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A tutorial survey is presented of the quadtree and related hierarchical data structures. 
They are based on the principle of recursive decomposition. The emphasis is on the 
representation of data used in applications in image processing, computer graphics, 
geographic information systems, and robotics. There is a greater emphasis on region data 
(i.e., two-dimensional shapes) and to a lesser extent on point, curvilinear, and three­
dimensional data. A number of operations in which such data structures find use are 
examined in greater detail. 
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INTRODUCTION 

Hierarchical data structures are becoming 
increasingly important representation tech­
niques in the domains of computer graph­
ics, image processing, computational geom­
etry, geographic information systems, and 
robotics. They are based on the principle of 
recursive decomposition (similar to divide 
and conquer methods [Aho et al. 1974]). 
One such data structure is the quadtree. As 
we shall see, the term quadtree has taken 
on a generic meaning. In this survey it is 
our goal to show how a number of data 

structures used in different domains are 
related to each other and to quadtrees. This 
presentation concentrates on these differ­
ent representations and illustrates how a 
number of basic operations that use them 
are performed. 

Hierarchical data structures are useful 
because of their ability to focus on the 
interesting subsets of the data. This focus­
ing results in an efficient representation 
and improved execution times and is thus 
particularly useful for performing set op­
erations. Many of the operations that we 
describe can often be performed equally as 

Permission to copy without fee all or part of this material is granted provided that the copies are not made or 
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its 
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To 
copy otherwise, or to republish, requires a fee and/or specific permission. 
© 1984 ACM 0360-0300/84/0600-0187 $00.75 

Computing Surveys, Vol.16, No. 2, June 1984 



188 • Hanan Samet 

CONTENTS 

INTRODUCTION 
1. OVERVIEW OF QUADTREES 
2. REGION DATA 

2.1 Neighbor-Finding Techniques 
2.2 Alternative Ways to Represent Quadtrees 
2.3 Conversion 
2.4 Set Operations 
2.5 Transformations 
2.6 Areas and Moments 
2. 7 Connected Component Labeling 
2.8 Perimeter 
2.9 Component Counting 
2.10 Space Requirements 
2.11 Skeletons and Medial Axis Transforms 
2.12 Pyramids 
2.13 Quadtree Approximation Methods 
2.14 Volume Data 

3. POINT DATA 
3.1 Point Quadtrees and k-d Trees 
3.2 Region-Based Qualities 
3.3 Comparison of Point Quadtrees 

and Region-Based Quadtrees 
3.4 CIF Quadtrees 
3.5 Bucket Methods 

4. CURVILINEAR DATA 
4.1 Strip Trees 
4.2 Methods Based on a Regular Decomposition 
4.3 Comparison 

5. CONCLUSIONS 
ACKNOWLEDGMENTS 
REFERENCES 

efficiently, or more so, with other data 
structures. However, hierarchical data 
structures are attractive because of their 
conceptual clarity and ease of implemen­
tation. 

As an example of the type of problems to 
which the techniques described in this sur­
vey are applicable, consider a cartographic 
database consisting of a number of maps 
and some typical queries. The database 
contains a contour map, say at 50-foot ele­
vation intervals, and a land use map clas­
sifying areas according to crop growth. Our 
wish is to determine all regions between 
400- and 600-foot elevation levels where 
wheat is grown. This will require an inter­
section operation on the two maps. Such 
an analysis could be rather costly, depend­
ing on the way the data are represented. 
For example, areas where corn is grown are 
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of no interest, and we wish to spend a 
minimal amount of effort searching such 
regions. Yet, traditional region representa­
tions such as the boundary code [Freeman 
1974] are very local in application, making 
it difficult to avoid examining a corn-grow­
ing area that meets the desired elevation 
criterion. In contrast, hierarchical methods 
such as the region quadtree are more global 
in nature and enable the elimination of 
larger areas from consideration. Another 
query might be to determine whether two 
roads intersect within a given area. We 
could check them point by point, but a more 
efficient method of analysis would be to 
represent them by a hierarchical sequence 
of enclosing rectangles and to discover 
whether in fact the rectangles do overlap. 
If they do not, then the search is termi­
nated, but if an intersection is possible, 
then more work may have to be done, de­
pending on which method of representation 
is used. A similar query can be constructed 
for point data-for example, to determine 
all cities within 50 miles of St. Louis that 
have a population in excess of 20,000 peo­
ple. Again, we could check each city indi­
vidually, but using a representation that 
decomposes the United States into square 
areas having sides of length 100 miles would 
mean that at most four squares need to be 
examined. Thus California and its adjacent 
states can be safely ignored. Finally, sup­
pose that we wish to integrate our queries 
over a database containing many different 
types of data (e.g., points, lines, and areas). 
A typical query might be, "Find all cities 
with a population in excess of 5000 people 
in wheat-growing regions within 20 miles 
of the Mississippi River." In the remainder 
of this survey we shall present a number of 
different ways of representing data so that 
such queries and other operations can be 
efficiently processed. 

The coverage and scope of the survey are 
focused on region data, and are concerned 
to a lesser extent witli point, curvilinear, 
and three-dimensional data. Owing to space 
limitations, algorithms are presented only 
in a descriptive manner. Whenever possi­
ble, however, we have tried to motivate 
critical steps by a liberal use of examples. 
The concept of a pyramid is discussed only 
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briefly, and the reader is referred to the 
collection of papers edited by Rosenfeld 
[1983] for a more comprehensive exposi­
tion. Similarly, we discuss image compres­
sion and coding only in the context of hi­
erarchical data structures. Results from 
computational geometry, although related 
to many of the topics covered in this survey, 
are only discussed briefly in the context of 
representations for curvilinear data. For 
more details on early results involving some 
of these and related topics, the interested 
reader may consult the surveys by Bent­
ley and Friedman [1979], Edelsbrunner 
[1984), Nagy and Wagle [1979], Requicha 
[1980), Srihari [1981], Samet and Rosen­
feld [1980], and Toussaint [1980]. Over­
mars (1983] has produced a particularly 
good treatment of point data. A broader 
view of the literature can be found in re­
lated bibliographies, for example, Edels­
brunner and van Leeuwen [1983] and Ro­
senfeld [ 1984]. Nevertheless, given the 
broad and rapidly expanding nature of the 
field, we are bound to have omitted signif­
icant concepts and references. In addition 
we at times devote a disproportionate 
amount of attention to some concepts at 
the expense of others. This is principally 
for expository purposes as we feel that it is 
better to understand some structures well 
rather than to give the reader a quick run­
through of "buzz words." For these indis­
cretions, we beg your pardon. 

1. OVERVIEW OF QUADTREES 

The term quadtree is used to describe a 
class of hierarchical data structures whose 
common property is that they are based on 
tbe principle of recursive decomposition of 
space. They can be differentiated on the 
following bases: (1) the type of data that 
they are used to represent, (2) the principle 
guiding the decomposition process, and (3) 
the resolution (variable or not). Currently, 
they are used for point data, regions, curves, 
surfaces, and volumes. The decomposition 
may be into equal parts on each level (i.e., 
regular polygons and termed a regular de­
composition), or it may be governed by the 
input. The resolution of the decomposition 
(i.e., the number of times that the decom-

position process is applied) may be fixed 
beforehand, or it may be governed by prop­
erties of the input data. 

Our first example of quadtree represen­
tation of data is concerned with the repre­
sentation of region data. The most studied 
quadtree approach to region representa­
tion, termed a region quadtree, is based on 
the successive subdivision of the image ar­
ray into four equal-sized quadrants. If the 
array does not consist entirely of l's or 
entirely ofO's (i.e., the region does not cover 
the entire array), it is then subdivided into 
quadrants, subquadrants, etc. until blocks 
are obtained (possibly single pixels) that 
consist entirely of l's or entirely of O's; that 
is, each block is entirely contained in the 
region or entirely disjoint from it. Thus the 
region quadtree can be characterized as a 
variable resolution data structure. For ex­
ample, consider the region shown in Figure 
la, which is represented by the 23 by 23 

binary array in Figure lb. Observe that the 
l's correspond to picture elements (termed 
pixe/,s) that are in the region and the O's 
correspond to picture elements that are 
outside the region. The resulting blocks for 
the array of Figure lb are shown in Figure 
le. This process is represented by a tree of 
degree 4 (i.e., each nonleaf node has four 
sons). The root node corresponds to the 
entire array. Each son of a node represents 
a quadrant (labeled in order NW, NE, SW, 
SE) of the region represented by that node. 
The leaf nodes of the tree correspond to 
those blocks for which no further subdivi­
sion is necessary. A leaf node is said to be 
BLACK or WHITE, depending on whether 
its corresponding block is entirely inside or 
entirely outside of the represented region. 
All nonleaf nodes are said to be GRAY. The 
quadtree representation for Figure le is 
shown in Figure ld. 

At this point it is appropriate to define a 
few terms. We use the term image to refer 
to the original array of pixels. If its ele­
ments are either BLACK or WHITE then 
it is said to be binary. If shades of gray are 
possible (i.e., gray levels), then the image is 
said to be a gray-scale image. In our discus­
sion we are primarily concerned with bi­
nary images. The border of the image is the 
outer boundary of the square corresponding 
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Figure 1. A region, its binary array, its maximal blocks, and the corresponding quad­
tree. (a) Region. (b) Binary array. (c) Block decomposition of the region in (a). Blocks 
in the region are shaded. (d) Quadtree representation of the blocks in (c). 

to the array. Two pixels are said to be 4-
adjacent if they are adjacent to each other 
in the horizontal or vertical directions. If 
the concept of adjacency also includes ad­
jacency at a corner (i.e., diagonal adjacen­
cies), then the pixels are said to be 8-adja­
cent. A BLACK region is a maximal four­
connected set of BLACK pixels, that is, a 
set S such that for any pixels p, q, in S 
there exists a sequence ofpixelsp = po,p1 , 

... , Pn = q in S such that Pi+t is 4-adjacent 
to p;, 0 ~ i < n. A WHITE region is a 
maximal eight-connected set of WHITE 
pixels, which is defined analogously. A pixel 
is said to have four edges, each of which is 
of unit length. The boundary of a BLACK 
region consists of the set of edges of its 
constituent pixels that also serve as edges 
of WHITE pixels. Similar definitions can 
be formulated in terms of blocks. For ex-
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ample, two disjoint blocks, P and Q, are 
said to be 4-adjacent if there exists a pixel 
p in P and a pixel q in Q such that p and q 
are 4-adjacent. Eight-adjacency for blocks 
is defined analogously. 

Unfortunately, the term quadtree has 
taken on more than one meaning. The re­
gion quadtree, as shown above, is a parti­
tion of space into a set of squares whose 
sides are all a power of two long. This 
formulation is due to Klinger [1971; Klin­
ger and Dyer 1976], who used the term Q­
tree, whereas Hunter [1978] was the first 
to use the term quadtree in such a context. 
Actually, a more precise term would be 
quadtrie, as it is really a trie structure 
[Fredkin 1960] (i.e., a data item or key is 
treated as a sequence of characters, where 
each character has M possible values and a 
node at level i in the trie represents an M-
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Figure 2. A point quadtree (b) and the records it represents (a). 

way branch depending on the ith charac­
ter). A similar partition of space into rec­
tangular quadrants, also termed a quadtree, 
was used by Finkel and Bentley [1974]. It 
is an adaptation of the binary search tree 
[Knuth 1975] to two dimensions (which can 
be easily extended to an arbitrary number 
of dimensions). It is primarily used to rep­
resent multidimensional point data, and we 
shall refer to it as a point quadtree when 
confusion with a region quadtree is possi­
ble. As an example, consider the point 

quadtree in Figure 2, which is built for the 
sequence Chicago, Mobile, Toronto, Buf­
falo, Denver, Omaha, Atlanta, and Miami.1 

Note that its shape is highly dependent 
on the order in which the points are added 
to it. 

