10000 100000 1e+06 WO T ez os oa
output to be sorted, or in some cases, to preserve the ogderin Number of Points Epsilon
of one of the input datasets. Our algorithm uses the prefix-su (a) (b)

pperanon t_o aIIoca_lte output buffer space, which prese'l_h{es Figure 3. Execution times on uniformly-distributed data; ¢a) varyingn
input ordering ofB in the result set. Furthermore, an additionalp to 4M points,e=0.1, =16, and (b)n=256k, varyinge, d=16

sort of the result set can preserve the original ordering of _ ) ,
A. Note that the minimum search interval for a point fh Figure 3 shows the execution times for EGO, GESS, and

contains the index positions of points i, some of which LSS when processing uniformly-distributed random datg- Fi
are added to the result set if they are within a distance Uré 3@ shows that both EGO and LSS outperform GESS for

The result set therefore contains paiys ¢), such thatp is all tested values ofi. For 1k < n < 1_M’ _LSS is faster than
the index position of a point ind. By applying a stable sort GESS by factors of 21.2-44.1. EGO is slightly faster than LSS

to the result set, where pai(g, ¢) are arranged in increasing?cor n < 2k, but LSS performs better for Iarger; with an
order of p, we restore the original ordering of points i, mProvement factor of 6.8 at = 1M points. LSS's speedup

The result set now has a primary ordering based4orand a is more apparent as increases, as shown in Figure 3b. For
secondary ordering of. 0.01 < e < 0.35, LSS outperforms GESS by factors of 5.5-

118.3, and its speedups over EGO are 3.6-26.9.
VI. EXPERIMENTAL ANALYSIS Figure 4 shows the results for the EGO, GESS and LSS

We performed experiments on both synthetic and real-wondethods when applied to our four real-world datasets, for
datasets. For our synthetic data, we generated dataseis drgarying values ok. We can see that LSS shows dramatic per-
from an uniform distribution of up to 4M points and 1024ormance improvements over GESS, with improvement factors
dimensions. Our real-world data consists of the four dasasef 1.6-117.2 over the values efexamined. Furthermore, on
from the Corel Image Features collection, available from traverage, LSS is 10.2 times faster than EGO.
UC Irvine KDD repository [32]. These datasets contain image In Figure 5, we show LSS’s execution time in terms of
features extracted from a collection of over 60,000 phoits two principal components: the time taken to construct
images. Table | lists the properties of the Corel datasetsl ushe SZL on A (SZL), and the time taken to examine the
in our evaluation. minimum search intervals of all points i (IS). We can

All our experiments were performed on a quad-processsee that only/ affects SZL construction time, but the IS time
Intel Xeon 2.4GHz with 1GB main memory, running Red Hadepends on bothd ande. As shown in Figure 5a, for smaller
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Figure 6. Effects of creating the SZL on the larger datasstdMM) versus
g P 5 o v ‘ the smaller, fore=0.1, d=16
o k) IGESS -o- Lo
g 1000 :,»" gy g g - LSSV? v x?g vy
L A o . . . .

= - = T size of S was varied. Figure 6a shows that the total execution
S o T8 g 3 time for SZL-L is large, since the SZL construction domirsate
3 ¢ craa v 3 A the execution time. In contrast, SZL-S scales smoothl{Sas
X 10 LSS & 4 X . . . . . . . .
ai : : : : a0 : : o increases, indicating that its execution time is more bzddn

01 02 03 04 01 02 03 04 X . i

Epsilon Epsilon between the SZL construction and interval search. Figure 6b

© d shows the average minimum search interval (MSI) size per
_ o _ _ point, for both the SZL-L and SZL-S variants. As expected,
Figure 4.  Execution times for varying on (a) ColorHistogram, (b) 57) .| examines smaller minimum search intervals than SZL-
ColorMoments, (c) CoocTexture, and (d) LayoutHistogram S for smaller values O(S| However f0l’|S| > 10k. the
average minimum search intervals for SZL-L and SZL-S are
almost equal, indicating that there is no benefit from buaidi

g 'S 1000
k) e the SZL onL.
2 owf : e
= oo
s s S 1 5 o
% te Total & ] % & 1000 3
N otal & ) F | )
8 o S7L -+ 2 o1 Py S 00
X IS X L 4
O o1 lu L *, O oot L L L E 100 E
0.1 0.2 0.3 0.4 10 100 1000 '; 10 ';
Epsilon Number of Dimensions o 3 ] o
8 1 - fStanldarg = 8 10 ¢ 0«"'0 fStanldarg = 3
Uniform-log d -e- oo Uniform-log d -e-
(a) (b) I%) o1 o ) Random-d -& I%) ) _ Random-d &
Figure 5. LSS execution time in terms of SZL construction amerval 100000 1e+06 01 02 03 04
search, for (ayn=256k, varyinge, d=16, and (b)n=64k, ¢ = 0.1, varying d Number of Points Epsilon

