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Abstract--The quadtree representation encodes a 2" by 2" binary image as a set of maximal blocks of l's or O's 
whose sizes and positions are powers of 2. With the aid of the quadtree, a hierarchy of approximations to the 
image can be defined. Several ways of doing this are described. The accuracy of these approximations is 
empirically evaluated by studying how fast estimates of the first few moments of the image, computed from 
the approximations, converge to the true values, using a database of 112 airplane silhouettes. Approaches to 
the problem of fast shape matching using these approximations are also discussed. 

Image representations Quadtrees Shape approximation Matching Moments 

I. I N T R O D U C T I O N  

In recent years there has been rapidly growing interest 
in "quadtree"  representations for binary images." ~5~ 
Given a 2" by 2" binary image I, we construct its 
quadtree as follows: The root node of the tree 
corresponds to all of I. If I consists of all O's or all l's, 
we label the root node 0 or 1, and it is all of the tree. 
Otherwise, the root node has four sons corresponding 
to the four quadrants of / ,  and we repeat the process for 
each of these quadrants. When this construction is 
complete, the leaf nodes of the tree correspond to 
blocks (-- sub ... subquadrants of I) consisting 
entirely of 0's or l's. A node at level k (where the root is 
at level n) corresponds to a block of size 2 k by 2 k, in a 
position whose coordinates are multiples of 2 k. F rom 
now on we will call a leaf node"whi te"  o r"b lack"  if it is 
labelled 0 or 1, respectively, and we will refer to nonleaf 
nodes as "gray". An example of a binary image of an 
airplane and its quadtree is shown in Fig. 1. In this 
example we have n = 6 (i.e. the binary image is 64 by 
64), so that the tree has seven levels (including the 
root);  there are no black leaf nodes at levels 6, 5, 4 or 3. 

With the aid of the quadtree, we can define a 
hierarchy of approximations to the given image I. This 
can be done in various ways, as discussed in Section 2. 
To test the accuracy of these approximations,  Section 3 
presents an empirical investigation of how fast es- 
timates of the first few moments  of I, computed from 
the approximations,  converge to their true values, for a 
set of 112 binary images of airplanes. 

Approximations should also be useful for matching 
purposes, since they should make it possible to reject 
mismatches rapidly. For  shapes that are all similar to 
one another,  however, e.g. for airplanes, the savings 
inherent in this approach may not be very great;  the 

* All correspondence with Dr. Rosenfeld 

use of quadtrees for matching binary (or arbitrary) 
images is discussed in Section 4. 

2. A P P R O X I M A T I O N S  

Given the quadtree representation of a binary image 
I, we can define several kinds of approximations to I : 
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Fig. 1. (a) Binary image of an airplane (64 x 64); (b) Black 
nodes in the quadtree representation of (a), displayed as black 

blocks. There are no black nodes at levels 6, 5, 4, 3. 
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(a) Let I(k p the kth-order inner approx ima t ion  to I, 
be the binary picture defined by the blocks of l 's 
corresponding to the black nodes at levels > k of 
l 's  quadtree. Evidently It.~ < I~._ i~ < ... -< Iio} 
= I, where"A < B" means that the set of l 's of A 
is contained in the set of l 's of B. 

(b) Let I Ik~, the kth-order outer  approx ima t ion  to I, 
be defined in the same way as Iik I, except that it 
also contains blocks of l 's corresponding to the 
9ray  nodes at level k. It is not hard to see that P") 
>_ I I"- t~  > . . .  >_ I I°) = I .  

These two series of approximations, for the binary 
image in Fig. 1, are shown in Fig. 2. Note that unless 1 
consists entirely of l's, I~,} is empty;  and unless I 
consists entirely of O's, I I") is all of I. 

The outer approximations to 1 are actually the 
complements of the inner approximations to [ (the 

complement of I);  in other words, I ~k) = /~k¿ for all k. 

To see this, let P be any I in pk~ ; thus P is 0 in Ilk ~, SO 
that P does not belong to a black node at level > k in 
the quadtree o f / .  This is equivalent to saying that P 
belongs to either a white node at level > k, or a gray 
node at level k, in Ps quadtree;  or, equivalently, P 
belongs to either a black node at level > k, or a gray 
node at level k, in the quadtree of I, so that P is in I ~k~, 
and conversely. 

