
M. Jeffery, G. Iba, M. Hornell, and K. Prendergast.
Later versions were improved by discussions with
R. Berwick, M. Brady, and other participants in the
Artificial Intelligence Laboratory's Learning Seminar.
The drawings are by K. Prendergast.

Received 8/79; revised 6/80; accepted 7/80.

References

1. Brotsky, D. Efficient graph matching through exploitation of con-
straint. M.1.T. Artif. lntell. Lab. Memo No. 600, Cambridge, Mass.,
Oct. 1980.
2. Carroll, J.B., Daves, P., and Richmond, B. Word Frequency Book.
Houghton-Mifflin and American Heritage, New York, 1971.
3. Evans, T.G. A heuristic program to solve geometric analogy prob-
lems. Ph.D. Th., M.I.T., Cambridge, Mass. in Semantic Information
Processing, M. Minsky, Ed., The M.I.T. Press, Cambridge, Mass., 1968.
4. Filmore, C.J. The case for case. In Universals in Linguistic Theory,
E. Bach and R. Harms, Eds., Holt, Rinehart, and Winston, New York,
1968.
5. Givon, T. Cause and control: On the semantics of interpersonal
manipulation. In Syntax and Semantics, Vol IV, J. Kimball, Ed.,
Academic, New York, 1975.
6. Katz, B. A three-step procedure for language generation. M.I.T.
Artif. Intell. Lab. Memo. No. 599, Cambridge, Mass. Oct. 1980.
7. Lenat, D. AM: An artificial intelligence approach to discovery in
mathematics as heuristic search. Ph.D. Th., Stanford Univ., Stanford,
Calif. in Knowledge-Based Systems in Artificial Intelligence, McGraw-
Hill, New York, 1979.
8. Martin, W.A. Philosophical foundations for a linguistically ori-
ented semantic network (in preparation).
9. Meldman, J. A preliminary study in computer-aided legal analysis.
Ph.D. Th. and Tech. Rep. No. MAC-TR-157, M.I.T. Lab. for Comptr.
Sci, Cambridge, Mass., Nov. 1975.
10. Minsky, M. A framework for representing knowledge. In The
Psychology of Computer Vision, P.H. Winston, Ed., McGraw-Hill, New
York, 1975.
11. Moore, J. and Newell, A. How can Merlin understand? In Knowl-
edge and Cognition. L. Gregg, Ed., Lawrence Erlbaum Associates,
Potomac, Md., 1974.
12. Ogden, C.K. Basic English: International Second Language. Har-
court, Brace, and World, New York, 1968.
13. Rieger, C. The commonsense algorithm as a basis for computer
models of human memory, inference, belief, and contextual language
comprehension. Dept. Comptr. Sci. Tech. Rep. No. 373, Univ. of
Maryland, College Park, Md., 1975.
14. Roberts, R.B. and Goldstein, I.P. The FRL primer. M.1.T. Artif.
lntell. Lab. Memo No. 408, Cambridge, Mass., July 1977.
15. Roberts, R.B. and Goldstein, I.P. The FRL manual. M.I.T. Artif.
lntell. Lab. Memo No. 409, Cambridge, Mass., June 1977.
16. Rosch, E., Mervis, C.B., Gray, W.D., Johnson, D.M., and Boye'.,-
Braem, P. Basic objects in natural categories. Cog. Psych 8, 3 (July
1976) 382-439.
17. Schank, R.C. Conceptual Information Processing. North-Holland,
New York, 1975.
18. Tversky, A. Features of similarity. Psych. Rev. 84, 4 (July 1977),
327-352.
19. Wilks, Y.A. Grammar, Meaning, and the Machine Analysis of
Language. Routlege and Kegan Paul, London, 1972.
20. Winston, P.H. Learning structural descriptions from examples.
Ph.D. Th., M.I.T., Cambridge, Mass. in The Psychology of Computer
Vision, P.H. Winston, Ed., McGraw-Hill, New York, 1975.
21. Winston, P.H. Learning by creating and justifying transfer frames.
Artif lntell. 10, 2 (1978), 147-172.
22. Winston, P.H. Learning and reasoning by analogy: The details
(formerly titled "Learning by understanding analogies"). M.I.T. Artif.
lntell. Lab. Memo No. 520, Cambridge, Mass., April 1979.

