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Abstract— A similarity join operation A ⋊⋉
ǫ

B takes two sets
of points A, B and a value ǫ ∈ R, and outputs pairs of points
p ∈ A, q ∈ B, such that the distanceD(p, q) ≤ ǫ. Similarity joins
find use in a variety of fields, such as clustering, text mining, and
multimedia databases. A novel similarity join algorithm called
LSS is presented that executes on a Graphics Processing Unit
(GPU), exploiting its parallelism and high data throughput. As
GPUs only allow simple data operations such as the sorting and
searching of arrays, LSS uses these two operations to cast a
similarity join operation as a GPU sort-and-search problem.
It first creates, on the fly, a set of space-filling curves on one
of its input datasets, using a parallel GPU sort routine. Next,
LSS processes each pointp of the other dataset in parallel. For
each p, it searches an interval of one of the space-filling curves
guaranteed to contain all the pairs in whichp participates.

Using extensive theoretical and experimental analysis, LSS
is shown to offer a good balance between time and work
efficiency. Experimental results demonstrate that LSS is suitable
for similarity joins in large high-dimensional datasets, and that
it performs well when compared against two existing prominent
similarity join methods.

I. I NTRODUCTION

A similarity join A ⋊⋉ǫ B takes two sets of objectsA, B and
a valueǫ ∈ R, and outputs pairs of points(p, q), p ∈ A, q ∈ B,
such thatD(p, q) ≤ ǫ, whereD(·, ·) is an arbitrary distance
measure. The similarity join has important applications in
knowledge discovery [1], including clustering, text mining,
image and multimedia databases, and geographic information
systems (GIS). In these domains, a similarity join is performed
by transforming the set of objects to be searched into a high-
dimensional feature vector representation via the application
of a suitable technique, such as feature vector extraction [2],
K-L transformation [3], or embedding [4]. The similarity join
is then performed on the vector representation of the objects;
if two objects are within distanceǫ of each other, they are
consideredsimilar in the original domain. Unfortunately, the
vector representation is usually high-dimensional, so similarity
join processing suffers from thecurse of dimensionality[5].
In this paper we present a novel algorithm, named LSS, that
performs fast similarity join operations on high-dimensional
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datasets using a Graphics Processing Unit (GPU). LSS takes
advantage of a modern GPU’s ability to perform simple
arithmetic operations at a high throughput. As GPUs can only
perform simple data operations, we have cast the similarity
join operation as asort-and-searchproblem. That is, our
algorithm only requires simple sort and search routines, which
have been implemented on the GPU. LSS creates several
space-filling curves, built over one of its input datasets. It then
performs interval searches for each point in the other dataset.
By generating multiple space-filling curves, we are able to
reduce the size of the interval searches, thereby producing
significant speedups. We have applied LSS to large high-
dimensional datasets, and have shown at least an order of
magnitude improvement when compared against two promi-
nent techniques in the literature.

In this paper, we focus on a variant of the similarity join
problem, whereA, B ∈ R

d are both point datasets drawn
from a high-dimensional vector space of dimensiond ∈ N, and
D(·, ·) is aMinkowski, or normedmetric. We also assume that
bothA andB are initially unsorted point sets. If bothA andB

refer to the same dataset, the problem is known as aself-join
operation. An alternate formulation of the similarity searching
problem [6], [7] requires the computation of the approximate
or exactk-nearest neighbors inB to each point inA. LSS can
be easily modified to accomodate this and other formulations
of the similarity join problem.

The rest of the paper is organized as follows. In Section II,
we present an overview of related similarity join techniques.
We also briefly describe several other database operations that
have been implemented on a GPU. Next, in Section III, we
provide a brief overview of a programming paradigm that is
suitable for GPUs. In Section IV, we describe a quadtree-
based data structure for the GPU, which is used in Section V
to describe our similarity search algorithm and its variations.
Experimental results are discussed in Section VI. Finally,in
Section VII, we offer concluding remarks and possible avenues
for future research.

II. RELATED WORK

Similarity join operations can be classified based on the
availability of a multidimensional indexing structure on both
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A and B [8] or on neither [9], [10]. If a multidimensional
index is not present, it is usually constructed on the fly during
the algorithm’s execution, although if the indexing structure
is dependent onǫ, as in [9], [10], [11], [12], it may not be
possible to reuse the index for future similarity join operations
on the dataset. A variety of data structures have been used
for similarity join processing, including quadtrees [10],[13],
R-trees [8], hash functions [6], space-filling curves [10],and
ǫ-kbd trees [12].

Two recent methods are based on the application of grids
to multidimensional point datasets. TheEpsilon Grid Order
(EGO) [9] method works by first partitioning the initially
unsorted data into anǫ-sized gridG. The join algorithm then
processes each cellc in the grid, and examines every cell inG
within a distanceǫ from c. The EGO join method’s novelty is
a heuristic, termedcrab stepping, that minimizes the number
of times a neighboring cell is read by the algorithm. The
Generic External Space Sweep (GESS)method of Dittrich and
Seeger [10] is an adaptation of theMultidimensional Spatial
Join (MSJ)algorithm of Koudas and Sevcik [13]. A hypercube
with side lengthǫ is constructed around each multidimensional
input point. The similarity join problem is thus transformed to
a spatial intersection[13] problem.

