
Ctjrnput & Grctphtc~g Vol. 13, No. 4, pp. 445---t60. 1989 0097-8403/89 $3.00 + .00
Printed in Great Britain. ~ 1989 Pergamon Press pie

Technical Section

IMPLEMENTING RAY TRACING WITH OCTREES
AND NEIGHBOR FINDING*

HANAN SAMET
Computer Science Department, Institute of Advanced Computer Studies and Center for Automation

Research. University of Maryland, College Park, MD 20742

Abstract--A ray tracing implementation is described that is based on an octree representation of a scene.
Rays are traced through the scene by calculating the blocks through which they pass. This calculation is
performed in a bottom-up manner through the use of neighbor finding. The octrees are assumed to be
implemented by a pointer representation.

l . I N T R O D U C T I O N

The most basic operation in computer graphics is the
conversion of an internal model of a three-dimensional
scene into a two-dimensional scene that lies on the
viewplane. The purpose is to generate an image of the
scene as it would appear from a given viewpoint, and
to display it on a two-dimensional screen. The situation
becomes complex when we take into account the po-
sition of the light source, the presence of multiple light
sources, and the possibility that light is reflected as well
as refracted. This requires a calculation of what light
falls on the object position represented by a pixel in
the viewplane and is known as the image rendering
task. Ray tracing[19] is an image rendering technique
that models light as particles moving in the scene.

In this paper we focus on the use of hierarchical data
structures such as the octree to speed up the determi-
nation of the objects that are intersected by rays em-
anating from the viewpoint. Our presentation is or-
ganized as follows. Section 2 contains some definitions
and a description of our notation. Section 3 discusses
the ray tracing task and shows how to trace a ray using
neighbor finding in a scene represented by an octree.
Section 4 gives a detailed implementation while Section
5 gives an example in two dimensions. Section 6 con-
cludes with a brief discussion of some of the pitfalls of
our solution, and those of alternative methods.

2. DEFINITIONS AND NOTATION
The region octree[8, I0, 15] is an extension of the

quadtree data structure[14] to represent three-dimen-
sional data (for a detailed discussion of such data
structures, see [21-23, 26, 27]). We start with a 2" × 2"
× 2" object array of unit cubes (termed voxels or obels).
The region octree is based on the successive subdivision
of an object array into octants. If the array does not
consist entirely of Is or entirely of 0s, then it is sub-
divided into octants, suboctants, etc., until cubes
(possibly single voxels) are obtained that consist of Is
or of 0s; i.e., they are entirely contained in the region
or entirely disjoint from it. This process is represented
by a tree of degree 8 in which the root node represents

* This paper was originally planned to be published in the
Special Issue. "'3D VoxeI-Based Graphics," with Arie Kaufman
as Guest Editor. Vol. 13, No. 2 (1989).

the entire object, and the leaf nodes correspond to those
cubes of the array for which no further subdivision is
necessary. Leaf nodes are said to be black or white
(alternatively, FULL or VOID) depending on whether
their corresponding cubes are entirely within or outside
of the object, respectively. All nonleaf nodes are said
to be gray. Fig. la is an example of a simple three-
dimensional object, in the form of a staircase, whose
region octree block decomposition is given in Fig. lb,
and whose tree representation is given in Fig. lc.

One of the problems with the region octree is that
when the faces of the object are not orthogonal, the
data structure requires much decomposition, and hence
much space. In order to remedy this problem, a set of
decomposition criteria is used such that no node con-
tains more than one face, edge, or vertex unless the
faces all meet at the same vertex or are adjacent to the
same edge. We term the resulting structure a PM octree
(see [1, 2, 4, 9, 16, 18, 28, 29]). For example, Fig. 2b
is a PM octree decomposition of the object in Fig. 2a.
This representation is quite useful since its space re-
quirements for polyhedral objects are significantly
smaller than those of a region octree. In two dimen-
sions, we have a PM~ quadtree which has the property
that no node contains more than one edge or vertex
unless the edges all meet at the same vertex[25]. For
example. Fig. 3 is a PMt quadtree of a 5-sided polygon.

In order to understand the presentation of the al-
gorithms, we first give some definitions and explain
our notation. Fig. 4 shows the coordinate system that
we are using relative to a cube. It is slightly different
than the one used to generate Fig. 1. Let L and R
denote the resulting lower and upper halves, respec-
tively, when the x axis is partitioned. Let D and U
denote the resulting lower and upper halves, respec-
tively, when the y axis is partitioned. Let B and F denote
the resulting lower and upper halves, respectively, when
the = axis is partitioned. Fig. 5 illustrates the labelings
corresponding to the partitions.

The labelings in Fig. 5 are also used to identify the
faces, edges, and vertices of the cube as shown in Fig.
6. The faces are L (left), R (fight). D (down), U (up),
B (back). and F (front): however, only R. U, and F are
visible. The edges and vertices of the cube are labeled
by using an appropriate concatenation of labels of the
adjacent faces. Note that vertex LDB and edges LD.

445

5 6 7 8 9101112

446 HANAN SAMET

(a) (b) (c)

Fig. I. (a) Example three-dimensional object, (b) its region octree block decomposition, and (c) its tree
representation.

LB, and DB are not visible. Similarly, the octants are
labeled by using a concatenation of these labels as
shown in Fig. 7 (octant LDB is not visible). Fig. 8 is a
numerical labeling for the octants (octant 0 is not vis-
ible).

The concept of a neighbor in an octree[24] is defined
analogously to that in a quadtree[20]. We say that node
Q is a neighbor of node R in direction I if Q corresponds
to the smallest block (it may correspond to a nonleaf
node) adjacent to R (i.e., touching even if just at a

(a)

(b)

Fig. 2. (a) Example three-dimensional object, and (b) its cor-
responding PM octree.

point) in direction I of size greater than or equal to
the block corresponding to R.

In two dimensions, there are 8 possible neighbor
directions. In three dimensions, there are 26 possible
directions. In particular, in two dimensions, two nodes
can be adjacent, and hence neighbors, along an edge
(4 possibilities) or along a vertex (4 possibilities). In
contrast, in three dimensions, two nodes can be ad-
jacent, and hence neighbors, along a face (6 possibili-
ties), along an edge (12 possibilities), or along a vertex
(8 possibilities). Such neighbors are termed face-neigh-
bors, edge-neighbors, and vertex-neighbors, respec-
tively. These relations are shown in Figs. 9a, 9b, and
9c, respectively.

We now describe an octree implementation that uses
pointers. Assume that each octree node is stored as a
record of type node containing 10 fields. The first nine
fields contain pointers to the node's father and its eight
sons, which correspond to the eight octants. If the node
is a leaf node, then it will have eight pointers to the
empty record. If P is a pointer to a node and O is an
octant, then these fields are referenced as FATHER(P)

/ f S
s"

f
f

,o

4 ~'~ !~..~

II 12

~ X
(0,0) 32

Fig. 3. PM~ quadtree representation of a polygon. The ceils
intersected by rays R and S, emanating from the viewpoint.

are labeled.

~ ' ~ R

Implementing ray tracing

Y

Z X
Fig. 4. Three-dimensional coordinate system.

447

and SON(P,O), respectively. We can determine the
specific octant in which a node, say P, lies relative to
its father by use of the function SONTYPE(P), which
has a value of O if SON(FATHER(P),O) = ? . The
10th field contains type information. For example, for
a region octree it contains the color of the block of the
image which the node represents, i.e., black, white, or
gray. The pointer from a node to its father is not re-
quired but is introduced here to ease the motion be-
tween arbitrary nodes in the octree.

3. THE RAY TRAClNG TASK
Ray tracing is an approximate simulation of how

the light propagated through a scene lands on the image
plane. This simulation is based on the geometric optics
approach to reflection and refraction[30]. Although the
geometry of the reflection and refraction of"particles"
of light from surfaces is straightforward, the formula-

quality of the displayed image is a function of the ap-
propriateness of the model represented by these equa-
tions and the precision with which the scene is repre-
sented.

