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This is the second part of a two-part overview of the 
use of hierarchical data structures and algorithms in 
computer graphics. The focus of Part I was on fun- 
damentals. Part I1 focuses on advanced applications. 
Emphasis is on the octree, and the applications are 
primarily display methods. Topics include use of the 
quadtree as a basis for hidden-surface algorithms, par- 
allel and perspective projection methods to display a 
collection of objects represented by an octree, and the 
use of octrees to facilitate such image-rendering tech- 
niques as ray tracing and radiosity. 

H ierarchical data structures such as the quadtree 
and octree are frequently used in applications in com- 
puter graphics. In Part I,' we concentrated on fun- 
damentaI properties and operations. In Part I1 we 
describe some more advanced applications in which 
they find use. Emphasis is on the octree and on display 
methods. More references and details on hierarchical 
data structures are available el~ewhere. ' .~ 

Our presentation is organized as follows: The first sec- 
tion below describes the use of the quadtree as the basis 
of hidden-surface algorithms. The remaining sections 
focus on the octree. A review of the execution of a num- 
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A 
Figure 1. The viewing pyramid associated with the 
black pixel (shown shaded) in the viewplane. 

ber of basic operations using an octree, including its con- 
struction, is followed by a section on how to apply the 
parallel and perspective projection methods to display 
the collection of objects that are represented by an octree. 
Implicit in this task is the solution of the hidden-surface 
problem to resolve the interaction between the objects 
in the scene modeled by an octree. Then we discuss how 
octrees-by use of ray tracing and radiosity-can facili- 
tate image rendering (i.e., the problem of calculating 
what light falls on the viewplane). We conclude with 
some general comments and a brief discussion of the use 
of hierarchical methods in hardware. 

Ray tracing models light as particles moving in the 
scene. The octree speeds up the determination of the 
objects that are intersected by rays emanating from the 
viewpoint. In contrast, radiosity models light as energy 
and seeks to determine a point at which its distribution 
is at equilibrium, a process requiring the derivation of 
a large set of linear equations. Octrees can simplify the 
calculation of the coefficients of these equations. This 
is especially true if rendering is to be done with respect 
to more than one viewpoint. The efficient solution of 
these equations is aided by heuristics, one of which is the 
adaptive recursive decomposition of the scene’s surface 
analogous to that used in the algorithms of Warnock and 
Catmull, described in the section on displaying curved 
surfaces. 

Quadtree hiddensurface algorithms 
Probably one of the most basic graphics operations is 

the conversion of an internal model of a 3D scene into 
a 2D scene that lies on the viewplane. The purpose is to 
generate an image of the scene as it would appear from 
a given viewpoint and to display it on a 2D screen. This 
is known as the hidden-surface operation (also discussed 

as the visible-subset problem in the section on object- 
space hierarchies in Part 1’). Although many mappings 
are abstractly possible between a 3D space and a 2D 
space, we are interested in a mapping that closely models 
geometric optics. Such mappings are called projections 
(see the section below on parallel and perspective projec- 
tions for more details). 

Conceptually, understanding the image generation 
process is easiest when we examine how the color of a 
single pixel of the viewplane is calculated. In our presen- 
tation, each pixel of the viewplane determines a pyramid 
formed by the set of all rays originating at the viewpoint 
and intersecting the viewplane within the boundary of 
the pixel (see Figure 1). We clip away the objects or their 
parts that are outside the viewing pyramid to reduce the 
number of objects that need to be considered. A color is 
assigned to each pixel which, in the simplest case, is the 
color of the object closest to the viewpoint, while also 
lying within the pixel’s pyramid. 

The hidden-surface task5 can be conceptualized as a 
two-stage sorting process. The first stage sorts the sur- 
faces into the different viewing pyramids (this is also 
known as a bucket sort). The second stage sorts the sur- 
faces within a given viewing pyramid to determine the 
one closest to the viewpoint. 

Four approaches to this task are relevant to our discus- 
sion. First, the 3D scene can be viewed as a sequence of 
overlays of 2D scenes, each of which is represented by 
a quadtree. Second, quadtrees can be used to model the 
viewplane even when the 3D scene consists of polygons 
of arbitrary orientation and placement in the 3D space. 
This solution, first proposed by Warnock6a7 and known 
as Warnock’s algorithm, is an image-space method. War- 
nock was actually interested in two versions of the 
hidden-surface task: the basic hidden-surface task and 
the hidden-line task. The hidden-line task is an adapta- 
tion of the hidden-surface task to a wireframe represen- 
tation of a solid. In the process of developing a solution 
to the hidden-surface task, Warnock also made contribu- 
tions to light modeling’ beyond the scope of this survey. 
For expository purposes, we shall first describe the 
hidden-line operation in our discussion of Warnock’s 
method and then its adaptation to the hidden-surface 
operation. 

The third approach that we present is Weiler and 
Atherton’s object-space hidden-surface a l g ~ r i t h m , ~  
which is analogous to Warnock’s image-space algorithm. 
Weiler and Atherton also point out how image-space 
heuristics can be used to speed up object-space methods. 

The three approaches above assume a vector data 
representation’ of a 3D scene. In the fourth approach, a 
quadtree can be built for the representation of the sur- 
face of a 3D object in parametric space. 

2.5-dimensional hidden-surface elimination 
The technique of 2.5-dimensional hidden-surface 

elimination was devised to handle the display of 3D 
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scenes represented by a forest of quadtrees. It arises most 
commonly in applications in cel-based animation. A cel 
is a piece of transparent plastic on which a figure has 
been painted. A scene can be created by overlaying cels 
(see Figure 2). A given view of the scene can be con- 
structed by first laying down the cel representing the 
background. On top of the background, cels are placed 
that represent objects in the foreground. When each cel 
is represented by a quadtree, scenes can be constructed 
easily. The nodes that correspond to the objects painted 
on the cel are marked as opaque and the remaining 
nodes are marked as transparent. 

Cel-based scene construction is a simplification of the 
hidden-surface task and is described in greater detail 
below. It is simpler than the general 3D task because each 
object is restricted to be in just one cel. Thus, in our 
domain, occlusion is acyclic, whereas it need not be so 
in an unrestricted 3D domain (see Figure 3). As a result, 
xire need not be concerned with problems resulting from 
situations such as object A occluding object B, object B 
occluding object C, and object C occluding object A. 

Equivalent to a sequence of set-union operations, 
2.5-dimensional hidden-surface elimination can be 
implemented in a manner analogous to quadtree inter- 
section as described in the section on aligned quadtrees 
in Part I. '  In particular, starting with the quadtree cor- 
responding to the backmost cel, while moving toward the 
front cel, perform successive overlays of the quadtrees 
of the cels encountered along the path.'" Hunter and 
Steiglitz" '' have shown that the total cost of this process 
is proportional to the sum of the number of nodes in all 
the quadtrees of the cels. 

While the algorithm given above is an optimal worst- 
case method, it can be modified to yield a better average- 
case performance as follows. Process the cels from 
"front-to-back" and mark the blocks in the intermediate 
quadtree as transparent, thereby indicating that up to 
now nothing in the sequence of quadtree nodes cor- 
responding to that location has been opaque. Also mark 
the internal nodes as opaque if all of their subtrees are 
opaque, although their subtrees need not be the same 
color (i.e., they need not correspond to the same object). 
Thus, when traversing the intermediate quadtree and the 
next cel, say C, if the intermediate quadtree has an inter- 
nal node that is marked opaque, then nothing in the cor- 
responding subtree of cel C, say T, is visible. Hence T 
need not be traversed. Furthermore, when the root of the 
intermediate quadtree is marked opaque, then no more 
cels need be visited. 

