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Abstract

A new method termed population analysis 1s presented
for approximating the distnibution of node occupancies n
hierarchical data structures which store a variable number of
geometric data 1tems per node The basic 1dea 1s to describe a
dynamic data structure as a set of populations which are per-
mitted to transform into one another according to certain
rules The transformation rules are used to obtain a set of
equations describing a population distribution which 1s stable
under nsertion of additional information mnto the structure
These equations can then be solved, either analytically or
numerically, to obtain the population distribution Hierarchi-
cal data structures are modeled by letting each population
represent the nodes of a given occupancy A detaled analysis
of quadtree data structures for storing pomnt data 1s
presented, and the results are compared to experimental data
Two phenomena referred to as aging and phasing are defined
and shown to account for the differences between the expen-
mental results and those predicted by the model The popu-
lation techmique 1s compared with statistical methods of
analyzing similar data structures
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I Introduction

Hierarchical data structures are a class of data structures
employing a representational scheme which can be appled at
different spatial resolutions to allow the structure to be
adapted to the data Examples include quadtree and octree
varieties [Same84a], bintrees [Same84c|, grid files [Niev84],
and also techniques which are less explicitly based on spatial
decomposition such as extendible hashing {[Fagi79] All, how-
ever, are variable resolution representations which have
locally similar structure at different resolutions

Because the local resolution of hierarchical data struc-
tures depends on the data being represented, performance
analysis tends to be difficult Traditional worst-case analysis
1s often mappropriate because the worst case tends to be both
very bad, and highly improbable More useful would be a
“typical case” description of properties of nterest such as
required storage per data item or access time Most
approaches to the analysis of hierarchical structures have thus
been statistical in nature, most notably, Fagin et al 1n thewr
analysis of extendible hashing [Fag179] which turns out also to
apply to certain types of quadtrees Regnier [Regn85] and
Tamminen [Tamm83| have also published statistical analyses
of grid files and a structure called EXCELL respectively

A major drawback of statistical analysis for hierarchical
systems 1s that 1t can be quite complicated to perform, even
for relatively simple cases (e g, for umformly distributed
pomt data [Fagi 79]) The prospect of attempting such an
analysis for more complicated data primitives (e g, line seg-
ments or polygons) mteracting i higher dimensional spaces 15
somewhat daunting Furthermore, since such analyses depend
on some model of data distribution, they will yield at best,
approximations to the expected values when real data 1s used
For many apphcations, a good approximate model may be of
as much practical value as an exact statistical computation

This study arose out of our attempt ¢o analyze the
storage behavior of certamn quadtree data structures which we
used 1n the 1mplementation of a geographic nformation sys-
tem [Same85¢|] A straightforward statistical analysis of these
structures promised to be an exceedingly laborious task
Since we were interested in the distribution of the nodes as a
function of therr occupancy, we decided to model a quadtree
as a collection of populations where each population
represented the nodes in the quadtree having a particular
occupancy Thus the set of all empty nodes constitutes one
such population, the set of all nodes containing a single data
element another, and so forth A certain approximation 1s
involved since the set of all nodes of a given occupancy con-
tans nodes at many different levels in the quadtree Since the



nodes at different levels represent physical blocks of different
areas, the population 1s not, strictly speaking, homogeneous
However, because the structure of hierarchical data structures
18 simuilar at different resolutions, 1t was expected that the
effect of this approximation would be relatively minor

As mnformation 15 added to a quadtree with variable
capacity nodes, each population grows i a manner which
depends on the other populations For instance, consider a
structure where nodes can hold up to m points and are spht
when the capacity 13 exceeded In this case, the probability of
an insertion producing a new node with occupancy + depends
both on the fraction of the nodes with occupancy 1-1 and on
the population of full nodes (occupancy m) since nodes of any
occupancy less than or equal to m can be produced when a
full node sphits The basic 1dea 18 to determine a steady state,
where the proportions of the various populations are constant
under addition of new wnformation according to some data
model If such a steady state exists, then 1t can be taken as a
representative distmbution of populations from which
expected values for structure parameters such as average node
occupancy can be calculated

