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1.1 Introduction

The representation of multidimensional data is an important issue in applications in diverse
fields that include database management systems, computer graphics, computer vision,
computational geometry, image processing, geographic information systems (GIS), pattern
recognition, VLSI design, and others. The most common definition of multidimensional data
is a collection of points in a higher dimensional space. These points can represent locations
and objects in space as well as more general records where only some, or even none, of the
attributes are locational. As an example of nonlocational point data, consider an employee
record which has attributes corresponding to the employee’s name, address, sex, age, height,
weight, and social security number. Such records arise in database management systems
and can be treated as points in, for this example, a seven-dimensional space (i.e., there is
one dimension for each attribute) albeit the different dimensions have different type units
(i-e., name and address are strings of characters, sex is binary; while age, height, weight,
and social security number are numbers).

When multidimensional data corresponds to locational data, we have the additional prop-
erty that all of the attributes have the same unit which is distance in space. In this case, we
can combine the distance-denominated attributes and pose queries that involve proximity.
For example, we may wish to find the closest city to Chicago within the two-dimensional
space from which the locations of the cities are drawn. Another query seeks to find all cities
within 50 miles of Chicago. In contrast, such queries are not very meaningful when the
attributes do not have the same type.

*All figures ©2003 by Hanan Samet.

0-8493-8597-0/01/$0.00+$1.50
® 2001 by CRC Press, LLC 1-1



1-2

When multidimensional data spans a continuous physical space (i.e., an infinite collection
of locations), the issues become more interesting. In particular, we are no longer just
interested in the locations of objects, but, in addition, we are also interested in the space
that they occupy (i.e., their extent). Some example objects include lines (e.g., roads, rivers),
regions (e.g., lakes, counties, buildings, crop maps, polygons, polyhedra), rectangles, and
surfaces. The objects may be disjoint or could even overlap. One way to deal with such
data is to store it explicitly by parametrizing it and thereby reduce it to a point in a higher
dimensional space. For example, a line in two-dimensional space can be represented by the
coordinate values of its endpoints (i.e., a pair of x and a pair of y coordinate values) and
then stored as a point in a four-dimensional space (e.g., [33]). Thus, in effect, we have
constructed a transformation (i.e., mapping) from a two-dimensional space (i.e., the space
from which the lines are drawn) to a four-dimensional space (i.e., the space containing the
representative point corresponding to the line).

The transformation approach is fine if we are just interested in retrieving the data. It
is appropriate for queries about the objects (e.g., determining all lines that pass through
a given point or that share an endpoint, etc.) and the immediate space that they occupy.
However, the drawback of the transformation approach is that it ignores the geometry
inherent in the data (e.g., the fact that a line passes through a particular region) and its
relationship to the space in which it is embedded.

For example, suppose that we want to detect if two lines are near each other, or, alterna-
tively, to find the nearest line to a given line. This is difficult to do in the four-dimensional
space, regardless of how the data in it is organized, since proximity in the two-dimensional
space from which the lines are drawn is not necessarily preserved in the four-dimensional
space. In other words, although the two lines may be very close to each other, the Eu-
clidean distance between their representative points may be quite large, unless the lines are
approximately the same size, in which case proximity is preserved (e.g., [69]).

Of course, we could overcome these problems by projecting the lines back to the original
space from which they were drawn, but in such a case, we may ask what was the point of
using the transformation in the first place? In other words, at the least, the representation
that we choose for the data should allow us to perform operations on the data. Thus when
the multidimensional spatial data is nondiscrete, we need representations besides those that
are designed for point data. The most common solution, and the one that we focus on in
the rest of this chapter, is to use data structures that are based on spatial occupancy.
Such methods decompose the space from which the spatial data is drawn (e.g., the two-
dimensional space containing the lines) into regions that are often called buckets because
they often contain more than just one element. They are also commonly known as bucketing
methods.

In this chapter, we explore a number of different representations of multidimensional
data bearing the above issues in mind. While we cannot give exhaustive details of all of the
data structures, we try to explain the intuition behind their development as well as to give
literature pointers to where more information can be found. Many of these representations
are described in greater detail in [60, 63, 62] including an extensive bibliography. Our
approach is primarily a descriptive one. Most of our examples are of two-dimensional
spatial data although the representations are applicable to higher dimensional spaces as
well.

At times, we discuss bounds on execution time and space requirements. Nevertheless, this
information is presented in an inconsistent manner. The problem is that such analyses are
very difficult to perform for many of the data structures that we present. This is especially
true for the data structures that are based on spatial occupancy (e.g., quadtree and R-tree
variants). In particular, such methods have good observable average-case behavior but may
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have very bad worst cases which may only arise rarely in practice. Their analysis is beyond
the scope of this chapter and usually we do not say anything about it. Nevertheless, these
representations find frequent use in applications where their behavior is deemed acceptable,
and is often found to be better than that of solutions whose theoretical behavior would
appear to be superior. The problem is primarily attributed to the presence of large constant
factors which are usually ignored in the big O and Q analyses [46].

The rest of this chapter is organized as follows. Section 1.2 reviews a number of represen-
tations of point data of arbitrary dimensionality. Section 1.3 describes bucketing methods
that organize collections of spatial objects (as well as multidimensional point data) by ag-
gregating the space that they occupy. The remaining sections focus on representations of
non-point objects of different types. Section 1.4 covers representations of region data, while
Section 1.5 discusses a subcase of region data which consists of collections of rectangles.
Section 1.6 deals with curvilinear data which also includes polygonal subdivisions and col-
lections of line segments. Section 1.7 contains a summary and a brief indication of some
research issues.

1.2 Point Data

The simplest way to store point data of arbitrary dimension is in a sequential list. Accesses
to the list can be sped up by forming sorted lists for the various attributes which are known
as inverted lists (e.g., [45]). There is one list for each attribute. This enables pruning the
search with respect to the value of one of the attributes. It should be clear that the inverted
list is not particularly useful for multidimensional range searches. The problem is that it
can only speed up the search for one of the attributes (termed the primary attribute). A
widely used solution is exemplified by the fized-grid method [10, 45]. It partitions the space
from which the data is drawn into rectangular cells by overlaying it with a grid. Each grid
cell ¢ contains a pointer to another structure (e.g., a list) which contains the set of points
that lie in ¢. Associated with the grid is an access structure to enable the determination of
the grid cell associated with a particular point p. This access structure acts like a directory
and is usually in the form of a d-dimensional array with one entry per grid cell or a tree
with one leaf node per grid cell.

There are two ways to build a fixed grid. We can either subdivide the space into equal-
sized intervals along each of the attributes (resulting in congruent grid cells) or place the
subdivision lines at arbitrary positions that are dependent on the underlying data. In
essence, the distinction is between organizing the data to be stored and organizing the
embedding space from which the data is drawn [55]. In particular, when the grid cells are
congruent (i.e., equal-sized when all of the attributes are locational with the same range
and termed a wuniform grid), use of an array access structure is quite simple and has the
desirable property that the grid cell associated with point p can be determined in constant
time. Moreover, in this case, if the width of each grid cell is twice the search radius for a
rectangular range query, then the average search time is O(F -2¢) where F is the number of
points that have been found [12]. Figure 1.1 is an example of a uniform-grid representation
for a search radius equal to 10 (i.e., a square of size 20 x 20).

Use of an array access structure when the grid cells are not congruent requires us to have
a way of keeping track of their size so that we can determine the entry of the array access
structure corresponding to the grid cell associated with point p. One way to do this is to
make use of what are termed linear scales which indicate the positions of the grid lines (or
partitioning hyperplanes in d > 2 dimensions). Given a point p, we determine the grid cell
in which p lies by finding the “coordinate values” of the appropriate grid cell. The linear



1-4

(0,100) (100,100)

°
(62,77) | (82,65)
Toronto o Buffalo

(35,42)
Chicago
o
y
°
(27,35) | ®(45,30)
Omaha Memphis
(85.15) | o
° Atlanta
(52,10) (90,5)
Mobile Miami
(0,0) X — 5 (100,0)

FIGURE 1.1: Uniform-grid representation corresponding to a set of points with a search
radius of 20.

scales are usually implemented as one-dimensional trees containing ranges of values.