Such actions have a potential of reducing the execution 
time of the 2.5-dimensional hidden-surface elimination 
task because subtrees corresponding to invisible regions 
need not be traversed. Of course, in a more flexible ani- 
mation system, it is often desirable to overlay unaligned 
cels (i.e., unaligned quadtrees). This can be handled by 
using the techniques described in Part I for computing 
set operations on unaligned quadtrees.' 

Figure 3. A 3D image where occlusion is not tran- 
sitive. 

Warnock's algorithm 
The use of the quadtree for modeling the viewplane 

during the hidden-surface operation was first described 
by Warnock.' A variant of the quadtree is used to repre- 
sent the parts of the scene currently believed to be visi- 
ble. Thus it is an image-space method. The hidden-line 
operation is a derivative task of the hidden-surface oper- 
ation. They differ in how the result of the visibility cal- 
culation is displayed. 

We will now describe the hidden-line operation in 
greater detail. The viewplane's quadtree consists of poly- 
gons formed by the visible edges of the objects in the 3D 
scene. At most one edge is associated with each pixel. 
The edge, if any, that is associated with a pixel cor- 
responds to the one that passes through the pixel's region 
as part of the border of a polygon that is not occluded by 
another polygon closer to the viewpoint. We will use the 
term color to distinguish between pixels that correspond 
to edges of a polygon and those that do not. In other 
words, a pixel is output [i.e., colored) if a visible edge 
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passes through it. 
The quadtree is used in the display process to rapidly 

select the pixels that need to be colored (these are the 
pixels through which visible edges of the scene pass). 
The quadtree is not built explicitly. Instead, the view- 
plane is recursively decomposed (traversed as if it were 
a quadtree) using an appropriate decomposition rule to 
yield a collection of disjoint square regions (i.e., leaf 
nodes). At each such region, drawing (i.e., coloring) com- 
mands for driving a display are output. 

The quadtree decomposition rule used is analogous to 
the one devised by Hunter and Steiglitz.””* There are 
two types of nodes: boundary and empty. A pixel is rep- 
resented by a boundary node if an edge of a polygon 
passes through it; otherwise it is represented by an 
empty node. Empty nodes are merged to yield larger 
nodes, while boundary nodes are not merged. This rule 
enables us to formulate the actions taken by Warnock’s 
algorithm in terms of the following leaf node types and 
corresponding actions: 

At an empty leaf node, draw nothing since no lines 
pass through this region. 

At a leaf node corresponding to a pixel, draw a point 
representing the border of the polygon that occludes 
the upper left-hand corner of the pixel (if no such 
polygon exists, then draw nothing). 

At a leaf node corresponding to a collection of poly- 
gons, draw nothing since the existence of such a node 
means that one of the polygons occludes all the other 
polygons over this region. 

At this point we should briefly explain the relationship 
between the hidden-surface and hidden-line tasks. The 
hidden-line task is closely identified with the use of vec- 
tor displays and plotters. This caused Warnock to inves- 
tigate edge quadtreelike decompositions.’ On the other 
hand, the hidden-surface task is closely identified with 
the use of raster devices. Although our treatment of the 
hidden-line task assumes vector data, it results in the out- 
put of line-drawing commands at a raster/pixel level. By 
doing a bit more calculation, we can often recognize that 
a line will be visible without having to subdivide all the 
way down to the pixel level. 

The algorithm given above for the hidden-line task can 
be modified to handle the hidden-surface task as well. 
The only modification needed is that empty nodes 
representing regions completely spanned by a polygon 
must now be colored with the color of that polygon, 
instead of being ignored (as happens in the hidden-line 
display process). Of course, the boundary nodes must be 
assigned one of the colors of their shared polygons. 

One problem with building quadtree decompositions 
of data presented as arbitrary collections of polygons in 
3D space is how to determine when there is no need for 
further subdivision. For example, this situation arises 

when a node contains a collection of polygons where one 
polygon completely occludes the other polygons. This 
requires a sort of all the polygons in the node. Since 
occlusion generally is not transitive, sorting does not 
always work (recall Figure 3). If sorting fails because of 
nontransitivity or because the nearest polygon does not 
occlude the entire region, then further subdivision is 
needed to determine what is visible in the region cor- 
responding to the node. 

Note that we have been assuming that the closest poly- 
gon’s color was the most appropriate color for a pixel. 
Clearly, however, a pixel could contain small features that 
this approach would represent falsely. This general prob- 
lem is referred to as aliasingT3-attempts to resolve it are 
referred to as antialiasing. Warnock handled the situa- 
tion of a pixel that contained complicated features by 
pretending that the viewing pyramid for the pixel was 
a single ray passing through the pixel’s upper left-hand 
corner. If this produces an approximation of the image 
that is too rough for a particular application, then clas- 
sical antialiasing techniquesT3 (such as computing a 
weighted average of the visible intensities within a pixel) 
can be applied without altering the basic algorithm. 

Weiler-Atherton’s algorithm 
Warnock’s algorithm is an image-space hidden-surface 

algorithm. Weiler and Athertong developed an analo- 
gous object-space hidden-surface algorithm. The object 
space consists of a collection of polygons. Note that 
Weiler and Atherton use image-space heuristics to speed 
up their object-space algorithm. Their object-space algo- 
rithm has the following structure: 

1. 

2. 

3. 

4. 

5. 

6. 

Order all the polygons by their smallest z value 
(where the viewer is located at a z value of minus 
infinity). 

Find the closest polygon, say P, to the viewer. 

Form two collections of polygons. The first collec- 
tion contains those polygons whose projection 
overlaps (partially or totally) the projection of P on 
the viewplane (which we will call the inner set). The 
second collection contains those polygons whose 
projection is not entirely covered by the projection 
of P (which we will call the outer set). Where a poly- 
gon is in both the inner and outer sets, clipping that 
polygon against P and storing the resulting poly- 
gons in the appropriate sets is often convenient. 

Remove all polygons from the inner set that do not 
occlude part of P. 

If no polygons occlude P (i.e., the inner set is 
empty), then the hidden-surface task has now been 
solved for P. Proceed to solve the hidden-surface 
task for the outer set. 

If there exist polygons that occlude P (i.e., the inner 
set is nonempty), then recursively go to step 2 and 
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choose a “nearest” polygon from the occluding 
polygons in the inner set of P. Upon return, process 
the outer set of P. 

To reduce the number of polygons that have to be com- 
pared in step 4, Weiler and Atherton propose two 
preprocessing methods relevant to our study. The first 
method recursively subdivides the image space (in the 
x and y directions) until the number of polygons in a 
given region, say R, drops below a specified threshold. 
Within region R,  the basic algorithm described above is 
used. Note that at step 4, only the polygons in region R 
need to be considered. 

The second method is based on the observation that 
besides preprocessing by subdividing in the x and y 
directions, subdividing in the z direction might also be 
useful. In particular, after subdividing in the z direction, 
they propose to solve the hidden-surface task for the 
backmost volume elements first, and then to use this 
solution as part of the polygon list for the volume ele- 
ments in the front. This “back-to-front” approach is also 
discussed above in the context of 2.5-dimensional 
hidden-surface elimination. The last heuristic could be 
viewed as an octree method (see the section on parallel 
and perspective projections for more details). 