LSS maps one of its input datasets to a set of space-filling
curves [14], [15], [16]. Bern [15] used a set of2d space-filling
curves to computeO(

√
d) approximate nearest neighbors to a

query point. Chan [16] improved upon Bern’s original formu-
lation by reducing the number of space-filling curves toO(d),
to obtainO(d

3

2 ) approximate nearest neighbors. Liaoet al. [7]
applied this method to perform similarity searching in high-
dimensional datasets, though their formulation of similarity is
based on finding an approximate nearest neighbor to a query
point. In this paper, we adapt the set of space-filling curvesto
be created on the fly on a GPU from an input dataset. This data
structure reduces the similarity join toO(d) parallel sorts on
one of the input datasets, andO(dataset size) binary searches
and interval searches.

We use a GPU-basedbitonic sort [17] algorithm, similar
to that of the GPUSort toolkit of Govindarajuet al. [18].
Govindarajuet al. [19], [18] show that a GPU can speed up
sorting and other database predicate operations. In addition,
Sun et al. [20] propose techniques for spatial selection and
join operations aided by the GPU. Their method relies on
GPU algorithms to compute fast 2D and 3D polygon intersec-
tions. Unfortunately, their work is limited to low-dimensional
datasets. Bandiet al. [21] adapt the work of Sunet al. to a
commercial database system – in their case,Oracle Spatial.

III. T HE GPU AS A PARALLEL MACHINE

A GPU can be viewed as a parallel SIMD machine with
a limited instruction set. Modern GPUs allow for user-
programmablepixel andvertexshaders, thereby transforming
the GPU into a general-purpose parallel computing device
of limited functionality. Early programmable shaders featured
an assembly-like language for manipulating data as it moved
through the graphics pipeline [22]. These languages had a

small instruction set, which consisted mostly of register ma-
nipulation operators. Later, higher-level languages [23]such
as Cg and GLSL made shader programming more accessible
to programmers, as they required a less intimate knowledge of
the workings of the graphics hardware. With the introduction
of NVIDIA’s CUDA [24], the implementation-specific details
of shader programming are almost fully hidden behind a high-
level abstraction. In this paradigm, GPU programs, called
kernels, are written in an extended form of C or C++, and
are executed in parallel by manythreadsrunning on the GPU.

Even though CUDA provides a good measure of abstrac-
tion to programmers, we point out that serial and parallel
programming paradigms are different in their focus, which
makes efficient serial algorithms unattractive candidatesfor
parallel machines. In a parallel paradigm, the fastest or most
time-efficientalgorithm is not necessarily the mostwork-
efficient. For example, suppose we are given datasetsA, B,
each containingn points, and a distanceǫ, and we wish
to computeA ⋊⋉ǫ B. In a parallel machine withO(n2)
processors, the join can be executed inO(1) time by naively
examining each of then2 pairs. This naive algorithm is time-
efficient, even though it is not work-efficient. Our simple
example illustrates that in a parallel machine with enough
processors, time and work efficiencies aredecoupled. Serial
algorithms almost exclusively focus on making algorithms
work-efficient, as in a serial algorithm, work efficiency equates
to time efficiency. This makes them unsuitable for execution
on parallel machines like GPUs.

As GPUs have much fewer processors (thanO(n2)), we
see an interesting tradeoff between time and work efficiencies.
Our proposed algorithm creates a set of space-filling curveson
one of its input point sets, which makes our algorithm more
work-efficient. However, we did not use a multidimensional
indexing structure [4] like an R-tree or quadtree, which would
make our algorithm even more work-efficient at the expense
of time efficiency. Our algorithm strikes a balance between
time and work efficiencies and is well-suited for the GPU.

IV. T HE SET OF Z-L ISTS DATA STRUCTURE

We now describe the Set of Z-Lists (SZL) data structure
and mention some of its interesting properties, which makesit
suitable for similarity join operations on the GPU. LetS : R

d

be a set ofn points in ad dimensional space. Without loss of
generality, we assume thatS is contained in ad-dimensional
hypercube of unit side length. We defineZ(p) : R

d → N

as a mapping of a pointp to its location on aZ-order, or
Morton order [25], [14], [4], space-filling curve onS. The
mappingZ(p) ∈ N is a bit-interleavedrepresentation of the
d coordinate values ofp. Furthermore, given two pointsp
and q, we define aZ-ordering relation, p �Z q, based on
the relative positions ofp and q on the Z-order space-filling
curve: p �Z q ⇐⇒ Z(p) ≤ Z(q). The following lemma
states a property of�Z , which will be used later to show our
algorithm’s correctness.

Lemma 4.1:Let p, q ∈ N
d be points such thatp 6= q and

q dominatesp. That is,∀d
i=1pi ≤ qi, wherepi, qi are theith

2
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dimensions ofp, q, respectively. We have thatp �Z q.
Proof: Without loss of generality, we will prove the

above lemma ford = 2. An integern can be represented as
n = Σidi2

i, wheredi is the ith bit in the binary notation
of n. We define aninteger dilation function E, such that
E(n) = Σidi4

i. That is, E(n) spreads the bits ofn apart
with zeros. For example:E(111) = 10101, where111 and
10101 are binary numbers.