We used this approach to analyze quadtree structures for
storing both pomnt and hne information We present here, an
application of the technique to a quadtree structure for stor-
ing point data Our analysis of structures for storing line
data 1s somewhat analogous, and 1s described in detail n
[Nels86b]

The remainder of the paper 1s organized as follows Sec-
tion II gives a brief overview of quadtrees Section III
describes the use of the population model 1n detail, and illus-
trates 1ts use by analyzing the PR quadtree for storing pomnts
Section IV accounts for the discrepancy n the model in terms
of two phenomena termed aging and phasing which are
characteristic of hierarchical data structures in general Sec-
tion V contains conclusions and a summary of other work

I Quadtrees

The quadtree [Same84a] 15 a hierarchical, vamable resolu-
tion data structure based on the recursive partitioning of the
plane mto quadrants This scheme 1s useful for representing
data having geometric distribution at variable resolution
Varnations exist for representing planar regions [Klin71], col-
lections of pomnts [Fink74, Same84b], and collections of line
segments{Same85b, Nels86a] as well as more complicated
objects (e g rectangles) The basic principle generalizes to 3
and higher dimensions (e g , octrees [Hunt78, Jack80, Meag82|
and bmtrees [Know80, Tamm84, Same85a])

Quadtrees can be divided nto two types those based on
regular decomposition of space using pre-defined boundaries,
and those where the partition 1s determined expheitly by the
data as 1t 18 entered mnto the structure Figure 1 shows a
quadtree representation for a set of points based on regular
decomposition The region of interest has been recursively
partitioned into quadrants until no quadrant contamns more
than a single pomnt This structure 1s known as the PR quad-
tree [Oren82, Same84b] A second decomposition method has
been mvestigated in applications where 1t 18 desired to adapt
the structure closely to the data (eg, the classical point
quadtree [Fink74]) The partitions are typically irregular and
of odd sizes, and the shape of the final structure depends crit-
1cally on the order in which the imformation was mserted into
the tree
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Figure 1 PR quadtree for four pomnts Blocks are recursively
quartered until no block contains more than one point

The condition used to determine when a quadtree block
should be partitioned 1s called the sphiting rule The form of
the rule depends on the type of data being stored For
mstance, if a quadtree 1s being used to store a collection of of
poimnts, one possible rule 1s “split until no block contains more
than one distinct point’” This 1s the basis of the simple PR
quadtree The generalized PR quadtree 1s obtained by permit-
ting the nodes to contain more than one pommt The rule for
the generalized PR quadtree then becomes “spht until no
block contains more than m points” This principle 1s similar
to that used by Tamminen m his EXCELL system [Tamm81)]
and by Nievergelt m the grid file [Niev84]

III Computation of the expected distribution

Consider a quadtree data structure whose leaf nodes
each contain between 0 and m data items which are members
of some set A (e g, the PR quadtree for pomnts) The number
of data 1tems stored 1n a node 18 the occupancy of the node
We can describe the distribution of node occupancies in a par-
ticular quadtree @ by a state vector d = (pg,py, P )
where p, 1s the proportion of the nodes having occupancy ¢
As a consequence of this defimtion pgt+p,+ +pm =1
We would hke to define an average or typical state vector, say
€, for the data structure which could be used to predict
storage properties with some degree of accuracy We will call
this vector the expected distmbution The following discus-
sion makes specific reference to quadtrees, but the same prin-
ciples apply in the case of octrees and higher dimensional data
structures

A typical statistical approach to defining € would be the
followmg Let d, be the average value of the state vector
over all quadtrees which represent a subset of A containing
elements Generally, d, 1s defined relative to some model of



data distribution Define the expected distribution € as the
hmi1t of the sequence d , 72, If € exists and can be cal-
culated, then 1t could serve as a representative distribution
for quadtrees of a given type Fagin et al have used a sta~
tistical approach to calculate average node occupancies as a
function of the number of data points in the context of exten-
dible hashing [Fagi79] The application of their results, with
shght modifications, to the PR quadtree, indicates that the
hmit € does not exist Specifically, the vector sequence d ,
4—{2. undergoes oscillatory behavior of increasing period
and non-decreasing amphtude We will show m Section IV
that this sort of oseillatory behavior, which we refer to as
phasing, 1s typical of hierarchical data structures mn general
when a uniform data distribution 1s present

