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University of Maryland 

An algorithm for deletion in two-dimensional quad 
trees that handles the problem in a manner analogous 
to deletion in binary search trees is presented. The 
algorithm is compared with a proposed method for 
deletion which reinserts all of the nodes in the subtrees 
of the deleted node. The objective of the new algorithm 
is to reduce the number of nodes that need to be 
reinserted. Analysis for complete quad trees shows that 
the number of nodes requiring reinsertion is reduced to 
as low as ~ of that required by the old algorithm. 
Simulation tests verify this result. Reduction of the 
number of insertions has a similar effect on the number 
of comparison operations. In addition, the total path 
length (and balance) of the resulting tree is observed to 
remain constant or increase slightly when the new 
algorithm for deletion is used, whereas use of the old 
algorithm results in a significant increase in the total 
path length for large trees. 

Key Words and Phrases: binary tree deletion, quad 
trees, associative searching, information retrieval, 
binary search trees, sorting, searching, geographic 
databases 

CR Categories: 3.70, 4.34, 4.79 

Introduction 

A number of data structures have been proposed for 
retrieval on composite keys [1, 3, 8]. We are interested in 
the quad tree of [3]. It is useful whenever there is a need 
to perform operations such as searching a two-dimen- 
sional structure. For example, we may wish to fred all 
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Fig. 1. A quad tree and the records it represents. 
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nodes within a specified distance of  a given node--i.e.,  
all cities within 50 miles of  Washington, D.C. The quad 
tree is essentially a generalization of  a binary tree where 
each node has four subtrees labeled 1, 2, 3, and 4 
corresponding to the directions NE, NW, SW, and SE, 
respectively. Each subtree is commonly referred to as a 
quadrant or subquadrant. For example, see Figure 1 
where the correspondence of  a quad tree of  14 nodes to 
the records it represents is presented. 

In [3] algorithms for insertion, point search, and 
region search are given. Deletion is resolved by indicat- 
ing that all of  the nodes of  the tree rooted at the deleted 
node must be reinserted--a sometimes expensive pro- 
cess. For  example, see Figure 2 where the quad tree 
which results after deletion of  A from the quad tree in 
Figure 1 is shown. In [3] it is suggested that one should 
not reinsert subtrees elementwise if their new position is 
known for the subtree as a whole. In this paper we 
present an improved algorithm for deletion in two-di- 
mensional quad trees which takes advantage of  this idea. 
Section 2 contains the algorithm and an intuitive discus- 
sion of  its motivation. In Section 3 we analyze the 
algorithm and in Section 4 we discuss results of  simula- 
tions. Conclusions are drawn in Section 5. 

2.  A l g o r i t h m  

We view deletion in quad trees in a manner analo- 
gous to deletion in binary search trees [4, 5]. For  example, 
in the binary search tree of  Figure 3 when A is to be 
deleted, it is replaced by one of  B or C--i.e., the "closest" 

Fig. 2. Result of  deleting node A from the quad tree of  Figure 1 using 
the method of  [3]. 
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node in value. In the case of  a quad tree, as shown in 
Figure 1, it is not clear which of  the remaining nodes 
should replace A. This is because no definition of  "clos- 
est" exists. We notice that no matter which of  the nodes 
is chosen, some of  the nodes will have to shift position. 
Therefore, in Figure 1, if L replaced A, then J would no 
longer occupy the second quadrant with respect to L and 
thus, J would need to be reinserted along with its subtrees 
in the quadrant rooted at F. Similarly, E and I would 
have to be reinserted along with their subtrees in the 
quadrant rooted at N. 

The problem of  finding a replacement node is further 
compounded when the replacing node is not a terminal 
node. This situation does not arise in binary search trees, 
but in quad trees it may arise depending on the measure 
of  "closeness" employed. For example, in Figure 1 if the 
measure of  "closeness" is a minimum sum of  horizontal 

A 

c 

Fig. 3. A binary search tree. 
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Fig. 4. A quad tree in which deletion requires no reinsertion. Fig. 5. A quad tree with no "closest" terminal node. 
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and vertical displacements (i.e., the L 1 metric) from the 
node to be deleted, then B is closest to A, yet it is not a 
terminal node. However, B, does not have a subtree in 
the quadrant whose boundary it shares with A. Replacing 
A by B means that subtrees rooted at A must be reinserted 
in the new tree. This problem can be eased by exploiting 
certain geometrical properties. For example, in Figure 1, 
replacing A by B means the the subtree rooted in the 
third quadrant of  the tree rooted at A need not be 
examined for reinsertion--i.e., it can become the third 
quadrant of the new tree rooted at B. 