From a procedural point of view, the term ray tracing
(or ray casting) describes the process of casting a ray
from the viewpoint through a given pixel on the image
plane that appears between the viewpoint and the
scene. The pixel is identified with the surface of the
nearest object that intersects the ray. This ray is termed
the primary ray. If an intersection is found, then a
number of additional rays are often cast. These addi-
tional rays are used to calculate shadows when there
is another object between the light source and the in-
tersected object, and to calculate indirect paths between
the light source and the surface.

tion of the equations to model the intensity of the light L U B
as it leaves these surfaces is a recent development. The ~ , , ~ ~

LUF U 'RUB
LF F _ UF R

RDF
Fig. 6. Labeling of faces, edges, and vertices based on the

Fig. 5. Three orthogonal partitions of a cube. partitioning defined in Fig. 5.

448 HANAN SAMET

Fig. 7. Labeling of octants based on the partitioning defined
in Fig. 5 (octant LDB is not visible).

When the object is opaque, then the additional rays
are only used for modeling reflection and shadows. On
the other hand, when we can see through the object,
then the additional rays are also used for modeling
transparence or translucence (in which case the ray
may undergo refraction). These additional rays are
termed secondary rays. Fig. 10 illustrates these terms.
Although the distinction between reflected and re-
fracted rays is interesting from a physical standpoint,
this distinction has little effect from an algorithmic
standpoint. In this paper, any reference to reflected
rays is actually a reference to both reflected and re-
fracted rays.

The amount of time required to display a scene is
heavily influenced by the cost of tracing the path of
the rays oflight as they move backward from the view-
er's eye, through the pixels of the image plane, and out
through the scene. The motivation for using the octree
in ray tracing is to enable the calculation of more rays
with a greater amount of accuracy. Since light-mod-
eling equations rely on the availability of accurate in-
formation about the location of the normal to the sur-
face at the point of its intersection with the ray, PM
octrees are generally more appropriate than region pc-
trees. This is especially true for PM octrees that can
represent curved, rather than planar, surfaces using ei-
ther curved patches[17] or curved primitives[31].

Octrees have been used to speed up intersection cal-
culations for ray tracing[5, 7, 11-13, 31]. The basic
speedup can be seen by examining the PM~ quadtree
in Fig. 3. We use a quadtree instead of an octree in
order to simplify the presentation. A naive ray tracing
algorithm would have to test the ray emanating from
the viewpoint against each of these sides, sort the re-
sulting intersections, calculate the reflected ray, and
finally test the reflected ray to see if it intersects any
other portion of the polygon.

For example, consider ray S in Fig. 3 and assume
that the boundary of the polygon is opaque (i.e.. no
light is transmitted through it). Thus, the only second-
ary ray corresponds to reflection. From Fig. 3, we see
that a quadtree-based algorithm would perform the
calculation of ray S by visiting only 4 cells (Le., cells
1, 7, 8, and 9).

Once the scene's octree has been built (consisting of
cells), we must trace each ray through it. We adopt the
convention that for a ray to pass through a cell (as well
as intersect an object), it must enter and exit the cell
(or object) at two distinct points. Thus, a ray that is
tangent to a cell (or object) at just one point does not
pass through (intersect) the cell (object). On the other
hand, a ray that is tangent to a cell (object) along an
edge or a face of a cell (object) is said to pass through
(intersect) the cell (object). For example, ray R in Fig.
3 passes directly from cell 2 to cell 3, without passing
through cell 10. This convention is very important as
otherwise an error may arise (see Section 6).

For each cell through which the ray passes, we only
intersect the ray with the objects in that cell. If it in-
tersects more than one object, then we determine the
appropriate object and continue to trace the secondary
rays, if necessary. If the ray does not intersect any of
the objects in the cell, then we project the ray into the
next cell and try again. As long as the cost of moving
between adjacent cells is relatively low, we will save
time over the cost of intersecting the ray with every
object in the scene.

There are a number of methods of projecting the
ray into succeeding blocks. Jansen[11] discusses these
methods in a general manner. They can be best char-
acterized as being either top-down or bottom-up. In
this paper we focus on the bottom-up method. It fol-
lows the ray in the sense that first the closest bounding
volume or cell, say C, to the viewpoint that is inter-
sected by the ray is located. Let P be the point at which
the ray leaves C. If C does not contain an object that
intersects the ray, then locate the smallest cell or
bounding volume, say C', that contains the point Q
= P + A. There are many methods oflocating C'. One
possibility is to perform a point location algorithm
which starts at the root of the tree. Another variation,
and the one we describe, is to use neighbor-finding
methods[20, 24].

Assume that the ray is defined parametrically by

x = m x ' t + bx, (1)

y = m~-t + by, (2)

z = m, . t + b~. (3)

Fig. 8. Numeric labeling of octants based on the partitioning
defined in Fig. 5 (octant 0 is not visible).

Implementing ray tracing

/

/

/ 9
449

(a) (b) (c)
Fig. 9. Example of (a) a face neighbor, (b) an edge neighbor, and (c) a vertex neighbor.

One way to determine the parameters is to choose two
points on the ray and let one correspond to t = 0 and
the other to t = I, and then to solve the six equations.
The ray tracing computation is simplified when the
parameters are integers. This situation is assured when
t = 0 corresponds to the viewpoint, and when the
viewpoint and the point corresponding to t = l both
have integer coordinates. Note that t > 0 for every
point on the ray. We also assume that the origin of the
three-dimensional space containing the scene is at (0,
0, 0) and the width of the space is a power of 2. The
smallest possible cell is of width I.

In practice, the situation is not so simple. In partic-
ular, when the viewplane is in an arbitrary position in
space, it is usually not the case that every pixei on the
viewplane has integer coordinates relative to the view-
point. Nevertheless, we do know that (bx, by, b~) are
equal to the coordinate values of the viewpoint. In the
following, we describe a more general solution which
permits the m~ to be rational numbers while assuming
that the viewpoint has integer coordinates. Note that
our solution can be modified to permit the viewpoint
to have rational coordinates, but this is not done here.

Let B = (bx, b~, bz) be the viewpoint. Assume that
the viewplane is defined by the three points Q, R, and
Ssuch that Q = (qx, qy, qz) is the origin of the viewplane.
Let ,7 and ~" be the base vectors in the viewplane. As-
sume that ~ = jxax + j~-~r + j:~t: and ~" = k~ax
+ k~a~ + k~a~, where ji and ki are rational numbers,
and c~ are unit vectors in the x, y, and z directions.
Note that ~ and &" are base vectors, although j 2 + j 2
+ j ~ and k] + k~ + k~ do not necessarily equal l. A
point P(u, v) on the viewplane (u and v are viewplane
coordinates) can be written as:

Ptu,-7) = .7 + v~ + 0

Ray R from the viewpoint B through point P(u, v) on
the viewplane can be expressed as:

= (P - B)t + B.

Expanding this equation yields:

x = (L . u + k ~ . v + q ~ - b ~) ' t + b ~ , (4)

Light source -~

Image plane
' ~ ~ ~ u r c e

Viewpoint ~ ~ _._.j::w'Refl!i~ic'red
Fig. 10. Illustration of ray tracing. Solid lines correspond to primary rays while broken lines correspond to

secondary and light source rays.