703

Programming Techniques R. Rivest
and Data Structures Editor

Deletion in
Two-Dimensional
Quad Trees
Hanan Sarnet
University of Maryland

An algorithm for deletion in two-dimensional quad
trees that handles the problem in a manner analogous
to deletion in binary search trees is presented. The
algorithm is compared with a proposed method for
deletion which reinserts all of the nodes in the subtrees
of the deleted node. The objective of the new algorithm
is to reduce the number of nodes that need to be
reinserted. Analysis for complete quad trees shows that
the number of nodes requiring reinsertion is reduced to
as low as ~ of that required by the old algorithm.
Simulation tests verify this result. Reduction of the
number of insertions has a similar effect on the number
of comparison operations. In addition, the total path
length (and balance) of the resulting tree is observed to
remain constant or increase slightly when the new
algorithm for deletion is used, whereas use of the old
algorithm results in a significant increase in the total
path length for large trees.

Key Words and Phrases: binary tree deletion, quad
trees, associative searching, information retrieval,
binary search trees, sorting, searching, geographic
databases

CR Categories: 3.70, 4.34, 4.79

Introduction

A number of data structures have been proposed for
retrieval on composite keys [1, 3, 8]. We are interested in
the quad tree of [3]. It is useful whenever there is a need
to perform operations such as searching a two-dimen-
sional structure. For example, we may wish to fred all

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Author's present address: H. Samet, Computer Science Depart-
ment, University of Maryland, College Park, MD 20742.

This research was supported in part by a General Research Board
Faculty Award of the University of Maryland and by the Defense
Advanced Research Projects Agency and the U.S. Army Night Vision
Laboratory under contract DAAG-76C-0138 (DARPA Order 3206).
© 1980 ACM 0001-0782/80/1200-0703 $00.75.

Communications December 1980
of Volume 23
the ACM Number 12

Fig. 1. A quad tree and the records it represents.

_ _ - ~ , - ,
I I
I I

I I
i A
I
I

. . . . e-

MI
I
I
i
I
I
I
I
I
I

I I I I , ['

I ' I
_ 4 1 -

H t I
| I 1

r ~ , " - " - , - , : * ! ,

I-~44 irl
i u I L _ _ 4 _ j I
/ , i ~ i i I

/
] , I L I I I

N

A

nodes within a specified distance of a given node--i.e.,
all cities within 50 miles of Washington, D.C. The quad
tree is essentially a generalization of a binary tree where
each node has four subtrees labeled 1, 2, 3, and 4
corresponding to the directions NE, NW, SW, and SE,
respectively. Each subtree is commonly referred to as a
quadrant or subquadrant. For example, see Figure 1
where the correspondence of a quad tree of 14 nodes to
the records it represents is presented.

In [3] algorithms for insertion, point search, and
region search are given. Deletion is resolved by indicat-
ing that all of the nodes of the tree rooted at the deleted
node must be reinserted--a sometimes expensive pro-
cess. For example, see Figure 2 where the quad tree
which results after deletion of A from the quad tree in
Figure 1 is shown. In [3] it is suggested that one should
not reinsert subtrees elementwise if their new position is
known for the subtree as a whole. In this paper we
present an improved algorithm for deletion in two-di-
mensional quad trees which takes advantage of this idea.
Section 2 contains the algorithm and an intuitive discus-
sion of its motivation. In Section 3 we analyze the
algorithm and in Section 4 we discuss results of simula-
tions. Conclusions are drawn in Section 5.

2. A l g o r i t h m

We view deletion in quad trees in a manner analo-
gous to deletion in binary search trees [4, 5]. For example,
in the binary search tree of Figure 3 when A is to be
deleted, it is replaced by one of B or C--i.e., the "closest"

Fig. 2. Result of deleting node A from the quad tree of Figure 1 using
the method of [3].

I
I
I
I
I
I

K, w i
_ ' _ ' i

i

I
I
I
I
I

G',
I

I I I

. , _ -'l'zi i F [

. ,TI'-- j t) ~ _ _ 4 - - I
d l I ' I t C

. ~ _ I J --~-; - - J----I

-~ 1B / L!

I
I

I

M I
I
I

1
I
I
I
I
I

I

- . - , f -

I

- - N - T

I
I
I
I

F

node in value. In the case of a quad tree, as shown in
Figure 1, it is not clear which of the remaining nodes
should replace A. This is because no definition of "clos-
est" exists. We notice that no matter which of the nodes
is chosen, some of the nodes will have to shift position.
Therefore, in Figure 1, if L replaced A, then J would no
longer occupy the second quadrant with respect to L and
thus, J would need to be reinserted along with its subtrees
in the quadrant rooted at F. Similarly, E and I would
have to be reinserted along with their subtrees in the
quadrant rooted at N.