Ideally, we wish to replace the deleted node with a 
node which is terminal and closer to its bordering axes 
than any other node in the tree. Such a node can simply 
replace the deleted node with no need for any reinsertion. 
For example, see Figure 4 where G has no subtrees and 
is closer than any other node to its bordering sides of  the 
x and y axes. Thus, when G becomes the root of the tree, 
the crosshatched region in Figure 4 is empty and no 
nodes need to be reinserted. This is analogous to the 
binary search tree since the empty crosshatched region 
corresponds to a gap between the deleted node and its 
replacement. We use the term "crosshatched" to denote 
the area between the axes formed by the deleted and 
replacing nodes. Two items are worthy of  further note. 
First, the condition of the replacing node (e.g., G in 
Figure 4) being the closest terminal node is not sufficient 
to guarantee the emptiness of the crosshatched region (it 
only guarantees the emptiness of  the region in the 
subquadrant rooted at the replacing node). Second, it is 
not uncommon that such a node fails to exist (see Figure 
5). This corresponds to the situation that for any node, 
say B, which is closest to one of its bordering axes, there 
exists another node, say C, which is closer to the other 
axis. 

In general, we do not want to expend the time 
necessary to find the node, if any, which partitions the 
space so that the crosshatched region is empty. Any 
algorithm we develop must rely on a method which finds 
a node satisfying some predetermined criterion of"close- 
ness." Our algorithm relies on a criterion analogous to 
the one used in a binary search tree to determine a 
"closest" node. 

705 

Let us define the notion of a direction opposite a 
given direction--the conjugate, as in [3], being 

conjugate(N) = ((N + 1) mod 4) + 1 

where N is a quadrant number in the range 1 to 4. 
For  each quadrant i, of  the tree rooted at the node to 

be deleted, we perform the following procedure: 

F I N D C A N D I D A T E :  Starting at the root node of  the quadrant,  re- 
peatedly follow the branch corresponding to conjugate (i) until a node 
having no subtree along this branch is encountered. 

The above procedure results in a set of four nodes 
which are said to be candidates for replacing the deleted 
node. Once such a set is found (if no candidate is found 
in a quadrant, then we choose a fictitious point in the 
quadrant that is farthest from the deleted node--e.g. ,  
(-oo, - ~ )  in the third quadrant), choose the candidate 
that is closer to each of  its bordering axes than any other 
candidate which is on the same side of these axes. This 
is termed property (1). For example, in Figure 1 the 
candidates are B, J, M, N, with B being the winner. The 
situation that none of the candidates satisfy this criterion 
(e.g., Figure 5) or that several candidates satisfy this 
condition (e.g., B and D in Figure 6) may arise. In this 
case we choose the candidate with the minimum L1 
metric value (hereafter characterized as property (2)). 

As a justification for the use of the L 1 metric, assume 
that the nodes are uniformly distributed in the two- 
dimensional space. The goal is to minimize the area of  
the crosshatched region. For example (see Figure 7), if 
the two-dimensional space is finite having sides of  length 
Lx and Ly along the x and y axes, respectively, and a 

t . . . .  "~B 
I I 
I I 
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I ~A I 
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E 

Fig. 6. A quad tree with two nodes being closest to their bordering 
axes. 
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Fig. 7. Example of  a two-dimensional space. 
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candidate is at a distance of  dx and dy from the x and y 
axes, respectively, centered at the node to be deleted, 
then the crosshatched region has an area ofLx .  dx + Ly. 
dy - 2.dx.dy. However, as Lx and Ly increase (as 
occurs in arbitrary space), the contribution of  the 2. dx. 
dy term becomes negligible and the area is proportional 
to the sum of  dx and dy. 

