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Abstract 

The size of five hierarchical geometric data  structures is investi- 
gated analytically using random image models. Upper bounds on the 
size of the structures, as well as some lower bounds, are derived. The 
results are useful in predicting the storage required by the structures 
as well as the performance of algorithms that  rely on them. 

1. INTRODUCTION 
Hierarchical geometric data  structures employ a representa- 

tional scheme which can be applied a t  different spatial resolutions. 
These structures are used for many different types of data  including 
points, regions, lines, rectangles, surfaces, volumes, etc. The region 
quadtree [2,3] is one such representation for two-dimensional region 
data  (e.g., an image). I t  enables the performance of many operations 
on images by substantially faster algorithms while maintaining a 
relatively compact representation [9,10]. 

For evaluating the space required for storing these structures 
and the performance of algorithms based on them, i t  is desired to  
predict their size. This is complicated by the fact that  the structure 
of these representations depends on the data  being represented. 
Traditional worstcase analysis is often inappropriate because the 
worst case tends to  be both very bad and highly improbable. Thus 
most approaches to  the analysis of hierarchical structures have been 
statistical in nature. Tamminen [13] considers the performance of 
quadtrees and binary t,rees under the assumption that  the image con- 
sists of a single random line. Mathieu et al. 141 and Puech and Yahia 
[SI, investigate the size of quadtrees and some other related questions 
using some assumptions on the branching probabilities of nodes in 
the tree. Nelson and Samet [5-71 consider the distributions of node 
occupancies in hierarchical geometric data structures which store a 
variable number of geometric data items per node. This approach is 
similar to hashing where each node acts like a bucket. 

Although these approaches sometimes lead to  remarkable agree- 
ment between theory and simulation [l,G], they have a common 
drawback. The explicit model of the image on which the statistical 
analysis is done is either exceedingly simple or i t  is not given a t  all 
and is just implied from other assumptions. Thus the connection 
between the analysis and the performance with real image data is not 
clear. 

A nonstatistical approach was applied by Hunter and Steiglitz 
[2] to show that for a polygon of perimeter I ,  the size of the 
corresponding region quadtree is O ( l )  (i.e., the number of nodes). 
This classic result, although depending on the data, has been 
observed to be sufficiently general to  be used for predicting perfor- 
mance of a number of algorithms for different images represented by 
a region quadtree. 
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In the paper we investigate the use of a random image model 
consisting of A4 randomly drawn lines. We analyze five variants of 
the quadtree that  can be built for data that  obey this model, by 
determining the expected number of nodes in each of them. These 
variants are the region quadtree [2,3], the MX quadtree [2,9], the P M  
quadtree [ll], the PMR quadtree [5-71, and a new representation sug- 
gested here which we call a modified PMR quadtree. 

The rest of this paper is organized as follows. Section 2 gives a 
brief overview of quadtrees, including the definitions of the five vari- 
ants that  we analyze. Section 3 presents the random image model(s) 
and reviews some necessary results from geometric probability. Sec- 
tion 4 contains the statistical analysis and the result of its applica- 
tion to  each of the afore-mentioned quadtree variants. We conclude 
in Section 5 with an interpretation of this analysis as well as a d i s  
cussion of its application to a more general image model. 

2. OVERVIEW OF QUADTREES 
A quadtree is a hierarchical variable resolution data  structure 

based on the recursive partitioning of the plane into quadrants. It 
can be viewed as a 4-ary tree where each node represents a region in 
the plane called a block, and the sons of each node represent a parti- 
tion of that region into four parts. This scheme is useful for 
representing geometric data  a t  a variable resolution. Quadtree vari- 
ants exist for representing planar regions, collections of points, and 
collections of line segments, as well as more complicated objects (e.g., 
rectangles). Generalization of the principle to  three and higher 
dimensions (e.g., octrees [9,10]) have also been investigated. They 
have many of the same basic properties. 

The different variants of the quadtree can be subdivided into 
two categories: those based on a regular decomposition of space 
using pre-defined boundaries, and those where the partition is deter- 
mined explicitly by the data  as i t  is entered into the structure. For 
most applications, regular decomposition works a t  least as well as the 
data-based decomposition. Moreover, regular decomposition is easier 
to  implement and analyze. In this paper, we consider only structures 
based on a regular decomposition. Another distinction is between 
quadtree variants whose maximal depth (say N )  is bounded and 
those for whom i t  is not. From the structure that  we discuss, only 
the PMR quadtree has an unbounded maximal depth. 

