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Abstract

The size of five trie-based methods of sorting large collections of line segmentsin a spatial databaseis investi-
gated analytically using a random lines image model and geometric probability techniques. The methods are based
on sorting the line segments with respect to the space that they occupy. Since the space is two-dimensional, the trie
is formed by interleaving the bits corresponding to the binary representation of the x and y coordinates of the under-
lying space and then testing two bits at each iteration. The result of this formulation yields a class of representations
that are referred to as quadtrie variants, although they have been traditionally referred to as quadtree variants. The
analysis differs from prior work in that it uses a detailed explicit model of the image instead of relying on modeling
the branching process represented by the tree and leaving the underlying image unspecified. The analysis provides
analytic expressions and bounds on the expected size of these quadtree variants. This enablesthe prediction of stor-
agerequired by the representations and of the associated performance of algorithmsthat rely on them. Theresults are
useful in two ways:

1. They reveal the propertiesof the various representationsand permit their comparison using analytic, non-experi-
mental, criteria. Some of the results confirm previous analyses (e.g., that the storage requirement of the MX
quadtreeis proportional to thetotal lengths of the line segments). An important new result isthat for aPMR and
Bucket PMR quadtree with sufficiently high values of the splitting threshold (i.e., > 4) the number of nodesis
proportional to the number of line segmentsand isindependent of the maximum depth of thetree. Thisprovides
atheoretical justification for the good behavior and use of the PMR quadtree which so far has only been of an
empirical nature.

2. Therandom linesmodel wasfound to be general enoughto approximatereal datain the sensethat the properties
of the trie representations, when used to store real data (e.g. maps), are similar to their properties when storing
random lines data. Therefore, by specifying an equivalent random linesmodel for areal map, the proposed ana-
Iytical expressionscan be applied to predict the storage required for real data. Specifying the equivalent random
lines model requires only an estimate of the effective number of random linesin it. Several such estimates are
derived for real images and the accuracy of the implied predictionsis demonstrated on areal collection of maps.
The agreement between the predictions and real data suggeststhat they could serve asthe basis of a cost model
that can be used by a query optimizer to generate an appropriate query evaluation plan.
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*This work was supported in part by the National Science Foundation under Grant IRI-9712715.



1 Introduction

1.1 Background

The efficient management of datain large database systems depends on grouping the datain such away so that similar
dataisaggregated or storedin proximity and hence can be operated upontogether (e.g., [14]). Thisgroupingisachieved
by either sorting or hashing the data. The rationae for sorting the data is to facilitate the presentation of the data to
the user (e.g., in reports) and also to speed up query processing using sort-based algorithms such as merge-join. The
rationalefor hashing isthe fact that set processing algorithms based on it have an expected complexity of O(N) instead
of O(NIogN) asin sorting.

Although sorting hastraditional ly been applied to one-dimensional data, itisal so applicableto dataof higher dimen-
sions. Thisdatacan consist of pointsin ahigher dimensional space, or spatia objectsthat span the higher dimensional
space (e.g., lines, regions, surfaces, volumes, etc.). In the case of spatial datain more than one dimension, whichisthe
focus of this paper, the result of applying conventional sorting techniques does not always lead to simpler algorithms.
For example, suppose that the the data is sorted with respect to a particular reference point (e.g., al cities, represented
as points, are sorted with respect to their distance from Chicago). In this case, if we wish to obtain the pointsin the
order of their distance from another point (e.g., with respect to their distance from Omaha), then the sorting process
will, in general, have to be reapplied to the entire data. The problem is that the data was sorted in an explicit man-
ner. Instead, we need methods which provide an implicit ordering. Examples of such techniques are called bucketing
methods (e.g., [38]). In thiscase, the data are sorted on the basis of the space that they occupy and are grouped into
cels (i.e, buckets) of afinite capacity. This method is anal ogous to hashing where the hashing function is said to be
order-preserving (e.g., [35]). Thus we see that for spatia data there isreally no distinction between using sorting or
hashing to achieve grouping.

There are two principa methods for sorting spatial data. The first makes use of an object hierarchy. It is based on
propagating the space occupied by groups of the data objects up the hierarchy (e.g., members of the R-tree family [3,
15]). We do not deal with thismethod in this paper. The second is based on a decomposition of the space occupied by
the datainto digoint cells which are aggregated into larger cells (e.g., members of the quadtree family [39, 38]). The
decomposition can be either tree-based or trie-based. The distinction isthat the former is applied to the values of the
data, whilethelatter makes use of the digits(termed atrie[13, 25]) that comprise the domain of the values of the data.
Data structures that make use of the latter in one dimension are also known as digital trees [25].

Our data consists mainly of line segments in two-dimensional space. Our focusis on using tries to sort the line
segments with respect to the space that they occupy. We use tries because they result in partitioning different data sets
at the same positionsthereby making it very easy and efficient to use merge-join query processing agorithms. Since
the space is two-dimensional, the trie is formed by interleaving the bits corresponding to the binary representation of
the x and y coordinates of the underlying space. Two similar but different trie-based data structures may be created
depending on whether wetest one bit at each iteration (ak-dtrie[12]) or two bitsat each iteration (aquadtrie[18, 38]).
In this paper, we focus on quadtries for collections of line segments. Unfortunately, the representations that make use
of quadtries have been traditionally referred to as quadtree variants (e.g., [23, 39, 38]). In our discussion, all quadtrees
are based on tries and we precede the term quadtree with an appropriate qualifier whenever there is a potentia for
confusion. Thus the quadtrees that we discuss are distinct from those based on multidimensional binary search trees
that are used for points (e.g., [10, 11]).

Variants of quadtree structures have been used for many different spatial objects including points, regions, lines,



rectangles, surfaces, volumes, etc. Algorithmsusingthem generally have good average executiontimeswhilemaintain-
ing arelatively compact representation [39, 38]. Inorder to beableto usethese datastructuresin adatabase application,
we must be ableto predict their size. The most obvious advantage of such a capability isthat it enables usto determine
how much space will berequired to store different datasets and to choose between different data structures from an ef-
ficiency standpoint. It may aso be of use at query evauation timeto aid the estimation of the cost of aparticular query
execution plan (i.e., processing strategy) to be used by a query optimizer. For example, suppose that we are using a
filter-and-refine strategy [5] for processing awindow query. In particular, suppose further that we have a method of
estimating the number of data structure blocks that intersect the window based on the window’s size (e.g., [36]). Our
results could be used in areverse sense to estimate the number of objects (i.e., line segmentsin our case) that intersect
theseblocks. Thiscould serve asameasure of the cost of the refinement step which must subsequently determinewhich
of thelines actudly intersect the query window.

Continuingthefilter-and-refine query processing strategy, supposethat we are using the histogrammethod (e.g., [ 26,
28, 30]) for estimating the number of objectsthat intersect the query window. We can now plug thisinformation into
our resultsto estimate the number of data structure blocksthat intersect thewindow. Thisisagood measure of the cost
of thefilter step, i.e., the1/O cost for the spatial data structure.

1.2 Related Work

Traditiona worst-case analysis is often inappropriate because the worst case tendsto be both very bad and highly im-
probable. Thus most approaches to the analysis of hierarchical data structures have been statistical in nature.

A number of statistical approaches have been tried. The most common makes use of a uniform distributionin the
underlying space (e.g., [2, 8]). An aternativeisto make use of a non-uniform distribution. Some techniquesthat have
been used includethe Gaussian distribution[32] aswell as clustering methods uniformly distributed points[34] or even
pre-determined shapes[3]. Another approach makes use of afracta distribution[7] that has the advantage of exhibiting
self-similarity which means that portionsof a part of the data set are statistically similar to the entire data set. The key
to thisapproach isto compute a fractal dimension for a particular point data set and then use it in a query optimizer.

The methods described above are for point data sets®. In this paper, we are interested in data which has extent
such as collections of line segments. Tamminen [46] considers the performance of quadtrees and bintrees under the
assumption that the image consists of a single random line treated as a region, and analyzes the number of nodesin
them using geometric probability. Shaffer et al. [44] follow Tamminen's approach and use aloca straight line model
to perform an analysis that yields the relative (rather than absolute) storage requirements of the region quadtree and
bintree data structures. Mathieu et a. [27] and Puech and Yahia [37] investigate the size of quadtree representations
of region data and some other related questions using some assumptions on the branching probabilities of nodes in
the tree. Nelson and Samet [31, 32, 33] consider the distributions of node occupancies in hierarchical geometric data
structures that store a variable number of geometric data items per node which included points and lines but have a
wider applicability. Thisapproach is similar to hashing [25] where each node acts like a bucket.

Although these approaches sometimes | ead to remarkabl e agreement between theory and smulation (e.g., [1, 32]),
they have a common drawback. The explicit model of the image on which the statistical analysisis done is either
exceedingly simple or is not given at al in which case it must be implied from other assumptions. In particular, an
assumption is made on the splitting probability in the data structure (e.g., [1, 27, 32, 37]) which implies the existence

1The fractal model hasbeen applied to points derived from acollection of line segmentsin the sensethat the points corresponded to intersections
of line segments[7]. This was used to predict the effective occupancy of nodesin an R-tree that stores point data.



of some implicit model on the data. However, when we want to know what kind of data (real or contrived) fits this
model, the only possible answer is a circular one that says that the data is such that gives rise to these probabilities.
Unfortunately, thereis no explicit indication of whether there exists some image model associated with these splitting
probabilities. Thus the connection between the analysis and the performance with real image datais not clear. In con-
trast, our approach, as described bel ow, isto use an explicit non-trivial random image mode!, and then to show that data
can be generated corresponding to thismodel which aso fits the analysis. Note that we are not claiming that the data
we generate corresponds exactly to typica images, athoughwe dea with thisissue aswell. In thissense our approach
is complementary to the work of Flgjolet and Puech [12] who analyzed the partial match query time for hierarchical
data structures, while we analyze their storage requirements. Unlike their data, which consists of random pointsin a
high dimensional space whose coordinate values are drawn from a uniform distribution, our data consists of randomly
drawn lines. It isimportant to note that lines are a qualitatively different data type than points, as the action of every
line on the structureis not local.

An alternative non-statistical approach was applied by Hunter and Steiglitz [19, 20] to show that for a polygon
of perimeter |, the size (i.e., the number of nodes) of the corresponding region quadtree is O(1). This classic result,
although derived for simple polygons, has been observed to be sufficiently general to be useful for predicting the per-
formance of a number of algorithmsfor different images represented by a region quadtree [41].

As we pointed above, in this paper we investigate the use of a random image model consisting of M randomly
drawn lines. Unlike Tamminen's approach [46], which considers a single random line, here we treat the much more
general and complicated situation of an arbitrary number of lines. We use geometric probability to analyze five variants
of the quadtree that can be built for data that obey this model by determining the expected number of nodes in each
of them. These variants are the region quadtree [23, 20], the MX quadtree [20, 38], the PM quadtree [42], the PMR
quadtree [31, 32, 33], and a new variant of the PMR quadtree representation suggested here which we call a Bucket
PMR quadtree (see dso [16, 17]).