Displaying curved surfaces 
In this article, vector data is usually viewed as consist- 

ing of straight line segments and polygons. However, the 
quadtree paradigm also has proved useful to researchers 
interested in the manipulation of curved features such 
as surfaces. Curved surfaces are often represented by a 
collection of parametric bicubic surface patches.I4 
Curved surface representations are important in com- 
puter graphics applications, because they are often more 
compact than polygonal representations. They also ena- 
ble the stipulation of continuity in the derivative of piece- 
wise surface representations. This is important for 
ray-tracing calculations (see the section on ray tracing 
below). 

One early approach to displaying such surfaces was 
developed by Catmull.” The idea is to decompose the 
patch into subpatches recursively until the subpatches 
that are generated are so small that they span only the 
center of one pixel (or can be shown to lie outside the dis- 
play region). The test for how many pixel centers are 
spanned by the patch (or whether or not the patch lies 
outside the display area) is based on the approximation 
of the patch by a polygon connecting the patch’s corners. 
In our examples, patches are denoted by solid lines, and 
their approximating polygons are denoted by broken 
lines. 

As an example of the recursive decomposition of 
patches, consider Figure 4. Figure 4a shows a single 
patch with corners A, B, C, and D on a grid of pixel 
centers. We observe that quadrilateral ABCD, which 

. . . . . c .  . . . . . . . c .  . . 
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Figure 4. Example of the use of recursive decomposi- 
tion into patches for the display of curved surfaces (in 
Figures 4a and 4b patches are denoted by solid lines; 
their approximating polygons, by broken lines): (a) a 
single patch, (b) decomposition of Figure 4a into four 
patches, (c) decomposition of Figure 4b into sixteen 
patches, (d) final decomposition such that each patch 
contains no more than one pixel center, (e) the raster 
image corresponding to the decomposition. 

approximates the patch ABCD, contains more than one 
pixel center. Thus the patch must be decomposed. Fig- 
ure 4b shows the decomposition of patch ABCD into 
quadrilateral patches AFIE, BGIF, CHIG, and DEIH. 
Since the quadrilateral approximations of each of these 
patches again span more than one pixel center, they must 
each be subdivided further, as shown in Figure 4c. This 
time there is not enough detail in the figure to show the 
difference between the patch and its quadrilateral 
approximation. Note that in Figure 4c the quadrilateral 
approximation for patch JFKN contains only one pixel 
center and hence will not need to be subdivided further. 
Also, the quadrilateral approximation of patch MNLG 
contains no pixel centers, and thus it too will not need 
to be subdivided further. However, the quadrilateral 
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Figure 5. (a) The 3D view of the resulting subdivision 
of a surface using a quadtreelike decomposition rule 
in parameter space. Some of the cracks are shown 
shaded. (b) The quadtree of Figure 5a in parameter 
space. (c) The restricted quadtree corresponding to 
Figure 5b. (d) The triangulation of Figure 5c. 

approximation of patch IJNM contains two pixel centers 
and therefore will need to be subdivided further. The 
final decomposition of the original patch is shown in Fig- 
ure 4d, and the raster image yielded by this decomposi- 
tion is shown in Figure 4e. 

As was observed by Catmull, the recursive decompo- 
sition approach to approximating the location of a patch 
can be generalized and thereby applied to other patch 
representations. Patch representations based on charac- 
teristic polyhedrons (e.g., Bezier and B-spline patches) 
allow these test decisions to be based on an approxima- 
tion of each patch by the convex hull enclosing its con- 
trol points (which is guaranteed to enclose the entire 
p a t ~ h ) . ' ~  This yields a more accurate result than Cat- 
mull's approximation, which is based only on four 
corners of a patch. 

As with Warnock's algorithm, Catmull's algorithm is 
oriented toward the generation of display commands. 
Thus it does not explicitly generate the quadtree struc- 
ture, although its processing follows the quadtree decom- 
position paradigm in the parametric space. Since the 
patches exist in 3D space, more than one patch can span 
the same pixel center. Thus the Catmull algorithm makes 
use of a z-buffer to keep track of the intensity/color of the 

patch that has most recently been found to be closest to 
the viewpoint. Basically, a z-buffer is a 2D array that 
represents the displayed image. Each entry of the array 
contains a color and a depth. Initially, each pixel in the 
displayed image is black and at an infinite depth. When- 
ever a new color is to be assigned to a pixel, the depth of 
the location to which the pixel corresponds is checked. 
If it is greater than the current depth in the z-buffer, then 
the assignment is ignored; otherwise, the color and 
depth values in the z-buffer are updated. Although tra- 
ditionally the z-buffer has aliasing problems (i.e., it 
produces jagged borders between neighboring regions), 
these can be mitigated with the rgb-a-z approach.'6 

Warnock's algorithm requires that the scene be com- 
pletely specified at the time the algorithm is initiated. In 
contrast, the z-buffer enables elements of the scene to be 
processed in an arbitrary order. This permits elements 
to be added to the scene without having to reprocess ele- 
ments of the scene that have been previously processed. 
In other words, at any time during its processing, the z- 
buffer represents what would be displayed if there were 
no further elements in the scene. 

The z-buffer is represented explicitly as a 2D array. 
Such an array could be represented by a quadtree. This 
quadtree z-buffer representation might prove useful for 
generating line representations of the borders between 
surfaces, but not for generating shaded surfaces.17 Note 
that raster quadtrees are seldom efficient for represent- 
ing scenes including shaded surfaces, since each pixel 
location on a shaded surface will have a slightly differ- 
ent color. However, if only the borders of the surfaces are 
represented, then the interior portions of the surfaces 
can be efficiently merged. 

Catmull's display algorithm has been adapted to han- 
dle a constructive solid geometry" representation of 
objects (i.e., objects composed as Boolean combinations 
of primitive objects) for the case where the initial primi- 
tives are solids bordered by bicubic  surface^.'^ Instead 
of subdividing down to the pixel level everywhere, the 
subdivision is performed only until it has generated sub- 
patches that are mutually disjoint. Two subpatches can 
be viewed as disjoint when the interiors of the convex 
hulls of their respective control points are disjoint. While 
this approach helps to determine the actual intersection 
between two subpatches, it does not address the prob- 
lem of choosing which patches should be compared to 
determine the possible existence of an intersection. A 
vector octree approach to this problem'' is mentioned 
in the section on vector octrees in Part I.' 

While quadtrees are a natural way to organize the para- 
metric representation of bicubic patches defined by four 
corner points plus auxiliary information (e.g., tangents 
and twist vectors in the case of B-~plines'~), the result- 
ing set of quadrilaterals may be difficult to display. For 
example, it is difficult to ensure that the resulting four 
corners of the patches will actually be coplanar. Further- 
more, when one patch is subdivided further than its 
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neighbor, it is almost always the case that the patches will 
be misaligned (i.e., cracks will arise, as shown in Figure 
5a). 

