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Technical Section 

IMPLEMENTING RAY TRACING WITH OCTREES 
AND NEIGHBOR FINDING* 

HANAN SAMET 
Computer Science Department, Institute of Advanced Computer Studies and Center for Automation 

Research. University of Maryland, College Park, MD 20742 

Abstract--A ray tracing implementation is described that is based on an octree representation of a scene. 
Rays are traced through the scene by calculating the blocks through which they pass. This calculation is 
performed in a bottom-up manner through the use of neighbor finding. The octrees are assumed to be 
implemented by a pointer representation. 

l .  I N T R O D U C T I O N  

The most basic operation in computer  graphics is the 
conversion of an internal model of a three-dimensional 
scene into a two-dimensional scene that lies on the 
viewplane. The purpose is to generate an image of the 
scene as it would appear from a given viewpoint, and 
to display it on a two-dimensional screen. The situation 
becomes complex when we take into account the po- 
sition of the light source, the presence of multiple light 
sources, and the possibility that light is reflected as well 
as refracted. This requires a calculation of what light 
falls on the object position represented by a pixel in 
the viewplane and is known as the image rendering 
task. Ray tracing[19] is an image rendering technique 
that models light as particles moving in the scene. 

In this paper we focus on the use of hierarchical data 
structures such as the octree to speed up the determi- 
nation of the objects that are intersected by rays em- 
anating from the viewpoint. Our presentation is or- 
ganized as follows. Section 2 contains some definitions 
and a description of  our notation. Section 3 discusses 
the ray tracing task and shows how to trace a ray using 
neighbor finding in a scene represented by an octree. 
Section 4 gives a detailed implementation while Section 
5 gives an example in two dimensions. Section 6 con- 
cludes with a brief discussion of some of the pitfalls of 
our solution, and those of alternative methods. 

2. DEFINITIONS AND NOTATION 
The region octree[8, I0, 15] is an extension of the 

quadtree data structure[ 14] to represent three-dimen- 
sional data (for a detailed discussion of such data 
structures, see [21-23, 26, 27]). We start with a 2" × 2" 
× 2" object array of unit cubes (termed voxels or obels). 
The region octree is based on the successive subdivision 
of an object array into octants. If the array does not 
consist entirely of Is or entirely of 0s, then it is sub- 
divided into octants, suboctants, etc., until cubes 
(possibly single voxels) are obtained that consist of Is 
or of 0s; i.e., they are entirely contained in the region 
or entirely disjoint from it. This process is represented 
by a tree of degree 8 in which the root node represents 
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the entire object, and the leaf nodes correspond to those 
cubes of the array for which no further subdivision is 
necessary. Leaf nodes are said to be black or white 
(alternatively, FULL or VOID) depending on whether 
their corresponding cubes are entirely within or outside 
of the object, respectively. All nonleaf nodes are said 
to be gray. Fig. la  is an example of a simple three- 
dimensional  object, in the form of a staircase, whose 
region octree block decomposition is given in Fig. lb, 
and whose tree representation is given in Fig. lc. 

One of the problems with the region octree is that 
when the faces of the object are not orthogonal, the 
data structure requires much decomposition, and hence 
much space. In order to remedy this problem, a set of 
decomposition criteria is used such that no node con- 
tains more than one face, edge, or vertex unless the 
faces all meet at the same vertex or are adjacent to the 
same edge. We term the resulting structure a PM octree 
(see [1, 2, 4, 9, 16, 18, 28, 29]). For example, Fig. 2b 
is a PM octree decomposition of the object in Fig. 2a. 
This representation is quite useful since its space re- 
quirements for polyhedral objects are significantly 
smaller than those of a region octree. In two dimen- 
sions, we have a PM~ quadtree which has the property 
that no node contains more than one edge or vertex 
unless the edges all meet at the same vertex[25]. For 
example. Fig. 3 is a PMt quadtree of a 5-sided polygon. 

In order to understand the presentation of the al- 
gorithms, we first give some definitions and explain 
our  notation. Fig. 4 shows the coordinate system that 
we are using relative to a cube. It is slightly different 
than the one used to generate Fig. 1. Let L and R 
denote the resulting lower and upper halves, respec- 
tively, when the x axis is partitioned. Let D and U 
denote the resulting lower and upper halves, respec- 
tively, when the y axis is partitioned. Let B and F denote 
the resulting lower and upper halves, respectively, when 
the = axis is partitioned. Fig. 5 illustrates the labelings 
corresponding to the partitions. 

The labelings in Fig. 5 are also used to identify the 
faces, edges, and vertices of the cube as shown in Fig. 
6. The faces are L (left), R (fight). D (down), U (up), 
B (back). and F (front): however, only R. U, and F are 
visible. The edges and vertices of the cube are labeled 
by using an appropriate concatenation of labels of the 
adjacent faces. Note that vertex LDB and edges LD. 
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(a) (b) (c) 

Fig. I. (a) Example three-dimensional object, (b) its region octree block decomposition, and (c) its tree 
representation. 

LB, and DB are not visible. Similarly, the octants are 
labeled by using a concatenation of these labels as 
shown in Fig. 7 (octant LDB is not visible). Fig. 8 is a 
numerical labeling for the octants (octant 0 is not vis- 
ible). 

The concept of a neighbor in an octree[24] is defined 
analogously to that in a quadtree[20]. We say that node 
Q is a neighbor of node R in direction I if Q corresponds 
to the smallest block (it may correspond to  a nonleaf 
node) adjacent to R (i.e., touching even if just at a 

(a) 

(b) 

Fig. 2. (a) Example three-dimensional object, and (b) its cor- 
responding PM octree. 

point) in direction I of size greater than or equal to 
the block corresponding to R. 

In two dimensions, there are 8 possible neighbor 
directions. In three dimensions, there are 26 possible 
directions. In particular, in two dimensions, two nodes 
can be adjacent, and hence neighbors, along an edge 
(4 possibilities) or along a vertex (4 possibilities). In 
contrast, in three dimensions, two nodes can be ad- 
jacent, and hence neighbors, along a face (6 possibili- 
ties), along an edge (12 possibilities), or along a vertex 
(8 possibilities). Such neighbors are termed face-neigh- 
bors, edge-neighbors, and vertex-neighbors, respec- 
tively. These relations are shown in Figs. 9a, 9b, and 
9c, respectively. 

We now describe an octree implementation that uses 
pointers. Assume that each octree node is stored as a 
record of  type node containing 10 fields. The first nine 
fields contain pointers to the node's father and its eight 
sons, which correspond to the eight octants. If the node 
is a leaf node, then it will have eight pointers to the 
empty record. If P is a pointer to a node and O is an 
octant, then these fields are referenced as FATHER(P) 
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Fig. 3. PM~ quadtree representation of a polygon. The ceils 
intersected by rays R and S, emanating from the viewpoint. 

are labeled. 
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Fig. 4. Three-dimensional coordinate system. 
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and SON(P,O), respectively. We can determine the 
specific octant in which a node, say P, lies relative to 
its father by use of the function SONTYPE(P), which 
has a value of O if SON(FATHER(P),O) = ? .  The 
10th field contains type information. For example, for 
a region octree it contains the color of the block of the 
image which the node represents, i.e., black, white, or 
gray. The pointer from a node to its father is not re- 
quired but is introduced here to ease the motion be- 
tween arbitrary nodes in the octree. 