1.3 Contributions

The analysis that we provideis important for two reasons: First, it allows for a meaningful, quantitative, and anaytic
comparison of anumber of different optionsfor representing linear spatial dataand providestool sfor choosing between
these optionsin away which is neither experimental nor domain-dependent. The second reason is even more practi-
cal: we found that we could actually predict the storage requirements of these representation optionsby specifying an
equivalent random lines data set, with some equivalent number of lines, and use the proposed anal ytic expressions for
predictingitssize.

In particular, our analysis shows that for images of the same complexity, the PMR quadtree and the Bucket PMR
quadtree for sufficiently high values of the splitting threshold (i.e., > 4) are the most efficient in the sense that they
require the least storage. The PM quadtree follows, and the MX quadtree requires the largest amount of storage. This
qualitative ordering verifies experimenta results obtained in the past [19, 20, 31, 42] and agrees with the extensive
experimentation that we have carried out. Thisverification and the accompanying theoretical justificationis one of the
contributions of our research.

The agreement between the results of our analysis and the data was not a surprise in the case of the MX quadtree
in that it confirmed previous results (i.e, [19, 20]). However, in the case of the PMR and Bucket PMR quadtree for
sufficiently high values of the splittingthreshold (i.e., > 4) our analysis breaks new groundin that we are ableto derive
theoretically and verify experimentally for both random data and real map data that the number of nodesis asymptot-



ically proportiona to the number of line segments. Thisis quite significant as it enables us to predict the number of
nodes required by this representation, and, most importantly, to show that it is independent of the maximum depth of
thetree.

It isimportant to note that we do not claim that our proposed random image model yields data instances which are
visualy similar to what appears in realistic geometric applications such as road networks. Nevertheless, we do show
that the analysis can beinterpretedin terms of the geometric propertiesof theimage, such aslinelength and the number
of intersections between lines. With thisinterpretation, the predictions, derived for random images, may be applied to
real data, by measuring the relevant geometric property, and using it to specify equivalent random images. Testing the
predictionson ared set of maps, yielded relatively accurate predictions of the storage required for the maps.

Although our analysisisfor aparticular datatype (i.e., collectionsof line segments) and data structures, we believe
that it has wider applicability. In particular, the geometric probability approach could be extended for datatypes other
than line segments (e.g., points, polygons, surfaces, solids, etc.). Furthermore, the random image model can be used
in astatistical analysis of other trie-based spatial data structures.

The rest of this paper is organized as follows. Section 2 givesa brief overview of the quadtree representations of
collectionsof linesegments, includingthe definitionsof thefive variantsthat we analyze. Section 3 presentstherandom
image model and reviews some necessary results from geometric probability. Section 4 contains a statistical analysis
using the model and the results of its application to each of the afore-mentioned quadtree variants. It also contains
the results of some experiments with instances of the random lines model. Section 5 describes the application of the
analysisto predict the storage requirementsfor real data aswell astheresults of extensive experimentsthat support its
validity. Section 6 draws some concluding remarks as well as gives some directionsfor future research.

2 Overview of Quadtree Representationsof Collections of Line Segments

A quadtreeisahierarchical variableresolution datastructure based on the recursive partitioning of the planeinto quad-
rants. It can be viewed as a 4-ary tree where each node represents aregion in the plane called a block, and the sons
of each node represent a partition of that region into four parts. This scheme isuseful for representing geometric data
at avariable resolution. Quadtree variants exist for representing planar regions[23], collections of points[9, 40], and
collections of line segments [31, 32, 33, 42], as well as more complicated objects (e.g., rectangles [22]). Generdiza
tion of the quadtree to three and higher dimensions (e.g., octrees[19, 21, 29] and bintrees[24, 41, 47]) have also been
investigated. They have many of the same basic properties.

The different variants of the quadtree data structure can be subdivided into two categories: those based on aregu-
lar decomposition of space using pre-defined boundaries (i.e., trie-based), and those where the partition is determined
explicitly by the dataasit is entered into the data structure (i.e. tree-based or data-based). 1n most cases, use of regu-
lar decomposition means that the shape of the resulting data structure is independent of the order in which the datais
inserted intothe structurewhen buildingit. Thisisnot the case for data-based decompositions. Infact, for most applica
tions, regular decomposition worksat least as well as the data-based decomposition. Moreover, regular decomposition
iseasier to implement and analyze. In this paper, we consider only structures based on a regular decomposition. An-
other distinctionis between quadtree variants whose maximum depth (say N) is bounded and those for whomiit is not.
For the structures that we consider here, only the PMR quadtree has an unbounded maximum depth.

The condition used to determine when a quadtree block should be partitioned iscalled asplittingrule. Thisruleis
usualy afunction of thedatathat isassociated with the block — that is, the conditionisevauated using local informa:
tion. The exact formulation of the rule depends on the type of the data being stored. Here we consider the use of the



following quadtree variantsin the representation of a collection of line segments.

e A region quadtree is usually used to represent planar regions and its splitting rule is such that a block is split
if both the depth of its corresponding node is smaller than N and if the region represented by the block is not
homogeneous (see Figure 1awhich describes the subdivision implied by this quadtree).

e An MX quadtree, although usualy defined for points (e.g., [38]), can be used to represent a collection of line
segments on the plane. Itssplitting ruleissuch that ablock is split if both the depth of its corresponding nodeis
lessthan N and if the block contains at least one line segment (see Figure 1b).

e A PM quadtree represents collections of line segmentsin the plane. It is a vertex-based representation whose
splitting rule is that a block is split unless the depth of the corresponding node is N, or only one line segment
passes through the block, or al the line segments that pass through the block meet at a point within the block,
or the block contains more than one endpoint of aline segment. Thisis avariant of the PM 1 quadtree [42]. It
differsfrom the PM quadtree by virtue of having abound onits depth (see Figure 1c).

¢ Wea so define anew hierarchical structure called aBucket PMR quadtree whichissimilar toaPM quadtreewith
the difference that it is edge-based rather than vertex-based as was the PM quadtree. The Bucket PM R quadtree
represents collections of line segments on the plane using a splitting rule such that a block is split if both the
depth of itscorresponding nodeislessthan N and more than g line segments pass through the block. In thiscase,
giscaled abucket capacity asthisisitsrole since ablock is split aslong as it has more that g line segmentsin
it and is not at the maximum depth of the tree. This structure has a prespecified maximum depth (i.e., N). The
resulting decomposition does not depend on the order in which the line segments are inserted, and the number
of line segments stored in aleaf node whose depth islessthan N is guaranteed to be less than or equal to q (see
Figure 1d where g = 4). At times, we want to express the dependence on g explicitly and use the term Bucket
PMRy quadtree to describe this structure.

¢ The disadvantage of the Bucket PMR quadtree isthat if there are many line segments in one small region, then
there would be much decompositionin that region. An alternative representation, termed a PMR quadtree, aso
representsacollection of linesegments but isdefinedinadightly different way. The datastructureiscreated asa
dynamic result of asequence of insertionsof linesegmentsusing asplittingrulesuch that ablock issplit once, and
only once, if the block isboth intersected by the new line segment and already contains g or more line segments.
In this case, the parameter q istermed a splitting threshold to distinguish its use from that in the Bucket PMR
guadtree. Note that this structure does not have a prespecified maximum depth. The resulting decomposition
depends on the order in which theline segmentsareinserted. Moreover, the number of line segments represented
by any leaf nodeis not guaranteed to beless than or equa to g. A value of four for qisusualy sufficient to store
collections of line segments efficiently as it impliesthat junctions of two, three, and four line segments (which
are common in road maps, rivers, etc.) do not cause a split. Figure le illustrates this representation assuming
that q = 4 and that the lines are inserted in the order marked in the figure. It isimportant to note that in this
example no split takes place until the fifth line segment isinserted, and since only one split has occurred, the SE
quadrant contains 5 > q line segments. Again, asin the Bucket PMR quadtree, at times, we want to expressthe
dependence on g explicitly and use the term PMRy quadtree.

A subtle point in the definition of the splitting rulesis whether two line segments that intersect in a square should
be counted as four line segments or not. The algorithms that create the data structurestake a list of line segments as
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Figure 1: Five types of quadtrees: (a) region quadtree, (b) MX quadtree, (c¢) PM quadtree,
(d) Bucket PMR, quadtree. (e) and PMR, quadtree when the lines are inserted in the
order 1, 2, 3, 4, and 5.

their input and are not provided with the explicit information on their geometrical intersection. Therefore, every line
segment is specified by itstwo original endpointsand two line segments remain two even if they intersect. Therefore,
the data represented in Figure 1b—e consists of exactly five line segments. In fact, thisis why in the case of the PM
quadtree, we had to get to the maximum depth by decomposing the SW and SE sons of the NE son of the SW quadrant
in Figure 1c and likewisefor the NE son of the NW son of the SE quadrant in Figure 1c.

3 Random Image Models

In the first part of this paper we assume that the quadtree variants that are discussed represent geometric structures
which areinstances of arandom process described as follows. Observe that thelineL(p, 8) consistsof the points(x,y)
satisfying therelation

L(p,0) = {(x,y)|xcosB+ysin® = p}.

ThelineL(p, 8) isperpendicul ar tothevector (cosB, sinB) (see Figure2a). Althoughthepositionof every particular line,
L(p, ), naturally depends on the origin and orientation of the coordinate system, we shall see soon that the probability
of every random line, drawn according to our model, does not. Therefore, the origin and orientation of the coordinate
system relative to the image does not make a difference. The arbitrarily chosen location of the coordinate system in
Figure 2aillustratesthisinvariance property. For the rectangular region R

R={(xy)| [x],ly| < 2V},



let T bethe parameter set
T={(p.0)|L(p,0) NR# 0}.

which includes all the parameter pairs (p, 8) that represent linesintersecting with R.

Let
m (PO)eT

0 otherwise

p(p,B) = { N

be a prabability density function, where
IT| = / dpde.
T

Thisdistribution, called the uniformdensity distribution, isthe only onewhich ensuresthat the probability of choos-
ing aparticular random lineisindependent of the coordinate system in which p and 8 aredefined (i.e., it isindependent
of the trandation or rotation of the coordinate system [43]). Therefore, it is the natural density function to specify
when modeling collections of random lines. As an illustration, see Figure 2b where an instance of the random image
containing five linesis described.
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Figure 2: The Random Image Model: (a) The process of generating a random line (note
that the coordinate system is arbitrary with respect to the image). (b) A typical instance
of the random image constructed for M=b independently drawn lines.

Every instance of our random image model isa2N x 2N image with M random linesthat intersect it and which are
chosen independently according to the density function (1). The continuous uniform density distribution implies that
three linesintersect at the same point with probability zero. This follows from the observation that two intersecting
lines define a point, say (Xo, Yo), Which can be regarded as prespecified for the third line. The parameters of every line
which intersects this point must bein the set {(p, 8)|xocos + ypsin® = p}, the measure of which is zero (i.e., a one-
dimensiona quantity) with respect to the measure of T (i.e., atwo-dimensional quantity). Therefore, after drawing a
finite number of random lines, the probability that any three of them will intersect (Xo, Yo) iszero. Thisproperty isaso
obeyed by real spatial data such as road maps as a junction of more than four roadsis rare. Each of the line segments
clipped from arandom infinite line by the boundary of the image is subdivided further into smaller line segments by
itsintersection with other infinite lines, so that, eventually, no line segment crosses another line segment except at the
endpoints of the line segments.