The coplanarity problem can be resolved by triangulat- 
ing the quadrilaterals determined by the corner values 
of the leaf nodes. One way to regain alignment is to adjust 
the vertices of adjacent blocks of unequal size so that the 
vertex of the smaller block is on the edge between the ver- 
tices of its adjacent block of larger size. This method is 
used by Tamminen and Jansen." For example, the ver- 
tex at the NW corner of the SW son of the NE quadrant 
in Figure 5a would be replaced by the midpoint of the 
eastern boundary of the NW son. The adjacent block can 
be determined using quadtree neighbor-finding tech- 
niques as discussed in Part I. '  Tamminen and Jansen 
perform the adjustment process by traversing the quad- 
tree of the patch, using an active border data structure." 

The alignment problem can also be overcome by using 
a nonstandard decomposition rule. Von Herzen and 
Barrz3 propose a modification of the quadtree data 
structure, which they term a restricted quadtree. Given 
an arbitrary quadtree decomposition rule, to form a 
restricted quadtree, nodes that have a neighbor whose 
level in the tree is more than one level deeper are sub- 
divided further until the condition holds. (This method 
of subdivision is also used in finite element analysis as 
part of a technique called h-refinementz4 to adaptively 
refine a mesh that has already been analyzed, as well as 
to achieve element compatibility.) In contrast to the more 
traditional representation shown in Figure 5b, the result 
is the quadtreelike decomposition shown in Figure 5c. 
Note that the SE quadrant of Figure 5b had to be decom- 
posed once. A combined solution to these two problems 
triangulates the quadtree leaves of Figure 5c in the man- 
ner shown in Figure 5d. The rule is that every square is 
decomposed into no less than four and no more than 
eight triangles. Generally, for each block there are two tri- 
angles per side unless the side is shared by a larger block, 
in which case only one triangle is formed. Observe that 
there are no cracks. 

Algorithms using octrees 
The algorithms for performing basic computer 

graphics operations such as translation, rotation, scal- 
ing, and clipping on both raster and vector octrees are 
direct extensions of the algorithms presented in Part I 
for quadtrees.' The techniques used in performing 
some of these operations (e.g., preorder traversal, rec- 
tilinear unaligned traversal, general unaligned traversal, 
bottom-up neighbor finding, and top-down neighbor 
passing) can all be extended to deal with octrees once 
some additional bookkeeping information is main- 
tained. 

With the sheer amount of data that must be examined, 
constructing a raster octree from a 3D array represen- 
tation of an image is quite costly. Because of the large 

number of primitive elements that must be inspected, the 
conventional raster-scanning approach used to build 
quadtrees spends much time detecting the mergibility 
of nodes. The time and cost can be reduced, in part, by 
using the predictive techniques discussed in the section 
on constructing quadtrees in Part I.'~2".2h The method 
uses an auxiliary array whose storage requirements are 
as large as a cross section of the image, which may ren- 
der the algorithm impractical. However, since this array 
is often quite sparse, the problem can be overcome by 
representing it with a linked list of blocks in a manner 
similar to one used for connected component labeling 
for images of arbitrary dimension." Alternatively, we 
can initially represent the data by using one of the more 
compact 3D representations, such as the boundary 
model or the CSG tree." 

The boundary model represents a 3D object by its 
faces. The winged-edge representation mentioned in the 
beginning of Part when applied to polyhedrons, is 
one such representation. To create a boundary model, we 
must first decompose the surface of the object into a col- 
lection of faces. The result is a graph whose edges cor- 
respond to the interconnections between the faces of the 
object. For example, the object in Figure 6a can be 
decomposed into the set of faces and interconnections 
shown in Figure 6b. 

Variations in the boundary model arise from the use 
of different methods for representing individual faces 
(which could be either polygons or curved surfaces), and 
different approaches to specifying the interconnection 
between adjacent faces. For example, we can view faces 
as meeting at either their borders or corners. Thus, 
instead of a graph where the vertices represent faces and 
the edges represent their interconnection, we also have 
boundary models where the vertices of the graph repre- 
sent borders of a face or even the corners of a face. A 
method for building a raster octree from a boundary 
model by the use of connectivity labeling has been 
described elsewhere." Kunii, Satoh, and Yamaguchi 
address the opposite task of generating a valid boundary 
model from a raster octree.2g A related task is the output 
of a line drawing of an object represented by a raster 
octree." 

Constructive solid geometry (CSG) methods represent 
rigid solids by decomposing them into primitive objects 
that are subsequently combined using variants of 
Boolean set operations such as union, intersection, and 
set-difference, and possibly geometric transformations 
(e.g., translation and rotation). These primitives are often 
in the form of such basic solids as cubes, parallelepipeds, 
cylinders, and spheres. A more fundamental primitive 
is a half-space whose border can be either linear or non- 
linear. For example, a linear half-space in three dimen- 
sions is given by the following inequality: 

a . x +  b . y + c . z r d  
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Figure 6. (a) A 3D object, (b) its boundary model, and (c) its CSG tree. 

CSG methods are usually implemented by a CSG 
tree-a binary tree in which internal nodes correspond 
to geometric transformations and Boolean set opera- 
tions, while leaves correspond to the primitive objects 

(e.g., half-spaces). For example, the object in Figure 6a can 
be decomposed into three primitive solids whose CSG 
tree is shown in Figure 6c. A bintree representation of 
a raster octree can be built from a CSG tree.31*32 These 
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techniques are useful for conversion as well as 
display.33,34 

In some applications, a problem even more fundamen- 
tal than building the octree is acquiring the initial bound- 
ary data to form the boundary of the object being 
represented. One approach is to use a 3D pointing device 
to create a collection of samples from the surface of the 
object. Once the point data are collected, a reasonable 
surface must be interpolated to join them. 

Interpolation can be achieved by triangulation. A sur- 
face triangulation in 3D space is a connected set of dis- 
joint triangles that forms a surface whose vertices are 
points in the original data set. There are many triangu- 
lation methods currently in use, both in 2D spaces35 
and 3D spaces.36 They differ in how they determine 
which points are to be joined. For example, often we 
want to form compact triangles instead of long narrow 
ones. However, the problems of minimizing total edge 
length or maximizing the minimum angle pose difficult 
combinatorial problems. Posdamer" has suggested use 
of the ordering imposed by an octree on a set of points 
as the basis for determining which points should be con- 
nected to form the triangles. 

Posdamer's algorithm uses an octree whose leaf 
criterion is that no leaf can contain more than three 
points. The initial set of triangles is formed by connect- 
ing the points in the leaves that contain exactly three 
points. Whenever a leaf node contains exactly two points, 
these points are connected to form a line segment 
associated with the leaf node. This is the starting point 
for a bottom-up triangulation of the points by merging 
disjoint triangulations to form larger triangulations. The 
isolated points (i.e., leaf nodes that contain just one point) 
and isolated line segments are viewed as degenerate tri- 
angulations. The triangulation associated with a gray 
node is the result of merging the triangulations 
associated with each of its sons. By merging or joining 
two triangulations, we mean that a sufficient number of 
line segments are drawn between vertices of the two tri- 
angulations so that we get a new triangulation contain- 
ing the original two triangulations as subtriangulations. 

When merging the triangulations of the eight sibling 
octants, we can use a number of heuristics to choose 
which triangulations are joined first. The order in which 
we choose the pair of triangulations to be joined is deter- 
mined, in part, by the following factors. First and fore- 
most, merging triangulations in siblings whose 
corresponding octree blocks have a common face is pre- 
ferred. If this is impossible, then triangulations in nodes 
that have a common edge are merged. Again, if this is not 
feasible, then triangulations in nodes that have a com- 
mon vertex are merged. For each preference, the trian- 
gulations that are closest according to some distance 
measure are merged first. 