The condition used to  determine when a quadtree block should 
be partitioned is called a splitting rule. This rule is usually a func- 
tion of the data  that  is associated with the block-i.e., the condition 
is evaluated using local information. The exact formulation of the 
rule depends on the type of the data  being stored. We consider the 
following quadtree variants. 

A region quadtree represents planar regions and its splitting 
rule is such that  a block is split if both the depth of its corresponding 
node is smaller than N and if the region represented by the block is 
not homogeneous. 

An MX quadtree represents a collection of line segments on the 
plane. Its splitting rule is such that  a block is split if both the depth 
of its corresponding node is less than N and if the block contains a t  
least one line. 
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A P M  quadtree represents collections of line segments in the 
plane. Its splitting rule is such that  a block is split unless the depth 
of the corresponding node is N,  or only one line passes through the 
block, or all the lines that  pass through the block meet at a point 
within the block. This is a variant of the PMI quadtree [11]. It 
differs from the PMI quadtree by virtue of having a bound on its 
depth. 

A (generalized) PhlR, quadtree also represents a collection of 
line segments but is defined in a different way. I t  depends on a 
parameter q and is created as a dynamic result of a sequence of 
insertions of line segments using a splitting rule such that  a block is 
split once if the block is both intersected by the new segment and 
already contains q or more segments. Note that  this structure does 
not have a prespecified maximum depth. The resulting decomposi- 
tion depends on the order in which the line segments are inserted. 
Moreover, the number of line segments represented by any leaf node 
is not guaranteed to he less than or equal t o  q , 

We also define a new hierarchical structure called a modified 
PMR, quadtree that  resembles a PMR, quadtree. I t  represents col- 
lections of line segments on the plane using a splitting rule such that 
a block is split if both the depth of its corresponding node is less 
than N and more than q segments pass through the block. This 
structure has a prespecified maximum depth. The resulting decom- 
position does not depend on the order in which the segments are 
inserted, and the nuniber of segments stored in a leaf node whose 
depth is less than N is guaranteed to  be less than or equal to q , 

3. RANDOM IMAGE MODELS 
The quadtree variants discussed in this paper represent 

geometric structures which are instances of a random process 
described as follows. Let us characterize a line by the two parame- 
ters p and 0 .  The line L ( p , 0 )  consists of the points ( r , y )  satisfying 
the relation 

L(p ,O)={(z ,y ) l z  c o d +  ysinO=p}. 

In this case L ( p , 0 )  is perpendicular t,o the line between the origin and 
the point (p,0).  Define R and T so that  

R = { ( z , ~ ) l  I ~ I , I Y  I <aN-') 

T = { ( p , 0 )  I L (PJ) n R # ~ ~ L P L Y  1. 
and 

It should be clear that  T includes all the parameter pairs ( p , 0 )  that  
represent lines that  intersect the x 2 N  square grid. 

Let us define a probability density function p ( p , 0 )  

where 

IT I = J , d p  d e .  

This distribution, called the uniform density distribution, is the only 
one which ensures that  the probability of choosing a particular ran- 
dom line is independent of the coordinate system in which p and 0 
are defined (i.e., it is independent of the translation or rotation of the 
coordinate system [la]). 

We use a random image model where each image consists of M 
random lines chosen independently using the probability distribution 
(1). The geometric structure created as an instance of the model 
consists of an 2 N  x z N  image containing exactly M line segments 
whose endpoints intersect the boundary. From the continuous proba- 
bility distribution it follows that  no three lines can intersect in the 
same point as this is a zero probability event. This follows by 
observing that  two intersecting lines define a point, say Q ,  which can 
be regarded as prespecified for the third line, say H ,  and the proba- 
bility that  a random line (i.e., H )  passes through a given point (i.e., 
& )  is zero. 