Thusthe datarepresented by thevarious quadtrees (inthefirst, anaytical, part of the paper) isacollection of random
line segments, specified asa set of M random infinitelines. Notethat theinfinitelines are not of interest by themselves
but are just useful for creating the distribution of line segments which we analyze.



We do not claim that our proposed random image model will enable us to generate data that correl ates with what
appears in redistic geometric applications such as road networks. Finding such a correlation is unlikely as realistic
geometric data does not consist of lines whose endpointslie on theimage boundary. Nevertheless, the analysis can be
interpreted, as we shall seelater, in terms of the geometric propertiesof theimage, such aslinelength, and the number
of intersections between lines. This alows usto apply itsresultsto real datawith similar geometric properties. Most
importantly, the analysis provides us a means to justify claims about the relative qualitative behavior of the different
data structures.

The above model isuseful for predicting the sizes of al but the region quadtree. The region quadtree represents
regionsrather than lines segments. Thisleads usto the following variation of the above model, which we term a mod-
ified random image model. In this case, each image consists of black and white regions separated by M random lines
chosen independently using the uniform density distribution given by (1). The actua colors of the individua regions
do not affect thetotal number of nodes. The resultingimage can beinterpreted as follows. Choose one of theregions at
random and let it be black. Let al of itsneighbors be white. Let all of the white node' s uncol ored neighbors be black.
Repeat thisprocess until all regions are colored.

Before starting the analysis, we first present three results from geometric probability which form the basis of our
results[43].

Geometric Probability Theorem 1 (GPT1): Let C; be aconvex planar set included in the convex planar set C C R.
Let L, and L be the perimeters of C; and C, respectively. Let | be arandom line chosen using the uniform density
distribution given by (1). Therefore, the probability that alinel passing through C aso passes throughC; is

L
p{INCL#0INC# 0} = fl
Geometric Probability Theorem 2 (GPT2): Let C C Rbeaconvex planar set with area A and perimeter L. Let | be
arandom line chosen using the uniform density distribution given by (1). Suppose that | intersects with C and creates

achord H with length |H|. Then the expected length of H is

A

E[H|]= —.
[HI1= T

Geometric Probability Theorem 3 (GPT3): Let C C Rbeaconvex planar set with area A and perimeter L. Let |, and

[, betwo random lines, independently chosen using the uniform density distribution(1). If bothlines!; and |, intersect

with C, then the probability that |, intersectswith |, insideCis

p{(11N12)NC#0l;NC#£0,1,NC# 0} = ZLlf

4 Statistical Analysisof Quadtree Representationsof Collections of Line Segments

An image as defined in Section 3 is an instance of arandom event. It followsthat its hierarchical representation, using
one of the quadtree variants, is aso arandom event. Moreover, the existence of anodein the tree, or itsbeing a leaf,
are random events. We make the following simplifying assumptions. given nodes u and v which exist in the treg, the
events that node u is aleaf and that node v is aleaf are statistically independent. Assume further that the conditional
probability

Py = p{visanon-leaf node |visanode of thetree}



depends only on d, the depth of v in the tree. Although the statistical independence assumption does not necessarily
hold for al pairs of nodes (e.g., two nodes which are brothers), thisis usualy the case for most pairs of nodes which
correspond to small distant regions intersected by different lines. Aswe shall see later, the independence assumption,
aswell asthe expressions for the storage requirements which depend on it, hold only when the number of linesis not
toosmall. If thisnumber istoo small, then more pairsareintersected by thesame line, and the nodesthat split no longer
correspond to independent events.

Let P} denotethe probability that the splitting conditionissatisfied for a particul ar square region which corresponds
to anode at depth d. Consideringthe MX quadtree, for example, P} isthe probability that at |east one line passthrough
thisregion. The existence of anode v a depth d in the tree implies that the splitting condition holds for the region
corresponding to itsfather node. Thus, v existsin the tree with probability P;_, and, ford > 1,

p{vhas4sons} P}

p{vexists} P, @

Py = p{visanon-leaf node |v exists} =

Both PRy and Py are one for every tree which describes at least one line segment. Let Sy be the number of nodes at
depth d, and let Sbhe thetotal number of nodesin thetree. The expected number of nodes at each depth, asimplied by
the statistical independence assumption, isgiven by

ESQ] = =1 )
E[S] = R E[S]-4=R 4

E[S] = Pi-E[S]-4=PyP;-4?

E[SS] = P -E[S)]-4=PyPP,-4°

. .
E[S] = Py1-E[Su_q] 4= l-qp'] 40

and
N Nodd
Elg=YES = 1+ Y 4-[]R @
9= 58 = )R
= 1+P0N4d.ﬂ.§.%...@

Equation (4), which gives the expected number of nodes in the tree, serves as the basis for our analysis. In the
following subsections we focus on splitting rules for each of the quadtree variants discussed in Section 2. For each
rule, we derive the corresponding splitting probabilities P}, and then use Equation (4) to cal cul ate the expected size of
the data structure.

41 MX Quadtree

An MX quadtree represents a collection of line segments on the plane by partitioning the plane into square blocks
using the splitting rule that a block is split if both the depth of its corresponding node isless than N and if the block
contains at least one line segment. If the block does not contain aline segment, then it isnot subdivided further and its
corresponding nodeisaleaf. Otherwise, it is subdivided and its corresponding node has 4 sons (see Figure 1b).



411 Analysis

In order to computethe probabilitiesPy, we usethefollowingargument. A nodeat depthd correspondsto a2N-9 x 2N-d
square. The Geometric Probability Theorem GPT1 impliesthat a particular random line passes through thisregion with

probability
4.8-d 1\
deWZ(é) :

The probability that exactly k out of M lines pass through thisregionis

= (D E) -0

The probability that one or more lines pass through this region, thereby implying that it is split, is

Pézl—pdp:l—[l— @)d]M (6)

Inserting (6) into (4) we get

E[g =1+ §l4d~%_1: éfd [1_ [1_ (%)dl] M] | 7

It is difficult to derive closed forms of sums of this nature. To our knowledge, no relevant solutions exist in the
literature. Furthermore, we tried, without success, to evaluate it using various symbolic equation solvers, as well as
consulting their developers. Therefore, as we are primarily interested in comparing the asymptotic behavior of the
storage requirements of the various data structures, we resort to closed form upper and lower bounds for E[§ — that
is, the expected number of nodesin thetree. However, for practica use of thisestimate, we suggest to insert the known
parameters (i.e., M and N) into the sum (7) and to evaluate it numerically. These comments are also applicablein the
analyses of therest of the data structures (see Sections 4.3.1 and 4.4).

Notethat although theform of the sum (7) intuitively callsfor the use of the commonly-known 1+ x < €* inequality,
it does not help here. The problem isthat in the case a hand we want to bound (7) from above which means that the
term [1 — (%)d_l] ) should be bound from below and thisis not possible with thisinequality.

Our techniqueisbased on decomposing (7) intotwosums 3 ; and 5 , corresponding to the number of nodes at depth
less than or equal to dg, and al the nodes at a depth greater than dg, respectively. In essence, our analysis focuses on
eval uating the second sum, whilethefirst sumisbounded by the number of nodesin the compl ete tree (when cal cul ating
the upper bound), or by zero (when calculating the lower bound). We find it convenient to formulate our analysis of
E[Y interms of an additional parameter 3 (as well as M and N) which is defined as

B:M(%)do. ©)

The depth dp ischosen so that B islessthan 1. Thisenables usto make some assumptionsleading to crucia simplifica-
tions(i.e., that certain sums converge as theindex of summation getsinfinitely large). Theresult (i.e,, E[S) isinterms
of M, N, and 3. Once the result has been obtained, the value of dg isadjusted so that the boundson E[S are as tight as
possible under the constraint that dg is an integer bounded by N and that 8 < 1.
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Decomposing E[S intotwo sums 5, and 5, yields

E[S

d N
21=1+;4d 1- ll— <§)
=1

w6

Y1t32

T gl -0

M d0 do 2
]S oo A% aM

1~ 9p2"
1-3 3B

(9)

(10)

1 reflects the fact that we assume that the tree is complete at depth less than or equal to dg. Teking the binomial

expansion of 3, we get

Yo =

d=dg+

;
2

d=

A2 67 (e

223 (e

Changing the order of summation and separating thek =1 (3 3), k=2 (3 4), and k > 2 (3 5) cases, we get

INA

X

Y2=23+%at+3s

N

T = Y 29.2.M=4M(2V - 2%) = 4m 2N - A
d=dp+1
N 1N\2-2 1y N M
AT fA e
d=§0+1 2 2 d=§o+l 2
NoOOM A /1 (k2
)
d=§o+lkz3 k) \2
M N 2k<M) <})(k—2)d
k= d=§o+l k 2

s

k
M M-(M=1)-(M=2).--(M—k+1) g2 1 4 B
3

1

W

k! Mk=27 ()2~ 1-B

(11)

(12)

(13)

(14)

(15)

Notethat all approximationsperformed whilecalculating ¥ 1, and § 5 are & so upper bounds. We continue by summing
all contributionswhich are partly expected values and partly upper bounds for expected values, to get

E[S

<

Y1t+Y3tYatYs

4M-2N-2.MM=1) N+M? |—= + ==+ ———+2log, —

B 3B 31-p

(16)

Figure 3a shows the value of the upper bound given by (16) as a function of M at a maximal depth of N = 10. Recall
that the upper boundsin the figure are minimal in the sense that for each value of M, upper bounds were calculated for
every possiblevaue of dy (subject to the constraint 3 < 1) and the minimal (tightest) upper bound was taken.

1
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Figure 3: The upper and lower bounds on the number of nodes necessary to store an (a)
MX quadtree and a (b) PM quadtree. (c) The upper bound on the number of nodes

necessary to store a PMR, quadtree. The x and y axes correspond to the number of lines
and nodes, respectively, for a tree of depth N=10. The number of nodes shown is divided
by 103. Note the “rounded staircase-like’ behavior resulting from our method of analysis
which calculates several bounds (each for different integer values of the dy parameter)
retaining the tightest one.

41.2 Interpretation

Thevaueof E[S given by (16) isan upper bound onthe number of nodesinaM X quadtree. Now thevalueof 3 (andthe
corresponding value of dg) may be chosen to minimizeit. Recall that our motivation for decomposing the cal culation
of E[§ into two parts was based on the observation that when the number of linesM islarge and the depth d is smadll
(i.e, d < dp), then the part of the tree at depth less than dp is almost complete, and thus all of its nodes contribute to
E[S.

Asymptotically, the dominant contributionto the number of nodes comes from the first term in (16) which may be
transformed into a more familiar form using Theorem GPT2 from geometric probability. Letting L; be the length of
theit" linein our geometric structure, the expected total length L of al linesis

E[L] = _iE[Li] - M.n(sz),j = Tmeon, (17)

4
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Substituting (17) into the first term of (16) we get
16

In other words, the expected number of nodesinan M X quadtreeis proportional to thetotal expected length of thelines
which agrees with results derived previously under different (nonprobabilistic) models[19, 20].