The problem of finding a replacement node is further
compounded when the replacing node is not a terminal
node. This situation does not arise in binary search trees,
but in quad trees it may arise depending on the measure
of "closeness" employed. For example, in Figure 1 if the
measure of "closeness" is a minimum sum of horizontal

A

c

Fig. 3. A binary search tree.

704 Communicat ions
of
the ACM

December 1980
Volume 23
Number 12

Fig. 4. A quad tree in which deletion requires no reinsertion. Fig. 5. A quad tree with no "closest" terminal node.

, i I
:
,

f,E- ' - - -
',

,
tF

?-N

. . . . ~S
. I

I I
i A
I
I
I
I

D

i
I
I

E

and vertical displacements (i.e., the L 1 metric) from the
node to be deleted, then B is closest to A, yet it is not a
terminal node. However, B, does not have a subtree in
the quadrant whose boundary it shares with A. Replacing
A by B means that subtrees rooted at A must be reinserted
in the new tree. This problem can be eased by exploiting
certain geometrical properties. For example, in Figure 1,
replacing A by B means the the subtree rooted in the
third quadrant of the tree rooted at A need not be
examined for reinsertion--i.e., it can become the third
quadrant of the new tree rooted at B.

Ideally, we wish to replace the deleted node with a
node which is terminal and closer to its bordering axes
than any other node in the tree. Such a node can simply
replace the deleted node with no need for any reinsertion.
For example, see Figure 4 where G has no subtrees and
is closer than any other node to its bordering sides of the
x and y axes. Thus, when G becomes the root of the tree,
the crosshatched region in Figure 4 is empty and no
nodes need to be reinserted. This is analogous to the
binary search tree since the empty crosshatched region
corresponds to a gap between the deleted node and its
replacement. We use the term "crosshatched" to denote
the area between the axes formed by the deleted and
replacing nodes. Two items are worthy of further note.
First, the condition of the replacing node (e.g., G in
Figure 4) being the closest terminal node is not sufficient
to guarantee the emptiness of the crosshatched region (it
only guarantees the emptiness of the region in the
subquadrant rooted at the replacing node). Second, it is
not uncommon that such a node fails to exist (see Figure
5). This corresponds to the situation that for any node,
say B, which is closest to one of its bordering axes, there
exists another node, say C, which is closer to the other
axis.

In general, we do not want to expend the time
necessary to find the node, if any, which partitions the
space so that the crosshatched region is empty. Any
algorithm we develop must rely on a method which finds
a node satisfying some predetermined criterion of"close-
ness." Our algorithm relies on a criterion analogous to
the one used in a binary search tree to determine a
"closest" node.

705

Let us define the notion of a direction opposite a
given direction--the conjugate, as in [3], being

conjugate(N) = ((N + 1) mod 4) + 1

where N is a quadrant number in the range 1 to 4.
For each quadrant i, of the tree rooted at the node to

be deleted, we perform the following procedure:

F I N D C A N D I D A T E : Starting at the root node of the quadrant, re-
peatedly follow the branch corresponding to conjugate (i) until a node
having no subtree along this branch is encountered.

The above procedure results in a set of four nodes
which are said to be candidates for replacing the deleted
node. Once such a set is found (if no candidate is found
in a quadrant, then we choose a fictitious point in the
quadrant that is farthest from the deleted node--e.g. ,
(-oo, - ~) in the third quadrant), choose the candidate
that is closer to each of its bordering axes than any other
candidate which is on the same side of these axes. This
is termed property (1). For example, in Figure 1 the
candidates are B, J, M, N, with B being the winner. The
situation that none of the candidates satisfy this criterion
(e.g., Figure 5) or that several candidates satisfy this
condition (e.g., B and D in Figure 6) may arise. In this
case we choose the candidate with the minimum L1
metric value (hereafter characterized as property (2)).

As a justification for the use of the L 1 metric, assume
that the nodes are uniformly distributed in the two-
dimensional space. The goal is to minimize the area of
the crosshatched region. For example (see Figure 7), if
the two-dimensional space is finite having sides of length
Lx and Ly along the x and y axes, respectively, and a

t "~B
I I
I I
I I

I ~A I
I I

o
E

Fig. 6. A quad tree with two nodes being closest to their bordering
axes.

Communicat ions December 1980
of Volume 23
the ACM Number 12

Fig. 7. Example of a two-dimensional space.