The array access structure is fine as long as the data is static. When the data is dynamic,
it is likely that some of the grid cells become too full while other grid cells are empty. This
means that we need to rebuild the grid (i.e., further partition the grid or reposition the
grid partition lines or hyperplanes) so that the various grid cells are not too full. However,
this creates many more empty grid cells as a result of repartitioning the grid (i.e., empty
grid cells are split into more empty grid cells). The number of empty grid cells can be
reduced by merging spatially-adjacent empty grid cells into larger empty grid cells, while
splitting grid cells that are too full, thereby making the grid adaptive. The result is that we
can no longer make use of an array access structure to retrieve the grid cell that contains
query point p. Instead, we make use of a tree access structure in the form of a k-ary tree
where k is usually 2?. Thus what we have done is marry a k-ary tree with the fixed-grid
method. This is the basis of the point quadtree [22] and the PR quadtree [56, 63] which
are multidimensional generalizations of binary trees.

The difference between the point quadtree and the PR quadtree is the same as the
difference between trees and tries [25], respectively. The binary search tree [45] is an example
of the former since the boundaries of different regions in the search space are determined
by the data being stored. Address computation methods such as radix searching [45] (also
known as digital searching) are examples of the latter, since region boundaries are chosen
from among locations that are fixed regardless of the content of the data set. The process is
usually a recursive halving process in one dimension, recursive quartering in two dimensions,
etc., and is known as regular decomposition.

In two dimensions, a point quadtree is just a two-dimensional binary search tree. The first
point that is inserted serves as the root, while the second point is inserted into the relevant
quadrant of the tree rooted at the first point. Clearly, the shape of the tree depends on
the order in which the points were inserted. For example, Figure 1.2 is the point quadtree
corresponding to the data of Figure 1.1 inserted in the order Chicago, Mobile, Toronto,
Buffalo, Memphis, Omaha, Atlanta, and Miami.
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FIGURE 1.2: A point quadtree and the records it represents corresponding to Figure 1.1:
(a) the resulting partition of space, and (b) the tree representation.

In two dimensions, the PR quadtree is based on a recursive decomposition of the under-
lying space into four congruent (usually square in the case of locational attributes) cells
until each cell contains no more than one point. For example, Figure 1.3a is the partition of
the underlying space induced by the PR quadtree corresponding to the data of Figure 1.1,
while Figure 1.3b is its tree representation. The shape of the PR quadtree is independent
of the order in which data points are inserted into it. The disadvantage of the PR quadtree
is that the maximum level of decomposition depends on the minimum separation between
two points. In particular, if two points are very close, then the decomposition can be very
deep. This can be overcome by viewing the cells or nodes as buckets with capacity ¢ and
only decomposing a cell when it contains more than ¢ points.

As the dimensionality of the space increases, each level of decomposition of the quadtree
results in many new cells as the fanout value of the tree is high (i.e., 2¢). This is alleviated
by making use of a k-d tree [8]. The k-d tree is a binary tree where at each level of the
tree, we subdivide along a different attribute so that, assuming d locational attributes, if
the first split is along the z axis, then after d levels, we cycle back and again split along the
z axis. It is applicable to both the point quadtree and the PR quadtree (in which case we
have a PR k-d tree, or a bintree in the case of region data).

At times, in the dynamic situation, the data volume becomes so large that a tree access
structure such as the one used in the point and PR quadtrees is inefficient. In particular,
the grid cells can become so numerous that they cannot all fit into memory thereby causing
them to be grouped into sets (termed buckets) corresponding to physical storage units (i.e.,
pages) in secondary storage. The problem is that, depending on the implementation of
the tree access structure, each time we must follow a pointer, we may need to make a
disk access. Below, we discuss two possible solutions: one making use of an array access
structure and one making use of an alternative tree access structure with a much larger
fanout. We assume that the original decomposition process is such that the data is only
associated with the leaf nodes of the original tree structure.

The difference from the array access structure used with the static fixed-grid method
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FIGURE 1.3: A PR quadtree and the points it represents corresponding to Figure 1.1: (a)
the resulting partition of space, (b) the tree representation, and (c) one possible BT-tree
for the nonempty leaf grid cells where each node has a minimum of 2 and a maximum of
3 entries. The nonempty grid cells in (a) have been labeled with the name of the B*-tree
leaf node in which they are a member.

described earlier is that the array access structure (termed grid directory) may be so large
(e.g., when d gets large) that it resides on disk as well, and the fact that the structure of
the grid directory can change as the data volume grows or contracts. Each grid cell (i.e.,
an element of the grid directory) stores the address of a bucket (i.e., page) that contains
the points associated with the grid cell. Notice that a bucket can correspond to more than
one grid cell. Thus any page can be accessed by two disk operations: one to access the grid
cell and one more to access the actual bucket.

This results in EXCELL [71] when the grid cells are congruent (i.e., equal-sized for lo-
cational data), and grid file [55] when the grid cells need not be congruent. The difference
between these methods is most evident when a grid partition is necessary (i.e., when a
bucket becomes too full and the bucket is not shared among several grid cells). In par-
ticular, a grid partition in the grid file only splits one interval in two thereby resulting in
the insertion of a (d — 1)-dimensional cross-section. On the other hand, a grid partition in
EXCELL means that all intervals must be split in two thereby doubling the size of the grid
directory.

An alternative to the array access structure is to assign an ordering to the grid cells
resulting from the adaptive grid, and then to impose a tree access structure on the elements
of the ordering that correspond to the nonempty grid cells. The ordering is analogous to
using a mapping from d dimensions to one dimension. There are many possible orderings
(e.g., Chapter 2 in [60]) with the most popular shown in Figure 1.4.

The domain of these mappings is the set of locations of the smallest possible grid cells
(termed pizels) in the underlying space and thus we need to use some easily identifiable
pixel in each grid cell such as the one in the grid cell’s lower-left corner. Of course, we
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FIGURE 1.4: The result of applying four common different space-ordering methods to an
8x8 collection of pixels whose first element is in the upper-left corner: (a) row order, (b)
row-prime order, (c) Morton order, (d) Peano-Hilbert.

also need to know the size of each grid cell. One mapping simply concatenates the result
of interleaving the binary representations of the coordinate values of the lower-left corner
(e.g., (a,b) in two dimensions) and i of each grid cell of size 2¢ so that i is at the right.
The resulting number is termed a locational code and is a variant of the Morton ordering
(Figure 1.4c). Assuming such a mapping and sorting the locational codes in increasing
order yields an ordering equivalent to that which would be obtained by traversing the leaf
nodes (i.e., grid cells) of the tree representation (e.g., Figure 1.8b) in the order SW, SE, NW,
NE. The Morton ordering (as well as the Peano-Hilbert ordering shown in Figure 1.4d) is
particularly attractive for quadtree-like decompositions because all pixels within a grid cell
appear in consecutive positions in the ordering. Alternatively, these two orders exhaust a
grid cell before exiting it.

For example, Figure 1.3¢c shows the result of imposing a B*-tree [18] access structure on
the leaf grid cells of the PR quadtree given in Figure 1.3b. Each node of the B*-tree in our
example has a minimum of 2 and a maximum of 3 entries. Figure 1.3c does not contain the
values resulting from applying the mapping to the individual grid cells nor does it show the
discriminator values that are stored in the nonleaf nodes of the BT-tree. The leaf grid cells
of the PR quadtree in Figure 1.3a are marked with the label of the leaf node of the B*-tree
of which they are a member (e.g., the grid cell containing Chicago is in leaf node Q of the
Bt-tree).