Let q = (x, y) ∈ N
2. Note thatZ(q) is the mapping ofq to

a Z-order space filling curve defined byE(x) + 2 ·E(y). For
every pointp = (x′, y′), wherex′ < x andy′ < y, we can see
thatZ(p) < Z(q) becauseE(x′)+2·E(y′) < E(x)+2·E(y).
Note that the above condition still holds for the case when
x′ = x (or y′ = y), becauseE(y′) < E(y) (or E(x′) < E(x)).

We assume that the Z-ordering relation betweenp and q

can be determined inO(d) time. Finally, we defineZ(S) :
S ⊂ R

d → N as atotal orderingof the points inS, based on
the Z-ordering relation. We refer toZ(S) as aZ-list ZS of S,
whereZS [i] is the ith point in ZS .

A set of objects can be sorted on the GPU inO(n log2 n)
time using a parallel sorting network [19]. We use such
a network, thebitonic sort [17], to produce Z-lists on the
GPU. Our version of the bitonic sort algorithm orders points
according to the Z-ordering relation, and produces aZS from
S in O(d2n log2 n) time. The resulting representationZS is
similar to alinear quadtree[26], although in contrast to linear
quadtrees,ZS ’s search hierarchy is implicit.
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Figure 1. A set of pointsc–n, sorted based on their positions on a Z-order
space-filling curve

It is possible to useZS to perform region searches in
R

d on S. Let pT (α) refer to the translation of a pointp
by α units across all dimensions;T (α) is referred to as a
translation vector. pT (−ǫ) andpT (ǫ) are twoantipodalpoints
of a d-dimensional hypercubeR centered atp, wherepT (−ǫ)

is the closest point inR to the origin. The following lemma
shows that the points inS contained inR can be obtained by
examining only those points contained in a particularsearch

interval of ZS. That is, searching regionR on ZS reduces
to examining all points inZS spanned by the search interval
[Z(pT (−ǫ)), Z(pT (ǫ))] for containment inR.

Lemma 4.2:Let S be a set of points∈ R
d, and let ZS

be a Z-list onS. Let p and q refer to the antipodal points
of a hypercubeR ∈ R

d, such thatp is the closest point in
R to the origin. The interval spanned by[Z(p),Z(q)] in ZS

encompasses all the points fromS contained inR.
Proof: From Lemma 4.1.

Note that the search interval may contain many points from
S that are not contained inR. For example, Figure 1 shows
a regionR, with antipodal pointsα and β, that crosses the
bounding box’smedial axis. The search interval spanned by
Z(α) and Z(β) encompasses pointsk, i, j, f, and h, even
though only pointsf andh are contained inR.

As every point in the search interval will be examined, a
configuration like that in Figure 1 will cause the search interval
to be very large, resulting in too much wasted work. We
therefore require a method of reducing the span of the search
intervals for arbitrary region searches onZS , without sacrific-
ing time efficiency. Tropf and Herzog [27] show that the search
interval spanned by[Z(pT (−ǫ)), Z(pT (ǫ))] can be broken into
a setR∗ of sub-intervals, such thatR∗ only encompasses those
points that are contained inR. Although this technique leads to
a more work-efficient algorithm, it requires a binary searchtree
on ZS and the repeated computation of two tree operations,
termed LITMAX and BIGM IN. It is therefore not suitable for
the GPU.

Instead, we use a quadtree-like data structure called theSet
of Z-Lists (SZL)[15], [16], [7]. To describe the utility of the
SZL data structure, we must first definer-regions, the regions
corresponding to blocks produced by a quadtree or any other
regular space decomposition[4].

Definition 4.3 ([7], [28]): An r-region is an open-ended
hypercube inRd with side lengthr = 21−m, with sides
[a1r, (a1+1)r)×. . .×[adr, (ad+1)r), wherea1 . . . ad, m ∈ N.

As seen in Figure 1, an interval[Z(α), Z(β)] may encom-
pass many points that are not contained inR. However, ifR is
an r-region, that interval will contain only (and all) thosepoints
that are contained inR. The key idea behind the SZL data
structure is to produce multiple Z-lists, each slightly shifted,
so that in at least one of the Z-lists, the smallest r-region
containingR is not much larger thanR.

We now describe the Set of Z-Lists data structure. Let
v(j) : N → R

d be a function that produces a translation
vector T ( j

d+1 ) for 0 ≤ j ≤ d, and recall thatST (α) refers
to the translation of all points inS by T (α). The Set of Z-
Lists is a collection ofd+1 Z-lists onS, such that the points
in list j have been translated byv(j) and then sorted. The
SZL data structure has the following important property.

Lemma 4.4 ([16]):Let Rǫ(p) refer to ad-dimensional hy-
percube with side length2 · ǫ, centered atp, and supposed
is even (for oddd, replaced by d + 1). Given p ∈ S and
ǫ, such that0 < ǫ < 1

2d+2 , there exists aj, 0 ≤ j ≤ d,
such thatRǫ(p

v(j)) is contained in an r-region satisfying
r

(4d+4) ≤ ǫ < r
(2d+2) .