There are many other methods of building an octree 
for an object. The simplest is to take quadtrees of cross- 
sectional images of the object and merge them in 

sequence. This technique is used in medical applications 
in which the cross sections are obtained by computed 
tomography methods. Yau and Srihari"' discuss this 
technique in its full generality by showing how to con- 
struct a k-dimensional octreelike representation from 
multiple (k-1)-dimensional cross-sectional images. Their 
algorithm processes the cross sections in sequence. Each 
pair of consecutive cross sections is merged into a sin- 
gle cross section. This pairwise merging process is 
applied recursively until there is one cross section left 
for the entire image. 

For example, assuming a k-dimensional image of side 
length 2", once the initial 2" cross sections have been 
merged, the resulting 2" ~ cross sections are merged 
into 2"-* cross sections. In general, when merging 2"' 
cross sections into z"'-' cross sections, only nongray 
nodes at levels rn to n are tested for merging. Thus a cross 
section at level rn corresponds to a stack of 2" -I1' volume 
elements of side length 2"' and is represented by a 
(k ~ 1)-dimensional quadtree whose nodes are at levels rn 
through n. 

In most applications the volume of the available data 
is much smaller and thus a small number of 2D images 
are used to reconstruct an octree representation of a 3D 
object or a scene of 3D objects. In this case, projection 
images (termed silhouettes) are taken from different 
viewpoints. These silhouettes are subsequently swept 
along the viewing direction, thereby creating a bound- 
ing volume, represented by an octree, that serves as an 
approximation of the object. The octrees of the bound- 
ing volumes, corresponding to views from different 
directions, are intersected to yield successively finer 
approximations of the object. 

Martin and A g g a r ~ a l ~ ~  use this method with volume 
segments that are parallelepipeds stored in a structure 
that is not an octree. Chien and Aggarwal 39 show how 
to use this method to construct an octree from the quad- 
trees of the three orthogonal views. Hong and Shneier"" 
point out that the task of intersecting the octree and the 
bounding volume can be made more efficient by first 
projecting the octree onto the image plane of the sil- 
houette and then performing the intersection in the 
image plane (see also an article by Potmesil"). In the 
rest of this section we assume that the silhouettes result 
from parallel views, although perspective views have also 
been 

Generally, three orthogonal views often are insuffi- 
cient to obtain an accurate approximation of the object, 
and thus more views are needed. Chien and A g g a r ~ a l ~ ~  
overcome this problem by constructing what they term 
a generalized octree from three arbitrary views whose 
only requirement is that they are not coplanar. The 
generalized octree differs from the conventional raster 
octree in that each node represents a parallelepiped 
whose faces are parallel to the viewing planes. The 
approximation is refined by intersecting the projection 
of each object node, say P, in the generalized octree with 
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Figure 7. (a) Perspective projection of a cube, (b) par- 
allel projection of a cube. 

the image plane of the additional view. Unless its projec- 
tion lies entirely within the object region in the addi- 
tional view, Pis  relabeled as a non-object node or a gray 
node. Note the similarity of this method with that of 
Hong and S h n e i e ~ ~ '  

A problem with using additional views from arbitrary 
viewpoints is that intersection operations must be 
explicitly performed to determine the relationship 
between the projections of the octants in the octree space 
and the quadrants in the image space of the new view. 
In the general case, the silhouette is approximated by a 
polygon. The intersection of the polygonal projection of 
an octant with the polygon approximation of a silhouette 
is a special case of the polygon clipping p r ~ b l e m . ' ~  

point out that sweeping the 
silhouette image of an orthographic parallel projection 
and restricting the views enable the exploitation of a 
regular relation between octants in the octree space and 
quadrants in the image space. (An orthographic parallel 
projection is a parallel projection in which the direction 
of the projection and the normal to the projection plane 
are the same, while in an oblique parallel projection they 
are not.46) As a result, the intersection operation can be 
replaced by a table-lookup operation. The key idea is to 
represent the image array by a quadtree, and to make use 
of mappings between the quadrants and the octants so 
that the octree can be constructed directly from the sil- 
houettes of the digitized image. We thereby avoid the 
need to perform the sweep operation explicitly. 

The image array corresponding to the silhouette is pro- 
cessed as if we are constructing its quadtree. Veenstra 
and Ahuja use 13 views (rather than 26 views, since the 
front and back views contain the same information in 
the case of a silhouette). There are three face views, six 
edge views, and four vertex views. The face views are 
taken with the line of sight perpendicular to a different 
face of the octree space; the faces must be mutually 
orthogonal. The edge views are taken with the line of 
sight passing through the center of an edge and the cen- 
ter of the octree space. The vertex views are taken with 

Veenstra and 

the line of sight passing through a vertex and the center 
of the octree space. The vertex views are also known as 
isometric projections. 

At this point, we explain why these 13 views are used. 
Assume the existence of an octree representation of the 
scene, and consider which projections of the octree are 
the most natural. The face views enable us to maintain 
a quadtree representation of the octree's projection. With 
rectangular-shaped quadtree blocks (with an aspect ratio 
of fl:l), the edge views also enable the projection of the 
octree to be maintained as a quadtree. Finally, the projec- 
tion of the octree as seen from the vertex views can be 
maintained by a quadtree decomposition based on 
equilateral  triangle^.^^'^' 

In some situations even 13 views are inadequate to 
obtain a sufficiently accurate approximation of the 
object, particularly when the object has a number of con- 
cave regions. Here it is best to use a ranging device to 
obtain range data. The range data can be viewed as par- 
titioning the scene into three parts: the visible surface of 
the scene, the empty space in front of this surface, and 
the unknown space behind the surface. Conn01ly~~ con- 
structs an octree representation of the scene that cor- 
responds to the series of such range images. This octree 
represents a piecewise linear approximation of the sur- 
faces of the scene. A quadtree is used as an intermedi- 
ate representation of a piecewise linear surface 
approximating the data constituting a single range image 
before its incorporation into the octree. Connollyso has 
derived an octree-based heuristic for selecting the posi- 
tions from which to take subsequent range images. 

Parallel and perspective projections 
Once an octree has been constructed, it is natural to 

want to display it. The two display techniques used most 
commonly are the perspective projection and the parallel 
projection. The perspective projection is formed with 
respect to a viewpoint and a viewplane. In this case, all 
points lying on a given line through the viewpoint proj- 
ect onto the same point on the viewplane (see Figure 7a). 
A parallel projection can be defined as a special case of 
the perspective projection such that the viewpoint is at 
infinity (see Figure 7b). 

For scenes represented by raster octrees, the most com- 
mon display technique is the parallel pr~jection.~'.~' 
The parallel projection of a raster octree is at its simplest 
when the viewplane is parallel to one of the faces of a 
node in the tree. This situation is equivalent to the 
2.5-dimensional hidden-surface task discussed earlier. 
A special case of the parallel projection technique of 
interest to engineers is the isometric projection. It has the 
property that the silhouette of a cube corresponding to 
the space spanned by the root of an octree projects onto 
a regular hexagon, which can be decomposed into six 
equilateral triangles. These triangles are decomposed 
further into triangular quadtrees to determine what por- 
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tions of the leaf nodes are visible for display. A display 
algorithm based on this approach is reported by 
Yamaguchi et al.48 

Implicit in the task of displaying an octree is the solu- 
tion of the hidden-surface task for the interaction among 
the objects represented by the octree. Not surprisingly, 
since the octree imposes a spatial ordering on objects, 
the hidden-surface task for scenes represented by octrees 
can be solved more efficiently than the general hidden- 
surface task for arbitrary polygons. 