3. THE RAY TRAClNG TASK 
Ray tracing is an approximate simulation of how 

the light propagated through a scene lands on the image 
plane. This simulation is based on the geometric optics 
approach to reflection and refraction[30]. Although the 
geometry of the reflection and refraction of"particles" 
of light from surfaces is straightforward, the formula- 

quality of the displayed image is a function of the ap- 
propriateness of the model represented by these equa- 
tions and the precision with which the scene is repre- 
sented. 

From a procedural point of view, the term ray tracing 
(or ray casting) describes the process of casting a ray 
from the viewpoint through a given pixel on the image 
plane that appears between the viewpoint and the 
scene. The pixel is identified with the surface of the 
nearest object that intersects the ray. This ray is termed 
the primary ray. If an intersection is found, then a 
number of additional rays are often cast. These addi- 
tional rays are used to calculate shadows when there 
is another object between the light source and the in- 
tersected object, and to calculate indirect paths between 
the light source and the surface. 

tion of the equations to model the intensity of the light L U B  
as it leaves these surfaces is a recent development. The ~ , , ~ ~  

LUF U  'RUB 
LF F _ UF R 

RDF 
Fig. 6. Labeling of faces, edges, and vertices based on the 

Fig. 5. Three orthogonal partitions of a cube. partitioning defined in Fig. 5. 
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Fig. 7. Labeling of octants based on the partitioning defined 
in Fig. 5 (octant LDB is not visible). 

When the object is opaque, then the additional rays 
are only used for modeling reflection and shadows. On 
the other hand, when we can see through the object, 
then the additional rays are also used for modeling 
transparence or translucence (in which case the ray 
may undergo refraction). These additional rays are 
termed secondary  rays. Fig. 10 illustrates these terms. 
Although the distinction between reflected and re- 
fracted rays is interesting from a physical standpoint, 
this distinction has little effect from an algorithmic 
standpoint. In this paper, any reference to reflected 
rays is actually a reference to both reflected and re- 
fracted rays. 

The amount of time required to display a scene is 
heavily influenced by the cost of tracing the path of 
the rays oflight as they move backward from the view- 
er's eye, through the pixels of the image plane, and out 
through the scene. The motivation for using the octree 
in ray tracing is to enable the calculation of more rays 
with a greater amount of accuracy. Since light-mod- 
eling equations rely on the availability of accurate in- 
formation about the location of the normal to the sur- 
face at the point of its intersection with the ray, PM 
octrees are generally more appropriate than region pc- 
trees. This is especially true for PM octrees that can 
represent curved, rather than planar, surfaces using ei- 
ther curved patches[ 17] or curved primitives[31 ]. 

Octrees have been used to speed up intersection cal- 
culations for ray tracing[5, 7, 11-13, 31]. The basic 
speedup can be seen by examining the PM~ quadtree 
in Fig. 3. We use a quadtree instead of an octree in 
order to simplify the presentation. A naive ray tracing 
algorithm would have to test the ray emanating from 
the viewpoint against each of these sides, sort the re- 
sulting intersections, calculate the reflected ray, and 
finally test the reflected ray to see if it intersects any 
other portion of the polygon. 

For example, consider ray S in Fig. 3 and assume 
that the boundary of the polygon is opaque (i.e.. no 
light is transmitted through it). Thus, the only second- 
ary ray corresponds to reflection. From Fig. 3, we see 
that a quadtree-based algorithm would perform the 
calculation of ray S by visiting only 4 cells (Le., cells 
1, 7, 8, and 9). 

Once the scene's octree has been built (consisting of 
cells), we must trace each ray through it. We adopt the 
convention that for a ray to pass through a cell (as well 
as intersect an object), it must enter and exit the cell 
(or object) at two distinct points. Thus, a ray that is 
tangent to a cell (or object) at just one point does not 
pass through (intersect) the cell (object). On the other 
hand, a ray that is tangent to a cell (object) along an 
edge or a face of a cell (object) is said to pass through 
(intersect) the cell (object). For example, ray R in Fig. 
3 passes directly from cell 2 to cell 3, without passing 
through cell 10. This convention is very important as 
otherwise an error may arise (see Section 6). 

For each cell through which the ray passes, we only 
intersect the ray with the objects in that cell. If it in- 
tersects more than one object, then we determine the 
appropriate object and continue to trace the secondary 
rays, if necessary. If the ray does not intersect any of 
the objects in the cell, then we project the ray into the 
next cell and try again. As long as the cost of moving 
between adjacent cells is relatively low, we will save 
time over the cost of intersecting the ray with every 
object in the scene. 

There are a number of methods of projecting the 
ray into succeeding blocks. Jansen[11] discusses these 
methods in a general manner. They can be best char- 
acterized as being either top-down or bottom-up. In 
this paper we focus on the bottom-up method. It fol- 
lows the ray in the sense that first the closest bounding 
volume or cell, say C, to the viewpoint that is inter- 
sected by the ray is located. Let P be the point at which 
the ray leaves C. If C does not contain an object that 
intersects the ray, then locate the smallest cell or 
bounding volume, say C', that contains the point Q 
= P + A. There are many methods oflocating C'. One 
possibility is to perform a point location algorithm 
which starts at the root of the tree. Another variation, 
and the one we describe, is to use neighbor-finding 
methods[20, 24]. 

Assume that the ray is defined parametrically by 

x = m x ' t  + bx, (1) 

y =  m~-t + by, (2) 

z = m, .  t + b~. (3) 

Fig. 8. Numeric labeling of octants based on the partitioning 
defined in Fig. 5 (octant 0 is not visible). 
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(a) (b) (c) 
Fig. 9. Example of (a) a face neighbor, (b) an edge neighbor, and (c) a vertex neighbor. 

One way to determine the parameters is to choose two 
points on the ray and let one correspond to t = 0 and 
the other to t = I, and then to solve the six equations. 
The ray tracing computation is simplified when the 
parameters are integers. This situation is assured when 
t = 0 corresponds to the viewpoint, and when the 
viewpoint and the point corresponding to t = l both 
have integer coordinates. Note that t > 0 for every 
point on the ray. We also assume that the origin of the 
three-dimensional space containing the scene is at (0, 
0, 0) and the width of the space is a power of 2. The 
smallest possible cell is of width I. 

In practice, the situation is not so simple. In partic- 
ular, when the viewplane is in an arbitrary position in 
space, it is usually not the case that every pixei on the 
viewplane has integer coordinates relative to the view- 
point. Nevertheless, we do know that (bx, by, b~) are 
equal to the coordinate values of the viewpoint. In the 
following, we describe a more general solution which 
permits the m~ to be rational numbers while assuming 
that the viewpoint has integer coordinates. Note that 
our solution can be modified to permit the viewpoint 
to have rational coordinates, but this is not done here. 

Let B = (bx, b~, bz) be the viewpoint. Assume that 
the viewplane is defined by the three points Q, R, and 
Ssuch that Q = (qx, qy, qz) is the origin of the viewplane. 
Let ,7 and ~" be the base vectors in the viewplane. As- 
sume that ~ = jxax + j~-~r + j:~t: and ~" = k~ax 
+ k~a~ + k~a~, where ji and ki are rational numbers, 
and c~ are unit vectors in the x, y, and z directions. 
Note that ~ and &" are base vectors, although j 2 + j 2  
+ j ~  and k]  + k~ + k~ do not necessarily equal l. A 
point P(u, v) on the viewplane (u and v are viewplane 
coordinates) can be written as: 

Ptu,-7) = .7 + v~ + 0 

Ray R from the viewpoint B through point P(u, v) on 
the viewplane can be expressed as: 

= ( P -  B)t + B. 