450 I-[ANAN ~AMtZT

Y = (L" u + ky- v + qy - be)-t + b~,, (5)

: = (j z ' u + k z . v + q : - b z) ' t + b:. (6)

The coefficients of t in Eqns. (4)-(6) correspond to
the values of m, and are rational numbers. In fact, as
can be seen below, by redefining the parametric equa-
tions for the ray in terms of the lowest common de-
nominator ofmx, me, and m.., say, c, all of the param-
eters are integers. In the following, t ' = t/c, and the
values of m~ are the remaining numerators once the
denominators have been set to c.

x = m'~. t ' + bx, (7)

y = m ~ . t ' + b e , (8)

z = m'z. t ' + bz. (9)

In the remainder of the discussion, we assume that
the parametric equations have been manipulated in
such a manner. We shall use rni and t, although we are
actually referring to m~ and t', respectively.

Tracing the ray is achieved by the following three-
step process. First, we must show how to compute the
points at which the ray enters and exits the cell (i.e..

clip the ray). This process is a simplification of the
Cyrus-Beck clipping algorithm[3, 19] and is the one
used by Glassner[7], as well as by Wyvill and Kunii[31].
Glassner does not describe an implementation. Wyvill
and Kunii ' s implementat ion is discussed in Section 6.

The nature of the implementat ion is very important
and requires much care since the computat ion must
be exact. In particular, we cannot use floating point
arithmetic. Instead, we use rational arithmetic. Next,
we process the cell by intersecting the ray with the
objects in the cell. Finally, if necessary (i.e., the ray
does not intersect any of the objects in the cell), we
compute the direction of the next cell intersected by
the ray and also locate it.

To determine the points at which a ray enters and
exits a three-dimensional cell, each of whose sides is
of width W, we test the ray against the bounding planes
(i.e., faces) of the volume corresponding to the cell.
For example, consider a cell bounded by x = x0 and
x o + W , y = y o a n d y 0 + W , a n d z = z o a n d z o + W .
We compute a value of t for each of x = xo, x = Xo
+ W , y = yo, y = yo + W , z = zo, and z = zo + W .

Let t~" and/out correspond to the range of values of
t taken by coordinate i. In particular, if mi < 0, then
t~" and t °ut correspond to i = i0 + W and i = io, re-
spectively, whereas if mi > O, then t~" and tO u~ corre-
spond to i = io and i = io + W, respectively. The in-
tersection of these three ranges of t yields the values
that the ray may assume while it is in the cell. In par-
ticular, t will range between max(tl .~) and min(t°~').

To process the next cell C', we must locate it. This
requires us first to determine its direction, say L relative
to the current cell C. The computat ion o f / i s a critical
part of the location process and cannot be ignored (see
Section 6). The direction depends on the location of
the point, say P, at which the ray exits C. We have

three possible pos i t ions- -P is either on a vertex, edge,
or face of C. P is on a vertex if/out has the same value
for each coordinate i. P is on an edge if/out has the
same value for two of the coordinates i. Otherwise, P
is on a face (i.e., t °ut has a different value for each
coordinate i).

Since the values of t are not necessarily integers, and
as we need to perform a test involving equality (not
within a tolerance!), we represent t as a rational number
(i.e.. an ordered pair consisting of a numerator and a
denominator) . Comparisons involving different values
of t are made by cross-multiplying the numerators and
denominators of the comparands and comparing the
results.

Now that we know the direction of C' with respect
to C, we must locate it. We have two alternatives. The
first alternative is to use a point location algorithm.
We compute a point, say Q, that is guaranteed to be
in C'. Finding the cell containing point Q is easy. We
start at the root of the octree, say G, and descend it
based on a comparison of Q with the center of the
block corresponding to G. The descent ceases once we
reach a leaf node. This approach is commonly used
[13,31].

The computat ion of Q is relatively straightforward,
although its implementat ion requires us to pay close
attention to details. Q depends on the location of P,
the point at which the ray exits C. Let P = (Px, Pr, P--)
and Q = (Q~, Qy, Q:). Let I = (Ix, I e,/.-) be the direction
of the next cell C'. We follow the convention that the
left, down, and back faces of a cell are closed, Le., i fa
point lies on one of these faces, then it is in the cell
bounded by them. To calculate Q using this convention
we subtract A (where A is very small) from ~ if lj is
in the negative (i.e., decreasing) direction ofj . A must
be no larger than the width of the smallest possible
cell, i.e., 1. A cannot be smaller than 1 because we are
using integer arithmetic in the process of locating the
cell containing Q.

For example, if I = 'LUB' , then we must subtract
one from Px and P.- with the result that Q = (Px - 1,
Py, Pz - 1). On the other hand, when I = 'RD' , we
need only subtract one from Pe while the remaining
values remain the same, i.e., Q = (Px, Pe - 1, P.-). Note
that our conventions with respect to which faces are
closed enable us to use the integer parts of the coor-
dinate values that are not in the/direct ion. Thus, when
I = 'RD' , we use the integer parts of P.-. Px and Pe are
already integers by virtue of being on the edge of a
cell.

The second alternative, and the one we use, makes
use of neighbor-finding methods[20. 24]. In particular,
we find the neighbor of C, say N, in direction I having
a width which is greater than or equal to that of C. If
such a neighbor does not exist, then we are at the border
of the three-dimensional space, and we exit. If N does
not correspond to a gray node. then we are done (i.e..
C' = N). Otherwise. we now calculate a point Q that
is guaranteed to be in C' which is a descendant of N
(recall that N 's node is gray). We locate C' by applying
the point location algorithm described above.

Implementing ray tracing 451

The advantage of this approach over just using the
point location algorithm is that fewer nodes will be
visited since we need not descend from the root of the
tree. Also, traversing links in the octree by using neigh-
bor finding is considerably cheaper than the arithmetic
operations that are part of the point location algorithm.

When the octree is represented using pointers, then
neighbor finding is implemented by using the FA-
THER links. On the other hand, a pointer-less octree
representation can also be used[6]. One example is as
a collection of the leaf nodes comprising the octree
where each leaf node, say P, is represented by a pair
of numbers known as its locational code. The first
number is the depth of the tree at which P is located.
The second number is formed by concatenating the
base 8 digits corresponding to directional codes that
locate P along a path from the root of the octree. In
such a case, a neighboring node is located by first ma-
nipulating the bits that comprise the second number
corresponding to P based on the direction of the desired
neighbor, and then performing a search.

4. SAMPLE IMPLEMENTATION
An implementation of the bottom-up process of

tracing a ray through a scene, represented by an octree
that uses neighbor finding to locate successive cells, is
given by the following procedures. The process is don-
trolled by procedure RAY_TRACER. It is invoked
with parameters corresponding to the parametric rep-
resentation of the traced ray. a pointer to the root of
the octree, and the width of the scene.

RAY_TRACER's first action is to determine the
value of t, if any, for the point, given by POINT, at
which the ray first enters the cell corresponding to the
entire scene and the direction of the ray relative to the
face, edge, or vertex containing POINT. This is
achieved by procedure FIRST--POINT. If POINT lies
outside of the scene, then the process stops since there
are no intersections. Otherwise, the particular cell con-
taining POINT is located by use of procedure
FIND_3D_BLOCK. The function OFFSET, given in
Table l, contains multiplicative factors that facilitate
the calculation of the coordinate values of the furthest
corners of the sons of each node in procedure
FIND_3D_BLOCK. In particular, OFFSET(A,O) is
the multiplicative factor for the calculation of the value
of coordinate A when descending to the son in oc-
tant O.

Once the first cell intersected by the ray has been
located, the ray is traced through successive cells. For

each cell through which the ray passes, a record of type
cell is created that has 6 fields called T_IN. T_OUT.
SIZ, PTR, CORNER, and DIRECT. Letting C be a
pointer to a record of type cell, T_IN(C) and
T_OUT(C) indicate the values of t for the points at
which the ray enters and exits from C. SIZ(C) is the
width of C's cell. PTR(C) is a pointer to C's node in
the octree. CORNER(C)[/] is the value of the Ith co-
ordinate of cell C's furthest corner from the origin.
DIRECT(C) is the direction of the next cell, relative
to cell C, through which the ray must be traced. Pro-
cedure RAY_INTERSECTS_OBJECT_IN_CELL,
not given here. performs the actual intersection tests
of the ray with the objects associated with cell C.