' We have taken liberty in the assignment of coordi­
nates to city names so that the same example can be 
used throughout the text to illustrate a variety of 
concepts. 
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The origin of the principle of recursive 
decomposition upon which, as we have said, 
all quadtrees are based is difficult to ascer­
tain. Below, in order to give some indication 
of the uses of the quadtree, we briefly, and 
incompletely, trace some of its applications 
to geometric data. Most likely it was first 
seen as a way of aggregating blocks of zeros 
in sparse matrices. Indeed, Hoare [1972] 
attributes a one-level decomposition of a 
matrix into square blocks to Dijkstra. Mor­
ton [1966) used it as a means of indexing 
into a geographic database. Warnock [1969; 
Sutherland et al. 1974) implemented a hid­
den surface elimination algorithm by using 
a recursive decomposition of the picture 
area. The picture area is repeatedly subdi­
vided into successively smaller rectangles 
while a search is made for areas sufficiently 
simple to be displayed. The SRI robot proj­
ect [Nilsson 1969] used a three-level de­
composition of space to represent a map of 
the robot's world. Eastman [1970] observes 
that recursive decomposition might be used 
for space planning in an architectural con­
text. He presents a simplified version of the 
SRI robot representation. A quadtreelike 
representation in the form of production 
rules called depth-first (DF)-expressions is 
discussed by Kawaguchi and Endo [1980] 
and Kawaguchi et al. [1980). Tucker 
[1984a) uses quadtree refinement as a con­
trol strategy for an expert vision system. 

Parallel to the above development of the 
quadtree data structure there has been re­
lated work by researchers in the field of 
image understanding. Kelly [1971] intro­
duced the concept of a plan which is a small 
picture whose pixels represent gray-scale 
averages over 8 by 8 blocks of a larger 
picture. Needless effort in edge detection is 
avoided by first determining edges in the 
plan and then using these edges to search 
selectively for edges in the larger picture. 
Generalizations of this idea motivated the 
development of multiresolution image rep­
resentations, for example, the recognition 
cone of Uhr [1972), the preprocessing cone 
of Riseman and Arbib (1977), and the pyr­
amid of Tanimoto and Pavlidis (1975). Of 
these representations, the pyramid is the 
closest relative of the region quadtree. A 
pyramid is an exponentially tapering stack 
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of arrays, each one-quarter the size of the 
previous array. It has been applied to the 
problems of feature detection and segmen­
tation. In contrast, the region quadtree is a 
variable-resolution data structure. 

In the remainder of this paper we discuss 
the use of the quadtree and other hierar­
chical data structures as they apply to re­
gion representation, and to a lesser extent, 
point data and curvilinear data. Section 2 
deals with region representation. We are 
primarily concerned with two-dimensional 
binary regions and how basic operations 
common to computer graphics, image pro­
cessing, and geographic information sys­
tems can be implemented when the under­
lying representation is a quadtree. Never­
theless, we do show how the quadtree can 
be extended to represent surfaces and vol­
umes in three dimensions. A brief overview 
of pyramids and their applications is also 
presented. For more details, the reader is 
urged to consult Tanimoto and Klinger 
[1980) and Rosenfeld [1983). In Section 3 
we present various hierarchical represen­
tations of point data. Our attention is fo­
cused primarily on the point quadtree and 
its relative, the k-d tree. A more extensive 
discussion of point-space data structures 
can be found in the survey of Bentley and 
Friedman (1979). In Section 4 we show how 
hierarchical data structures are used to 
handle curvilinear data. We demonstrate 
the way in which the region quadtree can 
be adapted to cope with such data and 
compare this adaptation with other hier­
archical data structures. 

2. REGION DATA 

There are two major approaches to region 
representation: those that specify the 
boundaries of a region and those that or­
ganize the interior of a region. Owing to the 
inherent two-dimensionality of region in­
formation, our discussion focuses on the 
second approach. 

The region quadtree (termed a quadtree 
in the rest of this section) is a member of a 
class of representations that are character­
ized as being a collection of maximal blocks 
that partition a given region. The simplest 
such representation is the run length code, 
where the blocks are restricted to 1 by m 
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rectangles [Rutovitz 1968]. A more general 
representation treats the region as a union 
of maximal square blocks (or blocks of any 
desired shape} that may possibly overlap. 
Usually, the blocks are specified by their 
centers and radii. This representation is 
called the medial axis transformation 
(MAT) [Blum 1967; Rosenfeld and Pfaltz 
1966]. 

The quadtree is a variant on the maximal 
block representation. It requires that the 
blocks be disjoint and have standard sizes 
(i.e., sides of lengths that are powers of 
two) and standard locations. The motiva­
tion for its development was a desire to 
obtain a systematic way to represent ho­
mogeneous parts of an image. Thus, in or­
der to transform the data into a quadtree, 
a criterion must be chosen for deciding that 
an image is homogeneous (i.e., uniform). 
One such criterion is that the standard 
deviation of its gray levels is below a given 
threshold t. By using this criterion the im­
age array is successively subdivided into 
quadrants, subquadrants, etc. until homo­
geneous blocks are obtained. This process 
leads to a regular decomposition. If one 
associates with each leaf node the mean 
gray level of its block, the resulting quad­
tree then will completely specify a piece­
wise approximation to the image, where 
each homogeneous block is represented by 
its mean. The case where t = 0 (i.e., a block 
is not homogeneous unless its gray level is 
constant) is of particular interest, since it 
permits an exact reconstruction of the im­
age from its quadtree. 

Note that the blocks of the quadtree do 
not necessarily correspond to maximal ho­
mogeneous regions in the image. Most 
likely there exist unions of the blocks that 
are still homogeneous. To obtain a segmen­
tation of the image into maximal homoge­
neous regions, we must allow merging of 
adjacent blocks (or unions of blocks) as 
long as the resulting region remains ho­
mogeneous. This is achieved by a "split and 
merge" algorithm [Horowitz and Pavlidis 
1976]. However, the resulting partition will 
no longer be represented by a quadtree; 
instead, the final representation is in the 
form of an adjacency graph. Thus the quad­
tree is used as an initial step in the segmen-

tation process. For example, Figure 3b, c, 
and d demonstrate the results of the appli­
cation, in sequence, of merging, splitting, 
and grouping to the initial image decom­
position of Figure 3a. In this case, the image 
is initially decomposed into 16 equal-sized 
square blocks. Next, the "merge" step at­
tempts to form larger blocks by recursively 
merging groups of four homogeneous 
"brothers" (e.g., the four blocks in the NW 
and SE quadrants of Figure 3b). The "split" 
step recursively decomposes blocks which 
are not homogeneous (e.g., the NE and SW 
quadrants of Figure 3c). Finally, the 
"grouping" step aggregates all homogene­
ous 4-adjacent BLACK blocks into one re­
gion apiece; the 8-adjacent WHITE blocks 
are likewise aggregated into WHITE re­
gions. 

An alternative to the quadtree represen­
tation is to use a decomposition method 
that is not regular (i.e., rectangles of arbi­
trary size rather than squares). This alter­
native has the potential of requiring less 
space. However, its drawback is that the 
determination of optimal partition points 
necessitates a search. The homogeneity cri­
terion that is ultimately chosen to guide the 
subdivision process depends on the type of 
region data that is being represented. In 
the remainder of this section we shall as­
sume that our domain is a 2" by 2" binary 
image with 1 or BLACK corresponding to 
foreground and 0 or WHITE corresponding 
to background (e.g., Figure 1). It is inter­
esting to note that Kawaguchi et al. [1983] 
use a sequence of m binary-valued quad­
trees to encode image data of 2m gray levels, 
where the various gray levels are encoded 
by use of Gray codes [McCluskey 1965]. 
This should lead to compaction (i.e., larger 
sized blocks), since the Gray code guaran­
tees that adjacent gray-level values differ 
by only one binary digit. 

In general, any planar decomposition for 
image representation should possess the 
following two properties: 

( 1) The partition should be an infinitely 
repetitive pattern so that it can be used 
for images of any size. 

(2) The partition should be infinitely de­
composable into increasingly finer pat­
terns (i.e., higher resolution). 

Computing-Surveys, Vol.16, No. 21 June 1984 
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(a) (b) 

(c) (d) 

Figure 3. Example illustrating the "split and merge" segmentation procedure. 
(a) Start. (b) Merge. (c) Split. (d) Grouping. 

Bell et al. [1983] discuss a number of 
tilings of the plane (i.e., tessellations) that 
satisfy Property (1). They also present a 
taxonomy of criteria to distinguish among 
the various tilings. Most relevant to our 
discussion is the distinction between lim­
ited and unlimited hierarchies of tilings. A 
tiling that satisfies Property (2) is said 
to be unlimited. An alternative characteri­
zation of such a tiling is that each edge of 
each tile lies on an infinite straight line 
composed entirely of edges. Four tilings 
satisfy this criterion; of these [44 ),2 consist-

2 The notation is based on the degree of each vertex 
taken in order around the "atomic" tiling polygon. For 
example, for [4.82

) the first vertex of a constituent 
triangle has degree 4, while the remaining two vertices 
have degree 8 apiece. 
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ing of square atomic tiles (Fig. 4a), and 
[ 63

], consisting of equilateral triangle 
atomic tiles (Figure 4b), are well-known 
regular tessellations [Ahuja 1983]. For 
these two tilings we consider only the mo­
lecular tiles given in Figure 5a and b. The 
tilings [44

] and [63
] can generate an infinite 

number of different molecular tiles where 
each molecular tile consists of n 2 atomic 
tiles (n ;:: 1). The remaining nonregular 
triangular tilings [ 4.82

] (Figure 4c) and 
[ 4.6.12] (Figure 4d) are less well under­
stood. One way of generating [4.82

] and 
[ 4.6.12] is to join the centroids of the tiles 
of [ 4 4] and [ 63

], respectively, to both their 
vertices and midpoints of their edges. Each 
of the resulting tilings has two types of 
hierarchy:'in the case of (4.82] an ordinary 
(Figure 5c) and a rotation hierarchy (Figure 
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(a) (b) 

(c) (d) 

(e) 

Figure 4. Sample tesselations. (a) [4'] square. (b) (63
] equilateral triangle. 

(c) [4.82] isoceles triangle. (d) [4.6.12] 30-60 right triangle. (e) [36
] hexagon. 

5e) and in the case of [4.6.12] an ordinary 
(Figure 5d) and a reflection hierarchy (Fig­
ure 5f). Of the limited tilings, many types 
of hierarchies may be generated [Bell et al. 
1983]; however, they cannot, in general, be 
decomposed beyond the atomic tiling with­
out changing the basic tile shape. This is a 
serious deficiency of the hexagonal tessel­
lation [36

) (Figure 4e), which is, however, 

regular, since the atomic hexagon can only 
be decomposed into triangles. 