Expanding this equation yields: 

x = ( L . u + k ~ . v + q ~ - b ~ ) ' t + b ~ ,  (4) 

Light source -~ 

Image plane 
' ~ ~  ~ u r c e  

Viewpoint ~ ~  _._.j::w'Refl!i~ic'red 
Fig. 10. Illustration of ray tracing. Solid lines correspond to primary rays while broken lines correspond to 

secondary and light source rays. 
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Y = (L" u + ky- v + qy - be)-t  + b~,, (5) 

: = ( j z ' u  + k z . v  + q : -  b z ) ' t  + b:.  (6) 

The coefficients of t in Eqns. (4)-(6) correspond to 
the values of m, and are rational numbers. In fact, as 
can be seen below, by redefining the parametric equa- 
tions for the ray in terms of the lowest common de- 
nominator  ofmx, me, and m.., say, c, all of  the param- 
eters are integers. In the following, t '  = t/c, and the 
values of m~ are the remaining numerators once the 
denominators  have been set to c. 

x = m'~. t '  + bx, (7) 

y = m ~ . t '  + b e , (8) 

z = m'z.  t '  + bz. (9) 

In the remainder of the discussion, we assume that 
the parametric equations have been manipulated in 
such a manner.  We shall use rni and t, although we are 
actually referring to m~ and t', respectively. 

Tracing the ray is achieved by the following three- 
step process. First, we must show how to compute the 
points at which the ray enters and exits the cell (i.e.. 

clip the ray). This process is a simplification of the 
Cyrus-Beck clipping algorithm[3, 19] and is the one 
used by Glassner[7], as well as by Wyvill and Kunii[31 ]. 
Glassner does not describe an implementation.  Wyvill 
and Kunii ' s  implementat ion is discussed in Section 6. 

The nature of the implementat ion is very important 
and requires much care since the computat ion must 
be exact. In particular, we cannot  use floating point 
arithmetic. Instead, we use rational arithmetic. Next, 
we process the cell by intersecting the ray with the 
objects in the cell. Finally, if necessary (i.e., the ray 
does not intersect any of  the objects in the cell), we 
compute the direction of the next cell intersected by 
the ray and also locate it. 

To determine the points at which a ray enters and 
exits a three-dimensional cell, each of whose sides is 
of width W, we test the ray against the bounding planes 
(i.e., faces) of the volume corresponding to the cell. 
For example, consider a cell bounded by x = x0 and 
x o + W , y = y o a n d y 0 + W ,  a n d z = z o a n d z o + W .  
We compute a value of t for each of x = xo, x = Xo 
+ W , y =  yo, y =  yo + W , z  = zo, and  z = zo + W .  

Let t~" and/out correspond to the range of values of 
t taken by coordinate i. In particular, if mi < 0, then 
t~" and t °ut correspond to i = i0 + W and i = io, re- 
spectively, whereas if mi > O, then t~" and tO u~ corre- 
spond to i = io and i = io + W, respectively. The in- 
tersection of these three ranges of t yields the values 
that the ray may assume while it is in the cell. In par- 
ticular, t will range between max(tl .~) and min(t°~'). 

To process the next cell C', we must locate it. This 
requires us first to determine its direction, say L relative 
to the current cell C. The computat ion o f / i s  a critical 
part of  the location process and cannot  be ignored (see 
Section 6). The direction depends on the location of 
the point, say P, at which the ray exits C. We have 

three possible pos i t ions- -P  is either on a vertex, edge, 
or face of C. P is on a vertex if/out has the same value 
for each coordinate i. P is on an edge if/out has the 
same value for two of the coordinates i. Otherwise, P 
is on a face (i.e., t °ut has a different value for each 
coordinate i). 

Since the values of t  are not necessarily integers, and 
as we need to perform a test involving equality (not 
within a tolerance!), we represent t as a rational number  
(i.e.. an ordered pair consisting of  a numerator  and a 
denominator) .  Comparisons involving different values 
of t are made by cross-multiplying the numerators and 
denominators  of the comparands and comparing the 
results. 

Now that we know the direction of C'  with respect 
to C, we must locate it. We have two alternatives. The 
first alternative is to use a point location algorithm. 
We compute a point, say Q, that is guaranteed to be 
in C'. Finding the cell containing point Q is easy. We 
start at the root of the octree, say G, and descend it 
based on a comparison of Q with the center of the 
block corresponding to G. The descent ceases once we 
reach a leaf node. This approach is commonly  used 
[13,31]. 

The computat ion of Q is relatively straightforward, 
although its implementat ion requires us to pay close 
attention to details. Q depends on the location of P, 
the point at which the ray exits C. Let P = (Px, Pr, P--) 
and Q = (Q~, Qy, Q:). Let I = (Ix, I e,/.-) be the direction 
of the next cell C'. We follow the convention that the 
left, down, and back faces of a cell are closed, Le., i fa  
point lies on one of these faces, then it is in the cell 
bounded by them. To calculate Q using this convention 
we subtract A (where A is very small) from ~ if lj is 
in the negative (i.e., decreasing) direction ofj .  A must 
be no larger than the width of the smallest possible 
cell, i.e., 1. A cannot be smaller than 1 because we are 
using integer arithmetic in the process of locating the 
cell containing Q. 

For example, if I = 'LUB' ,  then we must subtract 
one from Px and P.- with the result that Q = (Px - 1, 
Py, Pz - 1). On the other hand, when I = 'RD' ,  we 
need only subtract one from Pe while the remaining 
values remain the same, i.e., Q = (Px, Pe - 1, P.-). Note 
that our  conventions with respect to which faces are 
closed enable us to use the integer parts of the coor- 
dinate values that are not in the/direct ion.  Thus, when 
I = 'RD' ,  we use the integer parts of P.-. Px and Pe are 
already integers by virtue of being on the edge of a 
cell. 

The second alternative, and the one we use, makes 
use of neighbor-finding methods[20. 24]. In particular, 
we find the neighbor of C, say N, in direction I having 
a width which is greater than or equal to that of C. If 
such a neighbor does not exist, then we are at the border 
of the three-dimensional space, and we exit. If N does 
not correspond to a gray node. then we are done (i.e.. 
C' = N). Otherwise. we now calculate a point Q that 
is guaranteed to be in C' which is a descendant of N 
(recall that N 's  node is gray). We locate C'  by applying 
the point location algorithm described above. 
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The advantage of this approach over just using the 
point location algorithm is that fewer nodes will be 
visited since we need not descend from the root of the 
tree. Also, traversing links in the octree by using neigh- 
bor finding is considerably cheaper than the arithmetic 
operations that are part of the point location algorithm. 

When the octree is represented using pointers, then 
neighbor finding is implemented by using the FA- 
THER links. On the other hand, a pointer-less octree 
representation can also be used[6]. One example is as 
a collection of the leaf nodes comprising the octree 
where each leaf node, say P, is represented by a pair 
of numbers known as its locational code. The first 
number is the depth of the tree at which P is located. 
The second number is formed by concatenating the 
base 8 digits corresponding to directional codes that 
locate P along a path from the root of  the octree. In 
such a case, a neighboring node is located by first ma- 
nipulating the bits that comprise the second number 
corresponding to P based on the direction of the desired 
neighbor, and then performing a search. 