If procedure RAY_INTERSECTS_OBJECT_
IN_CELL determines that the ray intersects the object,
then a reflection or refraction calculation must be
made. This is equivalent to tracing a new ray and is
not in the code given here, although it is discussed
below. Otherwise, the ray is traced into the next cell.
This cell is determined by use of neighbor finding via
a call to procedure OT_GTEQ_NEIGHBOR that re-
turns a pointer P. OT_GTEQ_NEIGHBOR is aided
by the function TYPE to determine the type of the
neighbor's direction (i.e., face, edge. or vertex) so that
it can invoke the appropriate neighbor-finding routine
(O T _ G T E Q _ F A C E _ N E I G HBOR2, O T _ T E Q _
EDGE_NEIGHBOR2, or OT_GTEQ_VERTEX_
NEIGHBOR2).

The code for the neighbor finding procedures makes
use of the predicate ADJ, and the functions REFLECT,
COMMON_FACE, and COMMON_EDGE to aid in
the expression of operations involving a block's octants
and its faces, edges, and vertices. ADJ(LO) is true if
and only if octant O is adjacent to the I th face, edge,
or vertex of O's containing block. REFLECT(I,O)
yields the SONTYPE value of the block of equal size
(not necessarily a brother) that shares the l th face, edge,
or vertex of a block having SONTYPE value O. COM-
MON__FACE(LO) yields the type of the face (i.e.. label)
of O's containing block that is common to octant O
and its neighbor in the I th direction (I is an edge or a
vertex). COMMON_EDGE(I,O) yields the t.~ge of the
edge (i.e.. label) of O's containing block that is common
to octant O and its neighbor in the Ith direction (I is
a vertex). Tables 2-5 contain their definitions. 9. de-
notes an undefined value.

If the cell pointed at by P does not correspond to a
leaf node, then the point at which the ray first enters
the next cell is calculated and FIND_3D_BLOCK is
used to locate it. starting at P. The entire process stops

A (axis)

X

Y

Z

Table I. OFFSET(A.O).

o (oetant)

LDB LDF LUB LUF RDB RDF RUB RUF

I I I I 0 0 0 0

I 1 0 0 1 I 0 0
I 0 1 0 1 0 1 0

452

I

I (direction)

L
R

D

U

B

F
LD
LU
LB
LF
RD

RU
RB
RF
DB
DF
UB
UF

LDB
LDF
LUB
LUF
RDB
RDF
RUB
RUF

HANAN SAMET

Table 2. ADJ([,O).

o (octant)

LDB LDF LUB LUF RDB RDF RUB RUF

T T T T F F F F
F F F F T T T T
T T F F T T F F
F F T T F F T T
T F T F T F T F
F T F T F T F T
T T F F F F F F
F F T T F F F F
T F T F F F F F
F T F T F F F F
F F F F T T F F

F F F F F F T T
F F F F T F T F
F F F F F T F T

T F F F T F F F
F T F F F T F F
F F T F F F T F
F F F T F F F T
T F F F F F F F
F T F F F F F F
F F T F F F F F
F F F T F F F F
F F F F T F F F
F F F F F T F F
F F F F F F T F
F F F F F F F T

I (direction)

L
R

D
U
B

F
LD
LU
LB
LF
RD
RU
RB
RF
DB
DF
UB
UF
LDB
LDF
LUB
LUF
RDB
RDF
RUB
RUF

Table 3. REFLECT(I,O).

o (octet)
LDB LDF LUB LUF RDB RDF RUB RUF

RDB RDF RUB RUF LDB LDF LUB LUF
RDB RDF RUB RUF LDB LDF LUB LUF
LUB LUF LDB LDF RUB RUF RDB RDF
LUB LUF LDB LDF RUB RUF RDB RDF
LDF LDB LUF LUB RDF RDB RUF RUB
LDF LDB LUF LUB RDF RDB RUF RUB
RUB RUF RDB RDF LUB LUF LDB LDF
RUB RUF RDB RDF LUB LUF LDB LDF
RDF RDB RUF RUB LDF LDB LUF LUB
RDF RDB RUF RUB LDF LDB LUF LUB
RUB RUF RDB RDF LUB LUF LDB LDF
RUB RUF RDB RDF LUB LUF LDB LDF
RDF RDB RUF RUB LDF LDB LUF LUB
RDF RDB RUF RUB LDF LDB LUF LUB
LUF LUB LDF LDB RUF RUB RDF RDB
LUF LUB LDF LDB RUF RUB RDF RDB
LUF LOB LDF LDB RUF RUB RDF RDB
LUF LUB LDF LDB RUF RUB RDF RDB
RUF RUB RDF RDB LUF LUB LDF LDB
RUF RUB RDF RDB LUF LUB LDF LDB
RUF RUB RDF RDB LUF LUB LDF LDB
RUF RUB RDF RDB LUF LUB LDF LDB
RUF RUB RDF RDB LUF LUB LDF LDB
RUF RUB RDF RDB LUF LUB LDF LDB
RUF RUB RDF RDB LUF LUB LDF LDB
RUF RUB RDF RDB LUF LUB LDF LDB

I (direction)
LDB

LD fl
LU L
LB fl
LF L
RD D
RU fl
RB B
RF fl
DB fl
DF D
LIB B
UF fl
LDB fl
LDF fl
LUB n

LUF L

RDB N

RDF D

RUB B

RUF n

Implementing ray tracing

Table 4. COMMON_FACE(I,O).

o (octa t)
LDF LUB LUF RDB RDF RUB RUF

n L L D D fl fl

L fl fl D f~ U U

L fl L B fl B fl
f~ L fl fl F f] F

D fl fl fl fl R R
fl U U R R fl fl
fl B fl fl R fl R
F fl F R fl R fl
D B fl fl D B fl

fl fl F D fl fl F

fl fl U B fl fl U

F U fl fl F U fl
fl fl L fl D B fl
fl L fl D fl fl F

L fl fl B fl fl U
fl fl fl fl F U fl
D B fl fl fl fl R
fl fl F fl fl R fl
fl fl U fl R fl fl
F U fl R fl fl fl

453

when either a ray intersects an object within a cell or
the ray exits the scene (i.e.. O T _ G T E Q _ N E I G H B O R
returns a pointer to NIL).

To be able to compare different values of i s o that
the direction of the next cell can be determined, we
need to compute the m i n i m u m and maximum values
oft . This must be done in an exact manner and, thus,
we represent the values of t as rational numbers by use
of a record of type rational, with two fields NUM and
DEN corresponding to the numerator and denomi-
nator, respectively.

The actual comparisons are aided by using procedure
C O M P A R E _ T to precompute pairwise comparisons,
i.e., CYX, CZX, and CZY. These comparisons are used
by procedure N E X T _ C E L L _ D I R E C T I O N to deter-
mine the direction of the next cell, relative to the pres-
ent cell, that is intersected by the ray. This is facilitated
by making use of the sign of M and functions
FACE_DIR, EDGE_DIR, and V E R T E X _ D I R given
in Tables 6, 7, and 8, respectively.

At times, we need to calculate the coordinates of a
point in a specific cell. This situation arises when at-

tempting to locate the first cell that is intersected by
the ray, when attempting to locate a neighboring cell
that is smaller than the current cell, and when setting
the CORNER field of a record of type cell. The function
CHANGE(LA) facilitates this task by indicating the
smallest amount , with the appropriate sign, by which
the value of coordinate A changes due to motion in
direction L For example, CHANGE('RB' , 'Z ') = - 1
as the value of coordinate z will decrease as a result of
motion in direction 'RB'. On the other hand,
CHANGE('RB' , 'Y ') = 0, as the value of coordinate
y is unaffected by motion in direction 'RB' . CHANGE
is given in Table 9.