Thus we see that to represent data in the 
Euclidean plane any of the unlimited tilings 
could have been chosen. For a regular de­
composition, the tilings [4.82

] and (4.6.12] 
are ruled out. Upon comparing "square" 
(44

] and "triangular" (63
] quadtrees we find 

that they differ in terms of adjacency and 
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Figure 5. Examples illustrating unlimited tilings. (a) [4') hierarchy. (b) [6'] hierarchy. (c) Ordinary 
[4.82

) hierarchy. (d) Ordinary [4.6.12] hierarchy. (e) Rotation (4.82
] hierarchy. (f) Reflection [4.6.12] 

hierarchy. 
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orientation. For example, let us say that 
two tiles are neighbors if they are adjacent 
either along an edge or at a vertex. A tiling 
is uniformly adjacent if the distances be­
tween the centroid of one tile and the cen­
troids of all its neighbors are the same. The 
adjacency number of a tiling is the number 
of different intercentroid distances between 
any one tile and its neighbors. In the case 
of [ 4 4 J, there are only two adjacency dis­
tances, whereas for [63) there are three 
adjacency distances. A tiling is said to have 
uniform orientation if all tiles with the same 
orientation can be mapped into each other 
by translations of the plane that do not 
involve rotation or reflection. Tiling [ 44

) 

displays uniform orientation, whereas that 
of [63

) does not. Thus we see that [ 44
] is 

more useful than [63
). It is also very easy 

to implement. Nevertheless, [63
) has its 

uses. For example, Yamaguchi et al. [1984) 
use a triangular quadtree to generate an 
isometric view from an octree (a three­
dimensional region quadtree discussed in 
greater detail in Section 2.14) representa­
tion of an object. 

The type of quadtree used often depends 
on the grid formed by the image sampling 
process: Square quadtrees are appropriate 
for square grids and triangular quadtrees 
are appropriate for triangular grids. In the 
case of a hexagonal grid [Burt 1980), since 
a hexagon cannot be decomposed into hex­
agons, a rosettelike molecule of seven hex­
agons (i.e., septrees) must be built. Note 
that these rosettes have jagged edges as 
they are merged to form larger units (e.g., 
Figure 6). The hexagonal tiling is regular, 
has a uniform orientation, and most impor­
tantly displays a uniform adjacency. These 
properties are exploited by Gibson and Lu­
cas [1982) in the development of algorithms 
for septrees (called generalized balanced 
ternary or GET for short) analogous to 
those existing for quadtrees. Although the 
septree can be built up to yield large sep­
trees, the smallest resolution in the septree 
must be decided upon in advance, since its 
primitive components (i.e., hexagons) can­
not be decomposed into septrees later. Thus 
the septree yields only a partial hierarchical 
decomposition in the sense that the com­
ponents can always be merged into larger 

Figure 6. Example septree or "rosette" for a hexag­
onal grid. 

units, but they cannot always be broken 
down. 

2.1 Neighbor-Finding Techniques 

A natural by-product of the treelike nature 
of the quadtree representation is that many 
basic operations can be implemented as 
tree traversals. The difference among them 
is in the nature of the computation that is 
performed at the node. Often these com­
putations involve the examination of nodes 
whose corresponding blocks are "adjacent" 
to the block corresponding to the node 
being processed. We shall speak of these 
adjacent nodes as "neighbors." However, 
we must be careful to note that adjacency 
in space does not imply that any simple 
relationship exists among the nodes in the 
quadtree. This relationship is the subject 
of this section. In order to be more precise, 
we digress briefly and discuss the concepts 
of adjacency and neighbor in greater detail. 

Each node of a quadtree corresponds to 
a block in the original image. We use the 
terms block and node interchangeably. The 
term that will be used depends on whether 
we are referring to decomposition into 
blocks (i.e., Figure le) or a tree (i.e., Figure 
ld). Each block has four sides and four 
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corners. At times we speak of sides and 
corners collectively as directions. Let the 
four sides of a node's block be called its N, 
E, S, and W sides. The four corners of a 
block are labeled NW, NE, SW, and SE 
with the obvious meaning. Given two nodes 
P and Q whose corresponding blocks do not 
overlap, and a direction D, we define a 
predicate adjacent such that adjacent(P, Q, 
D) is true if there exist two pixels p and q, 
contained in P and Q, respectively, such 
that either q is adjacent to side D of p, or 
corner D of p is adjacent to the opposite 
corner of q. In such a case, nodes P and Q 
are considered to be neighbors. For exam­
ple, nodes J and 39 in Figure 1 are neigh­
bors, since J is to the west of 39, as are 
nodes 38 and H since H is to the NE of 38. 
Two blocks may be adjacent both along a 
side and along a corner (e.g., B is both to 
the north and NE of J; however, 39 is to 
the east of J but not to the SE of J). Note 
that the adjacent relation also holds for 
nonterminal (i.e, GRAY) as well as termi­
nal (i.e., leaf) nodes. 

Unfortunately, the neighbor relation is 
not a function in a mathematical sense. 
The problem is that given a node P, and a 
direction D, there is often more than one 
node, say Q, that is adjacent. For example, 
nodes 38, 40, K, and D are all western 
neighbors of node N. Similarly, nodes 40, 
K, and D are all NW neighbors of node 57. 
This means that in order to specify a neigh­
bor more precise information is necessary 
about its nature (i.e., leaf or nonterminal) 
and location. In particular, it is necessary 
to be able to distinguish between neighbors 
that are adjacent to the entire side of a 
node (e.g., B is a northern neighbor of J) 
and those that are only adjacent to a seg­
ment of a node's side (e.g., 37 is one of the 
eastern neighbors of J). An alternative 
characterization of the difference is that in 
the former case we are interested in deter­
mining a node Q such that its correspond­
ing block is the smallest block (possibly 
GRAY) of size greater than or equal to the 
block corresponding to P, whereas in the 
latter case we specify the neighbor in 
greater detail, in our case, by indicating the 
corner of P to which Q must be adjacent. 
The same distinction can also be made for 
corner directions. Below we define these 
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relations more formally. In the construc­
tion of names we use the following corre­
spondence: G for "greater than or equal," 
C for "corner," S for "side," and N for 
"neighbor." 

(1) GSN(P, D) = Q. Node Q corresponds 
to the smallest block (it may be GRAY) 
adjacent to side D of node P of size 
greater than or equal to the block cor­
responding to P. 

(2) CSN(P, D, C) = Q. Node Q corre­
sponds to the smallest block that is 
adjacent to side D of the C corner of 
nodeP. 

(3) GCN(P, C) = Q. Node Q corresponds 
to the smallest block (it may be GRAY) 
opposite the C corner of node P of size 
greater than or equal to the block cor­
responding to P. 

(4) CCN(P, C) = Q. Node Q corresponds 
to the smallest block that is opposite to 
the C corner of node P. 

For example, GSN(J, E) = K, GSN(J, S) 
= L, CSN(J, E, SE) = 39, GCN(H, NE) = 
G, GCN(H, SW)= K, and CCN(H, SW)= 
38. From the above we see that GCN is the 
corner counterpart of GSN and likewise 
CCN for CSN. It should be noted that the 
block corresponding to a node returned as 
the value of GCN or CCN must overlap 
some of the region bounded by the desig­
nated corner. Thus CCN(J, NE) =Band 
not 37. The following observations are also 
in order. First, none of GSN, CSN, GCN, 
or CCN define a 1-to-1 correspondence (i.e., 
a node may be a neighbor in a given direc­
tion of several nodes, e.g., GSN(J, N) = B, 
GSN(37, N) = B, and GSN(38, N) = B). 
Second, GSN, CSN, GCN, and CCN are 
not necessarily symmetric. For example, 
GSN(H, W) = B but GSN(B, E) = C. 

In the remaining discussions in this sur­
vey we focus strictly on GSN and GCN. 
When we use the term neighbor, that is, P 
is a neighbor of Q, we mean that Pis a node 
of size greater than or equal to Q. For 
example, node 40 in Figure ld (or equiva­
lently block 40 in Figure le) has neighbors 
38, N, 57, M, 39, and 37. A block that is 
not adjacent to a border of the image has a 
minimum of five neighbors. This can be 
seen by observing that a node cannot be 
adjacent to two nodes of greater size on 
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(a) (b) 

Figure 7. Impossible node configurations in a quad­
tree. 

opposite sides (e.g., Figure 7a) or on oppo­
site corners (e.g., Figure 7b). For further 
clarification, we observe that a split of a 
block creates four subblocks of equal size. 
Each subblock is 4-adjacent to two other 
subblocks (one horizontally adjacent neigh­
bor and one vertically adjacent neighbor) 
at one of its vertices and 8-adjacent to the 
remaining subblock (corner adjacent neigh­
bor) at the same vertex. As an example, 
given node P such that nodes Q and R are 
adjacent to its eastern and western sides, 
respectively, then at most one of nodes Q 
and R can be of greater size than P. Thus 
a node can have at most two larger sized 
neighbors adjacent to its nonopposite sides. 
One of these neighbors can overlap three 
neighboring directions, while the other can 
overlap two neighboring directions. The re­
maining three neighbors must be of equal 
size. For example, for node 37 in Figure 1, 
node B overlaps the NW, N, and NE neigh­
boring directions, node J overlaps the W 
and SW directions, and the remaining 
neighbors are nodes 38, 40, and 39 in the 
E, SE, and S directions, respectively. A 
node has a maximum of eight neighbors, in 
which case all but one of the neighbors in 
the corner direction correspond to blocks 
of equal size. For example, for node N in 
Figure 1, the neighbors are nodes H, I, 0, 
Q, P, M, K, and B. It is interesting to 
observe that for any BLACK node in the 
image, its neighbors cannot all be BLACK 
since otherwise merging would have taken 
place and the node would not be in the 
image. The same result holds for WHITE 
nodes. 

As mentioned above, most operations on 
quadtrees can be implemented as tree tra­
versals, with the operation being performed 

by examining the neighbors of selected 
nodes in the quadtree. In order that the 
operation be performed in the most general 
manner, we must be able to locate neigh­
bors in a way that is independent of both 
position (i.e., the coordinates) and size of 
the node. We also do not want to maintain 
any additional Jinks to adjacent nodes. In 
other words, we only use the structure of 
the tree and no pointers in excess of the 
four links from a node to its four sons and 
one link to its father for a nonroot node. 
This is in contrast to the methods of Klin­
ger and Rhodes [1979], which make use of 
size and position information, and those of 
Hunter [1978) and Hunter and Steiglitz 
[1979a, 1979b), which locate neighbors 
through the use of explicit links (termed 
ropes and nets). Yet another approach is to 
hypothesize a point across the boundary in 
the desired direction and then search for it. 
This is undesirable for two reasons. First, 
hypothesizing a point requires that we 
know the size of the block whose neighbor 
we are seeking. Second, the search requires 
that we make use of coordinate informa­
tion. 