4. SAMPLE IMPLEMENTATION 
An implementation of the bottom-up process of 

tracing a ray through a scene, represented by an octree 
that uses neighbor finding to locate successive cells, is 
given by the following procedures. The process is don- 
trolled by procedure RAY_TRACER. It is invoked 
with parameters corresponding to the parametric rep- 
resentation of  the traced ray. a pointer to the root of 
the octree, and the width of the scene. 

RAY_TRACER's  first action is to determine the 
value of t, if any, for the point, given by POINT, at 
which the ray first enters the cell corresponding to the 
entire scene and the direction of the ray relative to the 
face, edge, or vertex containing POINT. This is 
achieved by procedure FIRST--POINT. If POINT lies 
outside of the scene, then the process stops since there 
are no intersections. Otherwise, the particular cell con- 
taining POINT is located by use of procedure 
FIND_3D_BLOCK. The function OFFSET, given in 
Table l, contains multiplicative factors that facilitate 
the calculation of the coordinate values of the furthest 
corners of the sons of each node in procedure 
FIND_3D_BLOCK. In particular, OFFSET(A,O) is 
the multiplicative factor for the calculation of the value 
of  coordinate A when descending to the son in oc- 
tant O. 

Once the first cell intersected by the ray has been 
located, the ray is traced through successive cells. For 

each cell through which the ray passes, a record of type 
cell is created that has 6 fields called T_IN. T_OUT. 
SIZ, PTR, CORNER, and DIRECT. Letting C be a 
pointer to a record of type cell, T_IN(C) and 
T_OUT(C) indicate the values of t for the points at 
which the ray enters and exits from C. SIZ(C) is the 
width of C's cell. PTR(C) is a pointer to C's node in 
the octree. CORNER(C)[/]  is the value of the Ith co- 
ordinate of cell C's  furthest corner from the origin. 
DIRECT(C) is the direction of the next cell, relative 
to cell C, through which the ray must be traced. Pro- 
cedure RAY_INTERSECTS_OBJECT_IN_CELL, 
not given here. performs the actual intersection tests 
of the ray with the objects associated with cell C. 

If procedure RAY_INTERSECTS_OBJECT_ 
IN_CELL determines that the ray intersects the object, 
then a reflection or refraction calculation must be 
made. This is equivalent to tracing a new ray and is 
not in the code given here, although it is discussed 
below. Otherwise, the ray is traced into the next cell. 
This cell is determined by use of neighbor finding via 
a call to procedure OT_GTEQ_NEIGHBOR that re- 
turns a pointer P. OT_GTEQ_NEIGHBOR is aided 
by the function TYPE to determine the type of the 
neighbor's direction (i.e., face, edge. or vertex) so that 
it can invoke the appropriate neighbor-finding routine 
( O T _ G T E Q _ F A C E _ N E I G  HBOR2,  O T _ T E Q _  
EDGE_NEIGHBOR2, or OT_GTEQ_VERTEX_ 
NEIGHBOR2). 

The code for the neighbor finding procedures makes 
use of the predicate ADJ, and the functions REFLECT, 
COMMON_FACE, and COMMON_EDGE to aid in 
the expression of operations involving a block's octants 
and its faces, edges, and vertices. ADJ(LO) is true if 
and only if octant O is adjacent to the I th face, edge, 
or vertex of O's  containing block. REFLECT(I,O) 
yields the SONTYPE value of the block of equal size 
(not necessarily a brother) that shares the l th face, edge, 
or vertex of a block having SONTYPE value O. COM- 
MON__FACE(LO) yields the type of the face (i.e.. label) 
of O's  containing block that is common to octant O 
and its neighbor in the I th direction (I is an edge or a 
vertex). COMMON_EDGE(I,O) yields the t.~ge of the 
edge (i.e.. label) of O's containing block that is common 
to octant O and its neighbor in the Ith direction (I is 
a vertex). Tables 2-5 contain their definitions. 9. de- 
notes an undefined value. 

If the cell pointed at by P does not correspond to a 
leaf node, then the point at which the ray first enters 
the next cell is calculated and FIND_3D_BLOCK is 
used to locate it. starting at P. The entire process stops 

A (axis) 

X 

Y 

Z 

Table I. OFFSET(A.O). 

o (oetant) 

LDB LDF LUB LUF RDB RDF RUB RUF 

I I I I 0 0 0 0 

I 1 0 0 1 I 0 0 
I 0 1 0 1 0 1 0 
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I 

I (direction) 

L 
R 

D 

U 

B 

F 
LD 
LU 
LB 
LF 
RD 

RU 
RB 
RF 
DB 
DF 
UB 
UF 

LDB 
LDF 
LUB 
LUF 
RDB 
RDF 
RUB 
RUF 
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Table 2. ADJ([,O). 

o (octant) 

LDB LDF LUB LUF RDB RDF RUB RUF 

T T T T F F F F 
F F F F T T T T 
T T F F T T F F 
F F T T F F T T 
T F T F T F T F 
F T F T F T F T 
T T F F F F F F 
F F T T F F F F 
T F T F F F F F 
F T F T F F F F 
F F F F T T F F 

F F F F F F T T 
F F F F T F T F 
F F F F F T F T 

T F F F T F F F 
F T F F F T F F 
F F T F F F T F 
F F F T F F F T 
T F F F F F F F 
F T F F F F F F 
F F T F F F F F 
F F F T F F F F 
F F F F T F F F 
F F F F F T F F 
F F F F F F T F 
F F F F F F F T 

I (direction) 

L 
R 

D 
U 
B 

F 
LD 
LU 
LB 
LF 
RD 
RU 
RB 
RF 
DB 
DF 
UB 
UF 
LDB 
LDF 
LUB 
LUF 
RDB 
RDF 
RUB 
RUF 

Table 3. REFLECT(I,O). 

o (octet) 
LDB LDF LUB LUF RDB RDF RUB RUF 

RDB RDF RUB RUF LDB LDF LUB LUF 
RDB RDF RUB RUF LDB LDF LUB LUF 
LUB LUF LDB LDF RUB RUF RDB RDF 
LUB LUF LDB LDF RUB RUF RDB RDF 
LDF LDB LUF LUB RDF RDB RUF RUB 
LDF LDB LUF LUB RDF RDB RUF RUB 
RUB RUF RDB RDF LUB LUF LDB LDF 
RUB RUF RDB RDF LUB LUF LDB LDF 
RDF RDB RUF RUB LDF LDB LUF LUB 
RDF RDB RUF RUB LDF LDB LUF LUB 
RUB RUF RDB RDF LUB LUF LDB LDF 
RUB RUF RDB RDF LUB LUF LDB LDF 
RDF RDB RUF RUB LDF LDB LUF LUB 
RDF RDB RUF RUB LDF LDB LUF LUB 
LUF LUB LDF LDB RUF RUB RDF RDB 
LUF LUB LDF LDB RUF RUB RDF RDB 
LUF LOB LDF LDB RUF RUB RDF RDB 
LUF LUB LDF LDB RUF RUB RDF RDB 
RUF RUB RDF RDB LUF LUB LDF LDB 
RUF RUB RDF RDB LUF LUB LDF LDB 
RUF RUB RDF RDB LUF LUB LDF LDB 
RUF RUB RDF RDB LUF LUB LDF LDB 
RUF RUB RDF RDB LUF LUB LDF LDB 
RUF RUB RDF RDB LUF LUB LDF LDB 
RUF RUB RDF RDB LUF LUB LDF LDB 
RUF RUB RDF RDB LUF LUB LDF LDB 