41.3 A Lower Bound

The derivation of E[S given by (10)—(16) may be used to set alower bound on the expected number of nodes. E[Y
consists of the contributionsof 51, 53, 34, a1d 3. 33 and 54 areexact values, 5 ; is positivethereby having alower

bound of O, while S 5 can be easily bounded from below by — %MZITBB. Thus,

E[S > ya+ 34— §M2155. (19)

Furthermore, for large N, satisfying 2N > M- N, wehavethat 51, 54, and 3 5 are small withrespect to 3. Thusthe
difference between the upper bound and the lower bound is smdl, and each of them is a good approximation of E[S
(see Figure 3a).

4.2 Region Quadtree

A region quadtree represents regionsin the plane. It partitionsthe plane into square blocks using the splitting rule that
dtipulatesthat ablock issplitif boththedepth of itscorresponding nodeissmaller than N and if theregion represented by
the block isnot homogeneous. Thusif theblock ishomogeneous, thenitisnot subdivided further and its corresponding
nodeisaleaf. Otherwisg, it issubdivided and its corresponding node has 4 sons (see Figure 1a).

Assuming the modified image model described in Section 3, the expected number of nodes in a region quadtree
follows directly from the derivation in Section 4.1. Consider an MX quadtree corresponding to an image whichisan
instance of the basic random image model (and thus contains M lines). Consider aso a region quadtree representing
a second image which consists of regions separated by the lines of the first image. Both trees have the same structure
with the only difference being the contents of each of the nodes. It follows that the statistical properties of a region
quadtree corresponding to an instance of the modified random image model are exactly the same as the properties of
an M X gquadtree corresponding to an instance of the basic random image model. Hence, the expected number of nodes
in aregion quadtree is bounded by (16) and (19).

4.3 PM Quadtree

Our variant of a PM quadtree represents a collection of line segmentsin the plane. It partitionsthe plane into square
blocks using the splitting rule that a block is split unless the depth of the corresponding nodeis N, or only one line
passes through the block, or thereisjust one point in the block and all the linesthat pass through the block meet at that
point. Thusif the block containsasinglelineor all thelines pass through a common point in the block and thereisno
other endpoint in the block, then the block is not subdivided further and its corresponding node isa leaf. Otherwise, it
is subdivided and its corresponding node has 4 sons (see Figure 1c).
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431 Analysis

Let a be the probability that two linesintersect inside a square region Q given that each of these lines passes through
Q. For asquare 2N~9 x 2N—d region (0 < d < N), the probability that the splitting conditions of a PM quadiree are
satisfied may be written as
Pa=1—pdo—Pd1—0-Pd2 (20)

where pq k is the probability that exactly k of M lines pass through a square region of side 2N-9. The random image
model impliesthat three linesintersect with zero probability at acommon point. Therefore, thisevent may beignored
leading to theconclusionthat aregionisawayssplit if threeor morelinespassthroughit. If only two linespassthrough
the region, then theregion is split only if the two lines do not intersect within the region. The intersection probability
o may be inferred from the Geometric Probability Theorem GPT3, which impliesthat

_2mA 2m(2N-9)2 m

L2 (4.2N-0)2 g

- GEOT
GO @]
R HIGNEON

Inserting (21) in (4) we get an expression for the expected number of nodesin the PM quadtree.

Hence,

M-2

To bound this expression, let us once again, as in the MX quadtree, formulate our anadysis of E[S in terms of an
additional parameter 3 (aswell asM and N) which is defined as

B=M G)do. (22)

Asbefore, our analysisisintheform of acalculation of upper and lower boundson E[S] based on the fact that we have
used an integer value of dg that ensuresthat 3 isless than 1.

The result of inserting (21) in (4) (i.e., E[S]) isdecomposed into two sums 3 ; and 5 , corresponding to the number
of nodes at depth less than or equa to dp, and al the nodes at adepth greater than dg, respectively. In essence, what we
do isassume that the part of the tree at depth less than or equal to dg is complete. The value of dg isadjusted later so
that the bounds on E[S are as tight as possible under the constraint that dg is an integer bounded by N and that 3 < 1.

Thus, wehave 1 and 5,

do N
E[g=1+Y 4P+ AP =5+Y (23)
£ TS
A boundon ¥, isobtained as in the case of the MX quadtree.
% % 4 4 M2
Yi=1+ S P4y Aln g (24)
PR PR T
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5, isevaluated by takingitsbinomial expansion to get asum of the powersof (1) e, (3)% (2)°, (3)%, ). After
some algebraic manipulation, the (3)® and (2)° terms cancel out, and we get

N M 1 kd—k g
2= Ck <—) 47, (25)
d=§o+lk= 2

o[- (D () (2

Changing the order of summation and separating thek =2 (3 3) and k> 2 (5 4) cases yields:

where

22=233+3a4 (26)
N 1\ -2 -
S3= ; Cz<—) 49 = 2(1— Z)M(M—1)(N—dp) ~ 1.215M(M — 1)(N— do) (27
d=dp+1 2 8
0
Moo N 1\dk=2) ™ o %)(k 2)(do+1)
S4 = C2 <—) C2 (28)
© T 208\ TR e
M
Cx
= 4y — =
2 1= (5 W
Now, let us examine the coefficients Cy.
M M M-1 M M—-2\ T
—  (_1)k-1 _ . . —
o = = [(5)-() () (2)-(2)3) &
- M k /M MY\ k(k—1) M\ 1t
f— — k l — - —_ —_— —
- ()= (0 Gy (03
_1/M k(k—1) 1t
_ (_1\k-1 _ I
= (M) o MR T,
By checking afew values of k, it can be shown that, for k > 3
—0.137MK < G < 0.027MK. (30)
Inserting (30) into (29) and accounting for the worst cases leads to
PRIV > B
1.1M 1_B§Z4§O.ZZM 15 (32)
Therefore, the contribution of 54 to E[S] is O(M?). Collecting the contributionsof 51, 33, and 54, we have
E[S = J1+33+34
2[4 1 B M
< 1215M(M—-1)N+M —@+022—B 1.215Iog2§ (32)

Once again, dp is chosen to minimize (32), subject to the conditions that dg is an integer less than N and that 3 (as
defined in (22)) islessthan 1. Notethat thefirst termin (32) isexact (it correspondsto 3 3) while the second term (i.e.,
M2 and its multiplier) is only a bound which is not very tight. Even this nontight bound (i.e., the second term in (32))
makes a negative contribution to the total number of nodes when the number of lines exceeds some modest threshold
(eg., for M= 16,32,...and = 0.5), in which case the simpler expression of 1.215M(M — 1)Nis also an upper bound.
Figure 3b shows the value of the upper bound given by (32) as afunction of M at amaximal depth of N = 10. Recall
that the upper boundsin the figure are minimal in the sense that for each value of M, upper bounds were calculated for
every possiblevaue of dy (subject to the constraint 3 < 1) and the minimal (tightest) upper bound was taken.
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4.3.2 Interpretation

The number of possibleline pairsintheimageis ('\é') . Multiplyingit by a yieldsthe expected number of intersections.
Approximating ('\é') by M2/2, we have that the expected number of vertices (lineintersections) in the whole image is
approximately l—”aMz. Considering only the dominant first term in (32), which is roughly proportional to N - M?, the
results of the analysis may be interpreted as confirming that both the number of vertices and the maximum depth of the
tree impact the number of nodes necessary. The dependence of E[S] on the number of vertices (i.e., the factor M?), is
intuitively clear as each vertex will be stored in a separate node in the tree. The dependence of E[S] on the maximum
depth of thetree(i.e., N) islessobvious. It can be explained by the observationthat the maximal depth of aPM quadtree
depends, in part, on factors such as the minimum separati on between two non-intersecting lines, the minimum distance
between a vertex and aline, and the minimum distance between two vertices[42].

Thelinear dependence of the upper bound for the expected storage requirements (i.e. E[S]) on the maximum depth
N isin agreement with the fact that in the worst case, al the vertices created by arandom configuration of lines could
appear in nodes at the maximum level. Furthermore, thislinear dependence showsthat the probability of the occurrence
of such “bad” linesetsisnot zero. This behavior was confirmed by our simulations, which found that in most cases the
randomly generated PM quadtreeis small, but in somerare cases it can be very large. For images generated using the
random image mode, it is not surprising to find many of the vertices at the maximum level of the tree, as unlike real
data (e.g., road networks), thefactorsthat lead to the maximum depth (e.g., two vertices or non-intersecting lines being
very close to each other, or avertex and alinebeing very close) are morelikely to arise. However, asM increasesfor a
fixed value of N, thefirst term of the bound in (32) becomes very |oose as the storage requirements are bounded by the
number of nodesin a completetree (i.e., 4/3-22N), thereby implying that for our analysis to be meaningful, M should
be considerably smaller than 2N.

4.3.3 A Lower Bound

Theexpected valueof E[S consistsof threeterms 5, Y3 and 3 4. Szisanexact value, ¥ 4 ispositive(i.e. boundedfrom
below by 0), and 3 4 is bounded from below by —1.1%BM2. Hence, z;;-l.l%Mz isalower bound for E[S. Note
that attempting to improve the bound by choosing a small value of 3 would fail as thisrequiresthat dy have a higher
valuewhich meansthat § 3 hasalower value. For very largevaluesof N, 5 ; and 5 4, are negligiblein comparison with
3 3 inwhich case the difference between the upper bound and the lower bound is small implying that each of these two
boundsisitself a good approximation of E[S].

4.4 Bucket PMRq Quadtree

A Bucket PMRq quadtree represents acollection of line segmentsin theplane. It partitionsthe planeinto square blocks
using the splitting rule that stipulatesthat ablock is split if both the depth of its corresponding nodeis less than N and
more than q line segments pass through the block. Thus if the block contains g or less line segments, then it is not
subdivided further and its corresponding node is a leaf. Otherwise, it is subdivided and its corresponding node has 4
sons (see Figure 1d).

Consider a Bucket PMR, quadtree. The probability that the splitting conditions are satisfied may be written as

Pi=1-—pgo—Pg1—(1—0a) pgz. (33)

This splitting probability is clearly identical to that of the PM quadtree, apart from changing a multiplicative constant
froma to1— a. Noticethat wedon't splitif thetwo linesdo not intersect. However, if they do intersect, then the result
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isthat there are 4 line segments in the block and thusiit is split. Therefore, the expected number of nodes is given by
an expression similar to (32) and increases linearly with the maximal depth N.

For the case that q= 3 the splitting probability hereisthe same asin (33) with the subtraction of aterm correspond-
ing tothesmall probability that 3 line segmentsintersect theregion, but not each other. Thus, the splitting probabilities
for q= 2 and for q = 3 are expected to be similar.