Locating adjacent neighbors in the hori­
zontal or vertical directions (i.e., GSN) is 
relatively straightforward [Samet 1982a). 
The basic idea is to ascend the quadtree 
until a common ancestor with the neighbor 
is located, and then descend back down the 
quadtree in search of the neighboring node. 
It is obvious that we can always ascend as 
far as the root quadtree and then start our 
descent. However, our goal is to find the 
nearest common ancestor, as this mini­
mizes the number of nodes that must be 
visited. Suppose, for example, that we wish 
to find the western neighbor of node N in 
Figure 1, that is, GSN(N, W). The nearest 
common ancestor is the first ancestor node 
which is reached via its NE or SE son (i.e., 
the first ancestor node of which N is not a 
western descendant). Next, we retrace the 
path used to locate the nearest common 
ancestor, except that we make mirror image 
moves about an axis formed by the common 
boundary between the nodes. In the case of 
a western neighbor, the mirror images of 
NW and SW are NE and SE, respectively. 
Therefore the western neighbor of node N 
in Figure 1 is node K. It is located by 
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ascending the quadtree until the nearest 
common ancestor A has been located. This 
requires going through a NW link to reach 
node E, and a SE link to reach node A. 
Node K is subsequently located by back­
tracking along the previous path with the 
appropriate mirror image moves (i.e., by 
following a SW link to reach node D, and 
a NE link to reach node K). 

Neighbors in the horizontal or vertical 
directions need not correspond to blocks of 
the same size. If the neighbor is larger, then 
only part of the path from the nearest 
common ancestor is retraced. Otherwise 
the neighbor corresponds to a block of equal 
size and a pointer to a BLACK, WHITE, 
or GRAY node, as is appropriate, of equal 
size is returned. If there is no neighbor (i.e., 
the node whose neighbor is being sought is 
adjacent to the border of the image in the 
specified direction), then NIL is returned. 

Locating a neighbor in a corner direction 
(i.e., GCN) is considerably more complex 
[Samet 1982a]. Once again, we traverse 
ancestor links until a common ancestor of 
the two nodes is located. This is a process 
that requires two or three steps. First, we 
locate the given node's nearest ancestor, 
say P, which is also adjacent (horizontally 
or vertically) to an ancestor, say Q, of the 
sought neighbor (to see how this is deter­
mined, please read on!). If the node P does 
not exist, then we are at the true nearest 
common ancestor (e.g., when we are at node 
D when trying to find the SE neighbor of 
node J in Figure 1). Otherwise, the second 
step is one that finds Q by using the pro­
cedure for locating horizontally and verti­
cally adjacent neighbors. The final step re­
traces the remainder of the path while it 
makes directly opposite moves (e.g., a SE 
move becomes a NW move). The nearest 
ancestor of the first step is the first ances­
tor node that is not reached by a link equal 
to the direction of the desired neighbor 
(e.g., to find a SE neighbor, the nearest 
such ancestor is the first ancestor node that 
is not reached via its son in the SE direc­
tion). 3 As an example of the corner neigh-

3 If the ancestor node is reached by a link directly 
opposite to the required direction, then we are already 
at the nearest common ancestor of the sought neigh-
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bor-finding process, suppose that we wish 
to locate the SE neighbor of node 40 in 
Figure 1, which is 57, that is, GCN(40, SE). 
It is located by ascending the quadtree until 
we find the nearest ancestor D, which is 
also adjacent (horizontally in this case) to 
an ancestor of 57, that is, E. This requires 
that we go through a SE link to reach K 
and a NE link to reach D. Node E is now 
reached by applying the horizontal neigh­
bor-finding techniques in the direction of 
the adjacency (i.e., east). This forces us to 
go through a SW link to reach node A. 
Backtracking results in descending a SE 
link to reach node E. Finally, we backtrack 
along the remainder of the path by making 
180-degree moves; that is, we descend a SW 
link to reach node P and a NW link to 
reach node 57. Note that neighbors in the 
corner directions need not correspond to 
blocks of the same size. If the neighbor is 
larger, then it is handled in the same man­
ner as outlined above for the horizontal and 
vertical directions (i.e., only part of the 
path from the nearest common ancestor is 
retraced). Webber (1984] discusses proofs 
of the correctness of the various neighbor­
finding algorithms presented in this sec­
tion. 

Hunter (1978] and Hunter and Steiglitz 
(1979a, 1979b] describe a number of algo­
rithms for operating on images represented 
by quadtrees by using explicit links from a 
node to its neighbors. These links connect 
adjacent nodes in the vertical and horizon­
tal directions. A rope is defined as a link 
between two adjacent nodes of equal size 
where at least one of them is a leaf node. 
For example, there is a rope between nodes 
K and N in Figure 1. A D-adjacency tree in 
direction D exists whenever there is a rope 
between a leaf node, say X, and a GRAY 
node, say Y. In such a case, the D-adjacency 
tree of X is said to be the binary tree rooted 
at Y whose nodes consist of all the descend­
ants of Y (BLACK, WHITE, or GRAY) 
that are adjacent to X. For example, Figure 
8 contains the S-adjacency tree of node B 

bor. Otherwise, we obtain the neighbor in the direction 
that did not change (i.e., this determines whether we 
go in the N, E, S, or W direction for Step 2. 
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0 

37 38 

Figure 8. Adjacency tree corresponding to the rope 
between nodes D and B in Figure 1 (i.e., B's S­
adjacency tree). 

corresponding to the rope between nodes B 
and D that crosses the S side of node B. 

The process of finding a neighbor by 
using a roped quadtree is quite simple. The 
rope is essentially a way to short-circuit the 
need to find a nearest common ancestor. 
Suppose that we want to find the neighbor 
of node X on side N using a rope. If a rope 
from X on side N exists, then it leads to 
the desired neighbor. Otherwise the desired 
neighbor is larger. Next, the tree is as­
cended until a node having a rope on side 
N, which will lead to the desired neighbor, 
is encountered. What we are doing is as­
cending the S-adjacency tree of the north­
ern neighbor of node X. For example, to 
find the northern neighbor of node 38 in 
Figure 1, we ascend through node K to node 
D, which has a rope along its north side 
leading to node B (i.e., B's S-adjacency 
tree). 

At times it is not even desirable to ascend 
nodes in the search for a rope. In such a 
case Hunter and Steiglitz make use of a 
net. This is a linked list whose elements are 
all the nodes, regardless of their relative 
size, that are adjacent along a given side of 
a node. For example, in Figure 1 there is a 
net for the southern side of node B consist­
ing of nodes J, 37, and 38. 

The advantage of ropes and nets is that 
the number of nodes that must be visited 
in the process of finding neighbors is re­
duced. However, the disadvantage is that 
the storage requirements are increased con­
siderably. In contrast, our methods [Samet 
1982a] only make use of the structure of 
the quadtree, that is, four links from a 
nonleaf node to its sons and a link from a 
nonroot node to its father. Using a suitably 

defined model, Samet [1982a] and Samet 
and Shaffer [1984] have shown that in or­
der to locate a neighbor of greater than or 
equal size in the horizontal or vertical di­
rection, on the average, less than four nodes 
will be visited when using the nearest com­
mon ancestor techniques, whereas less than 
two nodes must be visited on the average 
when using ropes.4 Empirical results con­
firming this have been reported by Ro­
senfeld et al. [1982], Samet and Shaffer 
[1984], and Tucker [1984b]. Thus in prac­
tice it is not necessary to add the extra 
overhead of roping and netting of a quad­
tree, particularly upon considering that it 
requires extra storage. It should be noted 
that, at times, the algorithms that perform 
the basic operations on the image can be 
reformulated so that they do not require 
the computation of the neighbors. This is 
achieved by transmitting the neighbors of 
each node in the principal directions as 
actual parameters. Such techniques are 
termed top down in contrast with the bot­
tom-up methods discussed earlier. One such 
technique is used by Jackins and Tanimoto 
(1983] in the computation of an n-dimen­
sional perimeter. Their algorithm requires 
making n passes over the data and works 
only for neighbors that are adjacent along 
a side rather than at a corner. Independ­
ently, a similar algorithm was devised that 
does not require n passes but only uses one 
pass [Rosenfeld et al. 1982b; Samet and 
Webber 1982]. Another top-down algo­
rithm that is able to compute all neiiPlbors 
(i.e., adjacent along a side as well as a 
corner) with just one pass is reported by 
Samet [1985a]. 

2.2 Alternative Ways 
to Represent Quadtrees 

As is shown in Section 1 the most natural 
way to represent a quadtree is to use a tree 
structure. In this case each node is repre­
sented as a record with four pointers to the 
records corresponding to its sons. If the 
node is a leaf node, it will have four pointers 

•A similar result is reported by DeMillo et al. [1978] 
in the context of embedding a two-dimensional array 
in a binary tree. 
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Figure 9. The bintree corresponding to Figure 1. (a) Block decomposition. (b) Bintree 
representation of the blocks in (a). 

to the empty record. In order to facilitate 
certain operations an additional pointer is 
at times also included from a node to its 
father. This greatly eases the motion be­
tween arbitrary nodes in the quadtree and 
is exploited in a number of algorithms in 
order to perform basic image processing 
operations. 

An alternative tree structure that uses 
an analogy to the k-d tree [Bentley 1975b] 
(see Section 3.1) is the bintree [Knowlton 
1980; Samet and Tamminen 1984; Tam­
minen 1984a]. In essence, the space is al­
ways subdivided into two equal-sized parts 
alternating between the x and y axes. The 
advantage is that a node requires space only 
for pointers to its two sons instead of four 
sons. In addition, its use generally leads to 
fewer leaf nodes. Its attractiveness in­
creases further when dealing with higher 
dimensional data (e.g., three dimensions) 
since less space is wasted on NIL pointers 
for terminal nodes and many algorithms 
are simpler to formulate. For example, Fig­
ure 9 is the bintree representation corre­
sponding to the image of Figure 1. 

The problem with the tree representation 
of a quadtree is that it has a considerable 
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amount of overhead associated with it. For 
example, given an image that can be aggre­
gated to yield B and W BLACK and 
WHITE nodes, respectively, (B + W -
1)/3 additional nodes are necessary for the 
internal (i.e., GRAY) nodes. Moreover, 
each node requires additional space for the 
pointers to its sons. This is a problem when 
dealing with large images that cannot fit 
into core memory. Consequently, there has 
been a considerable amount of interest in 
pointerless quadtree representations. They 
can be grouped into two categories. The 
first treats the image as a collection of leaf 
nodes. The second represents the image in 
the form of a traversal of the nodes of its 
quadtree. The following discussion briefly 
summarizes the type of operations that can 
be achieved using such representations. 
Some of these operations are discussed in 
greater detail in subsequent sections in the 
context of pointer-based quadtree repre­
sentations. 

When an image is represented as a col­
lection of the leaf nodes comprising it, each 
leaf is encoded by a base 4 number termed 
a locational code, corresponding to a se­
quence of directional codes that locate the 
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leaf along a path from the root of the quad­
tree. It is analogous to taking the binary 
representation of the x and y coordinates 
of a designated pixel in the block (e.g., the 
one at the lower left corner) and interleav­
ing them (i.e., alternating the bits for each 
coordinate). It is difficult to determine the 
origin of this technique. It was used as an 
index to a geographic database by Morton 
[1966] and is termed a Morton matrix. 
Klinger and Rhodes [1979) presented it as 
a means of organizing quadtrees on exter­
nal st9rage. It has also been widely dis-

~ cussed in the literature in the context of 
multidimensional point data (see Section 
3.5). A base 5 variant of it (although all 
arithmetic operations on the locational 
code are performed by using base 4), which 
has an additional code as a don't care, is 
used by Gargantini [1982a] and Abel and 
Smith [1983] (see also Burton and Kollias 
[1983], Cook [1978], Klinger and Dyer 
[1976], Oliver and Wiseman [1983a], We­
ber [1978], and Woodwark [1982]) to yield 
an encoding where each leaf in a 2n by 2n 
image is n digits long. A leaf corresponding 
to a 2k by 2k block (k < n) will haven - k 
don't care digits. As an example, assuming 
that codes 0, 1, 2, and 3 correspond to 
quadrants NW, NE, SW, and SE, respec­
tively, and 4 denotes a don't care, block H 
in Figure 1 is represented by the base 5 
number 124. Such an encoding has the in­
teresting property that when the codes of 
the leaf nodes are sorted in increasing or­
der, the resulting sequence is the postorder 
(also preorder or inorder since the nonleaf 
nodes are excluded) traversal of the blocks 
of the quadtree. 