Property (2) is not sufficient by itself to insure that 
the selected candidate partitions the space so the 
crosshatched region contains no other candidate. For  
example, see Figure 8 where 0 has been deleted and A 
satisfies property (2) but only C satisfies property (1). A 
pair of  axes through C leaves all other candidates outside 
of  the crosshatched region, while a pair of  axes through 
A results in B being in the crosshatched region. If  no 
candidate is found to satisfy (1), then (2) guarantees that 
at least one of  the candidates has the property that only 
one of  the other candidates will occupy the crosshatched 
region between the original axes and the axes passing 
through the selected candidate. To see this, note that 
whichever candidate is selected to be the new root (say 
B in quadrant 0, then the candidate in quadrant conju- 
gate(i) lies outside of  the crosshatched region. In addi- 
tion, the candidate in a quadrant which is on the same 
side of  an axis, as is B, and to which axis B is closer, lies 
outside of  the crosshatched region. 

We are now ready to present our deletion algorithm. 
It makes use of  the properties of  the space obtained by 
the new partition to reduce the number of  nodes requir- 
ing reinsertion. The algorithm consists of  two procedures, 
ADJ and NEWROOT.  Let A be the node to be deleted 
and let i be the quadrant of  the tree rooted at A contain- 
ing B, the "closest" node which will replace A. Note that 
no nodes in quadrant conjugate(i) need to be reinserted. 
Now, separately process the two quadrants adjacent to 
quadrant i using procedure ADJ. 
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Fig. 8. Example of  the insulq 
region. 
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ADJ: Examine the root of  the quadrant, say J. If J lies outside of  the 
crosshatched region, then two subquadrants can automatically remain 
in the quadrant and need no further processing while the remaining 
subquadrants are separately processed by a recursive invocation of  
ADJ. Otherwise, the entire quadrant must be reinserted in the quad 
tree which was formerly rooted at A. 

For example, consider Figure 1 where A is deleted 
and replaced by B in the first quadrant. J and the 
subquadrant rooted at K remain in the second quadrant 
while the subquadrant rooted at L is recursively proc- 
essed. Eventually, L must be reinserted in the subtree 
rooted at M. The third quadrant of  A (rooted at N) does 
not require reinsertion. Figure 9 shows the result of  the 
deletion. 

Once the nodes in the quadrants adjacent to i have 
been processed, we must process the nodes in i. Clearly, 
all of  the nodes in subquadrant i of  i will retain their 
position. Bearing this in mind, we apply procedure 
N E W R O O T  to the remaining subquadrants of  i. 

NEWROOT: Apply algorithm ADJ to the subquadrants adjacent to 
subquadrant i and iteratively reapply NEWROOT to subquadrant 
conjugate(i). This is done until an empty link in direction conjugate(i) 
is encountered (i.e., at this point we are at B- - the  node replacing the 
deleted node). Now, insert the nodes in the subquadrants adjacent to 
subquadrant i of  the tree rooted at B in the quadrants adjacent to 
quadrant i of  the tree rooted at A. Recall that by virtue of  the definition 
of  "closest," subquadrant conjugate(i) of  the tree rooted at B is empty. 
Also subquadrant i of  the tree rooted at B replaces subquadrant 
conjugate(i) of  the previous father node of  B. 

Figure 10 illustrates the subquadrants that are proc- 
essed by ADJ when node 0 is deleted and the resulting 
tree is rooted at node 4. For the example of  Figure 1, the 
tree rooted at G is left alone. Trees rooted at H and I are 
processed by ADJ. Trees rooted at D and E are reinserted 
in quadrants 2 and 4, respectively. The tree rooted at C 
replaces B as the son of  F in subquadrant 3. Figure 9 
shows the result of  deleting A from Figure 1. 