The above statistical calculation represents a consider-
able mathematical effort Furthermore, 1t cannot be easily
generalized to hierarchical representations for other data
prnimitives (e g, lne segments) Calculating the vectors
directly seems to be difficult in general, especially if the data
primitives are non-trivial For these reasons, we decided to
pursue an alternative means of modeling the performance of a
quatree

We model a quadtree as a set of populations of nodes
where each population consists of all nodes having a given
occupancy Thus empty nodes form one population, nodes
contaimng one pomt a second, and so forth Insertion of a
pomt mmto a node of occupancy s either transforms i1t mto a
node with occupancy t-+1 or else causes the node to splt,
mcreasing several populations The expected distribution € 15
defined by the condition that the proportion of each popula-
tion making up the structure remains unchanged if data 1s
added to the tree in accordance with statistical expectations,
1e, € 15 a fixed point under the operation of msertion This
condition can be used to determme € 1if the data distribution
and the statistical results of adding a datum to a node can be
calculated The key difference between our method and the
statistical approach of Fagin et al 1s that our method consid-
ers only the local probabilities for the distribution of data
items 1n a single node into 1ts quadrants rather than a distri-
bution for the whole population It i1s more tractable than the
direct statistical approach, and yields results which are i rea-
sonable agreement with experimental data for several quad-
tree data structures We illustrate the use of this technique
by means of an example, and then summarize the result of its
apphcation to the generalized PR quadtree

Consider the siumple PR quadtree described above
Every node contains either zero or one data pomts There are
thus two distinct populations Let us refer to these as types
ng and nj respectively If a pomnt i1s added to a node of type
np, that node 1s transformed mto a single node of type n,
On the other hand, if a pont 18 added to a node of type n,,
then the block must be spht, perhaps several times, until the
two pomnts lie 1n separate blocks In this case, several nodes,
of both types, are generated

For any node type, the average result of adding a pomt
to the node can be described by a transform vector ?=(to,tl)
where ;15 the average number of nodes of type ng produced
by the msertion of a pomnt, and ¢, 1s the average number of
n; nodes Let ¥ be the transform vector describing the
results of adding a point to a node of type n, The vectors T,
form the row of a matrix T called the transform matrix
From the preceding discussion Ty = (0,1) To determine 1,
we use the geometry of the situation to write a recurrence
relation If the distribution of data pownts 1s uniform, then i
3/4 of the cases, a single sphit will suffice, dividing the block
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mto four quadrants, two of which are empty, and two of
which contamn a single point In one quarter of the cases,
both points will end up 1 the same quadrant which must be
spht again under the same conditions as the original spht
This allows us to write the recurrence relation

- 3 1 1
= 2 (22) + 1 (3,0) + 4t1

Solving this vector equation for 7y gives 7y = (3,2)

If we now assume, that the probabihty of a data pomt
being 1nserted mnto a node of a given occupaney 18 propor-
tional to the numerical fraction of nodes of that type i the
tree, then we can use the above results to write equations
which 2 must satisfy Note that this assumption 1
equivalent to the assumption that the distribution of node
occupancies 18 Independent of the geometric size of the
corresponding block 1 e, that nodes at depth n 1n the tree do
not have different occupancy distributions than those at
depth n+1 It turns out that this 15 not strictly true in real
quadtrees — larger nodes tend to have shightly higher average
occupancies We refer to this phenomenon as aging, and will
examme 1t 1n more detail later However, for PR quadtrees,
the approximation 18 close enough to be useful

Under the above assumption, msertion of new data
pomts into a PR quadtree transforms nodes of types ng and
n; with relative frequency ¢y and e respectively (recall that
€ 15 the expected distribution) Because nodes are
transformed m direct proportion to their abundance, the dis-
tribution of untransformed nodes 1s always € Thus o order
for € to be a fixed pomnt, the distribution of node types pro-
duced from the transformed nodes must also be € This
allows us to formulate equations which can be solved for € as
follows Suppose that the number of data points 1s increased
by An In this case, the expected number of new nodes of
each type can be calculated from the distribution of node
types in the tree (assumed to be €) and the transform vectors
(represented by the matrix T) Specifically, the expected
number of new ny nodes 18 TyyegAn + Tpe,An, and the
expected number of new n, nodes 15 TyegAn + Tye,An
The expected total number of new nodes 18 the sum of these
two quantities Requiring the proportion of new ngy nodes to
be e gives