I (direction) 
LDB 

LD fl 
LU L 
LB fl 
LF L 
RD D 
RU fl 
RB B 
RF fl 
DB fl 
DF D 
LIB B 
UF fl 
LDB fl 
LDF fl 
LUB n 

LUF L 

RDB N 

RDF D 

RUB B 

RUF n 
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Table 4. COMMON_FACE(I,O). 

o (octa t) 
LDF LUB LUF RDB RDF RUB RUF 

n L L D D fl fl 

L fl fl D f~ U U 

L fl L B fl B fl 
f~ L fl fl F f] F 

D fl fl fl fl R R 
fl U U R R fl fl 
fl B fl fl R fl R 
F fl F R fl R fl 
D B fl fl D B fl 

fl fl F D fl fl F 

fl fl U B fl fl U 

F U fl fl F U fl 
fl fl L fl D B fl 
fl L fl D fl fl F 

L fl fl B fl fl U 
fl fl fl fl F U fl 
D B fl fl fl fl R 
fl fl F fl fl R fl 
fl fl U fl R fl fl 
F U fl R fl fl fl 
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when either a ray intersects an object within a cell or 
the ray exits the scene (i.e.. O T _ G T E Q _ N E I G H B O R  
returns a pointer to NIL). 

To be able to compare different values of i s o  that 
the direction of the next cell can be determined, we 
need to compute the m i n i m u m  and maximum values 
oft .  This must be done in an exact manner  and, thus, 
we represent the values of t  as rational numbers  by use 
of a record of type rational,  with two fields NUM and 
DEN corresponding to the numerator  and denomi-  
nator, respectively. 

The actual comparisons are aided by using procedure 
C O M P A R E _ T  to precompute pairwise comparisons, 
i.e., CYX, CZX, and CZY. These comparisons are used 
by procedure N E X T _ C E L L _ D I R E C T I O N  to deter- 
mine the direction of the next cell, relative to the pres- 
ent cell, that is intersected by the ray. This is facilitated 
by making use of the sign of M and functions 
FACE_DIR,  EDGE_DIR,  and V E R T E X _ D I R  given 
in Tables 6, 7, and 8, respectively. 

At times, we need to calculate the coordinates of a 
point in a specific cell. This situation arises when at- 

tempting to locate the first cell that is intersected by 
the ray, when attempting to locate a neighboring cell 
that is smaller than the current cell, and when setting 
the CORNER field of a record of type cell. The function 
CHANGE(LA)  facilitates this task by indicating the 
smallest amount ,  with the appropriate sign, by which 
the value of coordinate A changes due to motion in 
direction L For example, CHANGE( 'RB' ,  'Z ' )  = - 1  
as the value of coordinate z will decrease as a result of  
motion in direction 'RB'. On the other hand, 
CHANGE( 'RB' ,  'Y ' )  = 0, as the value of coordinate 
y is unaffected by motion in direction 'RB' .  CHANGE 
is given in Table 9. 

As stated above, to handle reflection and refraction 
at a surface properly, we need to trace the appropriate 
ray anew. This can be done in the same manner  starting 
at the point at which the primary ray intersects the 
surface. The secondary (i.e., reflected and refracted) 
ray is also defined parametrically. The only difficulty 
is that the definition of the secondary ray will require 
a larger computer  word size to cope with the increase 
in the number  of binary digits necessary, to specify the 

I (direction) 

LDB 
LDF 
LUB 
LUF 
RDB 
RDF 
RUB 
RUF 

Table 5. COMMON_EDGE(I,O). 

o (oct, nt) 

LDB LDF LUB LUF RDB RDF RUB RUF 

fl LD LB fl DB fl fl n 
LD fl fl LF fl DF fl fl 
LB fl fl LU fl fl LIB fl 
fl LF LU fl fl fl fl UF 
DB f~ D f~ fl RD RB fl 

D DF D n RD fl fl RF 
f~ D UB D RB fl fl RU 

f] D D UF f~ RF RU fl 

CAG [3:4-0 
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parameters  and  values of  t correctly. This  is a direct 
result of  the use of  rational arithmetic. It can be avoided 
in part  by using parametr ic  equat ions  in the form of  

(4)-(6) instead of  (7)-(9). However,  this requires that  
m be treated as data of  type r a t i o n a l  in procedure 
R A Y _ T R A C E R .  

procedure RAY_TKACER(M,B,W,R); 
/* Trace a ray given parametrically by M and B, i.e., x = rex .  t + bx,  through the octree rooted at R which corresponds to 

the three-dimensional space of width W with origin at (0, 0, 0). W is a power of 2. Procedure RAYINTER-  
SECTS_OBJECT_IN_CELL performs object tests in each cell through which the ray passes. It is not given here. Its 
argument is a pointer to a record of type cel l  which has fields T_IN, T_OUT, SIZ, PTR, CORNER. and DIRECT 
corresponding to the value of the parameter t for the entry and exit points, the width of the cell, a pointer to its node in 
the octree, the coordinates of its furthest corner (from the origin), and the direction of the next cell through which the ray 
must be traced, respectively.*/ 

begin 
global integer array M,B[{'X', 'Y'/Z'}];  
value integer W; 
value pointer node R; 
global integer array SIGN_M[{'X ', 'Y', 'Z'}]; 
pointer cell C; 
rational pointer array T [{'X ','Y','Z' }]; 
integer array POINT[{'X ', 'Y', 'Z'}]; 
direction DIR; 
integer CYX,CZX,CZY; 
axis I,MIN...AXIS; 
pointer node P; 
P --- R; 

C " -  create(cell); 
for 1 in {'X', 'Y', 'Z'} d o / *  Keep track of the direction of the ray */ 

SIGN_M[I] -,- if M[I] > 0 then 0 
else 1; 

/* Find t for the first entry point of the ray: */ 
T_OUT(C) ~ FIRST_.POINT(W,DIR); 
for I in {'X ' , 'Y', 'Z'} do 

begin/* Calculate the first entry point */ 
CORNER(C)[I] 4- W; 
POINT[I ] .,-- U(M[I ] * NUM(T_OUT(C)))/DEN(T_OUT(C ))J + B[I ] 

+ SIGN_._M[I ]*CHANGE(DIR, I); /* LXJ is the floor o fx  */ 
end; 

if POINT['X '] < 0 or POINT['Y'] < 0 or POINT['Z'] < O or 
POINT['X '] > W or POINT['Y'] > W or POINT['Z'] > W 
then return/* The ray never enters the space */ 

else/* Locate the closest cell to the entry point */ 
FIN D._3D_BLOCK(P, POINT,CORNER(C ),W); 

while true d o / *  Follow the ray through the space */ 
begin 

PTR(C) --- P; 
SIZ(C) ~ W; 
T_IN(C) ~ T_OUT(C); 
for I in {'X', 'Y ' , 'Z'} do 

begin/* Compute a t value for the exit point for each plane */ 
NUM(T[I]) *- CORNER(C)[I] - SIGN_M[I] .W - B[I]; 
DEN(T[I]) ,.- M[I]; 

end; 
COM PARE_T(T,CYX,CZX,CZY ); 
/* Find the minimum of the values of t  using rational arithmetic: */ 
MIN...AXIS -,-- if CZY < 0 then 

if CZX < 0 then 'Z '  
else 'X' 

else if CYX < 0 then 'Y'  
else "X '; 