It is important to observe that the above combination of the PR quadtree and the BT -tree
has the property that the tree structure of the partition process of the underlying space
has been decoupled [61] from that of the node hierarchy (i.e., the grouping process of the
nodes resulting from the partition process) that makes up the original tree directory. More
precisely, the grouping process is based on proximity in the ordering of the locational codes
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and on the minimum and maximum capacity of the nodes of the B*-tree. Unfortunately,
the resulting structure has the property that the space that is spanned by a leaf node of
the Bt-tree (i.e., the grid cells spanned by it) has an arbitrary shape and, in fact, does not
usually correspond to a k-dimensional hyper-rectangle. In particular, the space spanned by
the leaf node may have the shape of a staircase (e.g., the leaf grid cells in Figure 1.3a that
comprise leaf nodes S and T of the BT-tree in Figure 1.3c) or may not even be connected
in the sense that it corresponds to regions that are not contiguous (e.g., the leaf grid cells
in Figure 1.3a that comprise leaf node R of the B*-tree in Figure 1.3¢) The PK-tree [73] is
an alternative decoupling method which overcomes these drawbacks by basing the grouping
process on k-instantiation which stipulates that each node of the grouping process contains
a minimum of k objects or grid cells. The result is that all of the grid cells of the grouping
process are congruent at the cost that the result is not balanced although use of relatively
large values of k ensures that the resulting trees are relatively shallow. It can be shown
that when the partition process has a fanout of f, then k-instantiation means that the
number of objects in each node of the grouping process is bounded by f - (k — 1). Note
that k-instantiation is different from bucketing where we only have an upper bound on the
number of objects in the node.

Fixed-grids, quadtrees, k-d trees, indexk-d tree grid file, EXCELL, as well as other hier-
archical representations are good for range searching queries such as finding all cities within
80 miles of St. Louis. In particular, they act as pruning devices on the amount of search
that will be performed as many points will not be examined since their containing cells lie
outside the query range. These representations are generally very easy to implement and
have good expected execution times, although they are quite difficult to analyze from a
mathematical standpoint. However, their worst cases, despite being rare, can be quite bad.
These worst cases can be avoided by making use of variants of range trees [11] and priority
search trees [51]. For more details about these data structures, see Chapter ?7?.

1.3 Bucketing Methods

There are four principal approaches to decomposing the space from which the objects are
drawn. The first approach makes use of an object hierarchy and the space decomposition
is obtained in an indirect manner as the method propagates the space occupied by the
objects up the hierarchy with the identity of the propagated objects being implicit to the
hierarchy. In particular, associated with each object is a an object description (e.g., for
region data, it is the set of locations in space corresponding to the cells that make up the
object). Actually, since this information may be rather voluminous, it is often the case that
an approximation of the space occupied by the object is propagated up the hierarchy rather
than the collection of individual cells that are spanned by the object. For spatial data, the
approximation is usually the minimum bounding rectangle for the object, while for non-
spatial data it is simply the hyperrectangle whose sides have lengths equal to the ranges of
the values of the attributes. Therefore, associated with each element in the hierarchy is a
bounding rectangle corresponding to the union of the bounding rectangles associated with
the elements immediately below it.

The R-tree (e.g., [7, 31]) is an example of an object hierarchy which finds use especially in
database applications. The number of objects or bounding rectangles that are aggregated
in each node is permitted to range between m < [M/2] and M. The root node in an
R-tree has at least two entries unless it is a leaf node in which case it has just one entry
corresponding to the bounding rectangle of an object. The R-tree is usually built as the
objects are encountered rather than waiting until all objects have been input. The hierarchy
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FIGURE 1.5: Example collection of line segments embedded in a 4x4 grid.
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FIGURE 1.6: (a) R-tree for the collection of line segments with m=2 and M=3, in Fig-
ure 1.5, and (b) the spatial extents of the bounding rectangles. Notice that the leaf nodes in
the index also store bounding rectangles although this is only shown for the nonleaf nodes.

is implemented as a tree structure with grouping being based, in part, on proximity of the
objects or bounding rectangles.

For example, consider the collection of line segment objects given in Figure 1.5 shown
embedded in a 4 x 4 grid. Figure 1.6a is an example R-tree for this collection with m = 2
and M = 3. Figure 1.6b shows the spatial extent of the bounding rectangles of the nodes
in Figure 1.6a, with heavy lines denoting the bounding rectangles corresponding to the leaf
nodes, and broken lines denoting the bounding rectangles corresponding to the subtrees
rooted at the nonleaf nodes. Note that the R-tree is not unique. Its structure depends
heavily on the order in which the individual objects were inserted into (and possibly deleted
from) the tree.

Given that each R-tree node can contain a varying number of objects or bounding rect-
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angles, it is not surprising that the R-tree was inspired by the B-tree [6]. Therefore, nodes
are viewed as analogous to disk pages. Thus the parameters defining the tree (i.e., m and
M) are chosen so that a small number of nodes is visited during a spatial query (i.e., point
and range queries), which means that m and M are usually quite large. The actual im-
plementation of the R-tree is really a B*-tree [18] as the objects are restricted to the leaf
nodes.

The efficiency of the R-tree for search operations depends on its ability to distinguish
between occupied space and unoccupied space (i.e., coverage), and to prevent a node from
being examined needlessly due to a false overlap with other nodes. In other words, we want
to minimize coverage and overlap. These goals guide the initial R-tree creation process as
well, subject to the previously mentioned constraint that the R-tree is usually built as the
objects are encountered rather than waiting until all objects have been input.

The drawback of the R-tree (and any representation based on an object hierarchy) is that
it does not result in a disjoint decomposition of space. The problem is that an object is
only associated with one bounding rectangle (e.g., line segment i in Figure 1.6 is associated
with bounding rectangle R5, yet it passes through R1, R2, R4, and R5, as well as through RO
as do all the line segments). In the worst case, this means that when we wish to determine
which object (e.g., an intersecting line in a collection of line segment objects, or a containing
rectangle in a collection of rectangle objects) is associated with a particular point in the
two-dimensional space from which the objects are drawn, we may have to search the entire
collection. For example, in Figure 1.6, when searching for the line segment that passes
through point Q, we need to examine bounding rectangles RO, R1, R4, R2, and R5, rather
than just RO, R2, and R5.

This drawback can be overcome by using one of three other approaches which are based
on a decomposition of space into disjoint cells. Their common property is that the objects
are decomposed into disjoint subobjects such that each of the subobjects is associated
with a different cell. They differ in the degree of regularity imposed by their underlying
decomposition rules, and by the way in which the cells are aggregated into buckets.

The price paid for the disjointness is that in order to determine the area covered by
a particular object, we have to retrieve all the cells that it occupies. This price is also
paid when we want to delete an object. Fortunately, deletion is not so common in such
applications. A related costly consequence of disjointness is that when we wish to determine
all the objects that occur in a particular region, we often need to retrieve some of the objects
more than once [1, 2, 19]. This is particularly troublesome when the result of the operation
serves as input to another operation via composition of functions. For example, suppose we
wish to compute the perimeter of all the objects in a given region. Clearly, each object’s
perimeter should only be computed once. Eliminating the duplicates is a serious issue
(see [1] for a discussion of how to deal with this problem for a collection of line segment
objects, and [2] for a collection of rectangle objects).