I
I
I

winning n o d e ~ y _
I
I
I

I'

r, T aode to be deleted
x Ly

- 1
Lx "l

candidate is at a distance of dx and dy from the x and y
axes, respectively, centered at the node to be deleted,
then the crosshatched region has an area ofLx . dx + Ly.
dy - 2.dx.dy. However, as Lx and Ly increase (as
occurs in arbitrary space), the contribution of the 2. dx.
dy term becomes negligible and the area is proportional
to the sum of dx and dy.

Property (2) is not sufficient by itself to insure that
the selected candidate partitions the space so the
crosshatched region contains no other candidate. For
example, see Figure 8 where 0 has been deleted and A
satisfies property (2) but only C satisfies property (1). A
pair of axes through C leaves all other candidates outside
of the crosshatched region, while a pair of axes through
A results in B being in the crosshatched region. If no
candidate is found to satisfy (1), then (2) guarantees that
at least one of the candidates has the property that only
one of the other candidates will occupy the crosshatched
region between the original axes and the axes passing
through the selected candidate. To see this, note that
whichever candidate is selected to be the new root (say
B in quadrant 0, then the candidate in quadrant conju-
gate(i) lies outside of the crosshatched region. In addi-
tion, the candidate in a quadrant which is on the same
side of an axis, as is B, and to which axis B is closer, lies
outside of the crosshatched region.

We are now ready to present our deletion algorithm.
It makes use of the properties of the space obtained by
the new partition to reduce the number of nodes requir-
ing reinsertion. The algorithm consists of two procedures,
ADJ and NEWROOT. Let A be the node to be deleted
and let i be the quadrant of the tree rooted at A contain-
ing B, the "closest" node which will replace A. Note that
no nodes in quadrant conjugate(i) need to be reinserted.
Now, separately process the two quadrants adjacent to
quadrant i using procedure ADJ.

I

I
. 1 . _ . _ _ .

O'

I

I

I

Fig. 8. Example of the insulq
region.

I
i

D

I
insufficiency of (2) for empty crosshatched

ADJ: Examine the root of the quadrant, say J. If J lies outside of the
crosshatched region, then two subquadrants can automatically remain
in the quadrant and need no further processing while the remaining
subquadrants are separately processed by a recursive invocation of
ADJ. Otherwise, the entire quadrant must be reinserted in the quad
tree which was formerly rooted at A.

For example, consider Figure 1 where A is deleted
and replaced by B in the first quadrant. J and the
subquadrant rooted at K remain in the second quadrant
while the subquadrant rooted at L is recursively proc-
essed. Eventually, L must be reinserted in the subtree
rooted at M. The third quadrant of A (rooted at N) does
not require reinsertion. Figure 9 shows the result of the
deletion.

Once the nodes in the quadrants adjacent to i have
been processed, we must process the nodes in i. Clearly,
all of the nodes in subquadrant i of i will retain their
position. Bearing this in mind, we apply procedure
N E W R O O T to the remaining subquadrants of i.

NEWROOT: Apply algorithm ADJ to the subquadrants adjacent to
subquadrant i and iteratively reapply NEWROOT to subquadrant
conjugate(i). This is done until an empty link in direction conjugate(i)
is encountered (i.e., at this point we are at B- - the node replacing the
deleted node). Now, insert the nodes in the subquadrants adjacent to
subquadrant i of the tree rooted at B in the quadrants adjacent to
quadrant i of the tree rooted at A. Recall that by virtue of the definition
of "closest," subquadrant conjugate(i) of the tree rooted at B is empty.
Also subquadrant i of the tree rooted at B replaces subquadrant
conjugate(i) of the previous father node of B.

Figure 10 illustrates the subquadrants that are proc-
essed by ADJ when node 0 is deleted and the resulting
tree is rooted at node 4. For the example of Figure 1, the
tree rooted at G is left alone. Trees rooted at H and I are
processed by ADJ. Trees rooted at D and E are reinserted
in quadrants 2 and 4, respectively. The tree rooted at C
replaces B as the son of F in subquadrant 3. Figure 9
shows the result of deleting A from Figure 1.