3. Analysis of  the Effect of  the Algorithm on the 
Number of  Insertions 

In order to measure the efficiency of  our algorithm, 
we analyze the expected number of  nodes that must be 
reinserted. Define a nontrivial subtree to be a subtree 
with two or more nonempty subtrees. Let S(n) and Q(n) 
be the expected number of  nodes that must be reinserted 
and the expected nontrivial subtree size, respectively, in 
a tree of  n nodes. Q(n) corresponds to the number of  
nodes which may need to be examined for reinsertion 
whenever the root of  a nontrivial subtree is deleted. 
Thus, Q(n) is the cost of  deletion when the method of  
[3] is used. S(n) is the cost when our method is used. 
Our analysis assumes a quad tree having n nodes that is 
also complete [5] (i.e., perfect [3]) because, for fairness of  
comparison, such a configuration minimizes the average 
cost of  the deletion method of  [3]--i.e., reinserting the 
subtree. This can be seen by noting [1, p. 515] that the 
sum of  the subtree sizes, for a given tree T of  size n, is 
TPL(T)  + n which is at a minimum when Tis a complete 
quad tree. The effect of  the complete quad tree assump- 
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Fig. 9. Result of deleting node A from the quad tree of Figure 1 and 
replacing it with node B. 
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tion is exhibited by the empirical results in the next 
section. Letting r(n) denote the proportion of  nodes that 
do not require reinsertion when using our algorithm, we 
have the relationship 

S(n) = (I -- r(n)). Q(n) (1) 

We first derive Q(n). Let v be the maximum level (or 
depth) in the tree. From the definition of  Q(n), all 
subtrees of  size 1 are ignored since no nodes must be 

reinserted when their root is deleted. In a subtree at level 
i there are ~,,i°_--~ 4 i nodes. There a r e  4 i such subtrees. 
Therefore 

Q(n) - 

v-1 v-i ) 
y. ° I 

i = 0  

o - 1  

~ 4 i 
i - 0  

Observe that 

n -  1 v-1 
- ~ , 4  i 

4 i~o 

4.v 4 

3 . ( n -  1) 3 
(2) 

(3) 

Allowing n to become large and solving (3) for v enables 
(2) to be rewritten as 

Q(n) -- 4. log4(¼- n) - ~ (4) 

Next, we derive r(n). Let A and B be the deleted and 
replacing nodes, respectively, where B satisfies the "clos- 
est" criteria of  Section I. Therefore, B is a result of  
procedure F I N D C A N D I D A T E  that satisfies properties 
(l)  and (2). Let the tree be complete with n nodes and v 
being defined as in (3). Also, assume that the nodes are 
distributed uniformly throughout the partition of  the 
two-dimensional space rooted at node A. 

The contributions to r(n) made by each quadrant  of  
the region associated with the subtree rooted at A are 
evaluated separately below. Assume without loss of  gen- 
erality that B is in quadrant 1. Let T = ~i°Z0 z (1/4) i. 

Contribution from Quadrant 3 
No nodes in quadrant 3 need to be reinserted. Hence, 

this quadrant  contributes ¼ to r(n). 

ADJ 

ADd 

ADJ 

2 
ADd 

IADJ 31 
ADJ 

4 ~Dd 

0 

ADJ 

ADJ 

I 

ADJ 

Fig. 10. Subquadrants processed by ADJ when node 0 is deleted and 
replaced by node 4. 

Contribution from Quadrant 2 
There are two possible cases depending on whether 

or not there is more than one "closest" node such that 
the crosshatched region contains it. 

CASE a. The closest node, say J, to the deleted node, 
A, in this quadrant lies outside of  the crosshatched region 
(see Figure 1). 

By its recursive nature, procedure ADJ eliminates 
two subquadrants from consideration each time it is 
invoked. B being the "closest" node assures that the root 
of  the subtree associated with the fourth subquadrant of  
quadrant  2 also eliminates two of  its subquadrants from 
consideration, etc. Summing over all levels, the first, 
second, and fourth subquadrants of  quadrant  2 contrib- 
ute 

l l i 1 1. ... ~ . ( 2  + (½ + = , ' ( 2  + ))) ~ . T  

The third subquadrant of  quadrant 2 also makes a 
contribution to r(n). Since the root of  this subquadrant  
is not one of  the nodes returned by F I N D C A N D I D A T E ,  
we let p12 denote the probability that the nodes in this 
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subquadrant (at level 2) will not need to be reinserted. 
In general, we assume the existence of a sequence of 
probabilities {pu} such that pu is the probability that 
nodes in the third subquadrant at level i, as ADJ is 
applied recursively, need not be reinserted. Summing 
over all levels results in 

¼.¼.(p~ + ¼.(p,3 + ¼.(p~, + . . .)))  (5) 

Define p, so that (5) is equal to 

¼.¼.(p, + k . ( p ,  + ¼.(p, + . . .  ))) 

p, algebraically represents (ply}. Note that in terms ofpa, 
(5) is equal to 1/16 .p,. T. In general, we refer topj as the 
representative of (pji}. 