Toeot+Tioes
TooGo+T10¢ 1+T0160+Tuc 1

Simularly, requiring the proportion of new n; nodes to be e,
gives

Toreo+Tiey _
Tooeo+Troe1+Toreo+T ey

These equations can be concisely expressed in matrix notation
by the formula

eT = a¢

@)

where a 1s the scalar Typeg+T g€y +Toe0+Te; Note that
since a 18 a function of €, (1) does not represent a set of
hinear equations, but rather a set of quadratic equations
mvolving the components of € This particular example can
be solved analytically to yield €=(1/2,1/2), the only positive
solution Thus a PR quadtree with a maximum of one point



per node, should have approximately equal numbers of full
and empty nodes This agrees fairly well with experiments in
storing random pomts i PR quadtrees where we found
approximately 53% empty and 47% full nodes The causes of
the shght discrepancy are examined later

The above technique can be apphed to the generalized
PR quadtree where a node may contain up to m pomts The
integer m 18 known as the node capacity The expected dis-
tribution € has m+1 components, there are m+1 node types
ng through n,,, and there are m-1 transform vectors 7,
through f, which form the rows of the m+1Xm+1
transform matrix T™ The transform vectors Ty through ¥,_;
are simple because the new data point is just added to the
node without causing a spht, so that a node of type n,
becomes a node of type n,,; The vectors Ty through -l
thus have the form

%, =(0, 010, ,0)

where there are m-+1 components and 1 1s 1n the t+1% posi-
tion

The vector T, which represents the sphtting of a node
mto four quarters when 1ts capacity 18 exceeded 18 found by
determining the expected distribution of the points into the
quadrants, a.nd using this information to write a recurrence
relation for 7, as illustrated above 1n the case of the PR
quadtree for m=1

In general, the expected distribution of m+1 pomnts mto
quadrants 18 just the binomial distribution for m+1 objects
placed 1independently mto four buckets The expected
number of buckets containing s 1tems, P,, 1s thus given by

m+1-t
P, = (mjl) -

The term P,,,, 18 equal to 4™, and represents the case where
all m+1 pomnts end up 1n the same quadrant so that recursive
sphtting occurs A recursive relation for t can thus be writ-
ten

= (Po,Py, s Pm) + Pm+lT
This can be solved to obtamn the following expression for the
components T, of T,
3m+l—
~1

Note that for m larger than three or four, the probability of
splitting more than once s neghgible, and T, 1s closely
approximated by P,

- (m+1)

As mm the m=1 case, a set of equations for the com-
ponents of € can be expressed i terms of the transform
matrix T

€T == a¢

The scalar @ 13 the normahzing factor 1n computing the pro-
portions and 1s given by

that is, the sum of the coeflicients of € multiphed by the sum
of the components of the transform matrix i the correspond-
ing row The row sums represent the number of nodes pro-
duced by a node of type n, upon absorbing an additional
poimnt, and thus all equal unity with the exception of row m
whose sum 18 (4™*1-1)/(4™-1) which 1s shghtly greater than
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four Thus a can be written

4m+1_1

+
4™-1

a =¢€g+ €1+ €m

The matrix equation represents a set of m-+1 quadratic
equations for the components of € In general, such a set of
equations can have up to 2™*! golution vectors, however,
since the components of € represent proportions, we are
mterested only n solutions for which all the components are
positive It can be shown, that for sets of equations of the
above form, at most one positive solution 18 possible (see
[Nels86b]) We are thus free to solve the equations numen-
cally, with the assurance that any positive solution we find
will be appropriate

The equations were set up and solved for PR quadtrees
with node capacities m ranging between one and eight points
For each node capacity 1<m <8, the transform matrix T was
used to obtain a system of equations describing the expected
distribution € The systems were solved numenically using an
iterative technique which converged on the positive solution
Experimental data was collected by constructing ten quad-
trees of 1000 random pomts for each case and averaging the
results Corresponding data poimnts from different trees were
typically within about 109 of each other The theoretical
and experimental values obtaned are compared 1 Table 1