3. Analysis of the Effect of the Algorithm on the
Number of Insertions

In order to measure the efficiency of our algorithm,
we analyze the expected number of nodes that must be
reinserted. Define a nontrivial subtree to be a subtree
with two or more nonempty subtrees. Let S(n) and Q(n)
be the expected number of nodes that must be reinserted
and the expected nontrivial subtree size, respectively, in
a tree of n nodes. Q(n) corresponds to the number of
nodes which may need to be examined for reinsertion
whenever the root of a nontrivial subtree is deleted.
Thus, Q(n) is the cost of deletion when the method of
[3] is used. S(n) is the cost when our method is used.
Our analysis assumes a quad tree having n nodes that is
also complete [5] (i.e., perfect [3]) because, for fairness of
comparison, such a configuration minimizes the average
cost of the deletion method of [3]--i.e., reinserting the
subtree. This can be seen by noting [1, p. 515] that the
sum of the subtree sizes, for a given tree T of size n, is
TPL(T) + n which is at a minimum when Tis a complete
quad tree. The effect of the complete quad tree assump-

706 Communications December 1980
of Volume 23
the ACM Number 12

Fig. 9. Result of deleting node A from the quad tree of Figure 1 and
replacing it with node B.

I

I
I
I
I

I
.

I I
I I
I I
, ,,

. I , . -

M

' I I
, I I
I I__ - - 6

- - I , . - - - J H ~ ~ - G!
i i

--~---~

___.4,_-I
CI I

, I I

B ! i i
-- -- ~---------I --. I ~_,. ~- ,

I rl
I
I
I
I
I

1

NI I
I

I
I

B

tion is exhibited by the empirical results in the next
section. Letting r(n) denote the proportion of nodes that
do not require reinsertion when using our algorithm, we
have the relationship

S(n) = (I -- r(n)). Q(n) (1)

We first derive Q(n). Let v be the maximum level (or
depth) in the tree. From the definition of Q(n), all
subtrees of size 1 are ignored since no nodes must be

reinserted when their root is deleted. In a subtree at level
i there are ~,,i°_--~ 4 i nodes. There a r e 4 i such subtrees.
Therefore

Q(n) -

v-1 v-i)
y. ° I

i = 0

o - 1

~ 4 i
i - 0

Observe that

n - 1 v-1
- ~ , 4 i

4 i~o

4.v 4

3 . (n - 1) 3
(2)

(3)

Allowing n to become large and solving (3) for v enables
(2) to be rewritten as

Q(n) -- 4. log4(¼- n) - ~ (4)

Next, we derive r(n). Let A and B be the deleted and
replacing nodes, respectively, where B satisfies the "clos-
est" criteria of Section I. Therefore, B is a result of
procedure F I N D C A N D I D A T E that satisfies properties
(l) and (2). Let the tree be complete with n nodes and v
being defined as in (3). Also, assume that the nodes are
distributed uniformly throughout the partition of the
two-dimensional space rooted at node A.

The contributions to r(n) made by each quadrant of
the region associated with the subtree rooted at A are
evaluated separately below. Assume without loss of gen-
erality that B is in quadrant 1. Let T = ~i°Z0 z (1/4) i.

Contribution from Quadrant 3
No nodes in quadrant 3 need to be reinserted. Hence,

this quadrant contributes ¼ to r(n).

ADJ

ADd

ADJ

2
ADd

IADJ 31
ADJ

4 ~Dd

0

ADJ

ADJ

I

ADJ

Fig. 10. Subquadrants processed by ADJ when node 0 is deleted and
replaced by node 4.

Contribution from Quadrant 2
There are two possible cases depending on whether

or not there is more than one "closest" node such that
the crosshatched region contains it.

CASE a. The closest node, say J, to the deleted node,
A, in this quadrant lies outside of the crosshatched region
(see Figure 1).

By its recursive nature, procedure ADJ eliminates
two subquadrants from consideration each time it is
invoked. B being the "closest" node assures that the root
of the subtree associated with the fourth subquadrant of
quadrant 2 also eliminates two of its subquadrants from
consideration, etc. Summing over all levels, the first,
second, and fourth subquadrants of quadrant 2 contrib-
ute

l l i 1 1. ... ~ . (2 + (½ + = , ' (2 +))) ~ . T

The third subquadrant of quadrant 2 also makes a
contribution to r(n). Since the root of this subquadrant
is not one of the nodes returned by F I N D C A N D I D A T E ,
we let p12 denote the probability that the nodes in this

707 Communications December 1980
of Volume 23
the ACM Number 12

subquadrant (at level 2) will not need to be reinserted.
In general, we assume the existence of a sequence of
probabilities {pu} such that pu is the probability that
nodes in the third subquadrant at level i, as ADJ is
applied recursively, need not be reinserted. Summing
over all levels results in

¼.¼.(p~ + ¼.(p,3 + ¼.(p~, + . . .))) (5)

Define p, so that (5) is equal to

¼.¼.(p, + k . (p , + ¼.(p, + . . .)))

p, algebraically represents (ply}. Note that in terms ofpa,
(5) is equal to 1/16 .p,. T. In general, we refer topj as the
representative of (pji}.