Thus, the contribution to r(n) from the second quad- 
rant for Case a is 

~. T + 1.p,. T = I-(2 +p1)-T 

CASE b. The closest node, say C, to the deleted node, 
A, in this quadrant lies inside the crosshatched area (see 
Figure 5). 

In this case the analysis is similar to that performed 
for case a with the following modification. Let p22 be the 
probability that the root of this quadrant (at level 2) 
need not be reinserted, thereby resulting in no need to 
reinsert the first and second subquadrants. In general, 
we assume the existence of a sequence of probabilities 
{p2~} such that p2~ is the probability that nodes in the 
first two subquadrants at level i, as ADJ is applied 
recursively, need not be reinserted. This is somewhat 
different from the analysis performed for the third 
subquadrant for case a, since here having to reinsert the 
root of a subquadrant, say X, means that there is a 
probability that we need not have to reinsert the first two 
subquadrants of the fourth subquadrant of X, etc. Sum- 
ming over all levels results in 

1 1 + ¼ . ( p 2 4 +  ) ) )  ,'(p2~" 2 + ¼- ( m 3 - ½  . . .  

Once again, define p2 so that (6) is equal to 

1 t .  2 i + ¼ . ( P 2 . ½ +  Z i , ' w  "~ , ' (e~ '~  + . . - ) ) )  

(6) 

Thus, p2 algebraically represents {p2i} and (6) is equal 
to 1/8.p2. T. 

The contribution of  the third subquadrant is obtained 
in the same way as for Case a. The only difference is 
thatpa represents (pai}. 

Thus, the contribution to r(n) from the second quad- 
rant for Case b is 

• p2- T + 1"Pa" T = I"  (2 + p2 + pa) .  T 

Contribution from Quadrant 4 
The analysis is the same as that completed for quad- 

rant 2. Case a yields 1/16.(2 + P0" T, where p4 is the 
representative of {p4i}. Case b yields 1/16.(2 + p~ + pr) 
• T, where ps and p6 are the representatives of {psi} and 
{pri}, respectively. 

Contribution from Quadrant 1 
Procedure NEWROOT eliminates one subquadrant 

(subquadrant 1) from consideration at each iteration. 
FINDCANDIDATE assures that the third subquadrant 
will also eliminate its first subquadrant, etc. Summing 
over all levels, the contribution of the first and third 
subquadrants to r(n) is 

1 1 1 1 ! 7 " ( 7 +  ( ¼ +  . - .  = • 7"(, + ))) & T 

The second and fourth subquadrants are analyzed in 
the same way as the third subquadrant for Case a was. 
Withp7 andps denoting the representatives of probability 
sequences for these subquadrants, the first quadrant 
contributes 

I . T +  I .pe .T+ 1.pa.T= 1.(1 +p7 +ps) .  T 

Recall from Section 2 that properties (1) and (2) 
guarantee that at most one of the two quadrants adjacent 
to the quadrant containing the new root (i.e., 1) will have 
the property that its "closest" node lies in the cross- 
hatched region. Allowing n to become large yields a 
value of ~ for T. Thus, if none of the adjacent quadrants 
have their "closest" node in the crosshatched region, 
then 

r(n) = ¼ + 1" (2 + pl)- T + 1.  (2 + p4). T 
+ I " (  1 -[-/07 + p s ) . T  (7) 

= ¼ .1L 1 .  (5 "1-pl "~ p4 + p7 + t08) 

while when one of the adjacent quadrants has its "clos- 
est" node in the crosshatched region, assuming it is 
quadrant 2, we have 

r(n) = ¼ + I "  (2.p2 + p3)- T 
+ I . ( 2  + p 4 ) . T +  I . (1  +p7 +p8).  T (8) 

= ¼ + ~ .  (3 + 2 . p z  + p3 + p4 + p7 + p8) 