These approximations are reasonable when the l 's 
in I define a compact shape, but they may not be so 
useful for shapes that contain elongated parts, e.g. a 
"body" and "limbs". In order for l~k ~ to adequately 
represent the limbs, k must be relatively small (2 k must 
be less than the limb width); but approximating the 
body does not require a small k. We can solve this 
problem by using approximations based on "max- 
imal" black nodes. A black node will be called 
maximal if its block is not adjacent to any larger block 
of l's. As we shall see in Section 3, these maximal nodes 
comprise about  5% of the black nodes. More generally, 
a black node will be called k-maximal if its block is not 
adjacent to any block of l 's that is at least 2 k times as 
large.* In terms of this concept we can define two 
additional types of approximation : 

(c) Let Jtk~ be defined by the blocks of l 's cor- 
responding to the k-maximal black nodes of the 
quadtree. Evidently J~o } < J .~  _< .. .  < Jc.~ = I. 

(d) Analogously, let j lk) = ']{k}, where ,J{~) is the "Jlk) 
approximation to / .  Thus j{o} >_ j . }  >_ . . .  > j l . )  

= I. 

These approximations are shown, for the image of Fig. 
l, in Fig. 3. 

Typically, most nodes will be k-maximal for re- 
latively small k, so that 'Jig) involves nearly all of the 
nodes;  but Ji0} is a rather crude approximation to I. A 
reasonable compromise is to combine I lk ~ with Ji0}, or 
I Ik} with jto) in other words, to use nodes that are 
either large or maximal:  

* In other words: A black node at level/is k-maximal if any 
black nodes whose blocks are adjacent to its block are at 
levels < l + k. 
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Fig. 2. Approximations to the image in Fig. la based on 
levels in the tree. (a) Black.nodes at level > k, displayed as 
black blocks; (b) Black nodes at level >_k and gray nodes at 
level k, displayed as black blocks Level 6 is identical to level 5. 

(e) I{'~ = Ilk } v JI0) 
(f) I {k)* = I ¢kl v j{ol 

Figure 4 shows these approximations for the image 
of Fig. 1. In the next section we present some empirical 
results about  the accuracy and usefulness of these 
approximations for a set of airplane shapes. 

3. MOMENT COMPUTATION 

Moments are frequently used for pattern description 
and recognition.6 Js~; they provide information about  
the balance and spread of the gray levels in the pattern 
relative to given coordinate axes. The ( i , j )  moment of 
the picturef(x,  y) is defined as 

m~j = ZZf(x ,  y ) x ' /  

where the sum is taken over the entire picture. Thus 



k 

Shape approximation using quadtrees 

Level 

33 

+ 
2 

' " l "  
(a) (b) 

Fig. 3. Approximations based on maximal nodes. (a) k- 
maximal black nodes, displayed as black blocks, for k = 0, 1, 
2. Note that for k = 2 every node is k-maximal. (b)  
Complement of k-maximal white nodes, displayed anal- 

ogously, for k = 0, 1, 2, 3, 4. 

moo is simply the sum of the gray levels of f. The 
centroid of f is the point whose coordinates are 
(into~moo, tool~moo ). If we compute moments  taking 
the centroid as origin, they are called central moments, 
and are denoted by thij. 

W h e n f  = I is binary-valued, mij becomes the sum of 
x i / f o r  those points (x, y) at which I has value 1. In 
particular, moo is just the number  of l 's  in I. Given the 
quadtree representation of I, we can compute its 
moments  blockwise, since the moments of I are the 
sums of the moments  of its blocks. On moment  
computat ion from quadtree representations see 
Shneier.(l s) 

We will now test the accuracy of our approxi- 
mations to I by using them to estimate some of the 
moments  of I. In particular, we investigate how 
accurately we can estimate the area of /(moo), the 
coordinates of its centroid (m I o/moo and m o 1~moo), and 
its central moments  (th2o and r~o2 ). 

Table 1 shows approximations a, b, e and f r o  these 
moments  for the airplane shape of Fig. 1. (Approxi- 
mations c and d are not shown, since (c) converges so 
fast, as we saw in Fig. 3.) For  each pair of approxi- 
mations, (a-b) and (e-f), we also show the estimates 
obtained by averaging the "inner" and "outer" approxi- 

- 't"-- 't- 
(a) (b) 

Fig. 4. Approximations based on level, together with 0- 
maximal nodes. Note that in (a) the results are identical for 
levels 5, 4, 3, 2, since there are no black nodes at levels 5, 4, 3, 

and the black nodes at level 2 are all maximal. 

mations of each order. Note that the order-6"approxi- 
mations" are the true values. We see that the 
approximations to the coordinates of the centroid are 
quite good even at the level where black leaf nodes first 
appear ; in most cases the errors are only fractions of a 
pixel. It seems reasonable to predict that similar results 
would hold for larger images; when we use the 
quadtree levels at which blocks are, say, 4 by 4 pixels or 
larger, the errors should be only fractions of a pixel. 