The above model is useful for predicting the sizes of all but the 
region quadtree which represents regions rather than lines. This 
leads us to  the following variation of the above model, which we 
term a modified random image model. In this case, each image con- 
sists of black and white regions separated by A4 random lines chosen 
independently using the uniform probability distribution (1). The 
actual colors of the individual regions do not affect the total number 
of nodes. The resulting image can be interpreted as follows. Choose 
one of the regions at random and let it be black. Let all of its neigh- 
bors be white. Let all of the white node's uncolored neighbors be 
black. Repeat this process until all regions are colored. 

Before starting the analysis, we first recall two results from 
geometric probability which form the basis of our results [la]. 

Geometric Probability Theorem 1 (GPT1): Let C1 be a con- 
vex planar set  included in the convex planar set C C R . Let L ,  and 
L be the perimeters of C,  and C', respectively. Let I be a random 
line chosen using the uniform probability distribution (1) .  Then 

LI 
P { I  n c l f O  I 1  n c # @ I  = I 

Geometric Probability Theorem 2 (GPT2): Let C C R be a 
convex planar set  with area A and perimeter L . Let I be a random 
line chosen using t,he uniform probability distribution (1). Suppose 
that  I intersects with C and creates a chord H with length I H I .  
Then 

TA 
E [  IN I 1  = 7' 

4. STATISTICAL ANALYSIS OF QUADTREES 
An image defined as in Section 3 is an instance of a random 

process. It follows that  its hierarchical representation, using one of 
the quadtree variants, is also a random process. Moreover, the 
existence of a node in the tree, or its being a leaf, are random events. 
We  make the following simplifying assumptions: given nodes U and 
U which exist in the tree, the events {node U is a leaf} and {node z) 

is a leaf} are statistically independent. Assume further that  the con- 
ditional probability 

depends only on d ,  the depth of U in the tree. Let Pd denote this 
probability. Although the statistical independence assumption does 
not necessarily hold for certain pairs of nodes (e.g., two nodes which 
are brothers), we claim that  the assumption is reasonable for most 
pairs of nodes which correspond to small distant regions intersected 
by different lines. 

Let Sd be the number of nodes a t  depth d ,  and let S be the 
total number of nodes in the tree. The expected number of nodes at 
each depth is given by 

p { U has 4 eons 1 U ezista in the tree } 

E [So] So= 1 

E [SI] 7 Po.So.4 = Po.4 

and as implied from the statistical independence 

E [ S z ]  = P1.E(S1].4= poP1.4~ 

E[S3] = P,.E[S,].4 =PoP1P2.43 

and 

(3) 

Equation (3) urhich give:: the espcctcd number of nodes in the 
tree serves as the basis for our analysis. Below we focus on splitting 
rules for each of t,he quadt,ree variants discussed in Section 2. For 
each rule, we derive the corresponding probabilities Pd, and then use 
equation (3) t o  calculate the espected size of t,he data  structure. 
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4.1. MX QUADTREE 
An MX quadtree represents a collection of line segments on the 

plane. I t  partitions the plane into square blocks using the splitting 
rule such that  a block is split if both the depth of its corresponding 
node is less than N and if the block contains a t  least one line. If the 
block does not contain a line, then i t  is not subdivided further and 
its corresponding node is a leaf. Otherwise, i t  is subdivided and its 
corresponding node has 4 sons. 

4.1.1. ANALYSIS 
In order t o  compute the probabilities P d ,  we use the following 

argument. A node a t  depth d corresponds to  a ZN-* X 2N-d square. 
The geometric probability theorem GPTl implies that  a particular 
random line passes through this region with probability 

4.2N-d 1 
pd=-- 4.2N -(TId' 

The probability that  exactly k out  of M lines pass through this 
region is 

r 1 

(4) 

The probability that  one or more lines pass through this region is 
M 

P;=1-pd,O=1- [1-(+)'] . (5) 

The existence of a node U at depth d in the tree implies that  a t  least 
one line passes through the region corresponding to  its father node. 
Thus, w exists in the tree with probability and 

Inserting (5) and (6) into (3) we get 
N d-I 

d=1 i - I  
E [ S ]  = C 4 " r I P i  

(7) 

where we use the fact that  apart from the trivial case that  A4 = 0 ,  

Below we compute a bound on the number of nodes in the tree 
by first calculating i t  as a function of a parameter j3 defined by (8), 
so that  i t  holds for every value of j3. Next, we find the tightest 
bound by determining the value of j3 which minimizes the bound. 
We also use an additional parameter do to  facilitate this task. The 
two parameters j3 and do are chosen t o  satisfy 

P&= 1. 