Suppose we relax the assumption that the replacing 
node B satisfies properties (1) and (2). Instead, randomly 
select one of the candidates as the replacing node. Thus, 
both of the quadrants adjacent to the quadrant contain- 
ing the new root (i.e., 1) may have the property that their 
"closest" node lies in the crosshatched region. In such a 
case we have 

r(n) = ¼ + I "  (2.p2 + p3)" T + I" (2.p5 + pr)- T 
+ I ' ( 1  +p7 + p s ) - T  (9) 

= ¼ + ~ . ( 1  + 2 . p z + p a + 2 . p s  

+ p 6 + p 7 + p 8 )  

By the nature of the partitioning process, each of the 
representatives p, - p 8  approximates the average of  a 
monotonically decreasing sequence. Simulation results 
followed by curve fitting (discussed in the next section) 
show that pl - p 8  can be reasonably approximated by ½. 
Using this result, we say that for large n, the value of 
r(n) lies between ] and ~. Therefore, when properties (l) 
and (2) are satisfied, the lower bound S(n) is 

S(n) = (1 - 6~).(4.1og4(¼.n) - ~) 
= ~- log4( ] ,  n) - 
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25 300 1.39 1.20 3.11 2.40 5.63 5.34 8.69 7.12 
50 300 1.73 1.52 3.77 3.03 7.48 6.83 11.0 9.10 

100 300 2.02 1.84 4.37 3.68 8.99 8.30 13.1 11.1 
200 300 2.38 2.18 5.11 4.36 10.8 9.83 15.6 13.1 
500 100 2.69 2.64 5.74 5.28 13.3 11.9 18.9 15.8 

1,000 50 2.87 2.96 6.13 5.92 15.4 13.4 21.3 17.8 
2,000 25 3.24 3.30 6.64 6.59 16.6 14.8 23.7 19.8 

When properties (1) and (2) are not satisfied, the upper 
bound for S(n) is 

S(n) = (1 - ~). (4.1094(4 z. n) - 4) 
= 4" l o g , ( } ,  n )  - 

In computing r(n) we assumed a very naive version 
of  the algorithm of [3] which reinserts all of  the subtrees 
of  the deleted node. Instead, 'the deleted node can be 
replaced by one of its subtrees and thus, only the re- 
maining subtrees need to be reinserted. We term this the 
"improved" version of  [3] and when it is used, on the 
average only 4 z as many nodes require reinsertion. Thus, 
the reinsertion proportion is really 4/3.(1 - r(n)). In 
other words, this proportion ranges between -~ and 4 of 
that required by the improved version, whereas for the 
original version the proportion ranges between i and I. 

4. Empirical Results 
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In order to test our theoretical predictions, empirical 
tests were conducted. Quad trees of  varying sizes were 
created at random with key values ranging from 0 to 
2 al - 1. The deletion process was performed for each 
node in the tree that had two or more subtrees (i.e., the 
nontrivial cases). Table I contains predicted and ob- 
served values for S(n) (i.e., the expected number of 
insertions) when the replacing node is selected according 
to properties (l)  and (2) (labeled "closest") and when it 
is chosen at random from the set of  candidate nodes 
(labeled "random"). Q(n) is also given for the naive and 
improved versions of the algorithm of  [3]. As the tree 
size increases, the predicted and observed values of S(n) 
are closer in value. This is not surprising because the 
analysis assumes complete quad trees, whereas this is not 
true for the simulated trees, and the value of  r(n) is an 
upper bound (curve fitting results in r(n) being 0.829 
and 0.637 for the "closest" and "random" cases, respec- 
tively). Smaller sized trees result in smaller values of  
r(n), thereby accounting for the observed values of S(n) 
exceeding the predicted values for small tree sizes. Also 
note that the observed values of Q(n) imply that our 
algorithm results in even greater reductions in the num- 
ber of  nodes requiring reinsertion than indicated by our 
analysis. 

0 

"c- 
O 

E 
0 
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An alternative measure of the amount of  work per- 
formed by the two deletion algorithms is the number of 
comparisons made during the process of  rearranging the 
tree once a node has been deleted. This is of interest 
because the number of reinsertions is not a complete 
measure of  work since the reinsertion of  different nodes 
requires different expenditures of  work (i.e., comparison 
operations) depending on the level of  the node in the 
tree. Using the same tree sizes and trials as in Table I, 
Figure 11 contains plots for the average number of 
comparisons made when the improved version of [3] and 
our algorithm were used. The observed averages for our 
deletion method result in a proportionality with the log 
of  the tree size. 