Similar approximations were computed for a set of 
112 airplane shapes shown in Fig. 5. (Figure 1 is the 
shape in the sixth row, first column.) Table 2 shows the 
mean error and standard deviation of the errors for 
each approximation. We see that the average errors in 
the centroid coordinates are consistently low even at 
the levels where black leaves first appear. Approxi- 
mation (e) is especially good. Note that the shapes used 
are binary silhouettes, not grayscale images ; quadtree 
approximations to grayscale images will not be con- 
sidered in this paper. 
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Table 1. Approximations to the moments of the airplane in Fig. l(a) 

Centroid Second moments 
Approximation Order No. of nodes Area (moo) mjo /moo  moffmoo m2o mo2 

a 

a+b 
2 

f 

e+f  
2 

5 . . . . . .  

4 . . . . . .  

3 . . . . . .  

2 15 240 35.63 33.50 65.2 35.1 
1 53 392 34.64 32.38 73.8 70.5 
0 155 494 34.17 32.36 80.7 76.9 

5 4 4096 31.50 31.50 341.2 341.2 
4 8 2048 39.50 31.50 213.2 149.2 
3 18 1152 34.61 31.50 106.6 111.1 
2 53 848 33.65 31.76 98.2 90.6 
1 106 604 33.67 32.35 85.7 84.4 
0 155 494 34.17 32.36 80.7 76.9 

5 
4 
3 
2 
1 
0 

35 
35 
35 
35 
59 

155 

26 
30 
40 
75 

128 
177 

2 0 4 8  . . . .  
1 0 2 4  . . . .  
576 . . . .  
544 34.64 32.63 81.7 62.8 
498 34.15 32.36 79.7 77.4 
494 34.17 32.36 80.7 76.9 

302 34.16 32.93 72.8 72.2 
302 34.16 32.93 72.8 72.2 
302 34.16 32.93 72.8 72.2 
302 34.16 32.93 72.8 72.2 
398 34.64 32.46 75.8 70.6 
494 34.17 32.36 80.7 76.9 

1863 38.15 31.48 231.9 131.9 
1863 38.15 31.48 231.9 131.9 
1095 34.39 31.46 110.4 111.7 
823 33.76 31.72 100.4 91.3 
599 33.70 32.32 86.3 84.5 
494 34.17 32.36 80.7 76.9 

1082.5 36.15 32.20 152.4 102.0 
1082.5 36.15 32.20 152.4 102.0 
698.5 34.27 32.19 91.6 92.0 
562.5 33.95 32.32 86.6 81.8 
498.5 34.17 32.38 81.0 77.5 
494 34.17 32.36 80.7 76.9 

4. COARSE-FINE MATCHING 

In order to reduce the computat ional  cost of image 
matching, a number of "coarse-fine" matching 
schemes have been proposed, in which some type of 
low-resolution matching is used to rapidly eliminate 
definite mismatches, so that full resolution matching 
need only be performed in the remaining cases319 2~)In 
this section we discuss the applicability of quadtree 
approximations to coarse-fine matching. 

We will consider two types of matching problems : 
(a) finding a known pattern in an unknown position ; 
(b) identifying a pattern, in a given position, as being 
one of a given set of patterns. We will refer to these as 
the " locat ion" and "'identification" problems, 
respectively. 

4.1. Location 

The quadtree representation is not especially ap- 
propriate for the location problem, since the quadtree 
changes as the input pattern is shifted. For  example, 
Fig. 6 shows the quadtrees for the airplane in Fig. 1 
when it is shifted by (1,0), (0,1) and (1,1). It should be 
pointed out that shifts by odd amounts  cause the 
greatest changes in the tree; a shift whose components  
are high powers of 2 may cause very little change. Thus 
the quadtree is quite sensitive to small shifts, as Fig. 6 
illustrates; note in particular level 1. 