The first method based on disjointness partitions the embedding space into disjoint sub-
spaces, and hence the individual objects into subobjects, so that each subspace consists of
disjoint subobjects. The subspaces are then aggregated and grouped in another structure,
such as a B-tree, so that all subsequent groupings are disjoint at each level of the structure.
The result is termed a k-d-B-tree [59]. The R*-tree [67, 70] is a modification of the k-d-
B-tree where at each level we replace the subspace by the minimum bounding rectangle of
the subobjects or subtrees that it contains. The cell tree [30] is based on the same princi-
ple as the Rt-tree except that the collections of objects are bounded by minimum convex
polyhedra instead of minimum bounding rectangles.

The Rt-tree (as well as the other related representations) is motivated by a desire to avoid
overlap among the bounding rectangles. Each object is associated with all the bounding
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FIGURE 1.7: (a) R*-tree for the collection of line segments in Figure 1.5 with m=2 and
M=3, and (b) the spatial extents of the bounding rectangles. Notice that the leaf nodes in
the index also store bounding rectangles although this is only shown for the nonleaf nodes.

rectangles that it intersects. All bounding rectangles in the tree (with the exception of the
bounding rectangles for the objects at the leaf nodes) are non-overlapping!. The result is
that there may be several paths starting at the root to the same object. This may lead to
an increase in the height of the tree. However, retrieval time is sped up.

Figure 1.7 is an example of one possible R*-tree for the collection of line segments in
Figure 1.5. This particular tree is of order (2,3) although in general it is not possible to
guarantee that all nodes will always have a minimum of 2 entries. In particular, the expected
B-tree performance guarantees are not valid (i.e., pages are not guaranteed to be m/M full)
unless we are willing to perform very complicated record insertion and deletion procedures.
Notice that line segment objects c, h, and i appear in two different nodes. Of course, other
variants are possible since the R*-tree is not unique.

The problem with representations such as the k-d-B-tree and the R -tree is that overflow
in a leaf node may cause overflow of nodes at shallower depths in the tree whose subsequent
partitioning may cause repartitioning at deeper levels in the tree. There are several ways
of overcoming the repartitioning problem. One approach is to use the LSD-tree [32] at the
cost of poorer storage utilization. An alternative approach is to use representations such as
the hB-tree [49] and the BANG file [27] which remove the requirement that each block be a
hyper-rectangle at the cost of multiple postings. This has a similar effect as that obtained
when decomposing an object into several subobjects in order to overcome the nondisjoint
decomposition problem when using an object hierarchy. The multiple posting problem is
overcome by the BV-tree [28] which decouples the partitioning and grouping processes at
the cost that the resulting tree is no longer balanced although as in the PK-tree [73] (which
we point out in Section 1.2 is also based on decoupling), use of relatively large fanout values

1From a theoretical viewpoint, the bounding rectangles for the objects at the leaf nodes should also be
disjoint However, this may be impossible (e.g., when the objects are line segments and if many of the
line segments intersect at a point).
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ensure that the resulting trees are relatively shallow.

Methods such as the R*-tree (as well as the R-tree) also have the drawback that the
decomposition is data-dependent. This means that it is difficult to perform tasks that re-
quire composition of different operations and data sets (e.g., set-theoretic operations such
as overlay). The problem is that although these methods are good are distinguishing be-
tween occupied and unoccupied space in the underlying space (termed image in much of
the subsequent discussion) under consideration, they re unable to correlate occupied space
in two distinct images, and likewise for unoccupied space in the two images.

In contrast, the remaining two approaches to the decomposition of space into disjoint cells
have a greater degree of data-independence. They are based on a regular decomposition.
The space can be decomposed either into blocks of uniform size (e.g., the uniform grid [24])
or adapt the decomposition to the distribution of the data (e.g., a quadtree-based approach
such as [66]). In the former case, all the blocks are congruent (e.g., the 4 x 4 grid in
Figure 1.5). In the latter case, the widths of the blocks are restricted to be powers of
two and their positions are also restricted. Since the positions of the subdivision lines are
restricted, and essentially the same for all images of the same size, it is easy to correlate
occupied and unoccupied space in different images.

The uniform grid is ideal for uniformly-distributed data, while quadtree-based approaches
are suited for arbitrarily-distributed data. In the case of uniformly-distributed data, quadtree-
based approaches degenerate to a uniform grid, albeit they have a higher overhead. Both the
uniform grid and the quadtree-based approaches lend themselves to set-theoretic operations
and thus they are ideal for tasks which require the composition of different operations and
data sets. In general, since spatial data is not usually uniformly distributed, the quadtree-
based regular decomposition approach is more flexible. The drawback of quadtree-like
methods is their sensitivity to positioning in the sense that the placement of the objects
relative to the decomposition lines of the space in which they are embedded effects their
storage costs and the amount of decomposition that takes place. This is overcome to a large
extent by using a bucketing adaptation that decomposes a block only if it contains more
than b objects.

1.4 Region Data

There are many ways of representing region data. We can represent a region either by its
boundary (termed a boundary-based representation) or by its interior (termed an interior-
based representation). In this section, we focus on representations of collections of regions
by their interior. In some applications, regions are really objects that are composed of
smaller primitive objects by use of geometric transformations and Boolean set operations.
Constructive Solid Geometry (CSG) [58] is a term usually used to describe such represen-
tations. They are beyond the scope of this chapter. Instead, unless noted otherwise, our
discussion is restricted to regions consisting of congruent cells of unit area (volume) with
sides (faces) of unit size that are orthogonal to the coordinate axes.

Regions with arbitrary boundaries are usually represented by either using approximating
bounding rectangles or more general boundary-based representations that are applicable to
collections of line segments that do not necessarily form regions. In that case, we do not
restrict the line segments to be perpendicular to the coordinate axes. Such representations
are discussed in Section 1.6. It should be clear that although our presentation and examples
in this section deal primarily with two-dimensional data, they are valid for regions of any
dimensionality.

The region data is assumed to be uniform in the sense that all the cells that comprise



Multidimensional Spatial Data Structures 1-13

each region are of the same type. In other words, each region is homogeneous. Of course,
an image may consist of several distinct regions. Perhaps the best definition of a region
is as a set of four-connected cells (i.e., in two dimensions, the cells are adjacent along an
edge rather than a vertex) each of which is of the same type. For example, we may have a
crop map where the regions correspond to the four-connected cells on which the same crop
is grown. Each region is represented by the collection of cells that comprise it. The set of
collections of cells that make up all of the regions is often termed an image array because of
the nature in which they are accessed when performing operations on them. In particular,
the array serves as an access structure in determining the region associated with a location
of a cell as well as all remaining cells that comprise the region.

When the region is represented by its interior, then often we can reduce the storage
requirements by aggregating identically-valued cells into blocks. In the rest of this section
we discuss different methods of aggregating the cells that comprise each region into blocks
as well as the methods used to represent the collections of blocks that comprise each region
in the image.

The collection of blocks is usually a result of a space decomposition process with a set of
rules that guide it. There are many possible decompositions. When the decomposition is
recursive, we have the situation that the decomposition occurs in stages and often, although
not always, the results of the stages form a containment hierarchy. This means that a block
b obtained in stage ¢ is decomposed into a set of blocks b; that span the same space.
Blocks b; are, in turn, decomposed in stage ¢ + 1 using the same decomposition rule. Some
decomposition rules restrict the possible sizes and shapes of the blocks as well as their
placement in space. Some examples include:

e congruent blocks at each stage

e similar blocks at all stages

e all sides of a block are of equal size

e all sides of each block are powers of two
e etc.

Other decomposition rules dispense with the requirement that the blocks be rectangular
(i-e., there exist decompositions using other shapes such as triangles, etc.), while still oth-
ers do not require that they be orthogonal, although, as stated before, we do make these
assumptions here. In addition, the blocks may be disjoint or be allowed to overlap. Clearly,
the choice is large. In the following, we briefly explore some of these decomposition pro-
cesses. We restrict ourselves to disjoint decompositions, although this need not be the case
(e.g., the field tree [23]).