(@) (b)

€ < 0.2, the SZL construction dominates LSS’s running timé:'igure 7. Execution times of LSS variants for (a) varyinge=0.1, d=16,
as most points iB have small minimum search intervals duénd (P)n=256k, varyinge, d=16
to the smalle. However, fore > 0.25, the interval search  \We now examine the performance of the LSS algorithm
starts dominating the total running time. Figure 5b shoves thvhen using a different set of translation vectors (describe
effect of increasing dimensionality of the input datas€is: in Section 1V). In Figure 7, we compare standard LSS'’s
smalld, IS time dominates LSS's total running time, but SZlexecution time to that of two of its variantsUtiform-log d”
construction time quickly overtakes the interval searafetiat and ‘Randomd”. The Uniform-log d variant createglog d+-1)
d = 4. This observation can be explained as follows. Firsg-lists, such that the translation vectors are uniformlpssn
every additional dimension adds another Z-list to the SZlpetweer|0, 1], while theRandomd variant generategl+1) Z-
thereby increasing the SZL construction time. Second, f@sts, with randomly chosen translation vectors betwgen].
uniform data, increasing while holdingn ande constant will  The expected performance of the latter variant is discussed
produce fewer pairs of points in the result set, so the aeerag [15]. Figure 7a shows comparison results for varyingnd
minimum search interval will span fewer points. e fixed at 0.1. Uniformlogd performs better than standard
In Section V-C, our analysis of the LSS algorithm showedSS and Random; while Randomd has performance results
that it is beneficial to build the SZL on the smaller of its twesimilar to standard LSS. Figure 7b shows the effect of vayyin
input datasets. Figure 6 shows our experimental result&shwhe while keepingn constant. Fore < 0.2, Uniform-logd
confirm our earlier hypothesis. Here, we will refer to thegler outperforms both standard LSS and Randénby a factor
dataset ad., and the smaller dataset &s The curve labeled of 3 ate = 0.01. However, for largek, LSS outperforms the
“SZL-L" refers to an LSS variant where the SZL is constructetdniform-log d, showing an improvement factor of 2at= 0.4.
on L, while “SZL-S” corresponds to building the SZL onln general, as increases, it is worthwhile to generate more
S. Furthermore,L’s size was fixed at 4M points, while theZ-lists for the SZL.
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become increasingly relevant for mainstream databaseyquer
processing.

The authors wish to thank Dr. Edwin Jacox for his assistance

VIIl. ACKNOWLEDGEMENTS

in preparing the GESS and EGO codebases, Dr. Amitabh
Varshney for the generous use of his GPU computing cluster,
and Dr. David Mount for pointing us to the work by Chan [16].

(1]

(2]

(31

(4
(5]

(6]

LSS’s performance varies significantly when the SZL's size

is altered, as discussed in Section V-D. We examined t

effect of SZL size on execution time and average size of the
minimum search interval, in order to determine the best SZl[,S]

size for any similarity join scenario. Figure 8 shows ourules
for varying SZL sizes and uniformly spaced translation vext

depending on the SZL size. As is clear from Figures 8a and 8if]
n does not play a role in determining the optimal SZL size. In

contrast, Figure 8c shows that the best SZL size depends[tn

e; for 0.01 < e < 0.10, the optimal SZL size is between 4-8
Z-lists. It also shows that asincreases, it is worthwhile to (11
create more Z-lists, as it improves both LSS’s time and work

efficiencies. Figure 8d shows that fdre {16, 64,256}, the

best SZL sizes were 9, 6, and 5, respectively.

VII. CONCLUSIONS

14
In this paper, we introduced the LSS algorithm, a time[-

[12]

(23]

efficient algorithm to perform similarity join queries oneth [15]
GPU. The algorithm uses the SZL data structure, which sirikﬁs]
a good balance between time and work efficiency. The SZL'is
a simple data structure that can be easily adapted to perfdidi
other parallel database operations on the GPU. In our future
research, we will perform a more rigorous analysis of thgg

SZL data structure, and investigate its applicability tbest
operations on high-dimensional databases. We will alsthéur
explore the effect of varying the SZL’s size and using difer

sets of translation vectors.

[19]

GPUs represent a new generation of inexpensive, wide?!
available parallel machines, but CPUs will eventually batc
up in terms of parallel processing power. Already, moderni]

CPUs feature multiple cores on-chip, allowing severalddee
to execute in parallel. As CPUs continue to become more li
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