Actually, in the representation described 
above there is no need to include the loca­
tional code of every leaf node. Gargantini 
[1982a] only retains the locational codes of 
the BLACK nodes and terms the resulting 
representation a linear quadtree. The codes 
for the WHITE blocks can be obtained by 
using the ordering imposed by the sort 
without having physically to construct the 
quadtree. Lauzon et al. [1984] propose tha 
the collection of the leaf nodes be repre­
sented by using a variant of the run length 
code [Rutovitz 1968] termed a two-dimen­
sional run encoding. They make use of a 

Morton matrix. Once the codes of the leaf 
node have been sorted in increasing order, 
the resulting list is viewed as a set of sub­
sequences of codes corresponding to blocks 
of the same color. The final step in its 
construction is to discard all but the first 
element of each subsequence of blocks of 
the same color. The codes of the interven­
ing blocks can be reconstructed by knowing 
the codes of two successive blocks. In com­
parison to linear quadtrees, this represen­
tation is more compact and more efficient 
for superposition. However, translation 
and rotation by multiples of 90 degrees are 
easier with the linear quadtree [Gargantini 
1983]. In addition, given a code for a par­
ticular BLACK node, its horizontal and 
vertical neighbors can be obtained by per­
forming arithmetic operations on the loca­
tional code [Abel and Smith 1983; Gargan­
tini 1982a]. However, this often involves 
search, and can be made more efficient 
by special-purpose hardware. Nevertheless, 
this result is significant in that many of the 
standard quadtree algorithms that rely on 
neighbor computation can be applied to 
images represented by linear quadtrees. 
Abel [1984] describes an organization of 
the postorder sequence in the form of a B+ -
tree [Comer 1979]. 

Jones and Iyengar [1984] (see also Ra­
man and Iyengar [1983]) introduced the 
concept of a forest of quadtrees that is a 
decomposition of a quadtree into a collec­
tion of subquadtrees, each of which corre­
sponds to a maximal square. The maximal 
squares are identified by refining the con­
cept of a nonterminal node to indicate some 
information about its subtrees. An internal 
node is said to be of type GB if at least two 
of its sons are BLACK or of type GB. 
Otherwise the node is said to be of type 
GW. For example, in Figure 10, nodes C, 
E, and F are of type GB and nodes A, B, 
and D are of type GW. Each BLACK node 
or an internal node with a label of GB is 
said to be a maximal square. A forest is the 
set of maximal squares that are not con­
tained in other maximal squares and that 
span the BLACK area of the image. Thus 
the forest corresponding to Figure 10 is {C, 
E, FJ. The elements of the forest are iden­
tified by base 4 locational codes. Such a 
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Figure 10. A sample image and its quadtree illustrating the concept of a forest. 

representation can lead to a savings of 
space since large WHITE items are ignored 
by it. 

The second pointerless representation is 
in the form of a preorder tree traversal (i.e., 
depth first) of the nodes of the quadtree. 
The result is a string consisting of the 
symbols "('', "B", "W" corresponding to 
GRAY, BLACK, and WHITE nodes, 
respectively. This representation is due 
to Kawaguchi and Endo (1980] and is 
called a DF-expression. For example, the 
image of Figure 1 has 
(W(WWBB(W(WBBBWB(BB(BBBWW 

as its DF-expression (assuming that sons 
are traversed in the order NW, NE, SW, 
SE). The original image can be recon­
structed from the DF-expression by observ­
ing that the degree of each nonterminal 
(i.e., GRAY) node is always 4. DeCoulon 
and Johnsen (1976] use a very similar 
scheme termed autoadaptive block coding. 
The difference is that the alphabet consists 
solely of two symbols, "O" and "1". The "O" 
corresponds to a block composed of 
WHITE pixels only. Otherwise, a "1" is 
used and the block is subdivided into four 
subblocks. Therefore the "O" is analogous 
to "W" and the "1" is analogous to "(" and 
"B". In other words, there is no merging of 
BLACK pixels into blocks, and thus the 
coding scheme is asymmetric, whereas the 
OF-expression method is symmetric with 
respect to both BLACK and WHITE. The 
two methods are shown to yield encodings 
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that require a comparable number of bits. 
A binary tree variant of the DF-expression 
based on the bintree is discussed by Tam­
minen [1984b]. 

Kawaguchi et al. [1983] show how a num­
ber of basic image processing operations 
can be performed on an image represented 
by a DF-expression. In particular, they 
demonstrate centroid computation, rota­
tion, scaling, shifting, and set operations. 
Representation of an image using a preor­
der traversal is also reported by Oliver and 
Wiseman [1983a]. They show how to per­
form operations as mentioned above as well 
as merging, masking, construction of a 
quadtree from a polygon, and area filling. 
Neighbor finding is also possible when tra­
versal-based representations are used, al­
though it is rather cumbersome and time 
consuming. 

In the remainder of this survey we shall 
be using the pointer-based quadtree repre­
sentation unless specified otherwise. This 
should not pose a problem as we have al­
ready discussed some of the problems as­
sociated with the pointerless representa­
tions (i.e., that neighbor finding is more 
complicated, etc.). 

2.3 Conversion 

The quadtree is proposed as a representa­
tion for binary images because its hierar­
chical nature facilitates the performance of 
a large number of operations. However, 
most images are traditionally represented 
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by use of methods such as binary arrays, 
rasters (i.e., run lengths), chain codes (i.e., 
boundaries), or polygons (vectors), some of 
which are chosen for hardware reasons 
(e.g., run lengths are particularly useful for 
rasterlike devices such as television). Tech­
niques are therefore needed that can effi­
ciently switch between these various rep­
resentations. 

The most common image representation 
is probably the binary array. There are a 
number of ways to construct a quadtree 
from a binary array. The simplest approach 
is one that converts the array to a complete 
quadtree (i.e., for a 2n by 2n image, a tree of 
height n with one node per pixel). The 
resulting quadtree is subsequently reduced 
in size by repeated attempts at merging 
groups of four pixels or four blocks of a 
uniform color that are appropriately 
aligned. This approach is simple, but is 
extremely wasteful of storage, since many 
nodes may be needlessly created. In fact, it 
is not inconceivable that available memory 
may be exhausted when an algorithm em­
ploying this approach is used, whereas the 
resulting quadtree fits in the available 
memory. 

We can avoid the needless creation of 
nodes by visiting the elements of the binary 
array in the order defined by the labels on 
the array in Figure 11 (which corresponds 
to the image of Figure 1). This order is also 
known as a Morton matrix [Morton 1966] 
(discussed in Section 2.2). By using such a 
method a leaf node is never created until it 
is known to be maximal. An equivalent 
statement is that the situatum does not 
arise in which four leaves of the same color 
necessitate the changing of the color of 
their parent from GRAY to BLACK or 
WHITE as is appropriate. For example, we 
note that since pixels 25, 26, 27, and 28 are 
all BLACK, no quadtree nodes were created 
for them; that is, node H corresponds to 
the part of the image spanned by them. 
This algorithm is shown to have an execu­
tion time proportional to the number of 
pixels in the image [Samet 1980b]. 

At times the array must be scanned in a 
row-by-row manner as we build the quad­
tree (e.g., when a raster representation is 
used). For example, the pixels of the image 

Figure 11. Binary array representation of the region 
in Figure la. 

Figure 12. A labeling of the pixels of the region in 
Figure 1 that indicates the order of visiting them in 
the process of constructing a quadtree from the raster 
representation. 

of Figure 1 would be visited in the order 
defined by the labels on the array of Figure 
12. The amount of work that is required 
depends on whether an odd-numbered or 
even-numbered row is being processed. For 
an odd-numbered row, the quadtree is con­
structed by processing the row from left to 
right, adding a node to the quadtree for 
each pixel. As the quadtree is constructed, 
nonterminal nodes must also be added in 
such a way that at any given instant, a valid 
quadtree exists. Even-numbered rows re­
quire more work since merging may also 
take place. In particular, a check for a pos­
sible merger must be performed at every 
even-numbered vertical position (i.e., every 
even-numbered pixel in a row). Upon the 
creation of any merger, it must be checked 
to determine whether another merger is 
possible. In particular, for pixel position 
(a . 2;, b . 2j) where (a mod 2) = (b mod 2) 
= 1, a maximum of k = min(i, j) mergers 
is possible. In this discussion, a pixel posi­
tion is the coordinate of its lower right cor­
ner with respect to an origin in the upper 
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left corner of the image. For example, at 
pixel 60 of Figure 12, that is, position 
( 4, 8), a maximum of two merges is possible. 
An algorithm using these techniques, which 
has an execution time proportional to the 
number of pixels in the image, is described 
by Samet [1981a]. Unnikrishnan and Ven­
katesh (1984] present an algorithm for con­
verting rasters to linear quadtrees. 

As output is usually produced on a raster 
device, we need a method for converting a 
quadtree representation into a suitable 
form. The most obvious method is to gen -
erate an array corresponding to the quad­
tree, but this method may require more 
memory than is available and thus is not 
considered here. Samet [1984] describes a 
number of quadtree-to-raster algorithms. 
All of the algorithms traverse the quadtree 
by rows and visit each quadtree node once 
for each row that intersects it. For example, 
a node that corresponds to a block of size 
2k by 2k is visited 2k times, and each visit 
results in the output of a sequence of 2k O's 
or l's as is appropriate. Some of the algo­
rithms are top down and others are bottom 
up. The bottom-up algorithms visit adja­
cent blocks by use of neighbor-finding tech­
niques, whereas the top-down method 
starts at the root each time it visits a node. 
The bottom-up methods are superior as the 
image resolution gets larger (i.e., n for a 2n 
by 2n image) since the number of nodes 
that must be visited in locating neighbors 
is smaller than that necessary when the 
process is constantly restarted from the 
root. All of the algorithms have execution 
times that depend only on the number of 
blocks in the image (irrespective of their 
color) and not on their particular configu­
ration. In addition, they do not require 
memory in excess of that necessary to store 
the quadtree being output. For example, 
the two images shown in Figure 13 require 
the same amount of time to be output since 
they both have 11 blocks of size 2 by 2 
pixels and 20 blocks of 1 pixel. This is 
important when considerations such as re­
fresh times, etc. must be taken into ac­
count. 

The chain code representation [Freeman 
1974] (also known as a boundary or border 
code) is very commonly used in carto-
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Figure 13. Two images that require the same amount 
of work to be converted from a quadtree to a raster 
representation. 

graphic applications. It can be specified, 
relative to a given starting point, as a se­
quence of unit vectors (i.e., one pixel wide) 
in the principal directions. We can repre­
sent the directions by numbers; for exam­
ple, let i, an integer quantity ranging from 
0 to 3, represent a unit vector having a 
direction of 90 · i degrees. For example, the 
chain code for the boundary of the BLACK 
region in Figure 1, moving clockwise start­
ing from the midpoint of the extreme right 
boundary, is 

32223121312313011101120•32. 