Note that any opaque object in the four front octants 
of an octree will occlude any opaque object in the back 
four octants. This property holds recursively within each 
of the suboctants. Display of the scene is facilitated by 
constructing a display quadtree that corresponds to a 
partial 2D view of the scene. The display quadtree is 
updated as the nodes of the octree are traversed from 
back-to-front. Each opaque node, say P, encountered in 
this traversal “paints out” [i.e., overwrites) the previous 
view contained in a portion of the display quadtree that 
coincides with the projection of F! Of course, as indicated 
in the discussion of the 2.5-dimensional hidden-surface 
task, the nodes could also be processed from front-to- 
back, thereby allowing for the possibility of visiting fewer 
nodes. 

Generalizations of the parallel projection to planes at 
arbitrary positions and orientations are described by 
M e a g h e ~ - ~ ~  and Y ~ u . ~ ~  Straightforward generalizations 
can also be made to compute perspective projections 
onto arbitrary planes. Another approach to the perspec- 
tive projection task is first to transform the 3D scene into 
a new 3D scene whose parallel projection is the same as 
the corresponding perspective projection of the original 
scene. This approach has been used on CSG trees, which 
were then transformed into a bintree for display by one 
of the parallel projection methods discussed above.34 

A drawback to displaying scenes represented by a 
raster octree is that there is little potential for using light- 
ing models for the shading of the scene, since adjacent 
faces of octree nodes meet at 90” angles. One approach 
for overcoming this drawback is described by Doctor and 
Torborg.” They suggest that the amount for shading a 
face of a node can be calculated as a function of the num- 
ber of the node’s transparent neighbors. Thus, since a 
node on the corner of an object surrounded by empty 
space has fewer transparent neighbors, it will be brighter 
than another node on the interior of a face of the object. 
An interesting highlighting effect results. In his octree 
machine,55 Meagher overcame this problem for octrees 
that are formed by conversion from other kinds of geo- 
metric models by storing surface normals in the voxels 
intersecting the surface of the object being viewed. This 
problem has been investigated more recently, too.56-58 

Another solution to the problem of shading raster 
octree images is to use vector octrees to store the polyg- 
onal faces of the scene (from such faces, more accurate 
information about shading can be derived, as discussed 

in the next section). An interesting alternative to the vec- 
tor octree is the binary space-partitioning (BSP) tree,59 
in which the planes that partition the scene are copla- 
nar with some of the polygons in the scene. A hierarchi- 
cal representation of the scene is formed by choosing a 
distinguished polygon from the scene. The scene is then 
decomposed into two half-spaces by the plane in which 
the distinguished polygon lies. Polygons intersected by 
this plane are split into two separate polygons. This par- 
titioning process is recursively applied to these half- 
spaces. The choice of the partitioning polygons requires 
care. The BSP tree structure was originally proposed as 
a preprocessing step for a hidden-surface algorithm, but 
has since been applied to other computer graphics 
tasks. 5‘3-62 

Ray tracing 
Although the parallel and perspective projection dis- 

play techniques are suitable for computer-aided design, 
realistic modeling of lighting effects generally requires 
using some variant of ray t r a ~ i n g . ’ ~  Ray tracing is an 
approximate simulation of how the light propagated 
through a scene lands on the image plane. This simula- 
tion is based on classical optical notions of refraction 
and diffuse and specular r e f l e ~ t i o n . ~ ~  Although the 
geometry of the reflection and refraction of “beams” of 
light from surfaces is straightforward, the formulation 
of equations to model the intensity of the light as it leaves 
these surfaces is a recent development. The quality of the 
displayed image is a function of the appropriateness of 
the model represented by these equations and the pre- 
cision with which the scene is represented. 

The amount of time required to display a scene is heav- 
ily influenced by the cost of tracing the path of the light 
rays as they move backward from the viewer’s eye, 
through the pixels of the image plane, and out through 
the scene. For example, Whitted63 reports that as much 
as 95 percent of the total picture-generation time may be 
required to calculate points of intersection between light 
rays and objects in a complex scene. Thus the motivation 
for using the octree in ray tracing is to enable the calcu- 
lation of more rays with greater accuracy. 

Since light-modeling equations rely on the availability 
of accurate information about the location of the normal 
to the surface at the point of its intersection with the ray, 
vector octrees are generally more appropriate than raster 
octrees. This is especially true for vector octrees that can 
represent curved rather than planar surfaces using either 
curved patches” or curved  primitive^.^^ 

Octrees have been used to speed up intersection cal- 
culations for ray t r a ~ i n g . ~ ~ . ~ ’  The basic speedup can be 
seen by examining the 22-sided polygon in Figure 8a. We 
use a quadtree instead of an octree to simplify the 
presentation. A naive ray-tracing algorithm would have 
to test the ray emanating from the viewpoint against each 
of these sides, sort the resulting intersections, calculate 
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Figure 8. (a) Example polygon and (b) its correspond- 
ing quadtree with a ray shown to emanate from the 
viewpoint and reflect from the object. 

the reflected ray, and finally test the reflected ray to see 
if it intersects any other portion of the polygon. Figure 
8b shows that an algorithm based on a quadtree or an 
octree would perform the same calculation by visiting 
only six leaf nodes (nodes 1, 2, 14, 6, 3, and 4). 

Ray tracing in an octree is a two-step process. First, we 
must determine the identity of the neighboring node to 
be visited next. Several techniques can be used. 
G l a ~ s n e r ~ ~  uses a simplification of the Cyrus-Beck clip- 
ping a l g ~ r i t h m . ' ~ ' ~ ~  Fujimoto, Tanaka, and Iwata66 dis- 
cuss how a fast 2D line-drawing algorithm can be 
adapted to perform 3D ray tracing in an octree. This 
results in an algorithm that can determine the direction 
of the neighbor relative to the node whose neighbor is 
being sought, using just a few integer addition, subtrac- 
tion, and shift operations. 

Second, we must locate the neighboring node. A 
reasonable approach is to use the neighbor-finding tech- 
niques discussed in Part I.' Jansen6' discusses both top- 
down and bottom-up neighbor-finding for ray tracing in 
an octree. G l a ~ s n e r ~ ~  represents the octree as a linear 
octree but stores the octree nodes in a hash table rather 
than a list7' or a B-tree.71372 Instead of using standard 
neighbor-finding techniques (either top-down or bottom- 
up] to move between the nodes that lie sequentially along 
a given ray, the identity of the neighboring node is deter- 
mined by calculating a point that would lie in the neigh- 
bor and then searching the octree for that point. This 
approach has also been applied to the pointer-based rep- 
resentation of o c t r e e ~ . ~ ~ * ~ ~  An analogous approach uses 
the bintree representation of ~ c t r e e s . ~ ~  

The advantage of using the octree in ray tracing is a 
reduction in the number of ray-object intersection tests. 
The key is to choose an appropriate octree decomposi- 

tion rule and to decide on the maximum level of decom- 
position. When the cells of the octree decomposition are 
large, the number of tests is reduced, but the tests become 
more complex. On the other hand, when the cells are 
small, there are many tests but their complexity is 
reduced. In particular, there are many empty cells. 
Fujimoto, Tanaka, and Iwata66 suggest that the space be 
subdivided into a regular grid and have found situations 
where this is preferable to the decomposition induced 
by an octree. Generally these are scenes where the num- 
ber of distinct objects is large in comparison with the 
level of decomposition. 