Experiment and theory agree fairly well as to the general
form of the expected distribution € Both show, for all node
capacities m, a distribution which has a small value for low
occupancies, rises to a peak, and decreases agam for high
occupancies

A quantity, which conveniently summarizes the informa-
tion contamed 1 € for many practical applications, 1s the
average node occupancy This value s calculated from € by
adding e; to twice e, and so forth, 1e, the dot product of 2
with the vector (0,1,2, ,m) A good general idea of the accu-
racy of the theoretical model 1s obtained by comparing, for
each m, the average node occupancy predicted by the model
with that observed m the experiments These values are
tabulated mn Table 2 The agreement is clearly not exact, but
1t 15 close enough to be useful, and to establish the utility of
the underlying model

Two basic trends 1n Table 2 are noteworthy First, the
theorefical occupancy predictions are shghtly, but uniformly
higher than the experimental values Second, the size of the
discrepancy seems to have a cyclical structure This behavior
1s primanly due to two phenomena, exhibited by hierarchical
data structures under certain circumstances, which are not
taken mto account in the rather simple model derived above
The explanation of these phenomena 1s the subject of the next
section

IV. Sources of discrepancy aging and phasing

We will first examine a phenomenon referred to as aging
which accounts for the consistent over-estimation of the aver-
age node occupancy by the theoretical model Recall that in
the derivation of the model, an assumption was made that the
probability of a point, randomly selected from a uniform dis-
tribution, falling mto a node of type n, (occupancy 1) was
proportional to the fraction of total nodes which were of type
n, Swce the probability of a pomt falling into a node of type
n, 15 actually proportional to the fraction of the total area
occupled by nodes of type n,, this was equivalent to the
assumption that the dlstrlbutlon of types in the population of
nodes having area (1/2%) was independent of + The fact



that this assumption does not hold exactly is the reason that
the theoretical values tend to be umformly higher than the
experimental ones In particular, nodes having greater area
will, on the average, tend to have a higher occupancy

The higher occupancy of large nodes can be understood
in two ways If the quadtree 1s viewed as a static structure
where a set of ponts 1s given and splitting of quadrants takes
place until no block contains more than m powmnts, then for a
random, uniform distribution, the bigger nodes will tend to be
better filled sumply because their area is larger and the point
density 1s (more or less) uniform This occurs 1n spite of the
fact that the splitting 1s adaptive

Another way of looking at the same phenomenon 1s to
consider the quadtree as a dynamic structure which has
reached 1ts present state through a history of point msertions
A particular leaf node can be considered to have a hfetime
extending from the time 1t 1s created by the sphtting of 1ts
parent, untl 1t absorbs enough pomnts to fill 1t to capacity and
1s 1tself spit This “filling up” process will be referred to as
aging Clearly, as a population of nodes of a given size ages,
the average occupancy increases Consider a time scale
defined by the rate of nsertion of points, where each pomt
insertion represents a tick of the clock On such a scale, 1f
the pomnts are drawn from a umform distribution, large nodes
will, on the average, age faster than small ones since their
area 1s greater and more points will be inserted mto them mn a
given nterval of time Now, consider a quadtree which has
populations of nodes of two or more sizes Since nodes at any
level are created by the sphtting of full nodes in the previous
generation, the average occupancy of a hypothetical age-zero
population of nodes 18 the same for every gemeration Since
large nodes are formed before small ones, the average number
of clock ticks which have passed since the creation of the
node 1s greater for large nodes than for small ones Combined
with the fact that large nodes fill up faster than small ones,
this implies that the effects of aging (1 e, increased occupancy)
are always more pronounced in the large node population