3
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That is, for reasonable values ofǫ, there exists a Z-list in
the SZL ofS such that the side length of the smallest r-region
R+ containingRǫ(p) is no more thanO(d) times bigger than
ǫ. Note thatR+ in turn bounds the search interval spanned
by Rǫ(p), as the search interval ofRǫ(p) can be no larger
than the search interval ofR+. Hence, we are assured that
the search interval ofRǫ(p) is likewise of a reasonable size,
so examining the search interval spanned byRǫ(p) for points
closer thanǫ will not entail too much wasted work. This leads
to an efficient similarity join algorithm.
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Figure 2. Organization of SZL onS, on the GPU

Figure 2 shows the SZL’s organization as it is stored on the
GPU. All the data structures are stored as simple arrays. The
SZL on S is stored as a set of arrays, such thatZ(Sv(j)) is
the jth Z-list in the SZL. Each Z-list in the SZL stores the
index position of its corresponding point inS.

V. LSS: A GPU-BASED SIMILARITY JOIN

The pseudocode of our similarity join algorithm is listed as
Algorithm 1. The inputs to our algorithm are the point sets
A and B, and the valueǫ. It returns a list of pairs,(p, q),
where p ∈ A, q ∈ B, D(p, q) ≤ ǫ. D(p, q) refers to any
normed distance measure, such as theL2 (Euclidean) orL∞

(Chessboard) metric.
Our algorithm begins by building the set of(d + 1) Z-lists

on A using procedure PARALLEL SORT, the parallel bitonic
sort described in Section IV (lines 1 – 3). Note that in contrast
to [10], [9], the SZL onA does not depend onǫ. Once created,
it can used with any other datasetB and any value ofǫ. After
the SZL onA has been constructed, LSS then performs a
region search for each point ofB, in parallel (lines 4 – 11).
For each pointp ∈ B, we first find the offset positions of
Z(pv(j)−T (ǫ)) andZ(pv(j)+T (ǫ)) in each of thed + 1 curves,
as shown in lines 6– 8. These positions are obtained using
the GETINTERVAL procedure, which finds the search interval
[mj

α, m
j
β ] by invoking two binary searches onZS [j], using

Z(pv(j)−T (ǫ)) andZ(pv(j)+T (ǫ)) as search keys. After alld+1
search intervals ofp have been computed, the algorithm uses
procedure MIN INTERVAL to find the interval[mα, mβ ] that
spans the fewest number of points, called theminimum search

interval of p (line 9). The minimum search interval satisfies
the following property:∀d

j=0(mβ − mα) ≤ (mj
β − mj

α).
M IN INTERVAL also returns thecurve identifierof the Z-list
that provided the minimum search interval ofp. The minimum
search interval’s starting and ending offsets (mα andmβ), as
well as its curve identifier, are stored in theMα, Mβ, andR

arrays respectively, in the offset positioni corresponding top.
The algorithm then invokes procedure WALK INTERVALS,

which computes, for each pointp in B, the distances to the
points spanned by the minimum search interval ofp (line 11).
WALK INTERVALS is listed as Algorithm 2. The minimum
search intervals of all pointsp ∈ B are examined in parallel
(lines 2 – 11). For eachp, the procedure iterates over each
point q ∈ A between the minimum search interval starting
and ending offsetsMα[i] and Mβ [i], in curve R[i] (lines 5
– 10). If D(p, q) ≤ ǫ, the pair(p, q) is added to the result list
L. Finally, once the minimum search intervals of all points in
B have been examined, the resultL is reported (line 12).

Our algorithm’s correctness is ensured by Lemma 4.2.
Furthermore, as discussed in Section IV, Lemma 4.4 provides
a bound on the size of the minimum search interval ofp,
which in turn bounds the work done by the algorithm. The
algorithm’s time complexity is the sum of the time taken to
build an SZL onA, obtain the minimum search interval for
each point inB, and compute the actual distances to the points
contained in the minimum search intervals. For the sake of
simplicity, we will assume thatA andB are both drawn from
a uniform distribution. Furthermore, without loss of generality,
we will assume that the GPU can executek threads in parallel.
Let m = |A| andn = |B|, and letf(d, ǫ) denote theaverage
minimum search interval for each point inB, whereǫ is small
(given by Lemma 4.4). The total time complexity is

O(d2 m

k
log2 m) + O(d

n

k
log m) + O(

n

k
f(d, ǫ)), (1)

which arises fromO(d) parallel bitonic sorts ofA, O(d)
binary searches for each point inB, andO(f(d, ǫ)) distance
computations for each point ofB.

Algorithm 1
Procedure SIMILARITY JOIN[A, B, ǫ]
Input: A, B ∈ [0, 1]d, ǫ ∈ [0, 1]
Output: A list of pairs (p, q),

wherep ∈ A, q ∈ B, D(p, q) ≤ ǫ

1. for j ∈ 0 . . . d do
2. ZA[j] ← PARALLEL SORT(Av(j))
3. end-for
4. for i ∈ 1 . . . |B| pardo
5. p ← B[i]
6. for j ∈ 0 . . . d do
7. [mj

α, m
j
β ] ←

GETINTERVAL(ZA[j], pv(j)−T (ǫ), pv(j)+T (ǫ))
8. end-for
9. (Mα[i], Mβ[i], R[i]) ←

M IN INTERVAL([m0
α, m0

β ], . . ., [md
α, md

β])
10. end-for

4
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11. WALK INTERVALS(ZA, Mα, Mβ , R, |B|)
12. return