Snyder and Barr74 suggest an approach similar in 
spirit to that of Fujimoto, Tanaka, and Iwata. They pro- 
pose a general structure that forms a hierarchy of 3D 
arrays (grids] and linked lists. A scene is decomposed 
into a list of bounding objects in a somewhat ad hoc man- 
ner. These bounding objects are in turn decomposed into 
a grid of cells. Each of these cells can contain a list of 
objects. In many ways, this method merges object-space 
and image-space techniques. The method has been used 
for scenes as large as 400 billion triangles. 

A different approach to ray tracing has been proposed 
by Arvo and Kirk.75 They observe that neighboring rays 
tend to intersect the same objects. This property moti- 
vates them to represent the rays as points in a five- 
dimensional space (called a ray space]. A ray is defined 
by the x, y, and z coordinate values of its origin, and the 
8 and 4 parameters of its direction as it leaves the origin. 
An object is inserted into this five-dimensional ray space 
by marking all the points representing rays that would 
intersect the object before any others. The mechanics of 
this insertion process are presented by Arvo and Kirk.75 
The five-dimensional ray-tracing process is represented 
by a five-dimensional hyperoctree. Once a scene is built, 
ray tracing consists of performing point location oper- 
ations in the five-dimensional space. 

Nevertheless, the octree approach to ray tracing does 
seem promising. For example, G l a ~ s n e r ~ ~  reports that 
tracing 597,245 rays in a scene of 1,536 objects required 
42 hours and 12 minutes using nonoctree ray-tracing 
techniques, while only 2 hours and 57 minutes were 
required using octrees. Another scene estimated to 
require 141 hours using nonoctree methods was ana- 
lyzed in 5 hours and 5 minutes using octrees. 

Radiosity 
While for many years ray tracing was the dominant 

approach to the realistic rendering of images, newer and 
different techniques have recently emerged. One such 
method is the radiosity approach.76 Instead of modeling 
light as particles bouncing around in a scene (as is done 
in ray tracing], the radiosity approach models light as 
energy whose distribution tends toward a stable 
equilibrium. In other words, the radiosity approach 
treats light as if it were heat: Light sources behave as 
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sources of heat, and surfaces that reflect light behave as 
surfaces that reflect heat. Below we use the terms reflect, 
radiate, and emit interchangeably to denote the light leav- 
ing a patch where a patch is a portion of a surface of an 
object in the scene. Although energy in the form of light 
and heat is normally viewed as a continuous flow, the 
radiosity method uses a discrete simulation of the flow 
so that an approximate rendering can be computed. In 
this section we give only a brief general description of 
the method, and point out how and where hierarchical 
data structures can be used to improve its performance. 

A scene is viewed as a collection of patches where the 
light emitted by the surface of a given patch, say Q, is 
either constant (e.g., for a light source) or is a linear com- 
bination of the light falling on Q from all the other 
patches. The simplifying assumption is made that the 
surfaces are Lambertian diffuse reflectors and light is 
reflected uniformly from the surface in all directions. 
This restriction can be lifted77 at the expense of greatly 
increasing the size of the problem. Of course, many 
patches do not contribute light to a particular patch, 
because they are occluded by closer patches. In essence, 
radiosity converts the image-rendering problem to one 
of solving a set of simultaneous linear equations. Each 
equation represents a portion of the discrete simulation 
of the light flow, that is, the portion of the light from the 
rest of the scene eventually reflected by the patch. Fur- 
thermore, the equation for patch Q depends on which 
patches are visible from Q. 

The process of deriving the equations (i.e., determin- 
ing the values of their coefficients) that describe the 
interactions among the patches was the computational 
bottleneck in the initial presentation of r a d i o ~ i t y . ~ ~ . ~ '  
Deriving the equations is straightforward, although the 
exact m e c h a n i c ~ ~ ~ . ~ '  are beyond the scope of this survey. 
However, this process can be facilitated, in part, by 
observing that if two patches, say Q and R, are mutually 
invisible, then the coefficient of the term in the equation 
of Q (or R) associated with R (or Q) will be zero. The phys- 
ical interpretation of the concept of mutual invisibility 
is that light emitted by one of the patches cannot reach 
the other patch without first being reflected by yet a third 
patch. A geometric interpretation of this concept is that 
two patches, say Q and R, are mutually invisible only if 
there does not exist a pair of points pQ on Q and pR on 
R such that a straight line can be drawn between them 
without intersecting a third patch or passing through the 
interior of an object in the scene. 

The determination of which terms in the equations 
have zero coefficients corresponds to a hidden-surface 
task among the patches. It must be solved separately for 
each patch. If we have M patches, then we must solve the 
hidden-surface interactions among each of the O(M2) 
combinations of patches. Worse, we need to solve these 
problems not just for a point on a patch, but for every 
point on the surface of the patch. Solving these problems 
could be made easier with a data structure such as the 

octree to organize the elements of the scene, i.e., the 3D 
space occupied by the patches. This simplifies the deter- 
mination of which patches are hidden with respect to the 
other patches, thereby yielding the zero coefficients. 

Unfortunately, the application of radiosity to the ren- 
dering of more complicated scenes results in a marked 
increase in the number of equations necessary to model 
the scene. This has led to a shift of the computational bot- 
tleneck to the problem of solving the simultaneous equa- 
tions. Nevertheless, recursive subdivision can still be 
used. Instead of recursively subdividing the 3D space 
occupied by the patches, Cohen et al.79 recursively sub- 
divide the surfaces of the patches. This subdivision takes 
place in the parametric space of the patch in a manner 
similar to that in Catmull's algorithm (see the earlier sec- 
tion on displaying curved surfaces]. As with Catmull's 
algorithm, recursive subdivision of a patch (described 
below) does not actually require the construction of a 
quadtree. Instead, the data is simply aggregated in a man- 
ner equivalent to applying a particular leaf criterion to 
the organization of the surface of a scene. 

Observe that to determine the rough flow of light 
through a scene, the number of patches needed to model 
the objects in the scene is considerably smaller than the 
number of patches needed to depict features of the scene 
caused by the actual flow of light through the scene (e.g., 
shadow boundaries). For example, suppose we are 
modeling a scene that corresponds to a room containing 
boxes. Here a rather coarse grid can be used to represent 
the surface of the room. However, the accurate represen- 
tation of the shadows that the boxes cast on the walls will 
usually require a much finer grid. This is especially true 
for area light sources that cause varying shadow inten- 
sities (e.g., fluorescent tubes that cannot be modeled 
accurately as point light sources). Of course, the more 
patches used to represent a scene, the more expensive 
the solution required to solve the corresponding set of 
equations, since there are more equations with a con- 
comitant increase in terms. In particular, the number of 
equatioiis is proportional to the number of patches, 
which can potentially lead to a quadratic number of 
interpatch relations. 