Thus, the contribution to r(n) from the second quad-
rant for Case a is

~. T + 1.p,. T = I-(2 +p1)-T

CASE b. The closest node, say C, to the deleted node,
A, in this quadrant lies inside the crosshatched area (see
Figure 5).

In this case the analysis is similar to that performed
for case a with the following modification. Let p22 be the
probability that the root of this quadrant (at level 2)
need not be reinserted, thereby resulting in no need to
reinsert the first and second subquadrants. In general,
we assume the existence of a sequence of probabilities
{p2~} such that p2~ is the probability that nodes in the
first two subquadrants at level i, as ADJ is applied
recursively, need not be reinserted. This is somewhat
different from the analysis performed for the third
subquadrant for case a, since here having to reinsert the
root of a subquadrant, say X, means that there is a
probability that we need not have to reinsert the first two
subquadrants of the fourth subquadrant of X, etc. Sum-
ming over all levels results in

1 1 + ¼ . (p 2 4 +))) ,'(p2~" 2 + ¼- (m 3 - ½ . . .

Once again, define p2 so that (6) is equal to

1 t . 2 i + ¼ . (P 2 . ½ + Z i , ' w "~ , ' (e~ '~ + . . -)))

(6)

Thus, p2 algebraically represents {p2i} and (6) is equal
to 1/8.p2. T.

The contribution of the third subquadrant is obtained
in the same way as for Case a. The only difference is
thatpa represents (pai}.

Thus, the contribution to r(n) from the second quad-
rant for Case b is

• p2- T + 1"Pa" T = I" (2 + p2 + pa) . T

Contribution from Quadrant 4
The analysis is the same as that completed for quad-

rant 2. Case a yields 1/16.(2 + P0" T, where p4 is the
representative of {p4i}. Case b yields 1/16.(2 + p~ + pr)
• T, where ps and p6 are the representatives of {psi} and
{pri}, respectively.

Contribution from Quadrant 1
Procedure NEWROOT eliminates one subquadrant

(subquadrant 1) from consideration at each iteration.
FINDCANDIDATE assures that the third subquadrant
will also eliminate its first subquadrant, etc. Summing
over all levels, the contribution of the first and third
subquadrants to r(n) is

1 1 1 1 ! 7 " (7 + (¼ + . - . = • 7"(, +))) & T

The second and fourth subquadrants are analyzed in
the same way as the third subquadrant for Case a was.
Withp7 andps denoting the representatives of probability
sequences for these subquadrants, the first quadrant
contributes

I . T + I .pe .T+ 1.pa.T= 1.(1 +p7 +ps) . T

Recall from Section 2 that properties (1) and (2)
guarantee that at most one of the two quadrants adjacent
to the quadrant containing the new root (i.e., 1) will have
the property that its "closest" node lies in the cross-
hatched region. Allowing n to become large yields a
value of ~ for T. Thus, if none of the adjacent quadrants
have their "closest" node in the crosshatched region,
then

r(n) = ¼ + 1" (2 + pl)- T + 1. (2 + p4). T
+ I " (1 -[-/07 + p s) . T (7)

= ¼ .1L 1 . (5 "1-pl "~ p4 + p7 + t08)

while when one of the adjacent quadrants has its "clos-
est" node in the crosshatched region, assuming it is
quadrant 2, we have

r(n) = ¼ + I " (2.p2 + p3)- T
+ I . (2 + p 4) . T + I . (1 +p7 +p8). T (8)

= ¼ + ~ . (3 + 2 . p z + p3 + p4 + p7 + p8)

Suppose we relax the assumption that the replacing
node B satisfies properties (1) and (2). Instead, randomly
select one of the candidates as the replacing node. Thus,
both of the quadrants adjacent to the quadrant contain-
ing the new root (i.e., 1) may have the property that their
"closest" node lies in the crosshatched region. In such a
case we have

r(n) = ¼ + I " (2.p2 + p3)" T + I" (2.p5 + pr)- T
+ I ' (1 +p7 + p s) - T (9)

= ¼ + ~ . (1 + 2 . p z + p a + 2 . p s

+ p 6 + p 7 + p 8)