As stated above, to handle reflection and refraction
at a surface properly, we need to trace the appropriate
ray anew. This can be done in the same manner starting
at the point at which the primary ray intersects the
surface. The secondary (i.e., reflected and refracted)
ray is also defined parametrically. The only difficulty
is that the definition of the secondary ray will require
a larger computer word size to cope with the increase
in the number of binary digits necessary, to specify the

I (direction)

LDB
LDF
LUB
LUF
RDB
RDF
RUB
RUF

Table 5. COMMON_EDGE(I,O).

o (oct, nt)

LDB LDF LUB LUF RDB RDF RUB RUF

fl LD LB fl DB fl fl n
LD fl fl LF fl DF fl fl
LB fl fl LU fl fl LIB fl
fl LF LU fl fl fl fl UF
DB f~ D f~ fl RD RB fl

D DF D n RD fl fl RF
f~ D UB D RB fl fl RU

f] D D UF f~ RF RU fl

CAG [3:4-0

454 HANAN SAMET

parameters and values of t correctly. This is a direct
result of the use of rational arithmetic. It can be avoided
in part by using parametr ic equat ions in the form of

(4)-(6) instead of (7)-(9). However, this requires that
m be treated as data of type r a t i o n a l in procedure
R A Y _ T R A C E R .

procedure RAY_TKACER(M,B,W,R);
/* Trace a ray given parametrically by M and B, i.e., x = rex . t + bx, through the octree rooted at R which corresponds to

the three-dimensional space of width W with origin at (0, 0, 0). W is a power of 2. Procedure RAYINTER-
SECTS_OBJECT_IN_CELL performs object tests in each cell through which the ray passes. It is not given here. Its
argument is a pointer to a record of type cel l which has fields T_IN, T_OUT, SIZ, PTR, CORNER. and DIRECT
corresponding to the value of the parameter t for the entry and exit points, the width of the cell, a pointer to its node in
the octree, the coordinates of its furthest corner (from the origin), and the direction of the next cell through which the ray
must be traced, respectively.*/

begin
global integer array M,B[{'X', 'Y'/Z'}];
value integer W;
value pointer node R;
global integer array SIGN_M[{'X ', 'Y', 'Z'}];
pointer cell C;
rational pointer array T [{'X ','Y','Z' }];
integer array POINT[{'X ', 'Y', 'Z'}];
direction DIR;
integer CYX,CZX,CZY;
axis I,MIN...AXIS;
pointer node P;
P --- R;

C " - create(cell);
for 1 in {'X', 'Y', 'Z'} d o / * Keep track of the direction of the ray */

SIGN_M[I] -,- if M[I] > 0 then 0
else 1;

/* Find t for the first entry point of the ray: */
T_OUT(C) ~ FIRST_.POINT(W,DIR);
for I in {'X ' , 'Y', 'Z'} do

begin/* Calculate the first entry point */
CORNER(C)[I] 4- W;
POINT[I] .,-- U(M[I] * NUM(T_OUT(C)))/DEN(T_OUT(C))J + B[I]

+ SIGN_._M[I]*CHANGE(DIR, I); /* LXJ is the floor o fx */
end;

if POINT['X '] < 0 or POINT['Y'] < 0 or POINT['Z'] < O or
POINT['X '] > W or POINT['Y'] > W or POINT['Z'] > W
then return/* The ray never enters the space */

else/* Locate the closest cell to the entry point */
FIN D._3D_BLOCK(P, POINT,CORNER(C),W);

while true d o / * Follow the ray through the space */
begin

PTR(C) --- P;
SIZ(C) ~ W;
T_IN(C) ~ T_OUT(C);
for I in {'X', 'Y ' , 'Z'} do

begin/* Compute a t value for the exit point for each plane */
NUM(T[I]) *- CORNER(C)[I] - SIGN_M[I] .W - B[I];
DEN(T[I]) ,.- M[I];

end;
COM PARE_T(T,CYX,CZX,CZY);
/* Find the minimum of the values of t using rational arithmetic: */
MIN...AXIS -,-- if CZY < 0 then

if CZX < 0 then 'Z '
else 'X'

else if CYX < 0 then 'Y'
else "X ';

DIRECT(C) ~ NEXT_CELL_DIRECTION(MIN_AXIS,CYX,CZX,CZY);
T_OUT(C) 4- T[MIN..__AXIS];
if RAY_INTERSECTS_OBJECT_IN_CELL(C) then return
else

begin
/* Locate the next cell in direction DIRECT(C) using neighbor finding: */
OT_GTEQ_NEIGH BOR(PTR(C),DIRECT(C),P,W);
if null(P) then return;/* Neighbor does not exist */
for I in {'X'. 'Y', 'Z'} d o / * Compute location of next cell */

CORNER(C)[I] ~ CORNER(C)[I]
+ if CHANGE(DIRECT(C),I) = l then W

else if CHANGE(DIRECT(C),I) = - l then -SIZ(C)
else if (CORNER(C)[I] rood W) = 0 then 0
else W - (CORNER(C)[I] rood W);

Implementing ray tracing 455

if GRAY(P) then/* Neighbor is smaller */
begin/* Compute a point within the neighbor */

for I in {'X', 'Y', 'Z "} do/* LXJ is the floor o fx */
POINT[I] "*-- L(M[I] • NUM(T_OUT(C)))/DEN(T_OUT(C))J + B[I]

+ SIGN...M[I] * CHANGE(DIRECT(C),l);
FIND_3D_BLOCK(P,POINT,CORNER(C),W);/* Locate cell */

end;
end;

end:
end;

pointer rational procedure FIRST_POINT(W,DIR);
/* Return a pointer to a record containing the value of the ray parameter t corresponding to the point at which the ray first

enters the three-dimensional space of width W through which the ray is traced. DIR is set to the direction of the ray. */
begin

value integer W;
reference direction DIR;
rational pointer array T [{'X '?Y','Z' }];
global integer array M,B.SIGN_M[{'X ','Y','Z" }];
integer CYX,CZX.CZY;
axis I,MAX.._AXIS;
for 1 in { 'X', 'Y' , 'Z'} do

begin/* Compute a t value for the entry, point for each plane */
NUM(T[I]) .*- SIGN_M[I] ,W - B[I]:
DEN(T[I]) --- M[I];

end;
COMPARE_T(T.CYX.CZX,CZY):
/* Find the maximum of the values of t using rational arithmetic: */
MAX_AXIS 4- ifCZY > 0 then

if CZX > 0 then 'Z"
else 'X"

else if CYX > 0 then 'Y'
else 'X ";

DIR .*-- NEXT_CELL_DIRECTION(MAX_.AXIS, CYX,CZX,CZY);
return(T[MAX_AXIS]);

end;

procedure COM PARE_T(T,CYX,CZX.CZY):
/* Compute CYX, CZX, and CZY. CYX is the pairwise comparison of T['Y'] and T['X'], CZX is the pairwise comparison

of T['Z'] and T['X'], and CZY is the pairwise comparison of T['Z'] and T['Y']. */
begin

value rational point array T[{'X' , 'Y' , 'Z" }];
reference integer CYX,CZX,CZY;
CYX 4-- abs(NUM(T ['Y']) • DEN(T ['X '])) - abs(NUM(T ['X '])* DEN(T ['Y "]));
CZX ,*-- abs(NUM(T['Z'])* DEN(T['X'])) - abs(NUM(T['X']).DEN(T[Z']));
CZY ~ abs(NUM(T['Z'])* DEN(T['Y'])) - abs(NUM(T['Y'])*DEN(T['Z']));

end;

direction procedure NEXT_CELL__DIRECTION(A,CYX,CZX,CZY);
/* Return the direction of the next cell through which the ray must be traced. A is the axis corresponding to the value of t.