The situation, however, changes dramaticaly when considering Bucket PM R quadtrees with values of g equal to
4 and higher. For q = 4, the splitting probability satisfies

Pa<1—pdo—Pd1— Pd2- (34)

The probability P} is smaller than the right side of the above inequality because the probabilities of some additional
eventsthat imply the absence of splitting are not included. For example, if 3 or 4 linesintersect theregion, but not each
other, then the region isnot split. The inclusion of these contributionsis complicated and isnot needed for computing
an upper bound. From the expression (4), it isclear that if the probabilities P; are lower, then the expected number of
nodesisasolower. Therefore, for derivingthe upper bound, we may substitutethe upper bound (34) for the probability
Pj;. Using the same techniques as in Section 4.3, we define 3 and dg as in (22) and decompose the sum corresponding
to E[S into two sums ¥4 (24) and 3, (25). Here, however,

(_1)k_l[< ) ( ) (hlf—11> (2) (I\If 22>] (35)
) (5 () () -y ()]
(_1)k_1<l\:)[k 1)(k— 2]

1
—Mk<C <
3 > Sk >

Ck

implying that C, = 0 and that

1
~MK, 36
: (36)
The bounds (36) are derived by evauating Cy for several values of k and by observing that |Cy| decreases with k. The
fact that C; = O isimportant as it means that 5 3 is 0 and thus once we bound the finite geometric series in 5 by the

infinite geometric series, the expected number of nodeswill no longer depend on N. Now,

B M ook N <1)d( & 2" 2)(do+1) an
24 = k; k d=§0+1 > ~ 23 - %

s Ck B1“? 4 , B

B 4ém[ﬁ] <3V g (38)

Thisderivation is based on bounding the finite geometric progression with the corresponding infinite progression, ex-
pressing dg in terms of 3 and M, and performing some additiona arithmetic manipulations. Therefore,
21, B
E[T < M [B 1 B] (39
Figure 3c shows the value of the upper bound given by (39) as a function of M at a maximal depth of N = 10.
Again, we recall that the upper bounds in the figure are minimal in the sense that for each value of M, upper bounds
were calcul ated for every possiblevalue of dg (subject to the constraint 3 < 1) and the minimal (tightest) upper bound
was chosen. To get a clearer interpretation of the bound, select a specific value for 3, say 0.75 (which corresponds to
setsof 6,12,24, ... linesand to dg values of 3,4, 5, .. ., respectively). Then, we get

E[S < 6.37M? (q=4). (40)
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The bound (40) means that for aBucket PMRq quadtree (with q = 4) the expected number of nodesis proportiona
to the expected number of intersection points (approximately ”'lv'—; as derived in Section 4.3.2), henceforth referred to
as vertices, and does not depend on the maximal depth N. Therefore, if the maximal depth islarge enough, the subdi-
vision stops before reaching the maximal depth almost everywhere. Alternatively, the O(M?) intersection pointsresult
in O(M?) line segments. Thus an equally powerful characterization of this result is that the number of nodesis pro-
portional to the number of line segments, and does not depend on the maximal depth of the tree. Higher values of q
require amore complicated analysis as the number of line segments created by the intersection of more than two lines
isarandom variable of more complicated statistics. In particular, we have more possibilitiesto consider than just the
two events corresponding to the intersection or non-intersection of two lines. It is clear, however, that the splitting
probability decreases as g increases, and therefore for g > 4, the bound (39) still holds. Note that it is not possibleto
reduce this bound by much (even for higher values of g) since the bound on thefirst term, 3, remains % ';;'—22 < %MZ.

Regionsthat contain a vertex (resulting from the intersection of lines) are split if the number of line segments that
areincident at thisvertex ishigher than g. Thisexplainsthe significant changein the quadtree sizewhen q > 4. For our
model, all vertices have 4 line segments incident at them and therefore the regionsin a Bucket PMR, quadtree must
split until the maximal depth is achieved. On the other hand, in the Bucket PMR,4 quadtree (and for values of g > 4),
regionsthat contain asingle vertex are not split, which leads to a tree whose size isindependent of the maximal depth
N.

45 PMRg Quadtree

A PMRq quadtree represents a collection of line segments in the plane. It depends on aparameter g and is creasted as a
dynamic result of a sequence of insertion of line segments using the splitting rulethat ablock b is split once, and only
once, if bisbothintersected by the new line segment and if b already containsq or more line segments. Thusthe block
is subdivided at most once when a new line segment which intersectsit is entered into the structure. Clearly, this may
not be enough to ensure that the number of line segments stored in each leaf nodeis qor less. Since the maximal depth
of aPMRq quadtreeisnot knownin advance, arulethat repeatedly splitseach block until no more than g line segments
intersect with it may lead to a PMRq quadtree of infinite depth. This situation arises when more than q line segments
intersect at agiven point. It isinteresting to observe that for our model of arandom lineimage, the previous situation
cannot arisefor q > 4 asthe probability that three or more of therandom linesintersect at a point is zero. Regardless of
the configuration of the random lines (i.e., whether or not the intersection of three or more random lines is permitted),
the creation of an infinitely deep Bucket PMRy quadtree is precluded from occurring by our definition of the Bucket
PMRq quadtree to have alimit on its depth (i.e., N).

For the case that q > 4, we may use the upper bound (39) that we obtained on the number of nodes in a Bucket
PMRy quadtree to aso bound the number of nodes in a PMRy quadtree. To see this, we observe that since we cannot
have the situation that 3 or more random linesmeet at a point, when g > 4 we cannot have a PMRq quadtree of infinite
depth. This means that given a set of M random lines, the PMRq quadtree for them is of a finite depth with alimit D
that can be cal culated based on the minimum horizontal and vertical separations between the intersection points of the
lines. Therefore, we can construct a Bucket PMRq quadtree v with a parameter N = D so that regardless of the order
in which the M lines are inserted into the PMRq quadtreet, the nodes in the PMRq quadtreet will always be a subset
of the nodesin the Bucket PMRq quadtree v for the M lines. Recall that the bound on the number of nodes in a Bucket
PMRq quadtree that we obtained was independent of the depth N of the Bucket PMRq quadtree as welet N go to inf
when we computed ¥ 4 in (38). Thus the bound that we obtained in (39) is aso good for Bucket PM R quadtrees of
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depth D. Therefore, it is aso applicable to PMRq quadtrees subject to g > 4.

For g = 2, werecdl that the number of nodes in the Bucket PMR, quadtree is similar to this number in the PM
quadtree which is given by (32). Unfortunately, this does not provide a bound on the storage required by a PMR»
quadtree because the upper bound on the number of nodesin the PM quadtree is linear in the maximum depth while
the depth of the PMR, quadtree may be as high as the number of random lines M, thus giving an unredigtically high
upper bound. Such asituation can occur when two random linesintersect at point p asthey result infour line segments.
Intheworst case, theblock b that currently contains p would be split each time anew random linei isinserted provided
i passes through b. In contrast, the decomposition for the Bucket PMR, quadtree ceases once the block containing p
isat depth N. Thus, the node set associated with the Bucket PM R, quadtree is guaranteed to be a superset of the node
set associated with the PMR, quadtree (as well as for al values of g) only if itsdepthistrivially M or higher. Unlike
the case when g > 4, when q = 2, the upper bound on the number of nodes in the Bucket PMR, quadtree does not
converge when the depth N increases, and thus the bound obtained is very loose. Therefore, obtaining an upper bound
on the number of nodesin aPMR, quadtreeisan issue left for future research, although, as mentioned before, the case
of g > 4ismore interesting from a practical standpoint as we do not want the common situation of aroad junction (i.e.,
when 4 line segments meet at a point) to cause an arbitrarily large amount of splitting.

4.6 A General Discussion of the Bounds

The bounds devel oped here lead to the following asymptotic results on the expected number of nodes as a function of
the number of random linesM and the level of permitted subdivision N.

Region quadireeE[§ = O(M-2Y) (41)
MX quadireeE[§ = O(M-2N)
PM quadireeE[§ = O(M?.N)
PMR, quadireeE[S = O(M?) (q>4)
Bucket PMRy quadtreeE[S| = O(M?.N) (q=2)
Bucket PMR, quadtree E[S = O(M?) (q> 4)

These resultswere obtained by summing the expected number of nodesat each level of the hierarchical structures. The
differencesare duetothedifferent rates at which the splitting probabilitiesdecrease asthe depthincreases. For example,
for the MX quadtree, the probability that a node splits decreases with the depth, but does not decrease fast enough,
resulting in a tree of exponential size. On the other hand, for the PM quadtree, the splitting probability decreases at
afast enough rate to offset the exponential growth of the tree thereby resulting in a tree whose size is proportional to
its depth. The same holds for the the Bucket PMR3 quadtree. For g > 4, for both the PMRq quadtree and the Bucket
PMRq quadtree, the splitting probability decreases at an even faster rate thereby implying that the expected number of
nodes at each level decreases exponentialy with the depth and that the sum converges (i.e., isindependent of the depth
of thetree).

The main conclusionsthat can be drawn from these results are as follows. For the MX (and region) quadtree, the
number of nodes is proportional to the total length of the line segments (or the region boundaries). This conclusion
confirms a similar result obtained by Hunter and Steiglitz [19, 20]. For both the PM quadtree and the Bucket PMR»
quadtrees, the number of nodes can be interpreted as being proportional to the product of the number of intersections
among the lines (i.e., the original lines in the random image model or alternatively the vertices of the resulting line
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segments) and the maximal depth of the tree. The lower bounds on the size of the M X quadtree and the PM quadtree
include the dominant components of order O(M - 2V) and O(M?- N, respectively, thereby demonstrating that the upper
bounds reflect the real growth rate of the structures. For both the PMRq quadtree and the Bucket PMRy quadtree with
node capacities g > 4, the number of nodesis proportional to the number of line ssgments (recall that there are O(M?)
intersection pointsfor theM linesresultingin O(M?) linesegments). It also appearsthat for thePMR (g > 4) quaditree,
almost everywhere, the subdivision stops before the maximal depth, provided, of course, that the density of the lines
(i.e., the M random lines) does not make the tree almost full.

To get the actual values of the bounds (in contrast to the orders of magnitude summarized above) we use the exact
upper boundsasgivenin (16), (32) and (39), which depend on a parameter (3. 1t isworth re-emphasizing that the values
dp and 3 are not a part of the random image model. They are just parameters used to simplify the expression of the
bounds. In order to apply these bounds, it is required to choose a value of 3 which minimizes them while satisfying
relation (8) (with dgy being an integer bounded by N). Fixing thevaue of 3 a some constant (e.g., 0.75) gives abound,
which may not be the tightest, but is still useful for understanding the behavior of the size of the data structure. From
adtrict theoretica standpoint such an arbitrary choice of avauefor 3 isnot justified because it usualy impliesa non-
integer valuefor dyg. Note aso that the upper bounds contai n negative terms which reduce the bounds and make them
tighter. These negative terms compensate for nodes which are counted twice in other (positive) terms. For example,
nodes in the PM quadtree at a depth less than dg are accounted for both by the 5, = %"é—j term and aso by theM?-N
term. The negative term —M?log, % ~ —M?2d, compensates for this situation.

These bounds hold for all values of M and N. However, they become trivial when M > 2N, In this case, the pa-
rameter dy approaches the value of the maximal depth N, and the value of the bounds approach the number of nodes
in the complete quadtree of depth N which isatrivia bound on any quadtree of depth N as there cannot be any more
nodes. For the datasets that we considered (with 25, 50, 75, and 100 random lines), this was the case for N = 6 and
thus bounds for such a depth are omitted from the results described in Section 4.7 and the appropriate tables.

The boundsin this paper were computed under the assumption of a particular image model. We conjecturethat the
results apply also to more general images. In section 5 we examine several methods for inferring the size of quadtrees
that represent real maps, and test them experimentally. In essence, we characterize the map by some property, which
may be the total length of its constituent line segments, the number of vertices, etc. and use this property to specify a
class of random images which share the same property (in an expected value sense). Next, we conjecture that the num-
ber of quadtree nodes required to represent the real map isequal to the expected number of nodes required to represent
arandom map from that class.