Algorithm 2
Procedure WALK INTERVALS[ZA, Mα, Mβ , R, n]
Input: ZA – SZL onA

Input: Mα, Mβ – minimum search interval offset arrays
Input: R – curve identifier array
Input: n – number of points to process
1. L ← {} (∗ GPU-based buffer∗)
2. for i ∈ 1 . . . n pardo
3. p ← B[i]
4. r ← R[i]
5. for j ∈Mα[i] . . . Mβ[i] do
6. q ← A[ZA[r][j].index]
7. if D(p, q) ≤ ǫ then
8. Add (p, q) to L

9. end-if
10. end-for
11. end-for
12. ReportL
13. return

A. Output Size Constraints

In general, GPU programming architectures do not allow
asynchronous data transfer between the CPU and GPU; data
transfer is blocking and costly. Therefore, the similarityjoin
algorithm must store its results in a GPU-based buffer and
report them inchunks. These chunks must be reasonably large,
in order to offset the overhead involved in the data transfer,
but small enough to fit in the GPU’s memory. To determine
appropriate sizes for these chunks, several key problems must
be addressed. First, given an instance of a similarity join
problemA ⋊⋉ǫ B, we cannot easily estimate the number of
pairs in the result, so we do not know if the entire result will
fit in the GPU’s memory. Second, each point ofB may have
different numbers of points fromA in its result, so the output
buffer must accommodate the varying result size requirements
of each point. Finally, we need to ensure that no two GPU
threads write their results to the same location in the output
buffer, which would lead to race conditions.

We address the aforementioned problems by assigning a
large enough output buffer space to each pointp ∈ B, such
that it cannotoverflow. Specifically,p is assigned a buffer with
size equal to that of its minimum search interval, as the total
number of output pairs in whichp participates cannot exceed
that size. Also, we avoid race conditions by assigning each
thread an non-overlapping output buffer space, which is done
using anexclusive prefix-sumoperation [29], [30].

To implement chunked output, we replace line 11 of Al-
gorithm 1 with an invocation of Procedure WALK INTER-
VALSCHUNKED, which is listed as Algorithm 3. We set the
constant BUFFERSIZE to the largest number of output pairs
that can be stored in the GPU’s memory. BUFFERSIZE is
calculated on the fly by accounting for the total physical
memory available on the GPU, the size of the Z-list onA,

and the size ofB. Then, for eachp ∈ B, the algorithm
estimates the size ofp’s output buffer as equal to the size
of its minimum search interval, which is then stored in the
PS array (lines 1 – 3). Next, an in-place parallel exclusive
prefix-sum procedure [29] computes for eachj ∈ 1 . . . n,
PS[j] = ((

∑j
i=1 PS[i])−PS[j]) (line 4).PS[j] now contains

point B[j]’s starting offset in the output buffer.

The algorithm now processes a chunk of the output, such
that the size of the chunk does not exceed BUFFERSIZE

(lines 6 – 11). In the while loop,i refers to the index of the
first point inB whose output is to be computed. The algorithm
now obtains the offsetj of the last point inB whose output
will fit in the chunk by performing a binary search onPS with
the search keyk = i + BUFFERSIZE (lines 7 – 8). Procedure
BINARY SEARCH returns the offset position of the first point
whose output buffer offset is greater or equal tok. At this
point, the offset interval[i, j−1] refers to the range of offsets
in B that would be processed in this iteration of the while
loop. Line 9 invokes Procedure WALK INTERVALS to report
all results in the chunk, except that it now uses thePS array
to determine the proper offset where the result of a point would
be written. Note that the result buffer may contain a number of
empty positions that do not contain an output pair. To remove
these empty positions, we can apply a parallelcompaction
algorithm, described in [30].

Note that Algorithm 2 assigns a thread to each point in
B. An alternate approach more suited for GPUs would be to
assign a thread to each of pair in the result set. Using this
approach, we now briefly describe the steps performed by the
kth thread executing on the GPU. It first performs a binary
search on thePS array, with k as the search key, in order
to obtain the identity of a pair(p, q), wherep ∈ A, q ∈ B.
If D(p, q) ≤ ǫ, the thread stores the pair in thekth index
position of the result buffer, and terminates.

Algorithm 3
Procedure WALK INTERVALSCHUNKED[ZA, Mα, Mβ , R, n]
Input: ZA – SZL onA

Input: Mα, Mβ – minimum search interval offset arrays
Input: R – curve identifier array
Input: n – number of points to process
1. for i ∈ 1 . . . n pardo
2. PS[i] ← Mβ [i]−Mα[i]
3. end-for
4. PS ← PARALLEL PREFIXSUM(PS)
5. i ← 0
6. while i < n do (∗ process chunk∗)
7. k ← PS[i]+ BUFFERSIZE

8. j ← BINARY SEARCH(PS, k)

9. WALK INTERVALS(ZA, Mα[i . . . j − 1],
Mβ[i . . . j − 1], R[i . . . j − 1], j − i)

10. i ← j

11. end-while
12. return

5
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B. Input Size Constraints

Our algorithm assumes that bothA and B can fit in the
GPU’s memory. If this is not the case, we can apply adata
partitioning technique on bothA andB. We split A = A1 ∪
A2 ∪ . . . ∪ Aj into j arbitrary chunks, andB = B1 ∪ B2 ∪
. . . ∪ Bk into k arbitrary chunks, such that a pair of chunks
from A andB can fit in the GPU’s memory. We then process
pairs of chunks independently, effectively reducing the original
join A ⋊⋉ǫ B into j · k subproblems,A1 ⋊⋉ǫ B1 ∪ A1 ⋊⋉ǫ

B2 ∪ . . . A2 ⋊⋉ǫ B1 ∪ . . . Aj ⋊⋉ǫ Bk. This data partitioning
scheme has its drawbacks: ifj and k are large, too many
subproblems will bog down the execution time.