The above is a four-direction chain code. 
Generalized chain codes involving more 
than four directions can also be used. Chain 
codes are not only compact, but they also 
simplify the detection of features of a re­
gion boundary, such as sharp turns (i.e., 
corners) or concavities. On the other hand, 
chain codes do not facilitate the determi­
nation of properties such as elongatedness, 
and it is difficult to perform set operations 
such as union and intersection as well. 
Thus it is useful to be able to construct a 
quadtree from a chain code representation 
of a binary image. Such an algorithm de­
scribed by Samet [1980a] is briefly outlined 
below. 

The algorithm has two phases. The first 
phase traces the boundary in the clockwise 
direction and constructs a quadtree with 
BLACK nodes of size unit code length. All 
terminal nodes are said to be at level 0 and 
correspond to blocks that are adjacent to 
the boundary and are within the region 
whose boundary is being traced. The pro­
cess begins by choosing a link in the chain 
code at random and creating a node for it, 
say P. Next, the following link in the chain 
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code, say NEW, is examined, and its direc­
tion is compared with that of the immedi­
ately preceding link, say OLD. At this 
point, three courses of action are possible. 
If the directions of NEW and OLD are the 
same, then a node, say Q, which is a neigh­
bor of Pin direction OLD, may need to be 
added (see Figure 14a). If NEW's direction 
is to the right of OLD, a new node is un­
necessary (see Figure 14b); but if NEW's 
direction is to the left of OLD, then we may 
have to add two nodes. First, a node, say Q, 
that is a neighbor of Pin direction OLD is 
added (if not already present). Second, a 
node, say R, that is a neighbor of Q in 
direction NEW is added (see Figure 14c). 
These nodes are added to the quadtree by 
using the neighbor-finding techniques dis­
cussed previously. As the various links in 
the chain code are processed, some nodes 
may be encountered more than once, indi­
cating that they are adjacent to the bound­
ary on more than one side. This informa­
tion is recorded for each node. Figure 15 
shows the block decomposition and partial 
quadtree after the application of the first 
phase to the boundary code representation 
corresponding to Figure 1. The BLACK 
nodes have been labeled in the order in 
which they have been visited, starting at 
the midpoint of the extreme right boundary 
of the image and proceeding in a clockwise 
manner. All uncolored nodes in Figure 15 
are depicted as short lines emanating from 
their father. 

The first phase of the algorithm leaves 
many nodes uncolored since it only marks 
nodes adjacent to the boundary as BLACK. 
The second phase of the algorithm per­
forms a postorder traversal of the partial 
quadtree resulting from the first phase and 
sets all the uncolored nodes to BLACK or 
WHITE as is appropriate. For an uncolored 
node to eventually correspond to a BLACK 
node, it must be totally surrounded by 
BLACK nodes since otherwise it would 
have been adjacent to the boundary and 
could not be uncolored. The algorithm 
therefore sets every uncolored node to 
BLACK, unless any of its neighbors is 
WHITE, or if one of its neighbors is 
BLACK with a boundary along the shared 
side. This information is easy to ascertain 

OLD NEW 
: p : Q : 
L--l.--.J 

(a) 

OLD 

Li_JNEW 
(b) 

Figure 14. Examples of the actions to be taken when 
the chain code (a) maintains its direction, (b) turns 
clockwise, and (c) turns counterclockwise. 

by virtue of the boundary adjacency infor­
mation that is recorded for each BLACK 
terminal node during the first phase. Also, 
any GRAY node that has four BLACK sons 
is replaced by a BLACK node. The above 
algorithm has a worst-case execution time 
that is proportional to the product of the 
region's perimeter (i.e., the length of the 
chain node) and the log of the diameter of 
the image (i.e., n for a 2n by 2n image) 
[Samet 1980a). Webber [1984] presents a 
variation of this algorithm that shifts the 
chain code to an optimal position before 
building the quadtree. The total cost of the 
shift and build operations is proportional 
to the region's perimeter. 

It is also useful to be able to convert a 
quadtree representation of a region to its 
chain code [Dyer et al. 1980]. This is 
achieved by traversing the boundary in 
such a way that the region always lies to 
the right once an appropriate starting point 
has been determined. The boundary con­
sists of a sequence of (BLACK, WHITE) 
node pairs. Assume for the sake of this 
discussion that P is a BLACK node, Q is a 
WHITE node, and that the block corre­
sponding to node P is to the north of Q. 
For each BLACK-WHITE adjacency, a 
two-step procedure is exei::uted. First, the 
chain link associated with that part of P's 
boundary that is adjacent to Q is output. 
The length of the chain is equal to the 
minimum of the sizes of the two blocks. 

Second, the (BLACK, WHITE) node 
pair that defines the subsequent link in the 
chain as we traverse the boundary is deter­
mined. There are three possible relative 
positions of P and Q as outlined in Figure 
16: (1) P extends past Q (Figure 16a), (2) 
Q extends past P (Figure 16b), or (3) P and 
Q meet at the same point (Figure 16c). In 
order to determine the next pair, the adja-
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Figure 15. Block decomposition (a) and quadtree (b) of the region in Figure 1 after 
application of phase one of the chain code to quadtree algorithm. 

Q 

(b) (c) 

(a) 

Figure 16. Possible overlap relationships between the (BLACK, WHITE) ad­
jacent node pair (P, Q). The arrow indicates the boundary segment just output. 
(a) P extends past Q. (b) Q extends past P. (c) P and Q meet at the same point. 

cent nodes X and Y are located by using 
the neighbor-finding techniques discussed 
previously. At this point the next pair can 
be determined by referring to Figure 17 and 
choosing the two blocks that are adjacent 
to the arrow in the appropriate case. Note 
that we assume that the region is four­
connected so that blocks touching only at 
a corner are not adjacent. For example, the 
new pair in Figure 17g is (P, X); that is, the 
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boundary turns right regardless of the type 
of node Y. The algorithm has an average 
execution time that is proportional to the 
region's perimeter [Dyer et al. 1980]. 

In the <;ase where a region contains holes, 
the algorithm can be extended by system­
atically traversing all BLACK nodes upon 
completion of the first boundary-following 
sequence. Whenever a BLACK node is en­
countered with a boundary edge unmarked 
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Figure 17. Possible configurations of P, Q, and their neighbor blocks in determining the 
next (BLACK, WHITE) pair. The arrow indicates the next boundary segment to be 
output. 

by the boundary follower, its boundary is 
followed, after which the traversal of the 
quadtree continues. 

The chain code can be used as an ap­
proximation of a polygon by unit vectors. 
It is also common to represent polygonal 
data by a set of vertices, or even a point 
and a sequence of vectors consisting of 
pairs (i.e., (magnitude, direction)). Hunter 
(1978] and Hunter and Steiglitz (1979a, 
1979b] address the problem of representing 
simple polygons (i.e., polygons with non­
intersecting edges and without holes) by 
using quadtrees. A polygon is represented 
by a three-color variant of the quadtree. In 
essence, there are three types of nodes­
interior, boundary, and exterior. A node is 
said to be of type boundary if an edge of the 
polygon passes through it. Boundary nodes 

are not subject to merging (they are analo­
gous to BLACK nodes in the matrix (MX) 
quadtree described in Section 3.2). Interior 
and exterior nodes correspond to areas re­
spectively within and outside of the polygon 
and can be merged to yield larger nodes. 
Figure 18 illustrates a sample polygon and 
its quadtree corresponding to the definition 
of Hunter and Steiglitz [1979a]. One dis­
advantage of such a representation for po­
lygonal lines is that a width is associated 
with them, whereas in a purely technical 
sense these lines have a width of zero. Also 
a shift in operations may result in infor­
mation loss. (For more appropriate repre­
sentations of polygonal lines see Section 4.) 

Hunter and Steiglitz present two algo­
rithms for building a quadtree from a poly­
gon. The first is a top-down algorithm that 
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Figure 18. Hunter and Steiglitz's [1979a] quadtree 
representation of a polygon. 

starts at the root and splits the space into 
four blocks, creating the necessary nodes. 
Each node whose block (which is not a 
pixel) intersects the polygonal boundary is 
recursively split. Given a polygon with v 
vertices and a perimeter p (in units of pixel 
width), construction of a quadtree within a 
2n by 2n space from a polygon has an exe­
cution time of 0( v + p + n). Unfortunately, 
the quadtree from the polygon construction 
algorithm does not distinguish between an 
interior and an exterior node. A 'coloring 
algorithm is then performed that propa­
gates the color of the boundary nodes in­
ward by initially traversing the boundary 
and stacking all sides that are within the 
polygon for each boundary node. Coloring 
is propagated by examining stack entries 
and their adjacent leaves. For stack entry 
S, ifthe block corresponding to its adjacent 
leaf node, say T, is not smaller and is un­
colored, then Tis colored and all of its sides 
with the exception of S are placed on the 
stack. S is removed from the stack and 
colored. The key to the algorithm is that 
boundary nodes (i.e., pixels) are small and 
their neighbors get larger as the center of 
the polygon is approached. This algorithm 
makes use of a netted quadtree to compute 
neighboring nodes. It has been shown to 
have an execution time proportional to the 
number of nodes in the quadtree being 
colored. 
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The second algorithm for constructing a 
quadtree from a polygon is termed an out­
line algorithm. It combines a top-down 
decomposition of the space in which the 
polygon is embedded with a traversal of the 
boundary, resulting in a roped quadtree. 
During the construction process neighbors 
are computed as a by-product of the top­
down decomposition process. The outline 
algorithm similarly has an execution time 
of O(v + p + n). Combining the outline 
algorithm, a netting process, and the col­
oring algorithm leads to a quadtree for 
polygon algorithm with execution time of 
O(v + p + n). 

2.4 Set Operations 

The quadtree is especially useful for per­
forming set operations such as the union 
(i.e., overlay) and intersection of several 
images. This is described in greater detail 
by Hunter (1978], Hunter and Steiglitz 
(1979a], and Shneier [1981a]. For example, 
obtaining the quadtree corresponding to 
the union of S and T merely requires a 
traversal of the two quadtrees in parallel, 
an examination of corresponding nodes, 
and construction of the resulting quadtree, 
say in U. If either of the two nodes is 
BLACK, then the corresponding node in U 
is BLACK. If one node is WHITE, say in 
S, then the corresponding node in U is set 
to the other node, that is, in T. If both 
nodes are GRAY, then U is set to GRAY 
and the algorithm is applied recursively to 
the sons of S and T. However, once the 
sons have been processed, when both nodes 
are GRAY, a check must be made if a 
merger is to take place since all four sons 
could be BLACK. For example, consider 
the union of the quadtrees of Figures 19 
and 20. Node B in Figure 19 and node E in 
Figure 20 are both GRAY. However, the 
union of their corresponding sons yields 
four BLACK nodes, which must be merged 
to yield a BLACK node in U, where the 
corresponding nodes in S and T were 
GRAY. Figure 21 shows the result of the 
union of Figures 19 and 20. 

Computing the intersection of two quad­
trees is just as simple. The algorithm de­
scribed above for union is applied, except 
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Figure 19. Sample image and its quadtree. 
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Figure 21. Union of the images in Figures 19 and 20. 

that the roles of BLACK and WHITE are 
interchanged. When both nodes are GRAY, 
the check for a merger is performed to 
determine if all four sons are WHITE. Fig­
ure 22 shows the result of the intersection 
of Figures 19 and 20. 