An additional property that bears watching is the 
total path length (TPL) of a tree after deletion of  a node. 
This data is significant because it correlates with the 
effective search time [2, 6]. Our simulations show that 
"bushiness" (i.e., balance) of  the tree has only been 
slightly affected by the application of  our deletion algo- 
rithm. For example, compare Figures 2 and 9 which are 
the results of  the application of  [3] and our algorithm, 
respectively. The original TPL was 25 (i.e., Figure 1), 
whereas the TPL values for Figures 2 and 9 are 22 and 

I00 

50 

0 
0 

Closest Replocement 
I 

LO00 2000 

Table I. Observed and Predicted Values of S(n) and Q(n). 

S(n) Q(n) 
closest random improved naive 

size trials observed predicted observed predicted observed predicted observed predicted 

-#: Items in Qued Tree 

Fig. 11. Average number of comparisons. 
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Table I1. Average Total Path Length (TPL) After Deletion of a Root Node. 

size trials original closest random method [3] 

25 100 68.1 63.5 65.0 71.3 
50 100 170.5 163.7 166.6 188.2 

100 100 404.1 395.8 401.4 460.7 
200 100 942.3 928.8 948.1 1,099 
500 100 2,824 2,808 2,841 3,432 

1,000 100 6,318 6,313 6,352 7,979 
2,000 100 14,127 14,136 14,229 17,590 

Table III. Average TPL/Optimal TPL (X) Corresponding to Table II. 

size trials optimal TPL original X closest X random X method [3] X 

25 100 48 1.4188 1.3229 1.3542 1.4854 
50 100 123 1.3862 1.3309 1.3545 1.5301 

100 100 288 1.4031 1.3743 1.3938 1.5997 
200 100 688 1.3697 1.3500 1.3781 1.5974 
500 100 2,047 1.3796 1.3718 1.3879 1.6766 

1,000 100 4,547 1.3895 1.3884 1.3970 1.7548 
2,000 100 10,182 1.3874 1.3883 1.3975 1.7276 

20, respectively. Table II contains a summary of  these 
results when only roots of  trees are deleted (instead of  
all nodes having more than one subtree). Note that as 
the tree size increases, the TPL increases significantly 
when the method of [3] is used. For a measure of  balance 
which is independent of  the size of the tree we use X, the 
average TPL divided by the TPL of  the optimal tree with 
the same number of  nodes. Table III contains a summary 
of  these results when only roots of  trees are deleted. The 
observed decrease in balance (i.e., an increase in X) 
results because the simulated algorithms perform rein- 
sertion in a sorted order. However, to do otherwise 
requires reinserting the tree in random order which is 
time-consuming. In such a case, the resulting tree has a 
TPL which is almost identical to that obtained by our 
methods. This is not surprising since our techniques lead 
to little variation in the TPL from the original tree which, 
after all, was created at random. An analysis of  the effect 
of a long sequence of  insertions and deletions would be 
interesting but is beyond the scope of this work (see [5, 
p. 431]). 

5. Concluding Remarks 

Two methods for obtaining the replacing node have 
been discussed: one that chooses a "closest" node at 
random and one that uses properties (1) and (2). As the 
tree size increases, the amount of  extra work required by 
the latter is overshadowed by the decrease in subsequent 
comparison operations. Thus, for large trees the "closest" 
node should not be selected at random. 

The extension of our algorithm to quad trees of  
higher dimension is worthy of  future investigation. In [1] 
a related data structure termed a k-d tree, one inspired 
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by quad trees but fundamentally different in operational 
costs, is introduced (k denotes the dimension of  the 
space). An interesting problem is to determine if our 
methods are applicable to k-d trees. One of  the problems 
with k-d trees in relation to our deletion algorithm is that 
a node in a k-d tree does not partition the space with 
respect to all key value components as is true for quad 
trees. Note that the partitioning property makes the quad 
tree an attractive data structure for applications in which 
parallelism is feasible (e.g., [7]). 
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