The most general decomposition permits aggregation along all dimensions. In other
words, the decomposition is arbitrary. The blocks need not be uniform or similar. The only
requirement is that the blocks span the space of the environment. The drawback of arbitrary
decompositions is that there is little structure associated with them. This means that it
is difficult to answer queries such as determining the region associated with a given point,
besides exhaustive search through the blocks. Thus we need an additional data structure
known as an index or an access structure. A very simple decomposition rule that lends itself
to such an index in the form of an array is one that partitions a d-dimensional space having
coordinate axes x; into d-dimensional blocks by use of h; hyperplanes that are parallel to the
hyperplane formed by z; = 0 (1 < ¢ < d). The result is a collection of H?Zl(h,- + 1) blocks.
These blocks form a grid of irregular-sized blocks rather than congruent blocks. There is
no recursion involved in the decomposition process. We term the resulting decomposition
an irregular grid as the partition lines are at arbitrary positions in contrast to a uniform
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grid [24] where the partition lines are positioned so that all of the resulting grid cells are
congruent.

Although the blocks in the irregular grid are not congruent, we can still impose an array
access structure by adding d access structures termed linear scales. The linear scales indicate
the position of the partitioning hyperplanes that are parallel to the hyperplane formed by
z; = 0 (1 <4 < d). Thus given a location [ in space, say (a,b) in two-dimensional space, the
linear scales for the z and y coordinate values indicate the column and row, respectively, of
the array access structure entry which corresponds to the block that contains /. The linear
scales are usually represented as one-dimensional arrays although they can be implemented
using tree access structures such as binary search trees, range trees, segment trees, etc.

Perhaps the most widely known decompositions into blocks are those referred to by the
general terms quadtree and octree [60, 63]. They are usually used to describe a class of
representations for two and three-dimensional data (and higher as well), respectively, that
are the result of a recursive decomposition of the environment (i.e., space) containing the
regions into blocks (not necessarily rectangular) until the data in each block satisfies some
condition (e.g., with respect to its size, the nature of the regions that comprise it, the
number of regions in it, etc.). The positions and/or sizes of the blocks may be restricted
or arbitrary. It is interesting to note that quadtrees and octrees may be used with both
interior-based and boundary-based representations although only the former are discussed
in this section.

There are many variants of quadtrees and octrees (see also Sections 1.2, 1.5, and 1.6),
and they are used in numerous application areas including high energy physics, VLSI, finite
element analysis, and many others. Below, we focus on region quadtrees [43] and to a lesser
extent on region octrees [39, 53] They are specific examples of interior-based representations
for two and three-dimensional region data (variants for data of higher dimension also exist),
respectively, that permit further aggregation of identically-valued cells.

Region quadtrees and region octrees are instances of a restricted-decomposition rule where
the environment containing the regions is recursively decomposed into four or eight, respec-
tively, rectangular congruent blocks until each block is either completely occupied by a
region or is empty (such a decomposition process is termed regular). For example, Fig-
ure 1.8a is the block decomposition for the region quadtree corresponding to three regions
A, B, and C. Notice that in this case, all the blocks are square, have sides whose size is
a power of 2, and are located at specific positions. In particular, assuming an origin at
the lower-left corner of the image containing the regions, then the coordinate values of the
lower-left corner of each block (e.g., (a,b) in two dimensions) of size 2¢ x 2! satisfy the
property that @ mod 2¢ = 0 and b mod 2¢ = 0.

The traditional, and most natural, access structure for a region quadtree corresponding
to a d-dimensional image is a tree with a fanout of 2¢ (e.g., Figure 1.8b). Each leaf node in
the tree corresponds to a different block b and contains the identity of the region associated
with b. Each nonleaf node f corresponds to a block whose volume is the union of the blocks
corresponding to the 27 sons of f. In this case, the tree is a containment hierarchy and
closely parallels the decomposition in the sense that they are both recursive processes and
the blocks corresponding to nodes at different depths of the tree are similar in shape. Of
course, the region quadtree could also be represented by using a mapping from the domain
of the blocks to a subset of the integers and then imposing a tree access structure such as a
BT-tree on the result of the mapping as was described in Section 1.2 for point data stored
in a PR quadtree.

As the dimensionality of the space (i.e., d) increases, each level of decomposition in the
region quadtree results in many new blocks as the fanout value 2¢ is high. In particular,
it is too large for a practical implementation of the tree access structure. In this case, an
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FIGURE 1.8: (a) Block decomposition and (b) its tree representation for the region quadtree
corresponding to a collection of three regions A, B, and C.

access structure termed a bintree [44, 65, 72] with a fanout value of 2 is used. The bintree is
defined in a manner analogous to the region quadtree except that at each subdivision stage,
the space is decomposed into two equal-sized parts. In two dimensions, at odd stages we
partition along the y axis and at even stages we partition along the x axis. In general, in
the case of d dimensions, we cycle through the different axes every d levels in the bintree.

The region quadtree, as well as the bintree, is a regular decomposition. This means that
the blocks are congruent — that is, at each level of decomposition, all of the resulting blocks
are of the same shape and size. We can also use decompositions where the sizes of the blocks
are not restricted in the sense that the only restriction is that they be rectangular and be
a result of a recursive decomposition process. In this case, the representations that we
described must be modified so that the sizes of the individual blocks can be obtained. An
example of such a structure is an adaptation of the point quadtree [22] to regions. Although
the point quadtree was designed to represent points in a higher dimensional space, the blocks
resulting from its use to decompose space do correspond to regions. The difference from the
region quadtree is that in the point quadtree, the positions of the partitions are arbitrary,
whereas they are a result of a partitioning process into 2¢ congruent blocks (e.g., quartering
in two dimensions) in the case of the region quadtree.

As in the case of the region quadtree, as the dimensionality d of the space increases, each
level of decomposition in the point quadtree results in many new blocks since the fanout
value 2% is high. In particular, it is too large for a practical implementation of the tree
access structure. In this case, we can adapt the k-d tree [8], which has a fanout value of
2, to regions. As in the point quadtree, although the k-d tree was designed to represent
points in a higher dimensional space, the blocks resulting from its use to decompose space
do correspond to regions. Thus the relationship of the k-d tree to the point quadtree is the
same as the relationship of the bintree to the region quadtree. In fact, the k-d tree is the
precursor of the bintree and its adaptation to regions is defined in a similar manner in the
sense that for d-dimensional data we cycle through the d axes every d levels in the k-d tree.
The difference is that in the k-d tree, the positions of the partitions are arbitrary, whereas
they are a result of a halving process in the case of the bintree.

The k-d tree can be further generalized so that the partitions take place on the various
axes at an arbitrary order, and, in fact, the partitions need not be made on every coordinate
axis. The k-d tree is a special case of the BSP tree (denoting Binary Space Partitioning) [29]
where the partitioning hyperplanes are restricted to be parallel to the axes, whereas in the
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FIGURE 1.9: (a) An arbitrary space decomposition and (b) its BSP tree. The arrows
indicate the direction of the positive halfspaces.

BSP tree they have an arbitrary orientation. The BSP tree is a binary tree. In order to be
able to assign regions to the left and right subtrees, we need to associate a direction with
each subdivision line. In particular, the subdivision lines are treated as separators between
two halfspaces?. Let the subdivision line have the equation a-z +b-y +c¢ = 0. We say that
the right subtree is the ‘positive’ side and contains all subdivision lines formed by separators
that satisfy a-x + b-y + ¢ > 0. Similarly, we say that the left subtree is ‘negative’ and
contains all subdivision lines formed by separators that satisfy a-z +b-y+ ¢ < 0. As an
example, consider Figure 1.9a which is an arbitrary space decomposition whose BSP tree
is given in Figure 1.9b. Notice the use of arrows to indicate the direction of the positive
halfspaces. The BSP tree is used in computer graphics to facilitate viewing. It is discussed
in greater detail in Chapter 77.