Shifts can cause changes even at high levels of the 
tree; if we shift an isolated 2 k by 2 k block of l 's  by (I, I ), 
it breaks up into a large number of smaller blocks. Note, 
however, that one of these is 2 k - t by 2 k- ~ ; in general, 
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Fig. 5. 112 airplane shapes. 
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Fig. 5., continued 
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Table 2a. Means of the errors in approximating the moments of the 112 airplanes in Fig. 5 

Centroid Second moments 
Approximation Order Area (moo) mto/moo moJmoo m2o m02 

U 

a+b 

2 

e+f  
2 

5 5 0 4 . 1  . . . .  
4 5 0 4 . 1  . . . .  
3 457.4 2.22 2.01 42.5 91.4 
2 284.6 1.70 0.78 27.8 48.2 
1 104.1 0.37 0.20 6.8 12.8 
0 0 0 0 0 0 

5 3563.2 3.38 1.66 272.7 253.9 
4 1806.1 2.25 1.25 118.9 156.1 
3 752.4 1.22 1.70 45.3 61.1 
2 319.8 0.66 0.31 18.2 27.3 
1 106.0 0.27 0.14 6.1 10.6 
0 0 0 0 0 0 

5 1 5 2 9 . 1  . . . .  
4 650.6 . . . .  
3 143.6 10.35 11.14 15.4 17.0 
2 27.3 0.95 0.53 8.5 13.5 
1 3.9 0.15 0.11 1.5 2.8 
0 0 0 0 0 0 

5 223.6 0.59 0.34 6.5 11.5 
4 223.6 0.59 0.34 6.5 11.5 
3 223.6 0.59 0.34 6.5 11.5 
2 182.6 0.43 0.29 6.7 6.7 
1 92.5 0.34 0.18 5.5 8.6 
0 0 0 0 0 0 

5 1474.5 2.39 1.0 123.4 136.0 
4 1467.5 2.40 0.97 121.0 136.9 
3 679.1 1.27 0.67 46.4 61.0 
2 301.5 0.64 0.31 19.2 28.0 
1 101.8 0.27 0.14 6.4 10.6 
0 0 0 0 0 0 

5 625.4 1.23 0.53 59.9 70.9 
4 621.9 1.24 0.53 58.7 71.4 
3 227.8 0.75 0.35 21.4 33.4 
2 59.9 0.37 0.20 7.3 12.1 
1 5.8 0.12 0.07 1.0 i.8 
0 0 0 0 0 0 

when we shift the pattern, a node corresponding to a 
2 k by 2 k block always gives rise to at least one node 
corresponding to a 2 k- 1 by 2 k- l (or larger) block. I f a  
node corresponds to a non-isolated block, after shifting 
it may contribute to a block of much larger size; but if 
the given block is maximal, it is not hard to see that it 
cannot  contribute (after shifting) to a block more than 
one size larger. Thus shifting does preserve some sort 
of crude correspondence, part icularly between max- 
imal nodes. Note, however, that when we shift a 
maximal node, the "corresponding" node may no 
longer be maximal. 

The foregoing remarks suggest the following 
quadtree-based approach to the location problem: 
Given the quadtrees Qt and Q2 of the shifted and 
unshifted patterns, consider all pairs composed of a 

maximal node of Q ,  say at level k, and a node of Q2 at 
level k -  1, k or k + 1. Each of these pairs defines a 
possible shift, or  rather a range of possible shifts. For  
each such shift, we can compute a match score in terms 
of the numbers and sizes of node pairs that support it. 
In the resulting "correlogram", we may hope to detect 
a peak representing the actual shift. Fine matching in 
the vicinity of this estimated shift could then be used to 
locate the pattern exactly. 

In practice, this approach seems to be reasonably 
effective. Fig. 7 shows the "correlogram" for the 
airplane in Fig. 1, unshifted and shifted by (1, 1 ). There 
is a peak corresponding to the correct shift, though 
many other shifts are also given high scores. 

A more robust approach to the location problem is 
to use the quadtree of the shifted pattern to compute an 
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Table 2b. Standard deviations of the errors in approximating the moments of the 112 airplanes in Fig. 5 

37 

Centroid Second moments 
Approximation Order Area (moo) into/moo tool~moo m2o t11o2 

t /  

a + b  

2 

f 

e + f  
2 

5 110.9 - -  
4 110.9 - - -  
3 78.8 1.53 2.41 28.2 29.8 
2 56.8 1.21 1.14 21.4 23.8 
1 18.8 0.30 0.20 4.3 6.8 
0 0 0 0 o o 