DIRECT(C) ~ NEXT_CELL_DIRECTION(MIN_AXIS,CYX,CZX,CZY ); 
T_OUT(C) 4- T[MIN..__AXIS]; 
if RAY_INTERSECTS_OBJECT_IN_CELL(C ) then return 
else 

begin 
/* Locate the next cell in direction DIRECT(C) using neighbor finding: */ 
OT_GTEQ_NEIGH BOR( PTR(C ),DIRECT(C ),P,W ); 
if null(P) then return;/* Neighbor does not exist */ 
for I in {'X'. 'Y', 'Z'} d o / *  Compute location of next cell */ 

CORNER(C)[I] ~ CORNER(C)[I] 
+ if CHANGE(DIRECT(C),I) = l then W 

else if CHANGE(DIRECT(C ),I) = - l then -SIZ(C) 
else if (CORNER(C)[I] rood W) = 0 then 0 
else W - (CORNER(C)[I] rood W); 
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if GRAY(P) then/* Neighbor is smaller */ 
begin/* Compute a point within the neighbor */ 

for I in {'X', 'Y', 'Z "} do/* LXJ is the floor o fx  */ 
POINT[I] "*-- L(M[I] • NUM(T_OUT(C )))/DEN(T_OUT(C ))J + B[I] 

+ SIGN...M[I ] * CHANGE(DIRECT(C ),l ); 
FIND_3D_BLOCK(P,POINT,CORNER(C ),W);/* Locate cell */ 

end; 
end; 

end: 
end; 

pointer rational procedure FIRST_POINT(W,DIR); 
/* Return a pointer to a record containing the value of the ray parameter t corresponding to the point at which the ray first 

enters the three-dimensional space of width W through which the ray is traced. DIR is set to the direction of the ray. */ 
begin 

value integer W; 
reference direction DIR; 
rational pointer array T [ {'X '?Y','Z' } ]; 
global integer array M,B.SIGN_M[ {'X ','Y','Z" }]; 
integer CYX,CZX.CZY; 
axis I,MAX.._AXIS; 
for 1 in { 'X', 'Y' , 'Z'} do 

begin/* Compute a t value for the entry, point for each plane */ 
NUM(T[I]) .*- SIGN_M[I] ,W - B[I]: 
DEN(T[I]) --- M[I]; 

end; 
COMPARE_T(T.CYX.CZX,CZY ): 
/* Find the maximum of the values of t  using rational arithmetic: */ 
MAX_AXIS 4- ifCZY > 0 then 

if CZX > 0 then 'Z" 
else 'X" 

else if CYX > 0 then 'Y'  
else 'X "; 

DIR .*-- NEXT_CELL_DIRECTION(MAX_.AXIS, CYX,CZX,CZY ); 
return(T[MAX_AXIS]); 

end; 

procedure COM PARE_T(T,CYX,CZX.CZY ): 
/* Compute CYX, CZX, and CZY. CYX is the pairwise comparison of T[ 'Y']  and T['X'],  CZX is the pairwise comparison 

of T[ 'Z']  and T['X'],  and CZY is the pairwise comparison of T[ 'Z']  and T['Y']. */ 
begin 

value rational point array T[{'X' , 'Y' , 'Z" }]; 
reference integer CYX,CZX,CZY; 
CYX 4-- abs(NUM(T ['Y']) • DEN(T ['X '])) - abs(NUM(T ['X '])* DEN(T ['Y "])); 
CZX ,*-- abs(NUM(T['Z'])* DEN(T['X'])) - abs(NUM(T['X']).DEN(T[Z']));  
CZY ~ abs(NUM(T['Z'])* DEN(T['Y'])) - abs(NUM(T['Y'])*DEN(T['Z'])); 

end; 

direction procedure NEXT_CELL__DIRECTION(A,CYX,CZX,CZY); 
/* Return the direction of the next cell through which the ray must be traced. A is the axis corresponding to the value of t. 

CYX. CZX, and CZY are pairwise comparisons of the values of t for the bounding sides of the cell through which the ray 
is exiting. */ 

begin 
value axis A; 
value integer CYX.CZX,CZY; 
global integer array SIGN_M[ {'X ', 'Y', 'Z" }]; 
return(if A = 'Z '  then FACE_DIR('Z',SIGN_M['Z']) 

else if A = "Y" then 
if CZY = 0 then EDGE_DIR('YZ',SIGN_M['Y'],SIGN_M['Z]) 
else FACE_DIR('Y ',SIGN_M['Y ]) 

else if CZX = 0 then 
if CYX = 0 then VERTEX_,DIR(SIGN_M['X '],SIGN...M['Y'],SIGN.._M['Z']) 
else EDGE_DIR('XZ',SIGN_M['X "].SIGN_M['Z']) 

else if CYX = 0 then EDGE_DIR('XY',SIGN_M['X'].SIGN_M['Y']) 
else FACE_DIR('X ',SIGN_M['X '])); 

end; 

procedure FIND_3D_BLOCK(P,POINT.FAR,W ); 
/* P points to a node corresponding to a block of width W having its furthest comer from the origin at FAR (i.e.. FAR['X '], 

FAR['Y "]. and FAR['Z "]). Find the smallest block in P containing the voxel whose nearest comer to the origin is at POINT. 
If P is black or white, then return the values of P, W, and FAR; otherwise, repeat the procedure for the son of P that 
contains POINT. */ 

begin 
reference point node P; 
value integer array POINT[ ~ "X ",'Y','Z" I ]; 
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reference integer array FAR[ ('X ' , 'Y ' , 'Z'/1; 
reference integer W; 
axis I: 
octant Q; 
while GRAY(P) do 

begin 
W .~- W/2; 
Q --- GET_OCTANT(POINT['X '],FAR['X '] - W, 

POINT['Y'I ,FAR['Y']  - W, 
POINT['Z'] ,FAR['Z']  - W); 

for 1 in {'X'.'Y'.'Z'} do FAR[I] ..-- FAR[I] - OFFSET(I,Q),W; 
P .,-- SON(P,Q); 

end; 
end; 

octant procedure GET_OCTANT(X,XCENTER,Y,YCENTER,Z,ZCENTER); 
/* Find the octant of  the block rooted at (XCENTER,YCENTER,ZCENTER) that contains (X,Y,Z). */ 
begin 

value integer X,XCENTER,Y,YCENTER,Z,ZCENTER; 
return (if X < XCENTER then 

if Y < YCENTER then 
if Z < ZCENTER then 'LDB" 
else 'LDF" 

else if Z < ZCENTER then 'LUB' 
else 'LUF '  

else if Y < YCENTER then 
if Z < ZCENTER then "RDB" 
else 'RDF '  

else if Z < ZCENTER then 'RUB'  
else 'RUF') ;  

end; 

procedure OT_GTEQ_NEIGHBOR(P,D,Q,W ); 
/* Determine the type of  direction D and invoke.theappropriate neighbor-finding procedure. Q will contain the neighbor of  

node P, of  size greater than or equal to P, in direction D. W denotes the length of  a side of  node P and the length of  a side 
of  node Q. l fa  neighboring node does not exist, then return NIL. */ 

begin 
value pointer node P; 
value direction D; 
reference pointer node Q; 
reference integer W; 
if TYPE(D) = 'FACE' then OT_GTEQ__FACE_NEIGHBOR2(P,D,Q,LOG2(W )) 