However, we can improve the above scheme’s work ef-
ficiency by creating partitions in such a way as to avoid
unnecessary work. For example, suppose that all the points
of a particular chunkAh are at leastǫ distance from all
points of another chunkBi. We know thatAh ⋊⋉ǫ Bi would
yield no results, and need not be processed. In fact, any data
partitioning technique, such as [9], [10], [12], can be usedin
conjunction with the LSS algorithm. These data partitioning
techniques reduce the original similarity join problem into
several subproblems of suitable sizes, which can then be
processed on the GPU using the LSS algorithm. Moreover,
each chunk can be several hundreds of megabytes in size,
to take advantage of the parallelism and high computational
throughput afforded by the GPU.

C. Building an SZL onA versusB

Our join algorithm’s time complexity is given by Equa-
tion (1). However, consider what would happen if the roles
of A andB were reversed; that is, the algorithm constructs an
SZL on B, and executes parallel interval searches for points
in A. The resulting time complexity is given by

O(d2 n

k
log2 n) + O(d

m

k
log n) + O(

m

k
f(d, ǫ)). (2)

Our algorithm therefore has two strategies to process a
similarity join: build the SZL onA, or build the SZL onB.
These strategies have time complexities given by Equations(1)
and (2). Observe that for both (1) and (2), the cost of creating
the SZL dominates the other two terms. Therefore, it is
advantageous to compute the SZL on the smaller ofA and
B. If |A| < |B|, strategy (1) is the best choice; otherwise,
strategy (2) is preferred. Moreover, if|A| and |B| are nearly
equal, our experimental results show that it is still best tocreate
the SZL on the smaller of the two datasets (see Section VI).

D. Changing SZL Size

Our algorithm constructs the SZL onA, which consists of
(d + 1) Z-lists on A. The SZL provides an upper bound on
the size of the search interval for each point inB. However,
creating the SZL requiresd + 1 invocations of the parallel
sorting algorithm. If we reduce the size of the SZL, we might
be able to reduce the algorithm’s total running time.

First of all, we point out that the correctness of our
algorithm does not depend on the SZL’s size. That is, the

algorithm would still produce the correct output with one or
any subset of the Z-lists onA. Furthermore, in some cases,
the cost of creating a Z-list onA will outweigh its benefit
in terms of reducing the sizes of minimum search intervals.
Most of the time, it is enough to only create a subset of the
d+1 space filling curves. In Section VI, we describe alternate
formulations of the LSS algorithm, where the SZL ofA may
contain fewer than(d + 1) Z-lists. Using extensive empirical
analysis, we provide heuristics for choosing an appropriate
SZL size that results in improved time efficiency.

E. LSS Variants

In this section, we discuss several variations of the similarity
join operation, and show how the LSS algorithm can be easily
modified to support these alternate formulations.

Computingk-nearest neighbors:With small changes, the
LSS algorithm can compute thek-nearest neighbors inA to
each point inB. Our approach is similar to the method used
in [7], [28] in order to computek exact and approximate
nearest neighbors to a query point. We exploit thelocality-
preserving property of space-filling curves, which states that
points that are close on a space-filling curve are usually close
in the originalRd space. As before, the algorithm computes the
SZL ZA on A. For eachp ∈ B, the algorithm then computes a
setKp of k approximate nearest neighbors top, by examining
all the points withink index positions ofp in any of the(d+1)
Z-lists in ZA.

Let pk be thekth approximate nearest neighbor top in Kp.
We point out that the actualk closest point top can be no
farther thanǫp = D(p, pk) from p. The algorithm therefore
searches a hypercube of side length2 · ǫp centered atp, which
is guaranteed to contain the actualk nearest neighbors top. It
proceeds as before, except that everyp has a different search
region. The algorithm reports thek closest points contained
in the minimum search interval inZA, as defined byǫp.

Computing a self-join:If A and B point to the same
datasetS, our algorithm will report each pair twice – two
pointsp, q ∈ S within distanceǫ of each other would produce
(p, q) and (q, p) in the result set. Fortunately, we can make
a simple modification to the LSS algorithm to eliminate
duplicate pairs from the result set, and at the same time speed
up the algorithm’s execution. For eachp ∈ B, Algorithm 1
performs a region search corresponding to a hypercubeR of
side length2 · ǫ centered atp, such thatpT (−ǫ) andpT (ǫ) are
the two antipodal points ofR. We modify the algorithm to
instead search a hypercubeR′ of side lengthǫ, such thatp and
pT (ǫ) form the two antipodal points ofR′. The algorithm also
ignores any pairs(p, q) wherep = q. To ensure the modified
algorithm’s correctness, note that ifp �Z q, the pair (p, q)
would be in the result set; otherwise,(q, p) would be reported.
Moreover, asR′ is smaller thanR, this simple modification
results in smaller minimum search intervals, which translates
to a more time-efficient algorithm.