As mentioned before, the various hierarchical data structures that we described can also
be used to represent regions in three dimensions and higher. As an example, we briefly
describe the region octree which is the three-dimensional analog of the region quadtree. It
is constructed in the following manner. We start with an image in the form of a cubical
volume and recursively subdivide it into eight congruent disjoint cubes (called octants)
until blocks are obtained of a uniform color or a predetermined level of decomposition is
reached. Figure 1.10a is an example of a simple three-dimensional object whose region
octree block decomposition is given in Figure 1.10b and whose tree representation is given
in Figure 1.10c.

The aggregation of cells into blocks in region quadtrees and region octrees is motivated,
in part, by a desire to save space. Some of the decompositions have quite a bit of structure
thereby leading to inflexibility in choosing partition lines, etc. In fact, at times, maintaining
the original image with an array access structure may be more effective from the standpoint
of storage requirements. In the following, we point out some important implications of the
use of these aggregations. In particular, we focus on the region quadtree and region octree.
Similar results could also be obtained for the remaining block decompositions.

2A (linear) halfspace in d-dimensional space is defined by the inequality E?:o a; -x; > 0onthe d+1
homogeneous coordinates (zg = 1). The halfspace is represented by a column vector a. In vector
notation, the inequality is written as a -z > 0. In the case of equality, it defines a hyperplane with a as
its normal. It is important to note that halfspaces are volume elements; they are not boundary elements.
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FIGURE 1.10: (a) Example three-dimensional object; (b) its region octree block decompo-
sition; and (c) its tree representation.

The aggregation of similarly-valued cells into blocks has an important effect on the ex-
ecution time of the algorithms that make use of the region quadtree. In particular, most
algorithms that operate on images represented by a region quadtree are implemented by a
preorder traversal of the quadtree and, thus, their execution time is generally a linear func-
tion of the number of nodes in the quadtree. A key to the analysis of the execution time of
quadtree algorithms is the Quadtree Complexity Theorem [39] which states that the number
of nodes in a region quadtree representation for a simple polygon (i.e., with non-intersecting
edges and without holes) is O(p+¢) for a 29 x 29 image with perimeter p measured in terms
of the width of unit-sized cells (i.e., pixels). In all but the most pathological cases (e.g., a
small square of unit width centered in a large image), the ¢ factor is negligible and thus the
number of nodes is O(p).

The Quadtree Complexity Theorem also holds for three-dimensional data [52] (i.e., repre-
sented by a region octree) where perimeter is replaced by surface area, as well as for objects
of higher dimensions d for which it is proportional to the size of the (d — 1)-dimensional
interfaces between these objects. The most important consequence of the Quadtree Com-
plexity Theorem is that it means that most algorithms that execute on a region quadtree
representation of an image, instead of one that simply imposes an array access structure
on the original collection of cells, usually have an execution time that is proportional to
the number of blocks in the image rather than the number of unit-sized cells. In its most
general case, this means that the use of the region quadtree, with an appropriate access
structure, in solving a problem in d-dimensional space will lead to a solution whose exe-
cution time is proportional to the (d — 1)-dimensional space of the surface of the original
d-dimensional image. On the other hand, use of the array access structure on the original
collection of cells results in a solution whose execution time is proportional to the number
of cells that comprise the image. Therefore, region quadtrees and region octrees act like
dimension-reducing devices.

1.5 Rectangle Data

The rectangle data type lies somewhere between the point and region data types. It can also
be viewed as a special case of the region data type in the sense that it is a region with only
four sides. Rectangles are often used to approximate other objects in an image for which
they serve as the minimum rectilinear enclosing object. For example, bounding rectangles
are used in cartographic applications to approximate objects such as lakes, forests, hills,
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etc. In such a case, the approximation gives an indication of the existence of an object.
Of course, the exact boundaries of the object are also stored; but they are only accessed if
greater precision is needed. For such applications, the number of elements in the collection is
usually small, and most often the sizes of the rectangles are of the same order of magnitude
as the space from which they are drawn.

Rectangles are also used in VLSI design rule checking as a model of chip components for
the analysis of their proper placement. Again, the rectangles serve as minimum enclosing
objects. In this application, the size of the collection is quite large (e.g., millions of com-
ponents) and the sizes of the rectangles are several orders of magnitude smaller than the
space from which they are drawn.

It should be clear that the actual representation that is used depends heavily on the
problem environment. At times, the rectangle is treated as the Cartesian product of two one-
dimensional intervals with the horizontal intervals being treated in a different manner than
the vertical intervals. In fact, the representation issue is often reduced to one of representing
intervals. For example, this is the case in the use of the plane-sweep paradigm [57] in the
solution of rectangle problems such as determining all pairs of intersecting rectangles. In
this case, each interval is represented by its left and right endpoints. The solution makes
use of two passes.

The first pass sorts the rectangles in ascending order on the basis of their left and right
sides (i.e., x coordinate values) and forms a list. The second pass sweeps a vertical scan
line through the sorted list from left to right halting at each one of these points, say p.
At any instant, all rectangles that intersect the scan line are considered active and are the
only ones whose intersection needs to be checked with the rectangle associated with p. This
means that each time the sweep line halts, a rectangle either becomes active (causing it to
be inserted in the set of active rectangles) or ceases to be active (causing it to be deleted
from the set of active rectangles). Thus the key to the algorithm is its ability to keep track
of the active rectangles (actually just their vertical sides) as well as to perform the actual
one-dimensional intersection test.

Data structures such as the segment tree [9], interval tree [20], and the priority search
tree [51] can be used to organize the vertical sides of the active rectangles so that, for
N rectangles and F' intersecting pairs of rectangles, the problem can be solved in O(N -
logy, N + F) time. All three data structures enable intersection detection, insertion, and
deletion to be executed in O(log, N) time. The difference between them is that the segment
tree requires O(N - log, N) space while the interval tree and the priority search tree only
need O(NN) space. These algorithms require that the set of rectangles be known in advance.
However, they work even when the size of the set of active rectangles exceeds the amount
of available memory, in which case multiple passes are made over the data [41]. For more
details about these data structures, see Chapter ?7?.

In this chapter, we are primarily interested in dynamic problems (i.e., the set of rectan-
gles is constantly changing). The data structures that are chosen for the collection of the
rectangles are differentiated by the way in which each rectangle is represented. One repre-
sentation discussed in Section 1.1 reduces each rectangle to a point in a higher dimensional
space, and then treats the problem as if we have a collection of points [33]. Again, each
rectangle is a Cartesian product of two one-dimensional intervals where the difference from
its use with the plane-sweep paradigm is that each interval is represented by its centroid
and extent. Each set of intervals in a particular dimension is, in turn, represented by a grid
file [55] which is described in Section 1.2.

The second representation is region-based in the sense that the subdivision of the space
from which the rectangles are drawn depends on the physical extent of the rectangle —
not just one point. Representing the collection of rectangles, in turn, with a tree-like data
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FIGURE 1.11: (a) Collection of rectangles and the block decomposition induced by the
MX-CIF quadtree; (b) the tree representation of (a); the binary trees for the y axes passing
through the root of the tree in (b), and (d) the NE son of the root of the tree in (b).

structure has the advantage that there is a relation between the depth of node in the tree
and the size of the rectangle(s) that is (are) associated with it. Interestingly, some of the
region-based solutions make use of the same data structures that are used in the solutions
based on the plane-sweep paradigm.

There are three types of region-based solutions currently in use. The first two solutions
use the R-tree and the Rt-tree (discussed in Section 1.3) to store rectangle data (in this
case the objects are rectangles instead of arbitrary objects). The third is a quadtree-based
approach and uses the MX-CIF quadtree [42] (see also [47] for a related variant).