/* LOG2 returns the base 2 log of  W */ 
else if TYPE(D) = 'EDGE' then 

OT_GTEQ_EDGE-NEIGHBOR2(P,D,Q,LOG2(W )) 
else OT_GTEQ_VERTEX_NEIGHBOR2(P,D,Q,LOG2(W )); 

end; 

recursive pointer node procedure OT_GTEQ_FACE_NEIGHBOR2(P,I,Q,L);  
/* Return in Q the face-neighbor of  node P, of  size greater than or equal to P, in direction I. L denotes the level of  the tree 

at which node P is initially found, and the level o f  the tree at which node Q is ultimately found. If such a node does not 
exist, then return NIL. For an octree corresponding to a 2 n × 2 n × 24 image array, the root is at level n and a node at level 
i is at a distance o f n  - i from the root o f the  tree. */ 

begin 
value pointer node P; 
value face I; 
reference pointer node Q; 
reference integer L; 
L --- L + 1; 
if not(null(FATHER(P))) and ADJ(1,SONTYPE(P)) then 

/* Find a common ancestor */ 
OT_GTEQ_..FACE_NEIG H BOR2(FATHER(P),I,Q,L) 

else Q -,-- FATHER(P); 
/* Follow the reflected path to locate the neighbor */ 
if not(null(Q)) and GRAY(Q) then 

begin 
Q -,-- SON(Q.REFLECT(I,SONTYPE(P))); 
L . ,-  L - l; 

end; 
end, 

recursive pointer node procedure OT_GTEQ_EDGE-NEIGHBOR2(P,I .Q.L):  
/* Return in Q the edge-neighbor of node P, of  size greater than or equal to P, in direction I. L denotes the level of the tree 

at which node P is initially found, and the level of  the tree at which node Q is ultimately found. If such a node does not 
exist, then return NIL. */ 
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begin 
value pointer node P; 
value edge 1; 
reference pointer node Q; 
reference integer L; 
L * - L +  1; 
/* Find a common ancestor */ 
if null(FATHER(P)) then Q -,- NIL 
else if ADJ(I,SONTYPE(P)) then 

OT_GTEQ__EDGE_NEIGHBOR2(FATHER(P),I,Q,L) 
else if COMMON_FACE(i,SONTYPE(P)) ~t i2 then 

OT_GTEQ_FACE...NEIGHBOR2(FATHER(P),COMMON__FACE(I,SONTYPE(P)),Q,L) 
else Q ~- FATHER(P); 
/* Follow opposite path to locate the neighbor */ 
if not(null(Q)) and GRAY(Q) then 

begin 
Q *- SON(Q,REFLECT(I,SONTYPE(P))); 
L .*-- L - 1; 

end; 
end; 

recursive Pointer node procedure OT_GTEQ_VERTEX_NEIGHBOR2(P,I,Q,L); 
/* Return in Q the vertex-neighbor of node P, of size greater than or equal to P, in direction i. L denotes the level of the tree 

at which node P is initially found, and the level of the tree at which node Q is ultimately found. If such a node does not 
exist, then return NIL. */ 

begin 
value pointer node P; 
value vertex I; 
reference pointer node Q; 
referencer integer L; 
L*-- L + 1; 
/* Find a common ancestor */ 
if null(FATHER(P)) then Q ~-- NIL 
else if ADJ(I,SONTYPE(P)) then 

OT_GTEQ_VERTEX_NEIGHBOR2(FATHER(P),I,Q,L) 
else if COMMON_EDGE(I,SONTYPE(P)) ~t fl then 

OT_GTEQ_.EDGE_.NEIGHBOR2(FATHER(P),COMMON-EDGE(I,SONTYPE(P)),Q,L) 
else if COMMON_FACE(I,SONTYPE(P)) ~t fl then 

OT_GTEQ_.FACE-NEIGHBOR2(FATHER( P),COM MON_FACE( I,SONTYPE(P)),Q,L) 
else Q *- FATHER(P); 
/* Follow opposite path to locate the neighbor */ 
return(if not(null(Q)) and GRAY(Q) then 

begin 
Q ~-- SON(Q,REFLECT(I,SONTYPE(P))); 
L ~'-- L - 1; 

end; 
end; 

5. EXAMPLE 
It is difficult tO give an example of  the algorithm in 

three dimensions. Thus, instead, we show below how 
ray R is traced through the two-dimensional scene 
given in Fig. 3. The algorithm, as encoded by procedure 
RAY_TRACER and the associated procedures, is also 
valid for two-dimensional scenes. The only necessary 
modifications are minor  and are described briefly be- 
low: 

1. Replace loops and data structures that cycle through 
'X ' ,  'Y ' ,  and ' Z '  by just  ' X '  and 'Y ' .  Thus, 
F I N D _ 3 D _ B L O C K  is replaced by FIND_.2D_ 
BLOCK. 

2. Remove variables CZX and CZY, as well as all tests 
involving them. This means that the conclusion of 
the test (i.e., the action, or actions, to be taken had 
the test's evaluation yielded a value of  true) is also 
removed. 

3. Remove all tests involving ' Z '  and the associated 
actions to be taken had the test's evaluation yielded 
a value of true. 

4. Let the directions W, E, S, N correspond to L, R, 
D, U, respectively, and simplify Tables 6, 7, and 9. 
Table 8 is no longer necessary. 

Cont inuing with our  example, the scene is repre- 
sented as a PM~ quadtree in a 25 × 2 ~ space with an 
origin at the lower left corner. The viewpoint is as- 
sumed to be at the point ( - 8 ,  23). Ray R is assumed 
to pass through the point  (12, 16). Therefore, R is de- 
fined parametrically by 

x =  2 0 . t -  8, 

y = - 7 . t +  23. 

R first enters the scene at the point defined by t = 2/ 
5, i.e., (0, 101/5). This is obtained by taking the max- 
i m u m  of t~ = 2/5 computed at x = 0 and t~, n = - 9 / 7  
computed at y = 32. The point (0, i01/5) is contained 
in cell I. Cell l is exited at the point defined by t = 4/ 
5, i.e., (8, 87/5) in the easternly direction, and is ob- 
tained by taking the m i n i m u m  of t °  ut = 4/5 computed 
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Table 6. F=FACE_DIR(A,SIGN~M[A]). 

A (norm~,l a~xis) $IGN-M[A] F (direction) 

X 
X 
Y 
Y 
Z 
Z 

1 
0 
1 
0 
1 
0 

L 
R 
D 
U 
B 
F 

at x = 8, and t~ ~t = 1 computed at y = 16. This process 
is repeated for the rest of the cells intersected by the 
ray and its result is shown in Table 10. 

Values of t are tabulated as ordered pairs where 
' num'  and 'den' correspond to t 's numerator and de- 
nominator, respectively. Notice that t~, "t = t~" for cell 
2, which means that CYX = 0 and MIN_AXIS is set 
to 'X '  in procedure RAY_TRACER. Procedure 
NEXT_CELL.DIRECTION indicates that the direc- 
tion ofthe next cell is to be found in EDGE DIR('XY', 
0, 1), i .e. .  'RD',  which is the same as 'SE'. The 'SE' 
neighbor of cell 2 is cell 3 and is located by use of the 
two-dimensional analog of procedure OT_GTEQ_ 
NEIGHBOR. Since cell 3 is larger than cell 2, there is 
no need to make use of procedure FIND_2D...BLOCK 
to locate it. 