The time required for these algorithms is 
proportional to the minimum of the num­
ber of nodes at corresponding levels of the 
two quadtrees. In order to achieve this time 
bound, the resulting quadtree is composed 

II !::,\~:j= I! 16 

:,,,,1?,::t ];,;;·\!=.,: ;:::;~:.,: 18 

II 20 

II 12 13 14 15 16 17 18 

Figure 20. Sample image and its quadtree. 
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Figure 22. Intersection of the images in Figures 19 
and 20. 

of subtrees from the quadtrees serving as 
operands of the set operation. If a new 
quadtree is constructed, then the opera­
tions have an execution time that is pro­
portional to the number of nodes in the 
quadtrees. An upper bound on this time is 
the size of the smaller of the two quadtrees. 
The ability to perform set operations 
quickly is one of the primary reasons for 
the popularity of quadtrees over alternative 
representations such as the chain code. The 
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chain code can be characterized as a local 
data structure, since each segment of the 
chain code conveys information only about 
the part of the image to which it is adjacent; 
that is, the image is to its right. Performing 
an overlay operation on two images repre­
sented by chain codes thus requires a con­
siderable amount of work. In contrast, the 
quadtree is a hierarchical data structure 
that yields successive refinements at lower 
levels in the tree. Of course, a hierarchical 
chain code can be defined, but this is pri­
marily useful in handling extreme cases 
(null intersection, etc.). 

Hunter [1978) suggested a novel ap­
proach to solving the problem of determin­
ing whether or not two polygons intersect 
when polygons are represented as quad­
trees. One constructs the two quadtrees 
from the polygons, intersects them, and 
then checks the result to see whether it is 
the empty quadtree. This process has an 
execution time of O(v + p + n) (see Section 
2.3). Of course, this time bound is a func­
tion of the accuracy required and is subject 
to errors resulting from limitations imposed 
by the digitization process. In contrast, 
Shamos and Hoey [1975) show that the 
problem can be solved in O(u log u) time. 
The reader is cautioned that in actuality 
the different nature of the representations 
that are involved may make it difficult to 
compare the two algorithms (i.e., the con­
stants and quantities are considerably dif­
ferent). 

2.5 Transformations 

One of the primary motivations for the 
development of the quadtree concept is a 
desire to provide an efficient data structure 
for computer graphics. Warnock [1969] has 
used recursive decomposition as the basis 
for the hidden surface elimination algo­
rithm. Hunter's doctoral thesis [Hunter 
1978), which addressed the problem of ef­
ficiently performing animation by com­
puter, was a significant extension of the 
quadtree concept from both a theoretical 
and practical standpoint. In order to do 
this, the system must have the capability 
of performing a number of basic transfor­
mations. Scaling by a power of two is trivial 
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when using quadtrees since it is simply a 
reduction in resolution. Rotation by mul­
tiples of 90 degrees is equally simple, that 
is, a recursive rotation of sons at each level 
of the quadtree. For example, Figure 23b is 
the result of rotating Figure 23a by 90 de­
grees counterclockwise. Notice how the 
NW, NE, SW, and SE sons have become 
SW, NW, SE, and NE sons, respectively, 
at each level in the quadtree. 

It is also useful to transform a quadtree 
encoding of a picture in the form of a col­
lection of polygons and holes into another 
quadtree by applying a linear operator. One 
simple algorithm [Hunter and Steiglitz 
1979b] traces all the polygons in the input 
quadtree to find vertices. The images of the 
vertices that result from the application of 
the linear operator determine the polygons 
in the output quadtree. The outline and 
color algorithm [Hunter and Steiglitz 
1979a] (see Section 2.3) is used to construct 
the actual output quadtree for each polygon 
(as well as holes). The final step is the 
superposition of the polygons, which is per­
formed by using techniques discussed in 
Section 2.4. The outline algorithm saves 
some work by ignoring the boundaries of 
the input polygons that will not be visible 
in the output. By assuming that the trans­
formation does not change the resolution 
(or scale) of the input picture, it can be 
shown that the transformation algorithm 
requires time and space of O(t + p) [Hunter 
and Steiglitz 1979b], where t is the total 
number of nodes in the input quadtree and 
p is the total perimeter of the nonback­
ground visible portions of the input picture. 

The linear transformation algorithm and 
the scaling and rotation operations share a 
common failing. With the exception of scal­
ing by a power of two, translations, or ro­
tations in multiples of 90 degrees, they 
result in approximations. Straight Jines are 
not necessarily transformed into straight 
lines. This failing is often mistakenly at­
tributed to the quadtree representation, 
whereas in fact it is a direct result of the 
underlying digitization process. It mani­
fests itself no matter what underlying rep­
resentation is used when doing raster 
graphics. (For a quadtree-based represen­
tation that is free of such a problem see the 
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Figure 23. Rotating (a) by 90 degrees counterclockwise yields (b). 

discussion of the PM quadtree [Samet and 
Webber 1983b] in Section 4.2). 

Another operation that is useful in 
graphics applications is termed windowing. 
It is the process of extracting a rectangular 
window from an image represented by a 
quadtree and building a quadtree for the 
window. An algorithm designed to achieve 
this effect for a square window of size 2k by 
2k at an arbitrary position in a 2" by 2" 
image is described by Rosenfeld et al. 
[1982b]. In essence, the new quadtree is 
constructed as the input quadtree is decom­
posed and relevant blocks are copied into 
the new quadtree. The execution time of 
this process depends both on the relative 
position of the center of the window with 
respect to the center of the input quadtree, 

and on the sizes of the blocks in the input 
quadtree that overlap the window. A-gen-

• er~lization of this windowing algorithm for 
pomter-based quadtrees [Peters 1984] and 
linear quadtrees [van Lierop 1984] per­
forms the calculation of a general linear 
transformation (including scaling and ro­
tation) without extracting the polygon from 
the quadtree and then rebuilding the quad­
tree from the transformed polygon [Hunter 
and Steiglitz 1979b]. For rectangular win­
dows, windowing is trivial to implement if 
the squarecode representation of Oliver and 
Wiseman [1983b] is used. The squarecode 
is a variant of the locational code (see Sec­
tion 2.2), which is used to represent the 
image as a collection of disjoint squares of 
arbitrary side length and at arbitrary posi-
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tions by recording the length and the ad­
dress of one of the square's corners. 

Quadtrees have also been used for image­
processing operations that involve gray­
scale images rather than binary images. · 
Some examples include image segmenta­
tion [Ranade et al. 1980], edge enhance­
ment [Ranade 1981], image smoothing 
[Ranade and Shneier 1981], and threshold 
selection [Wu et al. 1982]. 

2.6 Areas and Moments 

Areas and moments for images represented 
by quadtrees are extremely simple to com­
pute. To find the area it is necessary to 
traverse the quadtree in postorder and ac­
cumulate the sizes of the BLACK blocks. 
Assume that the root of a 2n by 2n image is 
at level n and the number of pixels in such 
an image is 22

n. For a BLACK block at level 
k, the contribution to the area is 22

k. Mo­
ments are obtained by summing the mo­
ments of the BLACK blocks. The position 
of each BLACK block is easy to ascertain 
because the path that was taken to reach 
the block is known when processing starts 
at the root of the quadtree. Knowledge of 
the area and the first moments permits the 
computation of the coordinates of the cen­
troid, and thereupon central moments rel­
ative to the centroid can be obtained. It 
should be noted that all of these algorithms 
have an execution time proportional to the 
number of nodes in the quadtree [Shneier 
1981a]. Chien and Aggarwal [1984] use a 
normalized representation of the quadtree 
with respect to the centroid to match noisy 
objects against models. This method also 
relies on the selection of a principal axis 
and scaling to a fixed resolution. 

2.7 Connected Component Labeling 

Connected component labeling is one of 
the basic operations of an image-proces­
sing system. It is analogous to finding the 
connected components of a graph. For 
example, the image of Figure 24 has two 
components. Given a binary array repre­
sentation of an image, the traditional 
method of performing this operation [Ro­
senfeld and Pfaltz 1966] would be a 
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"breadth-first" approach, which scans the 
image row by row from left to right and 
assigns the same label to adjacent BLACK 
pixels that are found to the right and in the 
downward direction. During this process 
pairs of equivalences may be generated, 
thus necessitating two more steps: one to 
merge the equivalences and the second to 
update the labels associated with the var­
ious pixels to reflect the merger of the 
equivalences. (However, Lumia [1983] and 
Lumia et al. [1983] have made improve­
ments on Rosenfeld and Pfaltz's [1966] 
method of keeping track of equivalences.) 

Using a quadtree to perform the same 
operation involves an analogous three-step 
process [Samet 1981b]. The first step is a 
postorder tree traversal (in order NW, NE, 
SW, SE), where for each BLACK node that 
is encountered, say A, all adjacent BLACK 
nodes on the southern and eastern sides of 
A are found, and assigned the same label 
as A. The adjacency exploration is done by 
using the neighbor-finding techniques of 
Samet [1982a] (see Section 2.1). At times, 
the adjacent node may already have been 
assigned a label, in which case the equiva­
lence is noted. The second step merges all 
the equivalence pairs that were generated 
during the first step. The third step per­
forms another traversal of the quadtree and 
updates the labels on the nodes to reflect 
the equivalences generated by the first two 
steps of the algorithm. 

As an example, consider the image of 
Figure 24a, whose quadtree block decom­
position is given in Figure 24b and c. All 
blocks are labeled with a different identi­
fying number in their upper left corner; 
their lower right corner contains the label 
assigned by the first step of the connected 
component labeling process. Two items are 
worthy of further note. First, when block 
15 is processed, neither it nor block 31, its 
southern neighbor, have been labeled yet 
and thus label B is assigned to them. When 
block 20 is processed, it has no label, but 
its southern neighbor, 31, has already been 
assigned B as a label, and thus block 20 is 
assigned label B as well. Second, Figure 24b 
shows the status of the image at the con­
clusion of the second step of the algorithm. 
It has three different labels (i.e., A, B, and 
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Figure 24. An image, its maximal blocks, and the corresponding quadtree. Bfocks in the 
image are shaded; background blocks are blank. (a) Image. (b) Block decomposition of the 
image in (a). (c) Quadtree representation of the blocks in (b). 

C) with B equivalent to C. This equivalence 
was generated when the eastern adjacency 
of block 23 was explored. In essence, block 
23 was labeled with C when block 22's 
eastern adjacency was explored, whereas 
block 31 was labeled with B when block 
15's southern adjacency was explored. Thus 
we see that the third step of the algorithm 
will have to be applied, thereby relabeling 
all C blocks with B. 

The execution time of connected com­
ponent labeling is obtained by examining 
the three steps of the algorithm. Let B be 
the number of BLACK nodes in the quad-

tree. Step 1 is a tree traversal in which 
neighbors are examined as well. Since the 
average cost of examining a neighbor is a 
constant [Samet 1982a; Sainet and Shaffer 
1984], Step 1 is O(B). Step 3 is also a tree 
traversal and is O(B) as well. Step 2, the 
merger of equivalence classes, can be done 
in O(B log B) time; the algorithm thus has 
an average execution time that is O(B Jog 
B). In fact, almost linear average execution 
time can be obtained by combining Steps 1 
and 2 by using the UNION-FIND algo­
rithm (Tarjan 1975]. This is a very impor­
tant result because it means that the exe-
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cution time of the connected component 
labeling process is dependent only on the 
number of blocks in the image and not on 
their size. In contrast, the analogous algo­
rithm for the binary array [Rosenfeld and 
Pfaltz 1966] has an execution time that is 
proportional to the number of pixels and 
hence to the area of the blocks. Thus we 
see that the hierarchical structure of the 
quadtree data structure saves not only 
space but time. The cost of the neighbor 
computation process is avoided when the 
top-down algorithm of Samet (1984d] is 
used. 