In the MX-CIF quadtree, each rectangle is associated with the quadtree node correspond-
ing to the smallest block which contains it in its entirety. Subdivision ceases whenever
a node’s block contains no rectangles. Alternatively, subdivision can also cease once a
quadtree block is smaller than a predetermined threshold size. This threshold is often cho-
sen to be equal to the expected size of the rectangle [42]. For example, Figure 1.11b is the
MX-CIF quadtree for a collection of rectangles given in Figure 1.11a. Rectangles can be
associated with both leaf and nonleaf nodes.

It should be clear that more than one rectangle can be associated with a given enclosing
block and, thus, often we find it useful to be able to differentiate between them. This is
done in the following manner [42]. Let P be a quadtree node with centroid (CX,CY’), and
let S be the set of rectangles that are associated with P. Members of S are organized into
two sets according to their intersection (or collinearity of their sides) with the lines passing
through the centroid of P’s block — that is, all members of S that intersect the line x = CX
form one set and all members of S that intersect the line y = C'Y form the other set.

If a rectangle intersects both lines (i.e., it contains the centroid of P’s block), then we
adopt the convention that it is stored with the set associated with the line through z = CX.
These subsets are implemented as binary trees (really tries), which in actuality are one-
dimensional analogs of the MX-CIF quadtree. For example, Figure 1.11c and Figure 1.11d
illustrate the binary trees associated with the y axes passing through the root and the NE
son of the root, respectively, of the MX-CIF quadtree of Figure 1.11b. Interestingly, the
MX-CIF quadtree is a two-dimensional analog of the interval tree. described above. More
precisely, the MX-CIF quadtree is a a two-dimensional analog of the tile tree [50] which
is a regular decomposition version of the interval tree. In fact, the tile tree and the one-
dimensional MX-CIF quadtree are identical when rectangles are not allowed to overlap.
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1.6 Line Data and Boundaries of Regions

Section 1.4 was devoted to variations on hierarchical decompositions of regions into blocks,
an approach to region representation that is based on a description of the region’s interior.
In this section, we focus on representations that enable the specification of the boundaries
of regions, as well as curvilinear data and collections of line segments. The representations
are usually based on a series of approximations which provide successively closer fits to the
data, often with the aid of bounding rectangles. When the boundaries or line segments
have a constant slope (i.e., linear and termed line segments in the rest of this discussion),
then an exact representation is possible.

There are several ways of approximating a curvilinear line segment. The first is by
digitizing it and then marking the unit-sized cells (i.e., pixels) through which it passes. The
second is to approximate it by a set of straight line segments termed a polyline. Assuming
a boundary consisting of straight lines (or polylines after the first stage of approximation),
the simplest representation of the boundary of a region is the polygon. It consists of
vectors which are usually specified in the form of lists of pairs of x and y coordinate values
corresponding to their start and end points. The vectors are usually ordered according to
their connectivity. One of the most common representations is the chain code [26] which is
an approximation of a polygon’s boundary by use of a sequence of unit vectors in the four
(and sometimes eight) principal directions.

Chain codes, and other polygon representations, break down for data in three dimensions
and higher. This is primarily due to the difficulty in ordering their boundaries by connec-
tivity. The problem is that in two dimensions connectivity is determined by ordering the
boundary elements e; ; of boundary b; of object o so that the end vertex of the vector v;
corresponding to e; ; is the start vertex of the vector v,y corresponding to e; j4+1. Unfor-
tunately, such an implicit ordering does not exist in higher dimensions as the relationship
between the boundary elements associated with a particular object are more complex.

Instead, we must make use of data structures which capture the topology of the object
in terms of its faces, edges, and vertices. The winged-edge data structure is one such
representation which serves as the basis of the boundary model (also known as BRep [5]).
For more details about these data structures, see Chapter 77?.

Polygon representations are very local. In particular, if we are at one position on the
boundary, we don’t know anything about the rest of the boundary without traversing it
element-by-element. Thus, using such representations, given a random point in space,
it is very difficult to find the nearest line to it as the lines are not sorted. This is in
contrast to hierarchical representations which are global in nature. They are primarily
based on rectangular approximations to the data as well as on a regular decomposition in
two dimensions. In the rest of this section, we discuss a number of such representations.

In Section 1.3 we already examined two hierarchical representations (i.e., the R-tree and
the RT-tree) that propagate object approximations in the form of bounding rectangles. In
this case, the sides of the bounding rectangles had to be parallel to the coordinate axes of
the space from which the objects are drawn. In contrast, the strip tree [4] is a hierarchical
representation of a single curve that successively approximates segments of it with bounding
rectangles that does not require that the sides be parallel to the coordinate axes. The only
requirement is that the curve be continuous; it need not be differentiable.

The strip tree data structure consists of a binary tree whose root represents the bounding
rectangle of the entire curve. The rectangle associated with the root corresponds to a
rectangular strip, that encloses the curve, whose sides are parallel to the line joining the
endpoints of the curve. The curve is then partitioned in two at one of the locations where it
touches the bounding rectangle (these are not tangent points as the curve only needs to be
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FIGURE 1.12: (a) MX quadtree and (b) edge quadtree for the collection of line segments
of Figure 1.5.

continuous; it need not be differentiable). Each subcurve is then surrounded by a bounding
rectangle and the partitioning process is applied recursively. This process stops when the
width of each strip is less than a predetermined value.

In order to be able to cope with more complex curves such as those that arise in the case of
object boundaries, the notion of a strip tree must be extended. In particular, closed curves
and curves that extend past their endpoints require some special treatment. The general
idea is that these curves are enclosed by rectangles which are split into two rectangular
strips, and from now on the strip tree is used as before.

The strip tree is similar to the point quadtree in the sense that the points at which
the curve is decomposed depend on the data. In contrast, a representation based on the
region quadtree has fixed decomposition points. Similarly, strip tree methods approximate
curvilinear data with rectangles of arbitrary orientation, while methods based on the region
quadtree achieve analogous results by use of a collection of disjoint squares having sides
of length power of two. In the following we discuss a number of adaptations of the region
quadtree for representing curvilinear data.

The simplest adaptation of the region quadtree is the MX quadtree [39, 40]. It is built
by digitizing the line segments and labeling each unit-sized cell (i.e., pixel) through which
it passes as of type boundary. The remaining pixels are marked WHITE and are merged, if
possible, into larger and larger quadtree blocks. Figure 1.12a is the MX quadtree for the
collection of line segment objects in Figure 1.5. A drawback of the MX quadtree is that
it associates a thickness with a line. Also, it is difficult to detect the presence of a vertex
whenever five or more line segments meet.

The edge quadtree [68, 74] is a refinement of the MX quadtree based on the observa-
tion that the number of squares in the decomposition can be reduced by terminating the
subdivision whenever the square contains a single curve that can be approximated by a
single straight line. For example, Figure 1.12b is the edge quadtree for the collection of
line segment objects in Figure 1.5. Applying this process leads to quadtrees in which long
edges are represented by large blocks or a sequence of large blocks. However, small blocks
are required in the vicinity of corners or intersecting edges. Of course, many blocks will
contain no edge information at all.

The PM quadtree family [54, 66] (see also edge-EXCELL [71]) represents an attempt
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FIGURE 1.13: (a) PM; quadtree and (b) PMR quadtree for the collection of line segments
of Figure 1.5.

to overcome some of the problems associated with the edge quadtree in the representation
of collections of polygons (termed polygonal maps). In particular, the edge quadtree is an
approximation because vertices are represented by pixels. There are a number of variants
of the PM quadtree. These variants are either vertex-based or edge-based. They are all
built by applying the principle of repeatedly breaking up the collection of vertices and edges
(forming the polygonal map) until obtaining a subset that is sufficiently simple so that it
can be organized by some other data structure.