6. CONCLUDING REMARKS 
We have given an algorithm for tracing a ray in a 

scene represented by an octree by using neighbor find- 
ing. As with any application in computer graphics nu- 
merical precision is an important issue. We have skirted 
this issue, in part, by using rational arithmetic. Such 
an approach is adequate as long as secondary rays do 
not result in the creation of more secondary rays (e .g. ,  
a ray is reflected off several surfaces). The problem is 
that the number of bits that are required to maintain 
the same amount of precision grows geometrically. 

Our algorithm is quite long because a correct im- 
plementation requires the consideration of many subtle 
points. In fact, Wyvill and Kunii[31] give a much 
shorter algorithm. Their algorithm has a similar struc- 
ture to ours although it uses point location rather than 
neighbor finding. Also, it adheres to different conven- 
tions. In the following, we briefly point out how their 
solution could go awry. 

First, let us examine more closely our convention 
that for a ray to pass through a cell (as well as intersect 
an object), it must enter and exit the cell (object) at 
two distinct points. As an example of what could go 
wrong if we don't  adhere to this convention, consider 
Fig. 3. Assume the existence of a ray that passes from 
cell 5 to cell I 1 through the SW corner of cell 5, and 
suppose that we say that the ray passes through cell 4 
before reaching cell 11. Let (ax, a~.) denote the point 
at which cells 5 and 11 touch. Cell 4 is the next cell 
intersected by the ray if we apply procedure 
FIND__2D_BLOCK to the point (ax - I,  aj,).  Now, 
suppose cell 4 is completely occupied by an object such 
that the object's southern and eastern boundaries co- 
incide with the southern and eastern boundaries of the 
cell. This means that a false object intersection will be 
reported. On the other hand, cell 12 is the next cell 
intersected by the ray if we apply FIND_..2D_BLOCK 
to the point (ax, ay - 1) in which case no false object 
intersection is reported. 

Wyvill and Kunii's alternative algorithm identifies 
the next cell by calculating the coordinates of a point 
(i .e. ,  POINT) that is purportedly guaranteed to be in 
that cell and then locates it by use of a process similar 
to that given by FIND_3D_BLOCK. It does not com- 
pute a direction as done in RAY_TRACER. This 
method of calculating POINT is similar to the method 
used in RAY_TRACER with the following minor dif- 
ference. It subtracts SIGN_M [I] from the numerator 
of the t value corresponding to the Ith coordinate of 
the exit point while we. instead, add the term 
SIGN_M [I ].CHANGE(DIRECT(C LI) in the com- 
putation of POINT[I ]. Their algorithm is given below: 

begin 
rational array T [ {'X ",'Y','Z' } ], 
axis I,K; 
for I in {'X','Y','Z'} do 

begin 
NUM(T [I ]) ~ CORNER[I ]-SIGN-M [I] • W-B [I]-S1GN-M [I ]; 
DEN(TIll) -~- MIll; 

end; 
K ~ 'X '; 
for I in {'Y'.'Z'} do 

begin 
if abs(NUM(T[K])*DEN(T[I]))>abs (NUM(T[I])*DEN(T[K])) then K~--I; 

end; 
for I in {'X','Y','Z'} do 

POINT[I] .*- M[I]* NUM(T[K])/DEN(T[K])+B[I]; 
end; 

This algorithm works for ray R in Fig. 3. However, 
if we modify Fig. 3 so that cell 3 is subdivided in the 
same way as the SE quadrant of the entire quadtree, 
then this algorithm can yield an erroneous result. This 

can be seen by tracing ray R through the modified 
figure. The problem is that procedure RAY_TRACER 
goes to cell 3 after cell 2, whereas the alternative al- 
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Table 7. E=EDGF DIR(PIJ,SIGN_M[I],SIGN._M[J]). 

PIJ (normal plane) SIGN_M[I] SIGN_MIJ] E (direction) 

XY 1 
XY 1 
XY 0 
XY 0 
XZ 1 
XZ 1 
XZ 0 
XZ 0 
YZ 1 
YZ 1 
YZ 0 
YZ 0 

LD 
LU 
RD 
RU 
LB 
LF 
RB 
RF 
DB 
DF 
UB 
UF 
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Table 8. VfVERTEX_DIR(SIGN_M[X ],SIGN._M[Y],SIGN_M[ZI). 

SIGN- MIx I SIGN- MIY l SIGN_M[Z] V (direction) 

LDB 
LDF 
LUB 
LUF 
RDB 
RDF 
RUB 
RUF 

gorithm calculates POINT = (12, 16), which FIND_ 
2D_BLOCK determines to be in cell 10. From cell 
10, the alternative algorithm computes POINT = (14, 
15) instead ofthe correct value of POINT = (12, 15). 
Although in the case of the original Fig. 3, 
FIND_..2D_..BLOCK determines both of these points 
to be in cell 3, this is not the case in the modified 
figure. The result is that a transition is made to the 
wrong cell. 

One way to fix the alternative algorithm is to remove 
the subtraction of SIGN_M [I ] from the numerator of 
the t value corresponding to the lth coordinate of the 
exit point. Instead, SIGN_M [J ] is subtracted in the 
computation of POINT[J] where J is the coordinate 
corresponding to the minimum value oft. Wyvill and 
Kunii claim that it is not necessary to compute the 
exact direction of motion. In particular, when a ray 
reaches more than one boundary simultaneously, they 
arbitrarily pick one of the boundaries, and move in a 
direction perpendicular to it. 

Unfortunately, the above fix will not always yield 
the correct result. For example, in two dimensions, a 
motion in the SW direction is decomposed into two 
motions--one each in the S and W directions. This 
can lead to an error as described earlier in this section 
when we discussed the ramifications of the convention 
that for a ray to pass through a cell (as well as intersect 
an object), it must enter and exit the cell (object) at 
two distinct points. Thus, the only way to ensure the 
correctness of the alternative algorithm is to make it 

Table 9. CHANGE(I, A). 

A 
I (direction) 

X Y Z 

L - I  O 0 
R 1 0 0 
D 0 -1 0 
U 0 1 0 
B 0 0 -1 
F 0 0 1 

LD -1 - I  0 
LU -1 1 0 
LB - I  0 - I  
LF - I  0 I 
RD 1 -1 0 
RU 1 1 0 
RB I 0 - I  
RF 1 0 1 
DB 0 -1 -1 
DF 0 -1 1 
UB 0 I - I  
UF 0 I I 

LDB - I  - I  -1 
LDF - I  - I  I 
LUB -1 1 -1 
LUF - I  I i 
RDB 1 -1 -1 
RDF I - I  I 
RUB 1 1 -1 
RUF I 1 I 
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cell size 
num den 

I 8 16 20 
2 4 20 20 
3 16 24 20 
4 8 32 20 
5 4 36 20 
6 4 40 20 

Table 10. Result of tracing ray R through Fig. 3. 

~ out 

n u m  den  

-7  - 7  
-7  -7  

-23 -7  
-15 -7  
-15 -7 
-15  -7  

toul 

~out ~out 
n u m  den 

z8 ~o 8 sT/s 
20 20 12 16 
24 20 IG 73/5 
32 20 24 59/5 
38 ~o 28 s~/s  
40 20 32 9 

direcl;ion of neighbor 
next  cell type 

R E 
RD SE 
R E 
R E 
R E 
R E 

identical to procedure R A Y _ T R A C E R  (i.e., to com- 
pute the exact direction of  the neighboring cell relative 
to the current cell). 
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