M(+)d0=/3< 1 (8) 

j3 and do will be adjusted later t o  obtain the tightest bound. Decom- 
pose EIS]  into two sums cl and C2 

Taking the binomial expansion of c2 we get 

changing the order of summation and separating the k = 1 and 
k = 2 cases, we get 

c2= c3+ e4 + e5 (12) 

Note that  all approximations performed while calculating cl, c3, 
and c6 can also serve as upper bounds since the approximated value 
is always larger than the real value. We continue by summing all 
contributions which are partly expected values and partly upper 
bounds for expected values, to  get 

E[SI = c1+ c3+ e, + e6 

5 4.M.2N - 2 . f l . N  + M2 

4.1.2. INTERPRETATION 
The value of E [ S ]  given by (16) is an upper bound on the 

number of nodes in a MX quadtree. Now the value of j3 (and the 
corresponding value of do) ,  may be chosen t o  minimize it.  This 
method of calculation is motivated by the observation that  for a 
large number M of lines and for a small depth d < do of the tree, 
most nodes exist a t  this depth and may be counted. 

The approximations in (IO), (13) and (15) are good when 
l<<do<<N, but  they hold as bounds for any chosen value of d o  
(1 5 d o  <_ N). The bound in (15) is not very tight and better bounds 
that  depend on specific values of A4 should probably be used. How- 
ever, we have chosen to  use our approximation as i t  has an intuitive 
physical basis. 
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Asymptotically, the dominant contribution to  the number of 
nodes comes from the first term in ( l G )  which may be transformed 
into a more familiar form using Theorem GPT2. The expected total 
length of all lines in our geometric structure is 

Substituting (17) into the first term of ( l G )  we get 

(18) 
l G  E [S] = ,E[[]; 

In other words, the expected number of nodes in an MX quadtree is 
proportional t o  the length of the curve, a result already derived 
under different models 121. 

4.1.3. A N  APPROXIMATED LOWER BOUND 
The derivation of E [ S ]  given by (9)-(1G) can serve as a basis of 

an approximation of a lower bound on the expected number of nodes. 
E [ S ]  consists of the contributions of El, c3, x4, and E,. E, is 
an exact value and E3 is a good approximation for (Note 
that  when M == ? N ,  d o  0.) Cl must be positive and 

E, can be easily bounded from below by - 4 M ' L .  Thus, 
3 1 - p  

E, + E,- 4 hi@B. is an approximation of a lower bound on 

N and E3 

3 1-8 
EIS]. 

Furthermore, for large N ,  El, x4, and E, are small with 
respect t o  e,. Thus the difference between the upper bound and the 
approximation of the lower bound is small, and hence each of these 
two bounds is itself a good approximation of E [ S ] .  

4.2. REGION QUADTREE 
A region quadtree represents regions in the plane. It partitions 

the plane into square blocks using the splitting rule such that  a block 
is split if both the depth of its corresponding node is smaller than N 
and if the region represented by the block is not homogeneous. If the 
block is homogeneous, then it is not subdivided further and its 
corresponding node is a leaf. Otherwise, i t  is subdivided and its 
corresponding node has 4 sons. 

Assuming the modified image model described in Section 2, the 
expected number of nodes in a region quadtree follows directly from 
the derivation in Section 4 . 1 .  Consider an hlX quadtree correspond- 
ing to an  image which is an instance of the basic random image 
model (and thus contains hf line segments). Consider also a region 
quadtree representing a second image which consists of regions 
separated by the line segments of the first image. It is clear that  
both trees have the same structure (with the only difference being the 
contents of each of the nodes). It follows that  the st,atistical proper- 
ties of a region quadtree corresponding to  an instance of the modified 
random image model are exactly the same as the properties of an  MX 
quadtree corresponding to  an instance of the basic random image 
model, Hence, the expected number of nodes in a region quadtree is 
bounded from above by (lG). 