Using other space-filling curves:Instead of using the
Z-order for building curves in the SZL, other space-filling
curves could be used, such as Hilbert curves [4]. We can
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TABLE I

PROPERTIES OF THECOREL IMAGE FEATURES DATASETS

Dataset Size Dimensions
ColorHistogram 68,040 32
ColorMoments 68,040 9
CoocTexture 68,040 16

LayoutHistogram 66,616 32

define theHilbert-ordering relation analogously to the Z-
ordering relation (Section IV):p �H q ⇐⇒ H(p) ≤ H(q).
Unfortunately, the Hilbert curve does not satisfy Lemma 4.1,
as adapted to the Hilbert-ordering relation. That is, if a point q

dominates another pointp, it is not always true thatp �H q.
As a result, it would not be sufficient to only examine the
minimum search interval spanned by the search regionRǫ(p).
All the points spanned by the minimum search interval of
the smallest r-regionR+ containing Rǫ(p) would need to
be examined, leading to more distance computations than the
original algorithm using the Z-ordering relation. In addition,
computing H(p) takes more computation time thanZ(p),
which would further slow the similarity join.

However, as Hilbert curves have better locality-preserving
behavior, using Hilbert curves for the SZL would improve
the approximatek-nearest neighbors variant discussed earlier.
EachKp computed by the algorithm would be more accurate,
and thus improve eachǫp estimate.

Producing sorted output:Our join algorithm can be used
in complex query processing scenarios (e.g., cascading join
operations [31]), where it is beneficial for the similarity join
output to be sorted, or in some cases, to preserve the ordering
of one of the input datasets. Our algorithm uses the prefix-sum
operation to allocate output buffer space, which preservesthe
input ordering ofB in the result set. Furthermore, an additional
sort of the result set can preserve the original ordering of
A. Note that the minimum search interval for a point inB

contains the index positions of points inA, some of which
are added to the result set if they are within a distanceǫ.
The result set therefore contains pairs(p, q), such thatp is
the index position of a point inA. By applying a stable sort
to the result set, where pairs(p, q) are arranged in increasing
order of p, we restore the original ordering of points inA.
The result set now has a primary ordering based onA, and a
secondary ordering onB.

VI. EXPERIMENTAL ANALYSIS

We performed experiments on both synthetic and real-world
datasets. For our synthetic data, we generated datasets drawn
from an uniform distribution of up to 4M points and 1024
dimensions. Our real-world data consists of the four datasets
from the Corel Image Features collection, available from the
UC Irvine KDD repository [32]. These datasets contain image
features extracted from a collection of over 60,000 photo
images. Table I lists the properties of the Corel datasets used
in our evaluation.

All our experiments were performed on a quad-processor
Intel Xeon 2.4GHz with 1GB main memory, running Red Hat

Enterprise Linux 3; one processor was dedicated to running
the experiments. We executed LSS on a NVIDIA GeForce
8800 GTX, with 128 stream processors and 768MB of device
memory. It was implemented using the C++ interface of
the NVIDIA CUDA Toolkit version 0.9, and was executed
with the NVIDIA Display Driver version 100.14.10. The
EGO [9], [11] and GESS [10] algorithms were implemented
in C++, and were allowed buffer sizes large enough to fit
the entire dataset in main memory. We incorporated some
of the improvements to the EGO algorithm suggested by
Kalashnikov and Prabhakar [11]. The GESS algorithm was
implemented using a Hilbert space-filling curve [4], and the
size of the algorithm’s sort codes were limited to256 bytes.
Moreover, we adjusted the value ofk in the GESS algorithm in
order to ensure good performance. The times reported in our
experiments is the sum total of the index construction time,I/O
time, and join processing time. In practice, we found I/O times
to be insignificant when compared to the actual join processing
times, so they are not shown separately in our experimental
results. Furthermore, all our experiments used the Euclidean
(L2) distance metric.
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Figure 3. Execution times on uniformly-distributed data, for (a) varyingn

up to 4M points,ǫ=0.1, d=16, and (b)n=256k, varyingǫ, d=16

Figure 3 shows the execution times for EGO, GESS, and
LSS when processing uniformly-distributed random data. Fig-
ure 3a shows that both EGO and LSS outperform GESS for
all tested values ofn. For 1k ≤ n ≤ 1M, LSS is faster than
GESS by factors of 21.2-44.1. EGO is slightly faster than LSS
for n < 2k, but LSS performs better for largern, with an
improvement factor of 6.8 atn = 1M points. LSS’s speedup
is more apparent asǫ increases, as shown in Figure 3b. For
0.01 ≤ ǫ ≤ 0.35, LSS outperforms GESS by factors of 5.5-
118.3, and its speedups over EGO are 3.6-26.9.

Figure 4 shows the results for the EGO, GESS and LSS
methods when applied to our four real-world datasets, for
varying values ofǫ. We can see that LSS shows dramatic per-
formance improvements over GESS, with improvement factors
of 1.6–117.2 over the values ofǫ examined. Furthermore, on
average, LSS is 10.2 times faster than EGO.