By the nature of the partitioning process, each of the
representatives p, - p 8 approximates the average of a
monotonically decreasing sequence. Simulation results
followed by curve fitting (discussed in the next section)
show that pl - p 8 can be reasonably approximated by ½.
Using this result, we say that for large n, the value of
r(n) lies between] and ~. Therefore, when properties (l)
and (2) are satisfied, the lower bound S(n) is

S(n) = (1 - 6~).(4.1og4(¼.n) - ~)
= ~- log4(] , n) -

708 Communicat ions December 1980
of Volume 23
the ACM Number 12

25 300 1.39 1.20 3.11 2.40 5.63 5.34 8.69 7.12
50 300 1.73 1.52 3.77 3.03 7.48 6.83 11.0 9.10

100 300 2.02 1.84 4.37 3.68 8.99 8.30 13.1 11.1
200 300 2.38 2.18 5.11 4.36 10.8 9.83 15.6 13.1
500 100 2.69 2.64 5.74 5.28 13.3 11.9 18.9 15.8

1,000 50 2.87 2.96 6.13 5.92 15.4 13.4 21.3 17.8
2,000 25 3.24 3.30 6.64 6.59 16.6 14.8 23.7 19.8

When properties (1) and (2) are not satisfied, the upper
bound for S(n) is

S(n) = (1 - ~). (4.1094(4 z. n) - 4)
= 4" l o g , (} , n) -

In computing r(n) we assumed a very naive version
of the algorithm of [3] which reinserts all of the subtrees
of the deleted node. Instead, 'the deleted node can be
replaced by one of its subtrees and thus, only the re-
maining subtrees need to be reinserted. We term this the
"improved" version of [3] and when it is used, on the
average only 4 z as many nodes require reinsertion. Thus,
the reinsertion proportion is really 4/3.(1 - r(n)). In
other words, this proportion ranges between -~ and 4 of
that required by the improved version, whereas for the
original version the proportion ranges between i and I.

4. Empirical Results

709

In order to test our theoretical predictions, empirical
tests were conducted. Quad trees of varying sizes were
created at random with key values ranging from 0 to
2 al - 1. The deletion process was performed for each
node in the tree that had two or more subtrees (i.e., the
nontrivial cases). Table I contains predicted and ob-
served values for S(n) (i.e., the expected number of
insertions) when the replacing node is selected according
to properties (l) and (2) (labeled "closest") and when it
is chosen at random from the set of candidate nodes
(labeled "random"). Q(n) is also given for the naive and
improved versions of the algorithm of [3]. As the tree
size increases, the predicted and observed values of S(n)
are closer in value. This is not surprising because the
analysis assumes complete quad trees, whereas this is not
true for the simulated trees, and the value of r(n) is an
upper bound (curve fitting results in r(n) being 0.829
and 0.637 for the "closest" and "random" cases, respec-
tively). Smaller sized trees result in smaller values of
r(n), thereby accounting for the observed values of S(n)
exceeding the predicted values for small tree sizes. Also
note that the observed values of Q(n) imply that our
algorithm results in even greater reductions in the num-
ber of nodes requiring reinsertion than indicated by our
analysis.

0

"c-
O

E
0
(.D

An alternative measure of the amount of work per-
formed by the two deletion algorithms is the number of
comparisons made during the process of rearranging the
tree once a node has been deleted. This is of interest
because the number of reinsertions is not a complete
measure of work since the reinsertion of different nodes
requires different expenditures of work (i.e., comparison
operations) depending on the level of the node in the
tree. Using the same tree sizes and trials as in Table I,
Figure 11 contains plots for the average number of
comparisons made when the improved version of [3] and
our algorithm were used. The observed averages for our
deletion method result in a proportionality with the log
of the tree size.

An additional property that bears watching is the
total path length (TPL) of a tree after deletion of a node.
This data is significant because it correlates with the
effective search time [2, 6]. Our simulations show that
"bushiness" (i.e., balance) of the tree has only been
slightly affected by the application of our deletion algo-
rithm. For example, compare Figures 2 and 9 which are
the results of the application of [3] and our algorithm,
respectively. The original TPL was 25 (i.e., Figure 1),
whereas the TPL values for Figures 2 and 9 are 22 and

I00

50

0
0

Closest Replocement
I

LO00 2000

Table I. Observed and Predicted Values of S(n) and Q(n).

S(n) Q(n)
closest random improved naive

size trials observed predicted observed predicted observed predicted observed predicted

-#: Items in Qued Tree

Fig. 11. Average number of comparisons.