4.7 SomeExperimental Resultsfor I nstances of the Random Model

We conducted severa experiments with synthetic and real data. In this section we describe the tests that were made
with synthetic data. They were aimed at determining how close the upper and lower bounds on the expected storage
costs come to the actua storage costs when using random data. Section 5 describes the results of testswith real data.
In these experiments, we built the MX, PM, and Bucket PMR, quadtrees of several depths N, using random syn-
thetic data created by the random image model described in Section 3. For each case, severa instances of each random
image were created and the average quadtree size was calculated. The results are summarized in Table 1. They usu-
ally agree with the analytical predictions, and, in particular, the upper bounds for &l of the quadtree variants aways
hold. The exceptions occur when the number of linesistoo low relativeto the size of the compl ete quadtree (i.e., at the
higher depths as we see for the PM quadtrees of depth 14). In such a case, we observe that we can no longer assume
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MX PM Bucket PMR,
M N —VopEr UB LB ER MODEL | UuB [ LB ER MODEL | UB [ ER
25 | 10 949K | 972k | 907K | 94.9K 388K | 55K 248K | 255K 0.846K | 4.33K | 0.669K
50 | 10 179K | 188K | 162K | 181K 12.8K | 19.3K 717K | 9.25K 338K | 17.3K | 277K
75 | 10 255K | 268K | 225K | 256K 251K | 438K 115K | 191K 750K | 324K | 6.01K
100 | 10 325K | 364K | 259K | 325K 39.9K | 65.8K 17K | 31.3K 131K | 69.3K | 104K
25 | 14 163M | 163M | 1.62M | 1.62M 6.78K | 842K | (5.39K) | 2.92K 0.863K | 4.33K | 0.676K
50 | 14 323M | 324M | 321M | 3.24Mm 245K | 312K | (19.1K) | 113K 352K | 173K | 283K
75 | 14 482M | 483M | 479M | 4.80M 516K | 70.8K | (384K) | 25.0K 797K | 324K | 6.30K
100 | 14 6.40M | 6.43M | 6.32M | 6.37M 87.0K | 114K | (65.1K) | 44.0K 142K | 693K | 11.2K

Table 1: Comparison of the result of expression (4) (MODEL), upper bounds (UB), lower
bounds (LB), and the actual (experimental) number of nodes (ER) for M random lines and
a maximal depth N in an MX, PM, and Bucket PMR4 quadtree. Parenthesized entries
indicate results that are inconsistent with the predictions. These inconsistencies only occur
for some of the lower bounds whose values are in excess of the actual number of nodes.

that most pairs of regions (i.e., nodes corresponding to blocks) are intersected by different lines, which counters the
independence assumption. In thiscase, thelower boundsmay not be vaid (i.e, they are too high in the sense that they
exceed the observed values). Thisis especialy truefor nodes at the higher depths.

To verify thisobservation we also evaluated the expression (4) for several values of the number of linesM and the
maximum depth N of the quadtrees. Recall that the sum (4) depends only on the independence assumption. We found
that while this sum closely approximates the actual expected number of nodes for the M X quadtree and by about 25%
for the Bucket PMR4 quadtree, thisis not the case for the PM quadtree for which the independence assumption causes
the value of (4) to be much higher than the actual value, provided that the depth is high enough. These observations
are examples of the limitationson the validity of the independence assumption.

The upper bounds obtained for the MX quadtree were consistently very close to the observed node counts. In con-
trast, theupper boundsfor the PM and Bucket PMR,4 quadtrees consistently exceed the observed node counts by factors
as high as 4 and 5, respectively. This difference can be attributed to both the possible inappropriateness of the inde-
pendence assumption and to the simplifications made in the bound derivation process. As mentioned above, we did
not attach much significance to obtai ning tighter bounds, as they are not used for predictionsbut, instead, only for per-
forming a qualitative comparison between the different quadtree representations.

5 Predicting Storage Requirementsfor Real Data

In this section we show that the expected storage predictions, derived for the random linesmodel, are al so useful when
real datais considered.

We conducted our testsusing real data correspondingto road mapsinthe USthat are part of the TIGER filesused by
the Bureau of the Census (see Figure 4). We used maps ranging from asmall map having only 585 road segments (Falls
Church county) to thelargest map including 39,719 segments (Montgomery county). The actual datafor the maps such
as the depth (N), number of vertices, segments, non-shape vertices (NSV and described below), the normalized length
(NormL and equal to thetotal length of the line segments divided by 2V), and the number of nodesinthe MX, PM, and
Bucket PMR,4 quadtrees are given in Table 2.

Our approach to applying the expected node count predictionsto areal map r depends on finding, for each mapr, a
class c of arandom lineimages which shares some property withr. The expected number of nodesrequired to represent
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Figure 4: Eight maps used to test the estimates on the number of nodes in the representing
quadtrees.
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] [ Number of nodes I
Map Name Depth | Vertices NSV | NormL | Segments | X [ PV [ PMR, ||
Falls Church 10 448 317 16.77 638 76869 4105 1317
Falls Church 12 448 317 16.77 638 336873 4477 1349
Falls Church 14 448 317 16.77 638 1387557 4633 1381
Falls Church 16 448 317 16.77 638 5600821 4681 1413
Alexandria 10 4074 2123 49.89 5380 191469 25249 9709
Alexandria 12 4074 2123 49.89 5380 915025 28929 10105
Alexandria 14 4074 2123 49.89 5380 3873949 30413 10429
Alexandria 16 4074 2123 49.89 5380 15774517 31061 10753
Arlington 10 6657 3978 67.91 9205 242373 43913 17637
Arlington 12 6657 3978 67.91 9205 1234449 54753 18677
Arlington 14 6657 3978 67.91 9205 5339437 58949 19481
Arlington 16 6657 3978 67.91 9205 21891973 61277 20281
Howard 10 15009 5283 57.58 17419 191861 63361 29321
Howard 12 15009 5283 57.58 17419 1031317 95945 32921
Howard 14 15009 5283 57.58 17419 4563069 111169 33937
Howard 16 15009 5283 57.58 17419 18866341 118305 34713
DC 10 12818 8805 107.99 19183 332589 73477 35377
DC 12 12818 8805 107.99 19183 1805965 92153 37813
DC 14 12818 8805 107.99 19183 7971497 99093 39685
DC 16 12818 8805 107.99 19183 32905753 | 103297 41533
Calvert 10 29174 4690 60.39 31143 213965 88769 44057
Calvert 12 29174 4690 60.39 31143 1094453 | 125053 48129
Calvert 14 29174 4690 60.39 31143 4734589 | 133141 48493
Calvert 16 29174 4690 60.39 31143 19402105 | 135241 48665
Prince Georges 10 50161 18055 117.55 59551 315289 157977 88485
Prince Georges 12 50161 18055 117.55 59551 1937553 | 277209 104993
Prince Georges 14 50161 18055 117.55 59551 8993017 | 318889 107889
Prince Georges 16 50161 18055 117.55 59551 37751493 | 334265 109825
Montgomery 10 79822 19793 118.74 90022 299601 186265 115693
Montgomery 12 79822 19793 118.74 90022 1927197 | 365701 145389
Montgomery 14 79822 19793 118.74 90022 9068057 | 424869 149613
Montgomery 16 79822 19793 118.74 90022 38212101 | 449905 | 151913

Table 2: Description of the TIGER files maps (see Figure 4), used in the experiments as
well as the corresponding actual storage requirements for the MX, PM, and Bucket PIVIR4
quadtrees.

arandom image from class c istaken to be the estimate for the number of nodes required to represent themap r.

In most cases, the equivalent random imageto agiven map r isspecified, asin Section 3, by the effective number of
linesM, whichisinferred, in anumber of alternativeways (described below), fromr. Another degree of freedominthe
specification of the equivaent random image is gained if we account for sparse or empty image parts. Therefore, the
equivalent randomimage s specified in two stages. First, arandom imageisspecified by M. Second, only afraction of
thisimageis retained whiletherest is considered to be empty. A normalization factor isinfered from theimager and
specfied the fraction retained. Thus, we are assuming that the number of nodesis directly proportional to theratio of
the nonempty area, and use this normalization factor to obtain the number of nodesin the equivalent class. For most of
the estimators, no normalization is done and the images of the equivalent class are just random images resulting from
the random image model defined in Section 3. The parameters specifying the random images class are estimated from
other parameter values of the real map r such as the total length Lmap, the total number of vertices Virap, and the totl
number of segments Smap.

Thefirst estimator that we consider istermed an L-based estimator. This estimator isbased on measuring the total
length Linap Of theline segments. Recall that for the random images created by the line model, the expected linelength
E[L]isT/4-M- 2\, Thisisthe result of (17) which follows directly from Theorem GPT2. Therefore, the number of
linesin every oneof the randomimageswhich share the“ expected linelength” property with thegiven map isestimated
by M = (Lmap/2V) - (4/T). For this estimator, there is no area normalization (that is, the equivalent random image is
assumed not to contain empty regions). For example, the total length of the line segments in the smallest map (i.e.,
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Falls Church shown in Figure 4a) that we used is 16.49 - 2N which yields M = 21 (the length is normalized relative to
the side of themap). Notethat thishasthe effect of converting the line segments of the test image to adifferent number
of infinite lines the intersection of which with the space in which they are embedded has the same total length.

The second estimator that we consider istermed aV-based estimator. It uses the number of verticesVimap inthe map
to estimate the effective number of lines M by treating all vertices as i ntersection points between random lines. Recall-
ing that the expected number of intersection points between the lines of the random image mode! is E[V] = 1iVi2/ 16,
we have M = +/16Vmap/TL Here, again as in the case of the L-based estimator, no area normalization is performed.
Note, however, that most vertices (termed shape points[6]) in atypical map image are theresults of a piecewise polyg-
ona approximation of a curve thereby implying that only two line segments meet at them. Thisisin contrast to the
intersection pointsin arandom image which are trueintersections (i.e., they correspond to the intersections of pairs of
random lines). A simple heuristic. which we use here, del etes these degree-2 vertices from the total vertex count and
yieldsthe non-shape-vertex (NSV) estimator. Clearly, thereare many cases for which thisheuristicisinapplicable. For
example, we could not apply it to a non-self-intersecting curve (e.g., a spira) as vertex deletion would predict that the
representation requires just a single node (whichis clearly erroneous).

The third estimator that we consider is termed as S-based estimator. Like the L-based and V-based estimators, it
is based on replacing the given map by arandom lineimage of the same size, and no area normalization is performed.
Again, we calculate an effective number of random lines M but thistime it is based on the number of line segments.
We assume that each vertex corresponds to theintersection of two random lines and hence resultsin four line segments
(also termed edges or segments). Therefore, each vertex has degree four. Each line segment isincident at two vertices.
Thisisapproximately true as only asmall fraction of the line segments, (i.e., 2M), areincident at just one vertex asthe
other endpoint of the lineison the boundary of theimage. Therefore, set the number of incidences (i.e., the sum of the
degrees of the vertices) which isfour times the expected number of vertices (i.e., 4- TtV1?/16) to two times the number
of edges (i.e., 2- Syap) and solvefor M which isequa to \/@.