CYX. CZX, and CZY are pairwise comparisons of the values of t for the bounding sides of the cell through which the ray
is exiting. */

begin
value axis A;
value integer CYX.CZX,CZY;
global integer array SIGN_M[{'X ', 'Y', 'Z" }];
return(if A = 'Z ' then FACE_DIR('Z',SIGN_M['Z'])

else if A = "Y" then
if CZY = 0 then EDGE_DIR('YZ',SIGN_M['Y'],SIGN_M['Z])
else FACE_DIR('Y ',SIGN_M['Y])

else if CZX = 0 then
if CYX = 0 then VERTEX_,DIR(SIGN_M['X '],SIGN...M['Y'],SIGN.._M['Z'])
else EDGE_DIR('XZ',SIGN_M['X "].SIGN_M['Z'])

else if CYX = 0 then EDGE_DIR('XY',SIGN_M['X'].SIGN_M['Y'])
else FACE_DIR('X ',SIGN_M['X ']));

end;

procedure FIND_3D_BLOCK(P,POINT.FAR,W);
/* P points to a node corresponding to a block of width W having its furthest comer from the origin at FAR (i.e.. FAR['X '],

FAR['Y "]. and FAR['Z "]). Find the smallest block in P containing the voxel whose nearest comer to the origin is at POINT.
If P is black or white, then return the values of P, W, and FAR; otherwise, repeat the procedure for the son of P that
contains POINT. */

begin
reference point node P;
value integer array POINT[~ "X ",'Y','Z" I];

456 HANAN SAMET

reference integer array FAR[('X ' , 'Y ' , 'Z'/1;
reference integer W;
axis I:
octant Q;
while GRAY(P) do

begin
W .~- W/2;
Q --- GET_OCTANT(POINT['X '],FAR['X '] - W,

POINT['Y'I ,FAR['Y'] - W,
POINT['Z'] ,FAR['Z'] - W);

for 1 in {'X'.'Y'.'Z'} do FAR[I] ..-- FAR[I] - OFFSET(I,Q),W;
P .,-- SON(P,Q);

end;
end;

octant procedure GET_OCTANT(X,XCENTER,Y,YCENTER,Z,ZCENTER);
/* Find the octant of the block rooted at (XCENTER,YCENTER,ZCENTER) that contains (X,Y,Z). */
begin

value integer X,XCENTER,Y,YCENTER,Z,ZCENTER;
return (if X < XCENTER then

if Y < YCENTER then
if Z < ZCENTER then 'LDB"
else 'LDF"

else if Z < ZCENTER then 'LUB'
else 'LUF '

else if Y < YCENTER then
if Z < ZCENTER then "RDB"
else 'RDF '

else if Z < ZCENTER then 'RUB'
else 'RUF') ;

end;

procedure OT_GTEQ_NEIGHBOR(P,D,Q,W);
/* Determine the type of direction D and invoke.theappropriate neighbor-finding procedure. Q will contain the neighbor of

node P, of size greater than or equal to P, in direction D. W denotes the length of a side of node P and the length of a side
of node Q. l fa neighboring node does not exist, then return NIL. */

begin
value pointer node P;
value direction D;
reference pointer node Q;
reference integer W;
if TYPE(D) = 'FACE' then OT_GTEQ__FACE_NEIGHBOR2(P,D,Q,LOG2(W))

/* LOG2 returns the base 2 log of W */
else if TYPE(D) = 'EDGE' then

OT_GTEQ_EDGE-NEIGHBOR2(P,D,Q,LOG2(W))
else OT_GTEQ_VERTEX_NEIGHBOR2(P,D,Q,LOG2(W));

end;

recursive pointer node procedure OT_GTEQ_FACE_NEIGHBOR2(P,I,Q,L);
/* Return in Q the face-neighbor of node P, of size greater than or equal to P, in direction I. L denotes the level of the tree

at which node P is initially found, and the level o f the tree at which node Q is ultimately found. If such a node does not
exist, then return NIL. For an octree corresponding to a 2 n × 2 n × 24 image array, the root is at level n and a node at level
i is at a distance o f n - i from the root o f the tree. */

begin
value pointer node P;
value face I;
reference pointer node Q;
reference integer L;
L --- L + 1;
if not(null(FATHER(P))) and ADJ(1,SONTYPE(P)) then

/* Find a common ancestor */
OT_GTEQ_..FACE_NEIG H BOR2(FATHER(P),I,Q,L)

else Q -,-- FATHER(P);
/* Follow the reflected path to locate the neighbor */
if not(null(Q)) and GRAY(Q) then

begin
Q -,-- SON(Q.REFLECT(I,SONTYPE(P)));
L . ,- L - l;

end;
end,

recursive pointer node procedure OT_GTEQ_EDGE-NEIGHBOR2(P,I .Q.L):
/* Return in Q the edge-neighbor of node P, of size greater than or equal to P, in direction I. L denotes the level of the tree

at which node P is initially found, and the level of the tree at which node Q is ultimately found. If such a node does not
exist, then return NIL. */

Implementing ray tracing 457

begin
value pointer node P;
value edge 1;
reference pointer node Q;
reference integer L;
L * - L + 1;
/* Find a common ancestor */
if null(FATHER(P)) then Q -,- NIL
else if ADJ(I,SONTYPE(P)) then

OT_GTEQ__EDGE_NEIGHBOR2(FATHER(P),I,Q,L)
else if COMMON_FACE(i,SONTYPE(P)) ~t i2 then

OT_GTEQ_FACE...NEIGHBOR2(FATHER(P),COMMON__FACE(I,SONTYPE(P)),Q,L)
else Q ~- FATHER(P);
/* Follow opposite path to locate the neighbor */
if not(null(Q)) and GRAY(Q) then

begin
Q *- SON(Q,REFLECT(I,SONTYPE(P)));
L .*-- L - 1;

end;
end;

recursive Pointer node procedure OT_GTEQ_VERTEX_NEIGHBOR2(P,I,Q,L);
/* Return in Q the vertex-neighbor of node P, of size greater than or equal to P, in direction i. L denotes the level of the tree

at which node P is initially found, and the level of the tree at which node Q is ultimately found. If such a node does not
exist, then return NIL. */

begin
value pointer node P;
value vertex I;
reference pointer node Q;
referencer integer L;
L*-- L + 1;
/* Find a common ancestor */
if null(FATHER(P)) then Q ~-- NIL
else if ADJ(I,SONTYPE(P)) then

OT_GTEQ_VERTEX_NEIGHBOR2(FATHER(P),I,Q,L)
else if COMMON_EDGE(I,SONTYPE(P)) ~t fl then

OT_GTEQ_.EDGE_.NEIGHBOR2(FATHER(P),COMMON-EDGE(I,SONTYPE(P)),Q,L)
else if COMMON_FACE(I,SONTYPE(P)) ~t fl then

OT_GTEQ_.FACE-NEIGHBOR2(FATHER(P),COM MON_FACE(I,SONTYPE(P)),Q,L)
else Q *- FATHER(P);
/* Follow opposite path to locate the neighbor */
return(if not(null(Q)) and GRAY(Q) then

begin
Q ~-- SON(Q,REFLECT(I,SONTYPE(P)));
L ~'-- L - 1;

end;
end;

5. EXAMPLE
It is difficult tO give an example of the algorithm in

three dimensions. Thus, instead, we show below how
ray R is traced through the two-dimensional scene
given in Fig. 3. The algorithm, as encoded by procedure
RAY_TRACER and the associated procedures, is also
valid for two-dimensional scenes. The only necessary
modifications are minor and are described briefly be-
low:

1. Replace loops and data structures that cycle through
'X ' , 'Y ' , and ' Z ' by just ' X ' and 'Y ' . Thus,
F I N D _ 3 D _ B L O C K is replaced by FIND_.2D_
BLOCK.