Note that we don't know how many patches will be 
needed to represent the results of the radiosity calcula- 
tion until after it has been performed. Early work on 
radiosity simply guessed the maximum number. How- 
ever, with more complicated scenes, the guesses are 
overly pessimistic, thereby resulting in needlessly ineffi- 
cient algorithms. Recursive subdivision performed in an 
adaptive manner avoids the problem. 

Cohen et al.79 propose a two-step algorithm to reduce 
the number of equations that must be solved simultane- 
ously. The basic approach is first to solve the set of simul- 
taneous equations corresponding to the light flow among 
the patches used to model the surfaces of the scene. In 
the second step, patches whose intensity value computed 
by the first step differs greatly from that of their neigh- 
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bors are subsequently decomposed into smaller sub- 
patches, termed elements, via a regular recursive 
decomposition (i.e., equal surface area). The rationale for 
further subdivision is the assumption that the intensity 
variance in the scene is a continuous function, meaning 
that sharp discontinuities are an artifact of undersam- 
pling the intensity function (i.e., the grid was too coarse). 
The result is that the scene consists of a collection of 
patches [each corresponding to a small portion of the 
surface of the scene), where each patch is represented 
by a quadtree whose leaves are elements. The leaf 
criterion used to construct the quadtree is based on the 
absolute intensity difference, across the portion of the 
surface approximated by the leaf, being below a given 
threshold. 

Now, instead of deriving a new set of equations to rep- 
resent the interactions between all the elements of each 
of the patches, the new set of equations assumes that 
only one patch has been decomposed, and the remain- 
ing patches are treated as if they have a constant inten- 
sity value, that is, the one computed in the first step. This 
is equivalent to an assumption that the cumulative effect 
of elements of patch Q on other patches is approximately 
the same as that of Q. In other words, for each collection 
of elements corresponding to a particular patch, a set of 
simultaneous equations is derived on the basis of the 
individual variable intensity values of the elements in the 
collection and the treatment of other patches in the scene 
as though they have constant intensity. This greatly 
reduces the number of equations that need to be solved, 
with only a modest reduction in the accuracy of the 
solution. 

The approach of Cohen et al. described above has 
several advantages. First of all, by applying adaptive 
decomposition to the individual patches, it prevents the 
size of the set of linear equations (i.e., the number of 
terms) from growing quadratically. Second, it assumes 
that the decomposition of a particular patch, say Q, into 
elements does not change the total amount of light that 
is reflected by Q and is therefore incident on the other 
patches. This means that after determining the light flow 
with the initial set of patches, the individual behavior of 
the light flow within a patch can be solved independently 
of the individual behavior within the other patches. In 
fact, the result is an asymmetric relation between the 
effects of patches and elements of patches. For each ele- 
ment in a patch, we compute the effect of the light from 
the remaining patches. However, the effect of individual 
elements of patch Q on patch R is taken collectively; that 
is, the fact that Q has been decomposed into elements 
has no effect on the amount of light reflected by R. 

As an example, Cohen et al.79 reported on the applica- 
tion of these techniques to a scene whose objects 
required 58 patches and whose optical features (e.g., 
those caused by shadow boundaries) required 1,135 ele- 
ments. Deriving its radiosity equations took 22.49 
minutes, and solving them took 1.10 minutes. However, 

a simple decomposition of the same scene into 829 
patches-instead of using the adaptive approach- 
required 90.10 minutes to derive the equations and 6.36 
minutes to solve them. 

Of course, even though the solution of the radiosity 
equations is a major part of the image-rendering process, 
other issues remain. For example, once the radiosity 
equations have been solved, we must still render the 
scene from a particular viewpoint. The scene described 
in the previous example required 14.67 minutes to ren- 
der 1,135 elements and 14.16 minutes to render the 829 
patches. To improve the rendering time, data structures 
that facilitate the solution of the standard hidden-surface 
task are necessary. In the section on parallel and perspec- 
tive projections we suggested that the octree is an appro- 
priate data structure for this task. 

Concluding remarks 
An overview of the use of such hierarchical data struc- 

tures as the quadtree and the octree in computer 
graphics applications has been presented here and in 
Part I.’ This rapidly moving area of research can be 
expected to yield further improvements in the perfor- 
mance of traditional graphics algorithms. In many cases, 
aside from a potential savings in space requirements, 
methods that incorporate these techniques also produce 
significant savings in the execution time of the 
algorithms. Of course, these data structures are used in 
applications other than computer graphics, some of 
which are described below. In addition, we briefly men- 
tion some hardware implications of their use. 

Variants of quadtrees are used to represent points, 
lines, and areas in a geographic information 
permitting the handling of data in an integrated manner 
and the answering of queries that involve combinations 
of the different data types. For example, it is easy to 
answer a query of the form “find all roads passing 
through swampland in Florida that pass through cities 
with over 10,000 inhabitants.” Variants have also been 
applied in finite element mesh generation.82 

An important advantage of quadtrees and octrees is 
that they can easily be updated to reflect changes in the 
scene they represent. Thus they would naturally prove 
useful in the representation of scenes that change over 
time because of the motion of objects within the scene. 
Ahuja and N a ~ h ~ ~  represent motion by updating an 
octree structure as the object is moved. Alternatively, a 
changing 3D scene can be viewed as a four-dimensional 
object, and a four-dimensional bintree can be used to 
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represent the space-time object.31 Besides representing 
motion, octrees can also be used to plan motion. Kamb- 
hampati and Davise4 have developed a multiresolution 
path-planning heuristic for 2D motion using quadtrees 
that could easily be extended to 3D motion using octrees. 
A similar approach can be used to do path planning in 
the presence of moving obstacles.85 

Many graphics displays accept filled rectangles as a 
display primitive,"' making the speed of displaying the 
quadtree proportional to the number of nodes in the dis- 
played region. On the other hand, pure raster displays 
would require the user to decompose the rectangle into 
pixels. A central goal in designing graphics display 
primitives is to minimize the number of bits that need 
to be transferred while representing a given primitive. 
A general fill-rectangle primitive requires the specifica- 
tion of location, height, and width information in addi- 
tion to color information. In contrast, a special-purpose 
quadtree processor that can handle a series of quadtree 
leaf nodes requires only the specification of the width 
and color of the leaf nodes; the location can be derived 
from the position of the leaf in the list. Such an approach 
has been taken with at least one MC68000-based 
graphics display." "' A more aggressive approach to 
quadtree hardware is to design a parallel computer 
where individual processors are connected like nodes in 
a quadtree." *' '' One such device that has proved useful 
in image processing is the pyramid machine." 
Meagher" describes an octree machine. Dew, Dods- 
worth, and Morrisg3 discuss mapping an  octree 
approach to CSG evaluation onto a systolic array com- 
puter. Note that much of this work takes advantage of the 
interconnections within the hierarchy, but does not 
attempt to balance the workload efficiently among a 
restricted number of processors. 

Open questions remain about recursive hierarchical 
data structures for tasks in computer graphics. For exam- 
ple, the use of quadtrees and octrees is often motivated 
by intuitive notions about the behavior of typical 
graphics data. However, this intuition still requires for- 
malization. Furthermore, although much attention has 
been devoted to the development of hierarchical data 
structures, there has been relatively little work done in 
comparing them. Comparisons based on more than a 
few "typical" examples would be a welcome contribu- 
tion to this domain. 
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