The fourth estimator that we consider istermed a d-based estimator. This estimator isbased on replacing the given
map by a (usually smaller) random line image having the same number of vertices and density (i.e., average line seg-
ment length). The expected segment length in the random lineimage is crudely approximated as the ratio between the
expected length of the part of arandom lineincluded in the image and by the expected number of vertices on theline.
We have already seen that the expected length of the part of arandom lineincluded in theimage is t- 2N/4, while the
expected number of verticesin the map is M2/ 16. Since each vertex corresponds to the intersection of two linesand
hence lies on two lines, the expected number of vertices per lineis TiM /8. Therefore, the expected segment length is
2. 2N /M. Equating this expected segment length to the average segment length of the given map, calculated simply as
the ratio between thetota length Lyap and the number of segments Syap, yieldsan estimate M on the effective number
of lineswhich isequal to 2- Syap - 2Y/Lmap.

Unlike instances of the random line moddl, real maps tend to be highly nonuniform, and, in particular, to have a
large proportion of short segments and large empty “white” regions. Thisimpliesthat the value of the effective number
of lines M calculated for the d-based estimator above |eads to node number estimates which are much higher than the
actua ones. Therefore, we have chosen to compensate for this deviation by imposing the additional natural constraint
that the total number of non-shape verticesin the actual map is equal to the expected number of verticesin the random
lineimages. This constraint, which was a so used to obtain the effective number of linesfor the V-based estimator, is
now used as an area normalization factor to specify thenon-uniform class of random images. In particular, every one of
theseimagesisequal to therandom linesimagein oneregion and is empty in therest of it. The area of the “busy” part
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NSVmap
(Tt N2/ 16)
random image model defined in Section 3 is uniform, we can assume that the expected number of nodes representing

is specified to be , and isusually smaller than one. Notethat the expected density remains the same. Sincethe
every region is proportional to its area and thus the node count is reduced by the af orementioned factor.

In order to estimate thenumber of nodesin the quadtrees representing the actual maps, weround thedifferent values
of theestimate M and insert it in the basic sum (4) for the expected number of nodestogether with the appropriatenode
splitting probability (which depends only on the quadtree type). These results are tabulated in Table 3. Notice that
we do not tabulate the S-based estimator as it is very similar to the V-based estimator, and the data bears thisout. In
particular, the S-based estimator relies onthe number of line segments. Thisnumber isrelated to the number of vertices,
which is the basis of the V-based estimator. Upper bounds, which have a more compact form and do not require the
evaluation of a sum, may be obtained by inserting the rounded estimate M directly into the upper bounds (16), (32),
and (39), athough we do not tabul ate them here.

[ L -estimator I V-estimator I d-estimator I
Map Name Depth |["MX [ PM_ PMR, || MX_[ PM_| PMR, || MX [ PM_| PMRy ||
Falls Church 10 1.05 0.50 0.45 1.90 157 1.65 0.94 131 1.63
Falls Church 12 1.00 0.61 0.45 1.88 1.98 1.65 0.97 1.75 1.67
Falls Church 14 0.99 0.73 0.44 1.87 244 1.63 0.98 2.23 1.65
Falls Church 16 0.98 0.86 0.43 1.87 2.94 1.59 0.99 2.74 1.62
Alexandria 10 1.16 0.57 0.57 1.75 1.28 145 0.71 0.95 1.32
Alexandria 12 1.09 0.72 0.57 1.72 1.70 1.49 0.78 1.40 147
Alexandria 14 1.06 0.89 0.56 1.71 217 147 0.81 1.89 148
Alexandria 16 1.06 1.07 0.54 1.71 2.66 144 0.82 2.39 144
Arlington 10 1.18 0.54 0.55 1.77 1.22 144 0.78 0.91 1.30
Arlington 12 1.07 0.64 0.55 1.70 1.55 1.50 0.83 1.29 147
Arlington 14 1.03 0.79 0.54 1.69 1.97 147 0.87 1.73 147
Arlington 16 1.02 0.95 0.52 1.68 240 142 0.88 2.18 143
Howard 10 1.30 0.28 0.24 2.50 1.06 114 0.40 0.50 0.78
Howard 12 1.09 0.27 0.23 2.32 1.13 1.13 0.51 0.73 1.03
Howard 14 1.03 0.31 0.22 2.27 1.35 1.13 0.57 1.00 1.10
Howard 16 1.01 0.36 0.22 2.25 1.63 111 0.60 1.30 111
DC 10 1.26 0.69 0.67 1.74 1.37 151 0.86 1.03 1.33
DC 12 1.12 0.86 0.69 1.67 1.83 1.63 0.93 1.55 157
DC 14 1.09 1.10 0.67 1.66 241 1.61 0.97 214 1.59
DC 16 1.08 1.33 0.65 1.66 2.99 1.55 0.98 2.73 154
Calvert 10 1.22 0.22 0.18 2.15 0.70 0.68 0.13 0.19 0.32
Calvert 12 1.08 0.23 0.17 2.08 0.79 0.69 0.22 0.39 0.57
Calvert 14 1.04 0.29 0.17 2.07 1.02 0.70 0.27 0.64 0.67
Calvert 16 1.03 0.35 0.17 2.07 1.28 0.71 0.30 0.90 0.70
Prince Georges 10 142 0.37 0.32 2.32 1.08 114 0.35 0.42 0.63
Prince Georges 12 1.14 0.34 0.30 212 111 1.18 0.48 0.68 1.01
Prince Georges 14 1.06 0.40 0.30 2.07 141 1.20 0.56 1.03 1.16
Prince Georges 16 1.03 0.49 0.29 2.06 1.78 1.20 0.60 141 1.19
Montgomery 10 1.50 0.32 0.25 251 0.98 0.94 0.20 0.24 0.35
Montgomery 12 1.15 0.26 0.22 2.22 0.91 0.93 0.30 0.45 0.71
Montgomery 14 1.05 0.30 0.22 2.15 1.15 0.95 0.38 0.74 0.89
Montgomery 16 1.02 0.37 0.21 213 143 0.95 0.42 1.05 0.94

Table 3: Predicted storage requirements for the MX, PM, and Bucket PIVIR4 quadtrees
using the three estimators. The numbers given in the table are the ratios between the
predicted requirement using the estimator and the actual ones given in Table 2.

The particul ar estimators that we have described have a number of inherent limitations. For example, suppose that
the scale of theline segments (roads) of the map islowered by afactor of 2 so that all theroadsare totally embedded in
the NW quadrant of the original map image whilethe rest of the scaled map imageisempty. Inthiscase, if thedepthis
high enough, it islikely that the number of leaf nodesin PM and Bucket PMR4 quadtrees will stay the same, whilethat
intheMX quadtreewill decrease significantly. However, thetotal length of thelinesinthe quadtree of the scaled-down
map will be off by afactor of two thereby implying that the L-based estimator islikely to beinaccurate for the PM and
Bucket PMR, quadtrees. Thisismost relevant for maps containing many line segments in a small area and appears
to dampen the suitability of the L-based estimator for arbitrary images, although it does seem to work for images that
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span most of the space in which they are embedded.

From our experiments, the L-based estimator seems to perform the best for the M X quadtrees, while the V-based
estimator seems to work the best for the PM and PMR,4 quadtrees. We constructed the d-based (as well as therelated
S-based) estimator to try to improvefurther on the estimates for the PM and PM R4 quadtrees but found that it does not
improve on the V-based estimator, and sometimes even does worse. The good performance of the L-based estimator
for the MX quadtree was not surprising as it confirms the origina result of the analysis of Hunter and Steiglitz[19,
20] which found a proportionality to the perimeter of the image. The correlation between the estimated and actual
values that we observed is noteworthy considering that the number of nodes in the maps ranged between 77,000 and
38 million (i.e., afactor of 500). Nevertheless, we believe that a more detailed examination of the differences between
the the actual and predicted storage requirements, as well as other properties, of hierarchical spatial data structuresis
an extremely interesting open problem.

We were also interested in testing the validity of the asymptotic results given in (42) on the expected number of
nodes as a function of the number of line segmentsin real images and the level of permitted subdivision. The experi-
ments were the same as those described above. In al of the experimentswe assume that the number of line segmentsin
the map is proportional to M2, where M is a parameter related to the effective number of linesin the equivalent random
images (recall that there are O(M?) intersection pointsfor the M infinite lines).
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Figure 5: Ratio of MX quadtree nodes to Figure 6: Ratio of MX quadtree nodes to
side length. square root of segment count.

We first examine the MX quadtree. Figure 5 shows the ratios of the node count to the length of aside of theimage
(i.e., 2V) as afunction of the depth (i.e., N) for the different maps which are close to being constant (i.e., horizontal
lines) as expected. Figure 6 shows the ratios of the node count to the square root of the number of line segments (i.e.,
M) as a function of the number of line segments (i.e., M?) for the different depths which, as expected, are close to
being constant (i.e., horizontal lines) when the number of line segments relative to the depth islarge enough. We used
alogarithmic scale in Figure 6 to illustrate a similar relative deviation in the ratios for the different depths as the size
of the data incresses.

Next, we examine the PM quadtree. Figures 7 and 8 show theratio of the node count to the number of non-shape
vertices (i.e., NSV) and to the number of line segments (i.e., M?), respectively, as a function of the depth for the dif-
ferent maps which are close to being constant (i.e., horizontal lines). This means that the node count isindependent of
the depth. Thisis contrary to the prediction of the asymptotic analysis and was a so observed to be the case with the
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Figure 9: Ratio of PMR quadtree nodes to
NSV, q=4.

Figure 10: Ratio of PMR quadtree nodes to
segment count, q=4.

randomly generated data. Aswe recall, thisis probably because of the invalidity of the independence assumption.
Finally, we examine the PMR4 quadtree. Figures9 and 10 show theratio of the node count to the number of non-
shape vertices (i.e., NSV) and to the number of line segments (i.e., M?), respectively, as a function of the depth for the
different maps which we would expect to be constant (i.e., horizontal lines) especially for the larger maps. At lower
depths, the ratios increase with depth for a particular map since the segment counts are constant and the number of
nodes doesincrease with depth until converging once the decomposition rule can no longer be applied. Itisinteresting
to observethat thelinesin Figures 9 and 10 are not quite horizontd (i.e., representing a constant function) in the sense
that they have a small positive ope. Thisis because the line segments in the maps are not really formed by random
infinite lines. Thus it is not true that the probability that more than two infinite lines intersect at a point is zero. In
particular, we find that in our maps there are instances where more than four line segments meet at a point and hence
the number of nodesreally growslinearly with depth (since the decomposition ruleis still applicable, and, in fact, will
always be applicablein thiscase), athough this growth is not substantial in our graphs at higher depths. Experiments
with larger values of q verified that the number of nodes doesin fact converge as the depth increases. This can be seen
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in Figure 11 for q = 12. Figure 12 showstheratio of the node count to the segment count (i.e., M?) versus the segment
count at depth 16 for q = 4 and g = 12. Noticethat theratios are all within 6% of their average value. Figure 12 also
reveals agenera trend that the ratios decrease as the maps get larger. We used alogarithmicscaleto illustrateasimilar
relative deviation in the ratios for the different values of q as the size of the maps increases.