2. Remove variables CZX and CZY, as well as all tests
involving them. This means that the conclusion of
the test (i.e., the action, or actions, to be taken had
the test's evaluation yielded a value of true) is also
removed.

3. Remove all tests involving ' Z ' and the associated
actions to be taken had the test's evaluation yielded
a value of true.

4. Let the directions W, E, S, N correspond to L, R,
D, U, respectively, and simplify Tables 6, 7, and 9.
Table 8 is no longer necessary.

Cont inuing with our example, the scene is repre-
sented as a PM~ quadtree in a 25 × 2 ~ space with an
origin at the lower left corner. The viewpoint is as-
sumed to be at the point (- 8 , 23). Ray R is assumed
to pass through the point (12, 16). Therefore, R is de-
fined parametrically by

x = 2 0 . t - 8,

y = - 7 . t + 23.

R first enters the scene at the point defined by t = 2/
5, i.e., (0, 101/5). This is obtained by taking the max-
i m u m of t~ = 2/5 computed at x = 0 and t~, n = - 9 / 7
computed at y = 32. The point (0, i01/5) is contained
in cell I. Cell l is exited at the point defined by t = 4/
5, i.e., (8, 87/5) in the easternly direction, and is ob-
tained by taking the m i n i m u m of t ° ut = 4/5 computed

458 HANAN SAMET

Table 6. F=FACE_DIR(A,SIGN~M[A]).

A (norm~,l a~xis) $IGN-M[A] F (direction)

X
X
Y
Y
Z
Z

1
0
1
0
1
0

L
R
D
U
B
F

at x = 8, and t~ ~t = 1 computed at y = 16. This process
is repeated for the rest of the cells intersected by the
ray and its result is shown in Table 10.

Values of t are tabulated as ordered pairs where
' num' and 'den' correspond to t 's numerator and de-
nominator, respectively. Notice that t~, "t = t~" for cell
2, which means that CYX = 0 and MIN_AXIS is set
to 'X ' in procedure RAY_TRACER. Procedure
NEXT_CELL.DIRECTION indicates that the direc-
tion ofthe next cell is to be found in EDGE DIR('XY',
0, 1), i .e. . 'RD', which is the same as 'SE'. The 'SE'
neighbor of cell 2 is cell 3 and is located by use of the
two-dimensional analog of procedure OT_GTEQ_
NEIGHBOR. Since cell 3 is larger than cell 2, there is
no need to make use of procedure FIND_2D...BLOCK
to locate it.

6. CONCLUDING REMARKS
We have given an algorithm for tracing a ray in a

scene represented by an octree by using neighbor find-
ing. As with any application in computer graphics nu-
merical precision is an important issue. We have skirted
this issue, in part, by using rational arithmetic. Such
an approach is adequate as long as secondary rays do
not result in the creation of more secondary rays (e .g. ,
a ray is reflected off several surfaces). The problem is
that the number of bits that are required to maintain
the same amount of precision grows geometrically.

Our algorithm is quite long because a correct im-
plementation requires the consideration of many subtle
points. In fact, Wyvill and Kunii[31] give a much
shorter algorithm. Their algorithm has a similar struc-
ture to ours although it uses point location rather than
neighbor finding. Also, it adheres to different conven-
tions. In the following, we briefly point out how their
solution could go awry.

First, let us examine more closely our convention
that for a ray to pass through a cell (as well as intersect
an object), it must enter and exit the cell (object) at
two distinct points. As an example of what could go
wrong if we don't adhere to this convention, consider
Fig. 3. Assume the existence of a ray that passes from
cell 5 to cell I 1 through the SW corner of cell 5, and
suppose that we say that the ray passes through cell 4
before reaching cell 11. Let (ax, a~.) denote the point
at which cells 5 and 11 touch. Cell 4 is the next cell
intersected by the ray if we apply procedure
FIND__2D_BLOCK to the point (ax - I, aj,). Now,
suppose cell 4 is completely occupied by an object such
that the object's southern and eastern boundaries co-
incide with the southern and eastern boundaries of the
cell. This means that a false object intersection will be
reported. On the other hand, cell 12 is the next cell
intersected by the ray if we apply FIND_..2D_BLOCK
to the point (ax, ay - 1) in which case no false object
intersection is reported.

Wyvill and Kunii's alternative algorithm identifies
the next cell by calculating the coordinates of a point
(i .e. , POINT) that is purportedly guaranteed to be in
that cell and then locates it by use of a process similar
to that given by FIND_3D_BLOCK. It does not com-
pute a direction as done in RAY_TRACER. This
method of calculating POINT is similar to the method
used in RAY_TRACER with the following minor dif-
ference. It subtracts SIGN_M [I] from the numerator
of the t value corresponding to the Ith coordinate of
the exit point while we. instead, add the term
SIGN_M [I].CHANGE(DIRECT(C LI) in the com-
putation of POINT[I]. Their algorithm is given below:

begin
rational array T [{'X ",'Y','Z' }],
axis I,K;
for I in {'X','Y','Z'} do

begin
NUM(T [I]) ~ CORNER[I]-SIGN-M [I] • W-B [I]-S1GN-M [I];
DEN(TIll) -~- MIll;

end;
K ~ 'X ';
for I in {'Y'.'Z'} do

begin
if abs(NUM(T[K])*DEN(T[I]))>abs (NUM(T[I])*DEN(T[K])) then K~--I;

end;
for I in {'X','Y','Z'} do

POINT[I] .*- M[I]* NUM(T[K])/DEN(T[K])+B[I];
end;

This algorithm works for ray R in Fig. 3. However,
if we modify Fig. 3 so that cell 3 is subdivided in the
same way as the SE quadrant of the entire quadtree,
then this algorithm can yield an erroneous result. This

can be seen by tracing ray R through the modified
figure. The problem is that procedure RAY_TRACER
goes to cell 3 after cell 2, whereas the alternative al-

Implementing ray tracing

Table 7. E=EDGF DIR(PIJ,SIGN_M[I],SIGN._M[J]).

PIJ (normal plane) SIGN_M[I] SIGN_MIJ] E (direction)

XY 1
XY 1
XY 0
XY 0
XZ 1
XZ 1
XZ 0
XZ 0
YZ 1
YZ 1
YZ 0
YZ 0

LD
LU
RD
RU
LB
LF
RB
RF
DB
DF
UB
UF

459

Table 8. VfVERTEX_DIR(SIGN_M[X],SIGN._M[Y],SIGN_M[ZI).

SIGN- MIx I SIGN- MIY l SIGN_M[Z] V (direction)

LDB
LDF
LUB
LUF
RDB
RDF
RUB
RUF

gorithm calculates POINT = (12, 16), which FIND_
2D_BLOCK determines to be in cell 10. From cell
10, the alternative algorithm computes POINT = (14,
15) instead ofthe correct value of POINT = (12, 15).
Although in the case of the original Fig. 3,
FIND_..2D_..BLOCK determines both of these points
to be in cell 3, this is not the case in the modified
figure. The result is that a transition is made to the
wrong cell.

One way to fix the alternative algorithm is to remove
the subtraction of SIGN_M [I] from the numerator of
the t value corresponding to the lth coordinate of the
exit point. Instead, SIGN_M [J] is subtracted in the
computation of POINT[J] where J is the coordinate
corresponding to the minimum value oft. Wyvill and
Kunii claim that it is not necessary to compute the
exact direction of motion. In particular, when a ray
reaches more than one boundary simultaneously, they
arbitrarily pick one of the boundaries, and move in a
direction perpendicular to it.