4.3. PM QUADTREE 
A Phl quadtree represents a collection of line segments in the 

plane. It partitions the plane into square blocks using the splitting 
rule such that  a block is split unless the depth of the corresponding 
node is N ,  or only one line passes through the block, or all the lines 
that  pass through the block meet at a point within the block. If the 
block contains a single line or all the lines pass through a common 
point in t,he block, then it is not subdivided further and its 
corresponding node is a leaf. Otherwise, it  is subdivided and its 
corresponding node has 4 sons. According to  our model of a random 
image, the probability that  three or more lines intersect at a point is 
zero and hence this case may be neglected. 

4.3.1. ANALYSIS 
Let us define a as the probability that  two lines intersect inside 

a square region, say Q , given that each of these lines passes through 

Q .  For a square 2 N - d  X qN-' region (0 5 d 5 N), the probability 
that  the splitting conditions of a P M  quadtree are satisfied may be 
written as 

= l - ? ' d . O - P d , l - f f ' P d . 2  (19) 
where pd,k is the probability that  exactly k of M lines pass through 
a square region of side ? N - d .  

Inserting (20)  in (3) and using a derivation similar t o  that  used to  
obtain (7), we get 

Once again we assume tha t  Pb is 1. Now, let us once again choose a 
depth do and a constant p such that  

Xf(+)do= p < 1. (??) 

Once again, p will be adjusted later to  obtain the tightest bound. 
We now decompose EIS]  into two sums Cl and x2  

d.. 

d=do+l (23) 
d = l  

A bound on E, is obtained as follows. 

(24) 

E, is evaluated by taking its binomial expansion to  get a sum of the 

powers of (+)d (i.e., (i)', ( + ) d ,  ($)2d, .  . . ) .  The (+)' and (L)d 
terms cancel out  and we get 

2 

Changing the order of summation and separating the k = 2  case we 
get 

E2 = E3 + E4 (26) 

(27) E, = d=do+l E C 2 ( i ) 2 d - 2 4 d  = 2(1- a)M(hf - 1)(N - d o )  

Now, let us examine the coefficients C, . 
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I t  can be shown that  

Inserting (30) into (28) and accounting for the worst cases leads to  

These bounds, which do not depend on any assumptions and hold for 
any value of a, demonstrate that  the contribution of c4 t o  E [ S ]  is 

In order to  achieve a tighter bound on x4, (Y is approximated 
as follows. Suppose that  one line creates a chord of length I ,  say HI, 
when intersected with a 2N-d x 2N-d square. From G P T l  we have 
that  a second random line, say Ha,  chosen using the probability d i e  
tribution given by (1) intersects with chord HI with probability 

O ( P ) .  

21 p { H 2  intersects H I }  = 

Note that  we assumed that  the line H I  is a convex set of zero width 
but  perimeter 2.1. In order to  compute this probability we should 
integrate over all possible chord lengths for H I .  Instead, we use an 
approximation by assuming that  I equals its expected value which is 
given bv GPT2  as follows. 

Under this assumption we get: 

Inserting this value of (Y in (29) yields 

- 1.04 M 2 L  < E, 5 0.21 M 2 A  
1 - p  - 1 - P  (33) 

We checked e, for several values of M and found that  only the 
k = 3  term was significant. Furthermore, we also found that  the 
total contribution of e, to EIS] is negative. Collecting the contri- 
butions of cl, c3, and e, we have 

EIS1 = El + E3 + c4 

5 ?(1- $)M(Af - l )N + lvf Q 1 + 0 ? l P - ? ( l -  f) log,- 
[ 3  @ 1 - 8  8 

j3 may be chosen to  minimize (34) but i t  must obey (22). Note that  
the first term in (34) is exact (it corresponds to  e,) while the second 
is only a bound which is not very tight. Even this nontight bound 
(i.e., the second term in (34)) makes a negative contribution to  the 
total number of nodes when the number of lines exceeds some modest 
threshold (e.g., for M =  lG,32, . . . and P = O . 5 ) .  
4.3.2. INTERPRETATION 

The number of possible line pairs in the image is . Multi- 

plying i t  by Q yields the expected number of intersections. Approxi- 
mating Q by E=0.5 leads to  approximately - vertices (line inter- 

sections) in the whole image. By only considering the dominant first 
term in (34), which is roughly proportional t o  AP, the  model may be 
interpreted as predicting that  the subdivision stops a t  the maximal 
depth N for approximately one path in the tree in the neighborhood 
of each vertex. 
4.3.3. AN APPROXIMATED LOWER BOUND 