6 Concluding Remarks

The analysis of the space requirements of anumber of trie-based hierarchical geometric datastructuresfor storinglarge
collections of line segments was investigated using random image models. An appropriate model was devel oped for
each of these structures and estimates of E[Y, the expected number of nodes, were found for them. Future work in-
clude the investigation of the use of these estimates in a cost model by a query optimizer to generate an appropriate
guery evaluation plan in a spatial database application. The analysis presented hereisa so of interest because it uses a
detailed explicit model of theimage, instead of relying on modeling the branching process represented by thetree, and
leaving the underlying image unspecified. The behavior of these expected valuesisintuitively and concisely expressed
by analytic upper and lower bounds. Other directionsfor futureresearch include the application of the geometric prob-
ability approach to additional datatypes besides line segments (e.g., points, polygons, surfaces, solids, etc.), aswell as
alternative trie-based spatial data structures.

We have demonstrated that these estimates, derived for a particular random model, are applicable to real data
Specifically, in the case of line map images, we provided estimators which are based on simple characterizations of
the map data, and which enabled us to successfully apply the results of the analytic model to real data and to obtain
reasonably accurate and useful results. Thiswas verified, however, only for map data, and characterizing collections
of other types of line segments, or even more general types of spatia information, is still an open problem, and thus a
subject for further research.

Our results can be used to justify claims on the quditative differences between the different aternative spatia data
structures. For example, we showed that the Bucket (and conventional) PMRq quadtree for g > 4 is superior to the
PM quadtree in terms of the number of nodes that are required. The problem with the PM quadtreeisthat althoughits
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behavior isusualy acceptable, there are cases in which it requires much space due to certain point and line configura:
tions. Thisfollowsfrom our analysis and simulationsas well as confirming earlier observations on the possible worst
case behavior of the PM quadtree [42].

Perhaps our most important result is showing thet the space requirements of the Bucket PMRq and PMRq (g > 4)
quadtree are asymptotically proportional to the number of line segments. Thiswas shown theoretically for arandom
lineimage model and was also found to hold for random dataand real map data. Thisisquitesignificant asit enablesus
to predict the number of nodes required by this representation, and, most importantly, to show that it isindependent of
the maximum depth of thetree. It isthusnot surprising that the PM R quadtree has found use in experimental systems
(e.g., QUILT [45]) aswell as commercial systems (e.g., United Parcel Service (UPS) [4]).

7 Acknowledgements

We appreciate the comments of S. K. Bhaskar and Gary D. Knott who made suggestions about the evaluation of the
sums.

References

[1] C.H. Ang, Applicationsand analysis of hierarchica data structures, Computer Science TR-2255, University of
Maryland, College Park, MD, June 1989.

[2] W. G. Aref and H. Samet, Optimization strategies for spatial query processing, Proceedings of the Seventeenth
International Conference on \ery Large Data Bases, G. Lohman, ed., Barcelona, September 1991, 81-90.

[3] N.Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger, The R*-tree: an efficient and robust access method for
points and rectangles, Proceedings of the SGMOD Conference, Atlantic City, NJ, June 1990, 322—331,

[4] R.Bonefas, personal communication, 1991.

[5] T.Brinkhoff,H. P. Kriegel, R. Schneider, and B. Seeger. Multi-step processing of spatial joins. In Proceedings of
the 1994 ACM SIGMOD International Conference on Management of Data, pages 197-208, Minnespolis, MN,
June 1994.

[6] Bureau of the Census, TIGER/Line Census Files, 1990 Technical Documentation, Washington, 1991.

[7] C. Faloutsos and |. Kamel, Beyond uniformity and independence: Anaysis of R-trees using the concept of
fractal dimension, Proceedings of the Thirteenth ACM S GACT-S GMOD-S GART Symposium on Principles of
Database Systems, Minneapolis, MN, May 1994, 4-13.

[8] C.Faoutsos, T. Sdlis, and N. Roussopoul os, Analysis of object oriented spatial access methods, Proceedings of
the SGMOD Conference, San Francisco, May 1987, 426-439.

[9] R.A.Finkel and J. L. Bentley, Quad trees: adata structure for retrieval on composite keys, Acta Informatica 4,
1(1974), 1-9.

[10] P.Flgolet, G. Gonnet, C. Puech, and J. M. Robson, Analytic variations on quadtrees, Algorithmica 10, 6(Decem-
ber 1993), 473-500.

[11] P Flgolet and T. Lafforge, Search costs in quadtrees and singul arity perturbation asymptotics, Discrete & Com-
putational Geometry 12, 2(September 1994), 151-175.

[12] P. Flgolet and C. Puech, Partial match retrieval of multidimensional data, Journal of the ACM 33, 2(April 1986),
371-407.

[13] E. Fredkin, Trie memory, Communicationsof the ACM 3, 9(September 1960), 490-499.

29



[14] G. Graefe, Query eva uation techniques for large databases, ACM Computing Surveys 25, 2(June 1993), 73-170.

[15] A. Guttman, R—trees: adynamic index structurefor spatia searching, Proceedings of the SGMOD Conference,
Boston, MA, June 1984, 47-57.

[16] E. G.Hod and H. Samet, Data-parallel spatial join agorithms, Proceedings of the 23rd International Conference
on Parallel Processing, St. Charles, IL, August 1994, val. 3, 227-234.

[17] E. G. Hod and H. Samet, Performance of data-parallel spatial operations, Proceedings of the 20th I nternational
Conference on \ery Large Data Bases (VLDB), Santiago, Chile, September 1994, 156-167.

[18] M. Hoshi and P. Flgjolet, Page usage in a quadtree index, BIT 32, 3(1992), 384-402.

[19] G. M. Hunter, Efficient computation and data structuresfor graphics, Ph.D. dissertation, Department of Electrical
Engineering and Computer Science, Princeton University, Princeton, NJ, 1978.

[20] G. M. Hunter and K. Steiglitz, Operations on images using quad trees, |IEEE Transactions on Pattern Analysis
and Machinelntelligence 1, 2(April 1979), 145-153.

[21] C. L. Jackinsand S. L. Tanimoto, Oct-trees and their use in representing three dimensional objects, Computer
Graphics and Image Processing 14, 3(November 1980), 249-270.

[22] G.Kedem, TheQuad-ClFtree: adatastructurefor hierarchical in-lineagorithms, Proceedings of the 19th Design
Automation Conference, Las Vegas, June 1982, 352—257.

[23] A.Klinger, Patterns and search statistics, in Optimizing Methods in Statistics, J. S. Rustagi, ed., Academic Press,
New York, 1971, 303-337.

[24] K. Knowlton, Progressive transmission of grey-scale and binary pictures by simple, efficient, and | ossl ess encod-
ing schemes, Proceedings of the IEEE 68, 7(July 1980), 885-896.

[25] D.E.Knuth, The Art of Computer Programming, vol. 3, Sorting and Searching, Second Edition, Addison-Wesley,
Reading, MA, 1973.

[26] J. H. Lee, D. H. Kim, and C. W. Chung. Multi-dimensiona selectivity estimation using compressed histogram
information. In Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, pages
205214, Philadel phia, June 1999.

[27] C. Mathieu, C. Puech, and H. Yahia, Average efficiency of data structures for binary image processing, Informa-
tion Processing Letters 26, 2(October 1987), 89-93.

[28] Y. Matias, J. S. Vitter, and M. Wang. Wavel et-based histograms for selectivity estimation. In Proceedings of the
1998 ACM S GMOD International Conference on Management of Data, pages 448-459, Sesttle, June 1998.

[29] D. Meagher, Geometric modeling using octree encoding, Computer Graphics and Image Processing 19, 2(June
1982), 129-147.

[30] M. Muralikrishnaand D. J. DeWitt. Equi-depth histogramsfor estimating sel ectivity factorsfor multi-dimensional
gueries. In Proceedings of the 1988 ACM S GMOD I nter national Conference on Management of Data, pages 28—
36, Chicago, June 1988.

[31] R.C.NesonandH. Samet, A consistent hierarchical representation for vector data, Computer Graphics 20, 4(Au-
gust 1986), 197—206 (also Proceedings of the S GGRAPH ’ 86 Conference, Dallas, August 1986).

[32] R. C. Nelson and H. Samet, A population analysis of quadtrees with variable node size, Computer Science TR-
1740, University of Maryland, College Park, MD, December 1986.

[33] R. C. Néelson and H. Samet, A population analysis for hierarchical data structures, Proceedings of the SGMOD
Conference, San Francisco, May 1987, 270-277.

[34] J. A. Orenstein, Spatial query processing in an object—oriented database system, Proceedings of the SSGMOD
Conference, Washington, DC, May 1986, 326-336.

30



[35] M. Ouksdl and P. Scheuermann, Storage mappings for multidimensional linear dynamic hashing, Proceedings of
the Second ACM S GACT-SIGMOD Symposium on Principles of Database Systems, Atlanta, March, 1983, 90—
105.

[36] B.U.Pagd, H. W. Six, H. Toben, and P. Widmayer. Towardsan analysisof range query performancein spatial data
structures. 1n Proceedings of the Twel fth ACM SIGACT-S GMOD-S GART Symposiumon Principles of Database
Systems, pages 214-221, Washington, DC, May 1993.

[37] C. Puech and H. Yahia, Quadtrees, octrees, hyperoctrees: a unified analytical approach to three data structures
used in graphics, geometric modeling and image processing, Proceedings of the Symposium on Computational
Geometry, Baltimore, June 1985, 272-280.

[38] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wes ey, Reading, MA, 1990.

[39] H. Samet, Applicationsof Spatial Data Sructures: Computer Graphics, Image Processing, and GIS, Addison-
Wesley, Reading, MA, 1990.

[40] H. Samet, A. Rosenfeld, C. A. Shaffer, R. C. Nelson, and Y. G. Huang, Application of hierarchical datastructures
to geographical information systems: phase 111, Computer Science TR-1457, University of Maryland, College
Park, MD, November 1984.

[41] H. Samet and M. Tamminen, Efficient component labeling of images of arbitrary dimension represented by linear
bintrees, IEEE Transactionson Pattern Analysis and Machine Intelligence 10, 4(July 1988), 579-586.

[42] H. Samet and R. E. Webber, Storing a collection of polygons using quadtrees, ACM Transactions on Graphics4,
3(July 1985), 182—222.

[43] L.A. Santdo, Integral geometry and geometric probability, in Encyclopedia of Mathematicsand its Applications,
G. C. Rota, ed., Addison-Wedl ey, Reading, MA, 1976.

[44] C.A. Shaffer, R. Juvvadi, and L.S. Heath, Generalized comparison of quadtree and bintree storage requirements,
Image and Vision Computing 11, 7(September 1993), 402-412.

[45] C.A. Shaffer, H. Samet, and R. C. Nelson, QUILT: a geographic information system based on quadtrees, Interna-
tional Journal of Geographical | nformation Systems4, 2(April-June1990), 103—131 (also University of Maryland
Computer Science TR -1885.1).,

[46] M. Tamminen, Encoding pixel trees, Computer Vision, Graphics, and Image Processing 28, 1(October 1984),
44-57.

[47] M. Tamminen, Comment on quad- and octtrees, Communicationsof the ACM 27, 3(March 1984), 248-249.

31