In Figure 5, we show LSS’s execution time in terms of
its two principal components: the time taken to construct
the SZL on A (SZL), and the time taken to examine the
minimum search intervals of all points inB (IS). We can
see that onlyd affects SZL construction time, but the IS time
depends on bothd andǫ. As shown in Figure 5a, for smaller
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Figure 4. Execution times for varyingǫ on (a) ColorHistogram, (b)
ColorMoments, (c) CoocTexture, and (d) LayoutHistogram
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Figure 5. LSS execution time in terms of SZL construction andinterval
search, for (a)n=256k, varyingǫ, d=16, and (b)n=64k, ǫ = 0.1, varying d

ǫ < 0.2, the SZL construction dominates LSS’s running time,
as most points inB have small minimum search intervals due
to the smallǫ. However, for ǫ > 0.25, the interval search
starts dominating the total running time. Figure 5b shows the
effect of increasing dimensionality of the input datasets.For
smalld, IS time dominates LSS’s total running time, but SZL
construction time quickly overtakes the interval search time at
d = 4. This observation can be explained as follows. First,
every additional dimension adds another Z-list to the SZL,
thereby increasing the SZL construction time. Second, for
uniform data, increasingd while holdingn andǫ constant will
produce fewer pairs of points in the result set, so the average
minimum search interval will span fewer points.

In Section V-C, our analysis of the LSS algorithm showed
that it is beneficial to build the SZL on the smaller of its two
input datasets. Figure 6 shows our experimental results, which
confirm our earlier hypothesis. Here, we will refer to the larger
dataset asL, and the smaller dataset asS. The curve labeled
“SZL-L” refers to an LSS variant where the SZL is constructed
on L, while “SZL-S” corresponds to building the SZL on
S. Furthermore,L’s size was fixed at 4M points, while the
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Figure 6. Effects of creating the SZL on the larger dataset (n=4M) versus
the smaller, forǫ=0.1,d=16

size ofS was varied. Figure 6a shows that the total execution
time for SZL-L is large, since the SZL construction dominates
the execution time. In contrast, SZL-S scales smoothly as|S|
increases, indicating that its execution time is more balanced
between the SZL construction and interval search. Figure 6b
shows the average minimum search interval (MSI) size per
point, for both the SZL-L and SZL-S variants. As expected,
SZL-L examines smaller minimum search intervals than SZL-
S for smaller values of|S|. However, for |S| > 10k, the
average minimum search intervals for SZL-L and SZL-S are
almost equal, indicating that there is no benefit from building
the SZL onL.
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Figure 7. Execution times of LSS variants for (a) varyingn, ǫ=0.1, d=16,
and (b)n=256k, varyingǫ, d=16

We now examine the performance of the LSS algorithm
when using a different set of translation vectors (described
in Section IV). In Figure 7, we compare standard LSS’s
execution time to that of two of its variants: “Uniform-log d”
and “Random-d”. The Uniform-log d variant creates(log d+1)
Z-lists, such that the translation vectors are uniformly chosen
between[0, 1], while theRandom-d variant generates(d+1) Z-
lists, with randomly chosen translation vectors between[0, 1].
The expected performance of the latter variant is discussed
in [15]. Figure 7a shows comparison results for varyingn and
ǫ fixed at 0.1. Uniform-logd performs better than standard
LSS and Random-d, while Random-d has performance results
similar to standard LSS. Figure 7b shows the effect of varying
ǫ while keeping n constant. Forǫ < 0.2, Uniform-logd

outperforms both standard LSS and Random-d, by a factor
of 3 at ǫ = 0.01. However, for largerǫ, LSS outperforms the
Uniform-logd, showing an improvement factor of 2 atǫ = 0.4.
In general, asǫ increases, it is worthwhile to generate more
Z-lists for the SZL.
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Figure 8. Effects of reducing SZL size for (a,b)ǫ=0.1, d=16, (c) n=64k,
d=16, and (d)n=128k, ǫ=0.1

LSS’s performance varies significantly when the SZL’s size
is altered, as discussed in Section V-D. We examined the
effect of SZL size on execution time and average size of the
minimum search interval, in order to determine the best SZL
size for any similarity join scenario. Figure 8 shows our results
for varying SZL sizes and uniformly spaced translation vectors
depending on the SZL size. As is clear from Figures 8a and 8b,
n does not play a role in determining the optimal SZL size. In
contrast, Figure 8c shows that the best SZL size depends on
ǫ; for 0.01 ≤ ǫ ≤ 0.10, the optimal SZL size is between 4-8
Z-lists. It also shows that asǫ increases, it is worthwhile to
create more Z-lists, as it improves both LSS’s time and work
efficiencies. Figure 8d shows that ford ∈ {16, 64, 256}, the
best SZL sizes were 9, 6, and 5, respectively.

VII. CONCLUSIONS

In this paper, we introduced the LSS algorithm, a time-
efficient algorithm to perform similarity join queries on the
GPU. The algorithm uses the SZL data structure, which strikes
a good balance between time and work efficiency. The SZL is
a simple data structure that can be easily adapted to perform
other parallel database operations on the GPU. In our future
research, we will perform a more rigorous analysis of the
SZL data structure, and investigate its applicability to other
operations on high-dimensional databases. We will also further
explore the effect of varying the SZL’s size and using different
sets of translation vectors.

GPUs represent a new generation of inexpensive, widely-
available parallel machines, but CPUs will eventually catch
up in terms of parallel processing power. Already, modern
CPUs feature multiple cores on-chip, allowing several threads
to execute in parallel. As CPUs continue to become more like
parallel machines, we believe that algorithms like LSS will

become increasingly relevant for mainstream database query
processing.
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