The expected value of E [ S ]  consists of three terms cl, C3 
and e,. e, is an exact value, cl is positive, and E, is bounded 

from below by - 1 . 0 4 P h P .  Hence, E 3 - 1 . 0 4 A h 1 2  is a lower 

bound for E [ S ] .  Note that  attempting to improve the bound by 
choosing a small value of f l  would fail as this requires that  d o  have a 
higher value which means that  E3 has a lower value. Only for a 

I3 
M2 

8 4 

1 - P  1 -B  

very large value of N are cl and E, negligible in comparison with c3. This is because e, and c4 are independent of N while c3 
depends on N .  In this case, the difference between the upper bound 
and the approximation of the lower bound is small and hence each of 
these two bounds is itself a good approximation of E [ S ] .  
4.4. MODIFIED PMR QUADTREE 

A modified PMR, quadtree represents a collection of line seg- 
ments in the plane. It partitions the plane into square blocks using 
the splitting rule such that  a block is split if both the depth of its 
corresponding node is less than N and more than q segments pass 
through the block. If the block contains q or less line segments, then 
i t  is not subdivided further and its corresponding node is a leaf. 
Otherwise, i t  is subdivided and its corresponding node has 4 sons. 

We start our analysis by discussing a modified PMR, quadtree 
with q = 2 .  The probability that  the splitting conditions are 
satisfied may be written as 

4 =l-Pd,O-pd.l-pd,2- (35) 
Using the same techniques as in Section 4.3, we define and do as in 
(22) and  decompose the sum corresponding to  E [ S ]  into three- sums 
Cl? c3, and c4 

EIS1 = E* + E3 + cc (36) 
c3 vanishes in this case ( since Q = l), the bounds given by (31) on c4 hold, and thus 

E [ S ]  5 Lhf I+ A- 
3 IS? I -a1 

For example, for M = 4, 8, 16, . . let a= 0.5 and we have 

(37) 

The bound given by (38) means that  for a PMR, quadtree the 
number of nodes is proportional t o  the number of vertices, and does 
not depend on the maximal depth N .  Therefore, almost everywhere, 
the subdivision stops before the maximal depth. 

For q > 2 the analysis is a little more complicated but  the 
results are essentially the same. The probability that  the splitting 
conditions are satisfied may be written as 

Pi=l-pd.O-Pd,l-Pd.2- ’ ’  ‘ -pd,q (39) 
Inserting (39) in (3) and decomposing the sum as before using the 
parameters p and do, we may obtain a slightly lower bound for 
q > 2. For example, if q = 3, then i t  is possible to show that  

ck < LMk 
24 

and for P = 0.5 

It is not possible to reduce this bound by much (even for higher 

values of q )  since the first term, cl, remains - -. 
4.6. P M R  QUADTREE 

A PMR, quadtree represents a collection of line segments in 
the plane. I t  depends on a parameter q and is created as a dynamic 
result of a sequence of insertion of line segments using the splitting 
rule such that  a block is split if the block is both intersected by the 
new segment and already contains q or more segments. The block is 
subdivided at most once when a new segment which intersects i t  is 
entered into the structure. Clearly, this may not be enough to ensure 
that  the number of lines represented by each leaf is q or less. Since 
the maximal depth is not known in advance, a rule that splits each 
block until no more than q lines intersect with it may lead to  an 
infinite tree. For example, suppose that  more than q line segments 
intersect a t  a given point. The PMR quadtree splitting rule prevents 

4 M 2  
3 p a  
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such complications. Note that for our model of a random image this 
problem cannot arise as the probability that  three or more lines 
intersect a t  a point is zero. 