Communications December 1980
of Volume 23
the ACM Number 12

Table I1. Average Total Path Length (TPL) After Deletion of a Root Node.

size trials original closest random method [3]

25 100 68.1 63.5 65.0 71.3
50 100 170.5 163.7 166.6 188.2

100 100 404.1 395.8 401.4 460.7
200 100 942.3 928.8 948.1 1,099
500 100 2,824 2,808 2,841 3,432

1,000 100 6,318 6,313 6,352 7,979
2,000 100 14,127 14,136 14,229 17,590

Table III. Average TPL/Optimal TPL (X) Corresponding to Table II.

size trials optimal TPL original X closest X random X method [3] X

25 100 48 1.4188 1.3229 1.3542 1.4854
50 100 123 1.3862 1.3309 1.3545 1.5301

100 100 288 1.4031 1.3743 1.3938 1.5997
200 100 688 1.3697 1.3500 1.3781 1.5974
500 100 2,047 1.3796 1.3718 1.3879 1.6766

1,000 100 4,547 1.3895 1.3884 1.3970 1.7548
2,000 100 10,182 1.3874 1.3883 1.3975 1.7276

20, respectively. Table II contains a summary of these
results when only roots of trees are deleted (instead of
all nodes having more than one subtree). Note that as
the tree size increases, the TPL increases significantly
when the method of [3] is used. For a measure of balance
which is independent of the size of the tree we use X, the
average TPL divided by the TPL of the optimal tree with
the same number of nodes. Table III contains a summary
of these results when only roots of trees are deleted. The
observed decrease in balance (i.e., an increase in X)
results because the simulated algorithms perform rein-
sertion in a sorted order. However, to do otherwise
requires reinserting the tree in random order which is
time-consuming. In such a case, the resulting tree has a
TPL which is almost identical to that obtained by our
methods. This is not surprising since our techniques lead
to little variation in the TPL from the original tree which,
after all, was created at random. An analysis of the effect
of a long sequence of insertions and deletions would be
interesting but is beyond the scope of this work (see [5,
p. 431]).

5. Concluding Remarks

Two methods for obtaining the replacing node have
been discussed: one that chooses a "closest" node at
random and one that uses properties (1) and (2). As the
tree size increases, the amount of extra work required by
the latter is overshadowed by the decrease in subsequent
comparison operations. Thus, for large trees the "closest"
node should not be selected at random.

The extension of our algorithm to quad trees of
higher dimension is worthy of future investigation. In [1]
a related data structure termed a k-d tree, one inspired

710

by quad trees but fundamentally different in operational
costs, is introduced (k denotes the dimension of the
space). An interesting problem is to determine if our
methods are applicable to k-d trees. One of the problems
with k-d trees in relation to our deletion algorithm is that
a node in a k-d tree does not partition the space with
respect to all key value components as is true for quad
trees. Note that the partitioning property makes the quad
tree an attractive data structure for applications in which
parallelism is feasible (e.g., [7]).

Acknowledgment. Special thanks go to G. Knott for
bringing this problem to my attention and for his critical
comments and suggestions.

Received 8/78; revised 11/79; accepted 7/80

References
1. Bentley, J.L. Multidimensional binary search trees used for
associative searching. Comm. ACM 18, 9 (Sept. 1975), 509-517.
2. Bentley, J.L., and Stanat, D.F. Analysis of range searches in
quad trees. Inform. Proc. Lett. (July 1975) 170-173.
3. Finkel, R.A., and Bentley, J.L. Quad trees: A data structure for
retrieval on composite keys. Acta Informatica, 4 (1974), 1-9.
4. Knott, G.D. Deletion in binary storage trees. Ph.D. Th., Rep.
STAN-CS-75-491, Comptr. Sci. Dept., Stanford Univ., Calif., May
1975.
5. Knuth, D.E. The Art of Computer Programming, Vol. 3: Sorting
and Searching. Addison-Wesley, Reading, Mass., 1973.
6. Lee, D.T., and Wong, C.K. Worst-case analysis for region and
partial region searches in multidimensional binary search trees and
balanced quad trees. Acta Informatica, 9 (1977), 23-29.
7. Linn, J. A general method for parallel searching. Ph.D. Th.,
Dept. of Electr. Eng., Stanford Univ., Calif., 1973.
8. Lueker, G.S. A data structure for orthogonal range queries. Proc.
19th Ann. Symp. Foundations Comptr. Sci., Ann Arbor, Mich., 1978,
pp. 28-34.

Communications December 1980
of Volume 23
the ACM Number 12