Table 1 Table 2
Expected distribution in PR quadtrees Average Node Occupancy
theoretical (thy) and experimental (exp) node experimental | theoretical | percent
capacity occupancy occupancy | difference
Bucket | Expected distribution vector 1 046 050 79
size 2 092 103 108
1 thy (500, 500) 3 136 156 129
exp (536, 464) 4 185 210 116
2 thy (278, 418, 304) 5 244 263 74
exp (326, 427, 247) 6 303 317 44
3 thy (165, 320, 305, 210) 7 344 372 75
exp (213, 364, 273, 149) 8 379 425 108
4 thy (102, 239, 278, 225, 158)
exp (139, 293, 264, 184, 120)
5 | thy (065, 179, 238, 220, 172, 126) Table 3
exp (084, 217, 241, 204, 151, 104) Occupancy by node size
6 thy (043, 132, 200, 207, 176, 137, 105) Depth | n nodes | n. nodes occupancy
exp {050, 150, 201, 215, 176, 127, 081) o 1
7 thy (028, 098, 165, 189, 173, 143, 114, 090) n Yy 201 75
exp (034, 110, 177, 214, 187, 143, 091, 044) 5 300 2 3543 54
8 thy (019, 073, 135, 168, 166, 145, 119, 097, 078) 6 5337 4116 44
exp (024, 086, 151, 206, 194, 156, 100, 049 , 034) 7 295 4 144 9 39
8 715 496 41
9 16 1 195 55
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Thus the average occupancy of large nodes would be expected
to be higher

Table 3 demonstrates that the relative, average occu-
pancy of nodes does indeed decrease with block size The
data represent averages over 10 PR quadtrees of 1000 pomnts
with m=1 Block area 1s proportional to 4%?* hence the
large nodes appear first in the table The general tendency 1s
for occupancy to decrease with node size towards the expected
value for a population created by sphtting a set of full nodes
This value 1s given by the dot product ?m 0,1, ,m-1,m)
which 18 40 for m=1 The experimental data shows the
predicted decrease towards this value which 15 reached at
depths 7 and 8 The anomalously high value for the average
occupancy at the deepest level (depth = 9) 1s an artifact of
the implementation which truncates the tree at that depth
However, since there are only a few nodes at the maximum
depth, the net effect of this perturbation on the experimental
data 18 neghgible

We can now describe, at least qualitatively, the correc-
tion which must be applied to the population model to
account for the effects of aging If larger nodes have a higher
average occupancy, then conversely, nodes with higher occu-
pancies tend to have larger average sizes Since nodes of
higher occupancy are larger, they are individually more likely
to be encountered when a point 1s mnserted Thus to mantain
a steady state, the fraction of high-occupancy nodes must be
less than predicted by the original model, which assumed the
average sizes of the nodes to be ndependent of the occu-
pancy Conversely, the fraction of low occupancy nodes must
be higher Examination of the occupancy data indicates that
this correction 15 consistent with the observed discrepancy
between the theoretical and experimental values The effect
of the correction on the on the modeled average occupancy
would be to decrease it, which 13 also consistent with the
observed discrepancy



A second effect referred to as phasing 1s responsible for
the periodic behavior of the discrepancy between the observed
and theoretical average occupancies considered as a function
of node capacity m This effect 15 due to the fact that for a
uniform distribution of points, the nodes 1n the quadtree tend
to stay about the same size Moreover, all nodes of the same
size tend to fill up and split at about the same time As a
quadtree 1s built, there will be cycles of relative activity as the
uniform point density approaches a value at which nodes of a
certain size spht, followed by periods of inactivity as the new,
smaller nodes fill up Thus, when the ponts mn the quadtree
are drawn from a uniform distribution, the nodes will tend to
split and fill in phase This activity will follow a cycle with a
logarithmically increasing period which repeats every time the
number of pomnts increases by a factor of four The average
occupancy will follow a similar cycle, attaining its highest
value just before a group of uniformly sized nodes begins to
splhit up, and 1ts lowest value just after most of the nodes
have been sphit This effect becomes more pronounced as the
node capacity increases since the probability of having a local
density fluctuation which would require sphtting at more than
one level decreases with increasing m Because the distribu-
tion of node sizes depends only on the statistical fluctuations
n point density which 1s scale invariant for a uniform distri-
bution, the oscillations will not damp out Thus the limit of
the sequence 71,32, mentioned 1 section II does not
exist