Unfortunately, the above fix will not always yield
the correct result. For example, in two dimensions, a
motion in the SW direction is decomposed into two
motions--one each in the S and W directions. This
can lead to an error as described earlier in this section
when we discussed the ramifications of the convention
that for a ray to pass through a cell (as well as intersect
an object), it must enter and exit the cell (object) at
two distinct points. Thus, the only way to ensure the
correctness of the alternative algorithm is to make it

Table 9. CHANGE(I, A).

A
I (direction)

X Y Z

L - I O 0
R 1 0 0
D 0 -1 0
U 0 1 0
B 0 0 -1
F 0 0 1

LD -1 - I 0
LU -1 1 0
LB - I 0 - I
LF - I 0 I
RD 1 -1 0
RU 1 1 0
RB I 0 - I
RF 1 0 1
DB 0 -1 -1
DF 0 -1 1
UB 0 I - I
UF 0 I I

LDB - I - I -1
LDF - I - I I
LUB -1 1 -1
LUF - I I i
RDB 1 -1 -1
RDF I - I I
RUB 1 1 -1
RUF I 1 I

460 HANAN SAMET

cell size
num den

I 8 16 20
2 4 20 20
3 16 24 20
4 8 32 20
5 4 36 20
6 4 40 20

Table 10. Result of tracing ray R through Fig. 3.

~ out

n u m den

-7 - 7
-7 -7

-23 -7
-15 -7
-15 -7
-15 -7

toul

~out ~out
n u m den

z8 ~o 8 sT/s
20 20 12 16
24 20 IG 73/5
32 20 24 59/5
38 ~o 28 s~/s
40 20 32 9

direcl;ion of neighbor
next cell type

R E
RD SE
R E
R E
R E
R E

identical to procedure R A Y _ T R A C E R (i.e., to com-
pute the exact direction of the neighboring cell relative
to the current cell).

Acknowledgements--I have benefitted greatly from discussions
with Robert E. Webber. The support of the National Science
Foundation under Grant IRI-88-02457 is gratefully acknowl-
edged.

REFERENCES
I. D. Ayala, P. Brunet, R. Juan and I. Navazo, Object rep-

resentation by means of nonminimal division quadtrees
and octrees. ACM Trans. on Graphics 4 (1), 41-59 (Jan-
uary 1985).

2. I. Carlbom, 1. Chakravany and D. Vanderschel, A hier-
archical data structure for representing the spatial de-
composition of 3-D objects. IEEE Comp. Graphics and
Appl. 5 (4), 24-31 (April 1985).

3. M. Cyrus and J. Beck, Generalized twb- and three-di-
mensional clipping. Comp. & Graphics 3 (1), 23-28
(1978).

4. K. Fujimura and T. L. Kunii, A hierarchical space in-
dexing method. Proceedings of Comp. Graphics '85,
Tokyo, TI-4, 1-14 (1985).

5. A. Fujimoto, T. Tanaka and K. lwata, ARTS: Accelerated
ray-tracing system. IEEE Comp. Graphics and Appl. 6
(4), 16-26 (April 1986).

6. I. Gargantini, Linear octrees for fast processing of three-
dimensional objects. Comp. Graphics and Image Pro-
cessing 20 (4), 365-374 (December 1982).

7. A. S. Glassner, Space subdivision for fast ray tracing. IEEE
Comp. Graphics and Appl. 4 (10), 15-22 (October 1984).

8. G. M. Hunter, Efficient computation and data structures
for graphics. Ph.D. Dissertation, Department of Electrical
Engineering and Computer Science, Princeton University,
Princeton, NJ (1978).

9. G. M. Hunter, Geometrees for interactive visualization
of geology: An evaluation, System Science Department,
Schlumberger-Doll Research, Ridgefield, CT (1981).

I0. C. L. Jackins and S. L. Tanimoto, Oct-trees and their use
in representing three-dimensional objects. Comp. Graph-
ics and Image Processing 14 (3), 249-270 (November
1980).

I 1. F. W. Jansen, Data structures for ray tracing. In F. J.
Peters, L. R. A. Kessner and M. L. P. van Lierop (Eds.),
Data Structures for Raster Graphics, 57-73, Springer-
Verlag, Berlin (1986).

12. M. R. Kaplan, Space-tracing: A constant time ray-tracer,
SIGGRAPH'85 Tutorial on the Uses of Spatial Coherence
in Ray-Tracing San Francisco. ACM (July 1985).

13. M. Kaplan, The use of spatial coherence in ray tracing.
In D. F. Rogers and R. A. Earnshaw (Eds.), Techniques
for Computer Graphics. 173-193, Springer-Verlag New
York (1987).

14. A. Klinger, Patterns and search statistics. In J. S. Rustagi
(Ed.), Optimizing Methods in Statistics, 303-337. Aca-
demic Press, New York (1971).

15. D. Meagher, Geometric modeling using octree encoding.
Comp. Graphics and Image Processing 19 (2), 129-147.
(June 1982).

16. I. Navazo, Contribuci6 a les t~cniques de modelat geo-
rhetric d'objectcs poli~drics usant la codificaci6 amb arbres
octals. Ph.D. Dissertation, Escola Tecnica Superior d'En-
ginyers Industrials, Department de Metodes Informatics,
Universitat Politechnica de Barcelona. Barcelona. Spain
(January 1986).

17. I. Navazo, D, Ayala and P. Brunet, A geometric modeller
based on the exact octree representation of polyhedra.
Comp. Graphics Forum 5 (2J, 91-104 (June 1986).

18. K. M. Quinlan and J. R. Woodwark. A spatially-seg-
mented solids database--justification and design. Pro-
ceedings of CAD'82 Conference, Butterworth, Guildford,
Great Britain, 126-132 (1982).

19. D. F. Rogers, Procedural Elements for Computer Graphics,
McGraw-Hill, New York (1985).

20. H. Samet, Neighbor finding techniques for images rep-
resented by quadtrees. Comp. Graphics and Image Pro-
cessing 18 (1), 37-57 (January. 1982).

21. H. Samet, The quadtree and related hierarchical data
structures. ACM Comp. Surveys 16 (2). 187-260 (June
1984).

22. H. Samet, The Design and Analysis of Spatial Data
Structures, Addison-Wesley, Reading MA (1990).

23. H. Samet, Applications of Spatial Data Structures: Com-
puter Graphics, Image Processing. attd GIS. Addison-
Wesley, Reading, MA (1990).

24. H. Samet, Neighbor finding in images represented by pc-
trees. Comp. Vision, Graphics, and Image Processing 46
(3). 367-386 (June 1989).

25. H. Samet and R. E. Webber, Storing a collection of poly-
gons using quadtrees. ACM Trans. on Graphics 4 (3).
182-222 (July 1985). (Also Proceedings of Computer Vi-
sion and Pattern Recognition 83, Washington, DC. 127-
132 June 1983; and University of Maryland Computer
Science TR-1372).

26. H. Samet and R. E. Webber, Hierarchical data structures
and algorithms for computer graphics. Part I. Funda-
mentals. IEEE Comp, Graphics and Appl. 8 (3), 48-68
(May 1988).

27. H. Samet and R. E. Webber, Hierarchical data structures
and algorithms for computer graphics. Part II. Applica-
tions. IEEE Comp. Graphics and,4ppl. 8 (4), 59-75 (July
1988).

28. M. Tamminen. The EXCELL method for efficient geo-
metric access to data, Acta Polytechnica Scandinavica.
Mathematics and Computer Science Series No. 34, Hel-
sinki. Finland (1981).

29. D.J. Vanderschel. Divided leaf octal trees. Research Note.
Schlumberger-Doll Research. Ridgefield, CT (March
1984).

30. T. Whitted. An improved illumination model for shaded
displa.v. Comm. oftheACM23 (6), 343-349 (June 1980).

31. G. Wyvill and T. L. Kunii, A functional model for con-
structive solid geometry.. Visual Comp. 1 (I), 3-14 (July
1985).