5 205.9 2.56 1.46 32.4 26.9 
4 391.3 1.77 0.99 40.6 46.3 
3 151.3 0.88 0.51 24.9 29.4 
2 54.3 0.47 0.28 8.8 13.5 
1 18.3 0.18 0.14 3.1 5.4 
0 0 0 o 0 0 

5 142.6 . . . . .  
4 1 9 8 . 3  . . . .  
3 67.4 6.4 7.0 14.7 12.4 
2 18.4 1.8 1.3 8.1 9.7 
1 3.2 0.1 0.1 1.5 3.1 
0 0 0 0 0 0 

5 77.3 0.53 0.28 6.2 13.5 
4 77.3 0.53 0.28 6.2 13.5 
3 77.3 0.53 0.28 6.2 13.5 
2 42.6 0.33 0.23 5.0 5.6 
l 16.6 0.22 0.16 3.2 5.8 
0 0 0 0 0 0 

5 228.8 1.97 0.80 38.1 35.7 
4 235.2 1.98 0.75 37.4 35.5 
3 122.8 0.97 0.48 21.9 24.7 
2 49.4 0.47 0.27 8.8 13.2 
1 16.9 0.19 0.14 3.2 5.4 
0 0 0 0 0 0 

5 129.1 1.03 0.39 20.2 20.9 
4 133.4 1.03 0.38 19.9 21.3 
3 70.6 0.53 0.28 l 1.1 17.1 
2 25.5 0.28 0.17 5.0 7.2 
1 4.6 0.10 0.05 1.0 2.0 
0 0 0 0 0 0 

approx ima t ion  to the centroid,  as in Section 3; the 
posi t ion of this approx imat ion  relative to the cent ro id  
of the unshifted pa t te rn  then approximate ly  defines the 
shift. Based on the results of the previous section, even 
at the early stages the centroids  are all correctly 
located to within a fraction of a pixel, so tha t  the shift 
can be de termined  to within a fraction of a pixel by 
examining  the quadt ree  levels cor responding  to blocks 
of pixels tha t  are, say, 4 by 4 or  larger. 

4.2. Identification 

We now consider  the p rob lem of identifying an 
u n k n o w n  pa t te rn  as being one of a given set of 
pat terns.  The  following quadt ree-based  approach  sug- 
gests itself: Let I '  and  I" be two of the reference 
pat terns,  and  let I be the u n k n o w n  pat tern.  At any level 

of approx imat ion ,  we determine bounds  on the dis- 
crepancy between I and  I '  (or l"). I f the  lower bound  on 
one of these discrepancies, say of I with I', becomes 
larger than  the upper  bound  on the (I, I") discrepancy, 
we can reject I', since it c anno t  be as good a match to I 
as I", and  so canno t  be the correct  match.  

The  discrepancy between two binary  images is the 
n u m b e r  of points  at which their values differ. We can 
compute  bounds  on this discrepancy, based on the 
inner  and  outer  approx imat ions  at a given quadtree  

level k, as follows: The  points  in ltk) A I 'tk) are 1 in I 
and 0 in I', and  the reverse is true for the points  in I'tk ~ A 

I ~k~ ; thus  the n u m b e r  of l ' s  in the OR of these is a lower 
b o u n d  on discrepancy. On  the other  hand,  we do not  
know whether  the points  in I ~k~ - ltk ~ are 1 or 0 in I, 
and  similarly for I '~k) - -  l ' l k  ~ in I', so tha t  (in the worst 
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Shift: (0, i) (i, O) (I, i) 

Fig. 6. Analogous to Fig. l(b) for three shifted versions of the airplane image in Fig. l(a}. 

case) all of these points may contribute to the discrep- This method does provide some capability for 
ancy (or nearly all ; when a 2" by 2" gray node of I eliminating mismatches without going all the way 
corresponds to a black leaf in I', for example, the down to the pixel level. As an example, Fig. 8 shows the 
discrepancy cannot bemore than 4 " -  1,since thegray quadtrees for two of the airplane shapes and the 
node cannot be all white). Thus we get an upper bound successive bounds on the discrepancy when they are 
on the discrepancy by adding the number of l's in matched with themselves and with one another, level 
( P )  - l(k)) v (I  'lk> - llk)) to the lower bound, by level. At level 5, the lower bound for the mismatch of 