Table 4 1llustrates the cyclical vanation of the average
occupancy with the number of points for a node capacity of 8
The data were generated by averaging the results from 10
quadtrees built from the specified number of points drawn
from a uniform distribution The sample sizes were chosen
along a loganthmic scale so that the number of pomts n the
samples quadruples over four steps Note that relative max-
ima and minima are separated by factors of four (four steps)
as hypothesized The data 15 shown plotted on a semilog
scale in Figure 2 which illustrates the cyclical behavior more
clearly

For different node capacities, the relative maxima and
minima of the average occupancy occur at different numbers
of data points Thus when the size of the data sample 1s fixed
and the node capacity 18 allowed to vary, the average occu-
pancy will be observed at different points along the cychcal
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curve Since the prediction of the population model 1s
independent of the number of data points, the discrepancy
between the observed and predicted values would be expected
to vary cychcly with node capacity if the data 15 gathered for
a fixed number of points The smooth oscillation n the per-
cent difference between theoretical and experimental results in
Table 2 represents approximately such cycle

The observed oscillatory behavior 1s due to sem-
synchronous sphtting of nodes of a given generation when the
density of a uniform distribution of pomnts reaches a certam
value If a non-uniform distribution were used, the effect
would be expected to disappear Table 5, and Figure 3 show
the results of the same experiment using a Gaussian distribu-
tion of points two standard deviations wide centered m the
square region covered by the quadtree Oscillatory behavior is
observed while the number of ponts is relatively small, but n
this case 1t damps out as node populations m regions of
different densities get out of phase For the case of the Gaus-
sian, a small residual oscillation might be expected because of
the large central area of near constant density

The cyclicity observed in our results 1s the same effect
predicted by Fagm et al [Fag179] in their analysis of extendi-
ble hashing, where 1t appears as higher terms i a Fourter

average occupancy
|

Ilglil ) 1 A

L L L. I

Table 4
Variation of occupancy with tree size
averages for 10 trees
points nodes occupancy
64 169 379
90 217 415
128 352 3 64
181 54 4 333
256 67 3 380
362 907 399
512 1450 353
724 216 4 335
1024 266 5 384
1448 3508 413
2048 560 5 365
2896 876 6 330
4096 1075 6 3 81
-

500

1000

number of data points

Figure 2 Experimental results and interpolated curve show-
ing variation of average node occupancy with number of data
points for uniform distribution of data
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pomts for Gaussian distribution of data

Table §
Variation of occupancy with tree size
Gaussian_distnibution
points nodes occupancy

64 172 372
90 217 415
128 352 363
181 523 3 46
256 68 2 375
362 991 365
512 1441 355
724 203 5 356
1024 2755 372
1448 393 4 368
2048 565 3 362
2896 7849 369
4096 1104 7 371

series expansion Our discussion mdicates that such cychceal
behavior will tend to appear in data structures based on regu-
lar spatial decomposition whenever a data model assuming
uniform distribution 1s incorporated
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V. Conclusions

We have presented a method for analyzing hierarchical
data structures based on a model of such structures as popu-
lations of nodes of different occupancies The model allows
the analysis of such data structures without laborious statisti-
cal derivations Only the probabilities of the local interaction
of the data primitive with the quadrants of a node need be
evaluated The model represents a formahzation of the mtur-
tive notion of a ‘‘typical case” By mmvestigating the sources
of discrepancy with experimental data, two phenomena which
are characteristic of hierarchical data structures were
dentified aging and phasing Aging 1s responsible for larger
nodes having higher than average occupancy even when spht-
ting 15 adaptive Phasing causes a cychcal vanation in the
average occupancy of nodes which 1s periodic 1n the loganthm
of total number of data items stored in the structure, particu-
larly when the distribution of data 1s umiform

We have apphed a similar population analysis to a quad-
tree line representation called the PMR quadtree [Nels86a)
The adaptation 1s relatively simple, and yields results which
agree with experimental data even better than in the case of
the PR quadtree This 1s encouraging, particularly since
straightforward statistical analysis of quadtree hne representa~
tions appears to be much more difficult than the correspord-
g analysis of point structures, and has not, to our
knowledge, been performed Details of this analysis are con-
tained n [Nels86b]
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