Consider the following image generation process. First, create 
a PMR quadtree (with some q )  which represents a collection of line 
segments using our random image model. Next, recursively subdi- 
vide every block which contains more than q line segments until 
every block contains a t  most q line segments. This process results in 
a different representation which must be finite since i t  is impossible 
for q + l  lines to  intersect a t  the same vertex in our model. This 
representation is the modified PhfR quadtree discussed in Section 4.4. 
Hence the modified PMR quadtree corresponding to an instance of 
the random image includes all the nodes in a PMR quadtree 
corresponding to the same image. It follows that the modified Ph4R 
quadtree always contains more nodes than the corresponding PMR 
quadtree, and thus all upper bounds derived from the expected 
number of nodes in a modified PMR quadtree (37-39) also hold for 
the PMR quadtree. Note that  these bounds were independent of N, 
the maximal depth of the modified PMR quadtree. 
5. DISCUSSION 

A number of hierarchical geometric data structure were investi- 
gated using random image models. Four structures which represent 
collections of line segments and one which represents planar regions 
were presented, and an appropriate model was developed for each of 
them. Upper bounds on E I S ] ,  the expected number of nodes, were 
found for each of the representations. Lower bounds and approxima- 
tions were also derived for some of the cases. Given A4 line segments 
and a maximum depth N (where i t  is part of the definition of the 
representative), these bounds lead to the following asymptotic results 
on the expected number of nodes: 

R e g i o n  quadtree  E [ S ]  = O(Ai.2N) 
A f X q u a d t r e e  E [ S ]  = O ( M . 2 N )  
P A i q u a d t r e e  E[S] = O ( M z . N )  

P M R  quadtree  E IS]  = O(M2) 
Modi f ied  PMR quadtree  E [ S ]  = O(Af2) (41) 
The main conclusions that  can be drawn from these results are 

as follows. For h a  (and region) quadtrees, the number of nodes is 
proportional to the total length of the line segments (or the region 
boundaries). This conclusion confirms a similar result obtained by 
Hunter and Steiglitz [2]. For P M  quadtrees, the number of nodes is 
proportional to  the product of the number of intersections between 
the line segments and the maximal depth of the tree. It also appears 
that  in the neighborhood of most intersection points the subdivision 
stops only a t  the maximal depth (i.e., N). For PMR quadtrees and 
modified PMR quadtrees, the number of nodes is proportional to the 
number of intersection points between the line segments. I t  also 
appears that  for most intersection points, the subdivision stops before 
the maximal depth. 

For particular values of N and hi ,  we believe that  it is prudent 
to use the exact bounds as given in ( l G ) ,  (34) and (37), which depend 
on a parameter p. It is worth emphasizing that  the values do and (3 
are not a part of the random model and are just parameters used to 
facilitate our calculations In order to apply these bounds, i t  is 
required to  choose a value of P which niininiizes them while satisfy- 
ing relation (8) (with d o  being an integer). A useful practical approx- 
imation can be made by just letting the value p=O.5. Of course, 
from a theoretical standpoint this is not realistic because it usually 
implies a non-integer value for do. 

The bounds contain terms which are negative. They reduce the 
bounds and make them tighter. The negative terms compensate for 
nodes which are counted twice in other (positive) terms. For exam- 
ple, nodes in the Ph4 quadtree a t  a depth less than do are accounted 

for by the The 

negative term - Af'logz- - - M 2 d o  compensates for this situation 

4 Af2 
= - - term and also by the M'.N term. 
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These bounds hold for all values of A4 and N .  However, they 
become meaningless when hf 2 2N. In this case, the parameter do 
approaches the value of the maximal depth N and A12 zz (2")' is the 
maximal number of nodes in the complete tree (i.e., all leaf nodes are 
a t  the maximal depth). 

The bounds in this paper were computed under the assumption 
of a particular image model. We conjecture that  the results apply 
also t o  more general images using ~ i Z i . 2 ~ / 4  for E [ l ]  and M2/4 for U 

where II is the number of vertices (i.e., endpoints of line segments 
and intersection points) and E [ I ]  is the expected total length of the 
line segments (or the boundaries of the regions). These values are 
discussed in the derivation of (18) in Section 4.1.2 and in Section 
4.3.2. Using these values with P= 0.5 yields the following bounds on 
the expected number of nodes: 

R e g i o n  quadtree  

MX quadtree  
PM quadtree  
PMR quadtree  E [ S ]  5 24.V 

E [ S ]  5 g E [ l ] - 8 .  V.N+4.  V~(lO.G+logzV) 

E [ S ]  5 =E[1]-8. V.N+4.V(10.G+log2V) 

E [SI 5 4.V.N+4.  V,(3.5-0.510gzV) 

Modi f ied  PMR quadtree  E [ S ]  5 24.V (43) 
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