48 16 85 0 54 0 18 

16 0 3~ 0 16 0 34 

51 0 85 0 68  0 54 

18 0 19 0 19 0 0 

36 0 76 0 38 0 19 

14 15 15 0 0 0 0 

50 11 6& 0 40 0 50 

12 0 0 0 0 0 0 

84 0 15~ 0 102 0 I I ~  

0 37 0 192 0 130 

0 0 0 68 0 66 

0 82 0 504 0 136 

0 0 0 0 0 0 

0 90 0 410 0 73 

0 44 0 0 0 77 

0 258 0 696 0 237 

0 0 0 0 0 0 

0 450 75 700 0 450 

0 98 0 74 74 38 40 0 0 

0 48 4~ 36 74 38 40 0 0 

0 144 0 74 39 82 43 0 0 

0 0 4~ 38 8~ 86 45 47 0 

0 147 0 78, 4~ 45 47 0 0 

0 0 42 74 80 0 0 0 0 

0 141 0 66 72 78 0 42 0 

0 0 0 0 0 0 0 0 0 

0 ~00 0 108 0 128 0 144 0 

24 30 35 0 35 0 34 52 138 285 2 4 6  236 ~22 180 70 62 56 120 ,64 66 0 

108 45 208 0 216 0 324 0 728 119 2072 14~ 675 113 651 85 316 82 504 86 174 

0 0 0 0 0 0 0 0 94 120 146 0 143 

39 0 92 0 0 0 0 0 194 I16 280 0 0 

66 7~ 72 36 35 40 46 61 76 98 240 I~5 130 

75 5~ 78 26 66 28 108 50 192 04 624 I I 0  116 

20 21 23 26 ~4 28 33 45 57 78 99 0 103 

40 22 69 26 ~4 26 30 40 I00 7~ 188 0 90 

21 ~4 0 0 0 0 0 0 0 0 90 0 84 67 0 0 44 46 

57 22 69 0 72 0 78 0 150 0 430 0 78 63 49 0 43 46 48 

0 0 0 0 0 0 0 0 0 0 0 0 0 

36 0 44 0 23 0 ~5 0 98 0 160 0 68 

18 ~0 23 0 ~4 0 25 0 49 0 0 0 64 

0 

0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 82 86 0 0 0 0 

0 88 0 b6 69 72 0 67 0 

0 0 0 0 0 0 0 0 0 

0 53 0 43 0 44 0 4~ 0 

0 0 0 0 

0 47  0 

0 0 0 0 0 0 0 0 0 

0 45 0 41 0 47 0 46 0 

0 42 42 41 42 0 0 0 0 

Fig. 7. "Correlogram" for the airplane in Fig. l, based on maximal nodes at shift (0, 0) and at shift (1, 1). 
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8 a  

L 
n 

to  8a 

LB 
~ m  

UB 

_.l 

t 
l 

4_, L4 

f M 

i 

(a) (b) 

1 0 4096 
2 0 2048 
3 0 1152 
4 0 608 
5 0 212 
6 0 0 

8b to 8b 

1 0 4 0 9 6  
2 0 2 3 0 4  
3 0 1 2 1 6  
4 0 5 9 2  
5 0 2 0 0  
6 0 0 

8a to 8b 

1 0 4096 
2 0 2816 
3 0 1600 
4 352 1392 
5 504 900 
6 601 601 

(c) 

Fig. 8. Result of matching the airplane in Fig. 1 (a) with itself and another airplane (row 7, column 1 in Fig. 5). 
[L = level, LB = lower bound, UB = upper bound.] Note that at level 5, the lower bound on the mismatch 
(8a, 8b) exceeds the upper bounds on (8a, 8a) and (8b, 8b), so that matching 8a with 8b can be ruled out. 

the two shapes with one another exceeds the upper 
bound for their mismatches with themselves, so that 
the unequal pair can be rejected. 

CONCLUDING REMARKS 

Quadtrees can be used to define various types of 
approximation to a binary image. From these approxi- 
mations it should be possible to estimate properties of 
the image, such as its moments, with reasonable 
accuracy using only a fraction of the quadtree nodes; 
at least this proved to be true for the airplane shapes 
studied here. We should also be able to estimate the 
position of a shifted image, either directly or via its 
centroid coordinates. On the other hand, the approxi- 
mations do not seem to be very useful for quickly 
identifying one out of a set of images unless the images 
differ greatly from one another. Of course, these 
tentative conclusions are based on studies with a 
specialized class of shapes (airplane silhouettes) ; they 

should be checked using shapes of other types. How- 
ever, they are at least suggestive that quadtree 
approximations to binary images should be of some 
use in shape property computation and matching. 
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