The PM; quadtree [66] is an example of a vertex-based PM quadtree. Its decomposition
rule stipulates that partitioning occurs as long as a block contains more than one line
segment unless the line segments are all incident at the same vertex which is also in the
same block (e.g., Figure 1.13a). Given a polygonal map whose vertices are drawn from a
grid (say 2™ x 2™), and where edges are not permitted to intersect at points other than the
grid points (i.e., vertices), it can be shown that the maximum depth of any leaf node in the
PM; quadtree is bounded from above by 4m + 1 [64]. This enables a determination of the
maximum amount of storage that will be necessary for each node.

A similar representation has been devised for three-dimensional images (e.g., [3] and the
references cited in [63]). The decomposition criteria are such that no node contains more
than one face, edge, or vertex unless the faces all meet at the same vertex or are adjacent to
the same edge. This representation is quite useful since its space requirements for polyhedral
objects are significantly smaller than those of a region octree.

The PMR quadtree [54] is an edge-based variant of the PM quadtree. It makes use
of a probabilistic splitting rule. A node is permitted to contain a variable number of line
segments. A line segment is stored in a PMR quadtree by inserting it into the nodes
corresponding to all the blocks that it intersects. During this process, the occupancy of
each node that is intersected by the line segment is checked to see if the insertion causes
it to exceed a predetermined splitting threshold. If the splitting threshold is exceeded, then
the node’s block is split once, and only once, into four equal quadrants.

For example, Figure 1.13b is the PMR quadtree for the collection of line segment objects in
Figure 1.5 with a splitting threshold value of 2. The line segments are inserted in alphabetic
order (i.e., a—i). It should be clear that the shape of the PMR quadtree depends on the
order in which the line segments are inserted. Note the difference from the PM; quadtree in
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Figure 1.13a — that is, the NE block of the SW quadrant is decomposed in the PM; quadtree
while the SE block of the SW quadrant is not decomposed in the PM; quadtree.

On the other hand, a line segment is deleted from a PMR quadtree by removing it from the
nodes corresponding to all the blocks that it intersects. During this process, the occupancy
of the node and its siblings is checked to see if the deletion causes the total number of line
segments in them to be less than the predetermined splitting threshold. If the splitting
threshold exceeds the occupancy of the node and its siblings, then they are merged and the
merging process is reapplied to the resulting node and its siblings. Notice the asymmetry
between the splitting and merging rules.

The PMR quadtree is very good for answering queries such as finding the nearest line to
a given point [34, 35, 36, 37] (see [38] for an empirical comparison with hierarchical object
representations such as the R-tree and R*-tree). It is preferred over the PM; quadtree (as
well as the MX and edge quadtrees) as it results in far fewer subdivisions. In particular,
in the PMR quadtree there is no need to subdivide in order to separate line segments that
are very “close” or whose vertices are very “close,” which is the case for the PM; quadtree.
This is important since four blocks are created at each subdivision step. Thus when many
subdivision steps that occur in the PM; quadtree result in creating many empty blocks,
the storage requirements of the PM; quadtree will be considerably higher than those of the
PMR quadtree. Generally, as the splitting threshold is increased, the storage requirements
of the PMR quadtree decrease while the time necessary to perform operations on it will
increase.

Using a random image model and geometric probability, it has been shown [48], theoreti-
cally and empirically using both random and real map data, that for sufficiently high values
of the splitting threshold (i.e., > 4), the number of nodes in a PMR quadtree is asymp-
totically proportional to the number of line segments and is independent of the maximum
depth of the tree. In contrast, using the same model, the number of nodes in the PM;
quadtree is a product of the number of lines and the maximal depth of the tree (i.e., n for
a 2™ x 2™ image). The same experiments and analysis for the MX quadtree confirmed the
results predicted by the Quadtree Complexity Theorem (see Section 1.4) which is that the
number of nodes is proportional to the total length of the line segments.

Observe that although a bucket in the PMR quadtree can contain more line segments
than the splitting threshold, this is not a problem. In fact, it can be shown [63] that the
maximum number of line segments in a bucket is bounded by the sum of the splitting
threshold and the depth of the block (i.e., the number of times the original space has been
decomposed to yield this block).

1.7 Research Issues and Summary

A review has been presented of a number of representations of multidimensional data.
Our focus has been on multidimensional spatial data with extent rather than just mul-
tidimensional point data. There has been a particular emphasis on hierarchical repre-
sentations. Such representations are based on the “divide-and-conquer” problem-solving
paradigm. They are of interest because they enable focussing computational resources on
the interesting subsets of data. Thus, there is no need to expend work where the payoff is
small. Although many of the operations for which they are used can often be performed
equally as efficiently, or more so, with other data structures, hierarchical data structures
are attractive because of their conceptual clarity and ease of implementation.

When the hierarchical data structures are based on the principle of regular decomposition,
we have the added benefit that different data sets (often of differing types) are in registration.
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This means that they are partitioned in known positions which are often the same or subsets
of one another for the different data sets. This is true for all the features including regions,
points, rectangles, lines, volumes, etc. The result is that a query such as “finding all
cities with more than 20,000 inhabitants in wheat growing regions within 30 miles of the
Mississippi River” can be executed by simply overlaying the region (crops), point (i.e.,
cities), and river maps even though they represent data of different types. Alternatively, we
may extract regions such as those within 30 miles of the Mississippi River. Such operations
find use in applications involving spatial data such as geographic information systems.

Current research in multidimensional representations is highly application-dependent in
the sense that the work is driven by the application. Many of the recent developments have
been motivated by the interaction with databases. The choice of a proper representation
plays a key role in the speed with which responses are provided to queries. Knowledge of
the underlying data distribution is also a factor and research is ongoing to make use of this
information in the process of making a choice. Most of the initial applications in which the
representation of multidimensional data has been important have involved spatial data of
the kind described in this chapter. Such data is intrinsically of low dimensionality (i.e., two
and three).

Future applications involve higher dimensional data for applications such as image databases
where the data are often points in feature space. Unfortunately, for such applications, the
performance of most indexing methods that rely on a decomposition of the underlying space
is often unsatisfactory when compared with not using an index at all (e.g., [16]). The prob-
lem is that for uniformly-distributed data, most of the data is found to be at or near the
boundary of the space in which it lies [13]. The resu means that the query region usually
overlaps all of the leaf node regions that are created by the decomposition process and thus
a sequential scan is preferable. This has led to a number of alternative representations that
try to speed up the scan (e.g., VA-file [75], VAt file [21], IQ-tree [15], etc.). Nevertheless,
representations such as the pyramid technique [14] are based on the principle that most of
the data lies near the surface and therefore subdivide the data space as if it is an onion by
peeling off hypervolumes that are close to its boundary. This is achieved by first dividing
the hypercube corresponding to the d-dimensional data space into 2d pyramids having the
center of the data space as their top point and one of the faces of the hypercube as its
base. These pyramids are subsequently cut into slices that are parallel to their base. Of
course, the high-dimensional data is not necessarily uniformly-distributed which has led to
other data structures with good performance (e.g., the hybrid tree [17]). Clearly, more work
needs to be done in this area.
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random image model, 1-23

range tree, 1-8, 1-14

region octree, 1-14-1-17

region quadtree, 1-14-1-17, 1-21-1-22
regular decomposition, 1-4, 1-14

segment tree, 1-14, 1-18
sequential list, 1-3

splitting threshold, 1-22-1-23
strip tree, 1-20

tile tree, 1-19
transformation approach, 1-2
tree, 1-4

trie, 1-4

uniform grid, 1-3, 1-12, 1-14

VA+-file, 1-24
VA-file, 1-24