Note that the coloring algorithm of 
Hunter and Steiglitz [1979a] by itself does 
not achieve the same effect as the con­
nected component labeling algorithm de­
scribed above. The coloring algorithm 
starts with a polygon and traverses its 
boundary before propagating the boundary 
color inward and thereby colors the interior 
nodes. It does not need to merge equiva­
lence classes since the polygon is itself one 
equivalence class. However, the combina­
tion of the coloring algorithm with a poly­
gon identification step will, in effect, yield 
a connected component labeling algorithm. 
These results are similar to those achieved 
using a "depth-first" approach. Use of such 
an approach leads to algorithms having ex­
ecution times that are a function of the 
perimeter of the individual polygons. We 
also observe that some of the speed of the 
coloring algorithm is derived from the use 
of nets that avoid neighbor computation; 
however, this speed is achieved at the ex­
pense of extra storage for the added links 
as well as the stack. 

The algorithm that we have described 
makes use of a pointer-based quadtree rep­
resentation. Connected component labeling 
can also be performed by using some of the 
pointerless quadtree representations de­
scribed in Section 2.2. There are two ways 
to proceed. The first method simply mimics 
the breadth-first algorithm above and re­
quires use of search to implement the 
neighbor-finding operation. An alternative 
method [Samet and Tamminen 1984, 1985) 
makes use of a staircaselike data structure 
to remember components on sides of blocks 
that have already been processed. This 
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method works for perimeter computation 
(Section 2.8), component counting (Section 
2.9), and also three-dimensional data. Both 
the linear quadtree [Gargantini 1982a] and 
the DF-expression [Kawaguchi and Endo 
1980] representations can be used. 

2.8 Perimeter 

Computing the perimeter of an image rep­
resented by a quadtree can be done in a 
manner analogous to Step 1 of the con­
nected component labeling process de­
scribed in Section 2.7. The difference is 
that in the previous case, when connected 
components were labeled, the algorithm 
searched for adjacent BLACK nodes, 
whereas adjacent WHITE nodes must be 
searched for when computing the perime­
ter. In other words, a postorder tree tra­
versal is performed, and for each BLACK 
node that is encountered its four adjacent 
sides are explored in the search for adjacent 
WHITE nodes. For each adjacent WHITE 
node that is found the length of the corre­
sponding shared side is included in the 
perimeter. 

Use of such an algorithm will result in a 
certain amount of duplication of effort be­
cause each adjacency between two BLACK 
blocks is explored twice, and neither of 
these adjacency explorations contributes to 
the value of the perimeter (e.g., the eastern 
side of node N and the western side of node 
0 in Figure 1). An alternative algorithm 
performs adjacency exploration only for 
southern and eastern neighbors. That is, 
for each BLACK node a search is made for 
adjacent WHITE southern and eastern 
neighbors, and for each WHITE node, a 
search is made for adjacent BLACK south­
ern and eastern neighbors. The only prob­
lem with such a method is that the northern 
and western boundaries of the image are 
never explored. This can be alleviated by 
embedding the image in a white region, as 
shown in Figure 25. 

Both formulations of the algorithm have 
expected execution times that are propor­
tional to the number of nodes in the quad­
tree [Samet 1981c]. Jackins and Tanimoto 
(1983] have developed an asymptotically 
faster alternative perimeter computation 
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Figure 25. An image totally surrounded by back­
ground. 

algorithm that works for an arbitrary num­
ber of dimensions. This method achieves 
its efficiency by transmitting the neighbors 
as parameters rather than by having to rely 
on neighbor exploration as happens in the 
approach described above. However, it re­
quires that a separate pass be made over 
the data for each dimension (see also Samet 
(1985a]). 

2.9 Component Counting 

Once the connected components of the im­
age have been labeled, it is easy to count 
them, since the result is the same as the 
number of different equivalence classes re­
sulting from Step 2 of the connected com­
ponent labeling algorithm. An alternative 
quantity is known as the Euler number or 
genus, say G, which is V - E + F, where V, 
E, and F correspond to the number of ver­
tices, edges, and faces, respectively, in a 
planar graph [Harary 1969). It is defined 
as the difference between the number of 
connected components and the number of 
holes. It is well known [Minsky and Papert 
1969) that for a binary image represented 
by a binary array G = V - E + F, where V, 
E, and F are defined as follows. Let a 
BLACK pixel be represented by 1 and a 
WHITE pixel by 0. Vis the number of l's 
in the image, Eis the number of horizon­
tally adjacent pairs of l's (i.e., 11) or verti­
cally adjacent pairs of l's, and F is the 
number of 2 by 2 blocks of l's. 

Dyer [1980] has obtained the same result 
for a quadtree representation of a binary 

image by redefining V, E, and F in the 
context of a quadtree. This is accomplished 
by letting V be the number of BLACK 
blocks, Ebe the number of pairs of adjacent 
BLACK blocks in the horizontal and ver­
tical directions (see Figure 26), and F be 
the number of triples or quadruples sur­
rounding a point, that is, 2 by 2 blocks of 
pixels that are contained by three or four 
BLACK blocks (e.g., Figure 27). The algo­
rithm for the computation of the genus is a 
postorder tree traversal that is analogous 
to Step 1 of the connected component la­
beling algorithm with the additional pro­
viso that when F is determined, the leaf 
nodes surrounding the southeastern corner 
of a BLACK node must be examined. The 
algorithm's expected execution time is pro­
portional to the number of blocks in the 
image. 

The value of Dyer's result lies not in the 
mechanics of the algorithm, but in the the­
ory generated thereby. He has shown that 
the quadtree representation is hierarchical 
in the sense that the most critical measure 
is the number of blocks and not their size. 
It also demonstrates another instance of 
the use of an algorithm originally formu­
lated for the binary array representation 
being used in an analogous manner for a 
quadttee representation by treating blocks 
(of possibly different sizes) as if they were 
pixels. This technique was used previously 
in the labeling of connected components. 

2.10 Space Requirements 

The prime motivation for the development 
of the quadtree has been the desire to re­
duce the amount of space necessary to store 
data through the use of aggregation of ho­
mogeneous blocks. As the previous discus­
sion has demonstrated, an important by­
product of this aggregation has been to 
decrease the execution time of a number of 
operations (e.g., connected component la­
beling and component counting). Never­
theless, the quadtree is not always the ideal 
representation. The worst case for a quad­
tree of a given depth in terms of storage 
requirements occurs when the region cor­
responds to a checkerboard pattern, as in 
Figure 28. The amount of space required is 
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Figure 26. Examples of adjacencies for the compu· 
tation of the genus of an image. 

Figure 27. Example of three or four blocks meeting 
at a corner. 

obviously a function of the resolution (i.e., 
the number of levels in the quadtree). 
Hunter (1978] presents a fundamental 
theorem on the space complexity of quad­
trees. He has shown that for a simple poly­
gon (i.e., nonintersecting edges) of perime­
ter p (measured in pixel widths) and a 
resolution n, the number of nodes in the 
quadtree is of O(p + n). He goes on to show 
that O(p + n) is an attainable upper bound. 
From this, Hunter obtains a corollary of 
great importance, showing that the quad­
tree grows linearly in number of nodes as 
the resolution is doubled, whereas a binary 
array representation leads to a quadrupling 
of the number of pixels through doubling 
the resolution. For experiments on carto­
graphic data that verify the linear growth 
see Rosenfeld et al. (1982]. 

The amount of space occupied by a quad­
tree is extremely sensitive to its orienta­
tion. Dyer [1982) has shown that arbitrarily 
placing a square of size 2m by 2m at any 
position in a 2n by 2n image requires an 
average of0(2m+2 + n - m) quadtree nodes. 
An alternative characterization of this re­
sult is that the amount of space necessary 
is O(p + n), where p is the perimeter (in 
pixel widths) of the block. Shifting the im­
age within the space in which it is em­
bedded can reduce the total number of 
nodes. Grosky and Jain (1983) have shown 
that for a region such that d is the maxi­
mum of its horizontal and vertical extent 

Computing Surveys, Vol. 16, No. 2, June 1984 

(measured in pixel widths) and 2n-1 < d < 
2n, the optimal grid resolution is either n 
or n + 1. In other words, embedding the 
region in a larger area than 2n+i by 2n+i and 
shifting it around will not result in fewer 
nodes. This result is used by Li et al. (1982] 
to obtain an algorithm that finds the con­
figuration of the quadtree requiring a min­
imum number of nodes. The algorithm 
proceeds by using a binary array represen­
tation of the image and attempting trans­
lations of magnitude power of 2 in the 
vertical, horizontal, and corner directions. 
When d is defined as above, the algorithm 
requires 0(22n) space and has an execution 
time that is O(n · 22n). 

In Section 2.2 we showed that a tree 
implementation of a quadtree has overhead 
in terms of the internal nodes. For an image 
with Band WBLACK and WHITE blocks, 
respectively, (4/3) (B + W) nodes are re­
quired. In contrast, a binary array represen­
tation of a 2n by 2n image requires only 22n 
bits; however, this quantity grows quite 
quickly. Furthermore, if the amount of ag­
gregation is minimal (e.g., a checkerboard 
image), then the quadtree is not very effi­
cient. The overhead for the internal nodes 
is avoided by using some of the pointerless 
representations discussed in Section 2.2 
such as the linear quadtree and the DF­
expression. In fact, the DF-expression re­
quires at most two bits per node. The 
compression characteristics of DF-expres­
sions compared to boundary and run length 
codes are discussed by Tamminen [1984b]. 

2.11 Skeletons and Medial Axis Transforms 

The medial axis of a region [Blum 1967; 
Duda and Hart 1973; Pfaltz and Rosenfeld 
1967; Rosenfeld and Kak 1982) is a subset 
of points, each of which has a distance from 
the component of the region (e.g., its 
boundary), using a suitably defined metric, 
which is a local maximum. The medial axis 
transform (MAT) consists of the set of 
medial axis or skeleton points and their 
associated distance values. Before proceed­
ing any further we shall review the defini­
tion of a metric. 

Let d be a function that maps pairs of 
points into nonnegative numbers. It is 
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Figure 28. A checkerboard (a) and its quadtree (b). 
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Figure 29. A rectangle and its skeleton using dE. 

called a metric or a distance function if for 
all points p, q, and r the following relations 
are satisfied: 

(1) d(p, q);:: 0 and d(p, q) = 0 
if and only if p = q 

(positive definiteness); 
(2) dp,q)=d(q,p) 

(symmetry); 
(3) d(p, r) 5 d(p, q) + d(q, r) 

(triangle inequality). 

Some of the more common metrics are 
examined below in the context of the points 
p = (p,, py) and q = (q,, qy). By far the 
most popular metric is the Euclidean metric 

dE(p, q) = .J(p, - q,) 2 + (py - qy) 2
• 

Two other metrics which are used in image 
processing are the absolute value metric, 
also known as the city block metric (or 
Manhattan metric), 

and the maximum value metric, also known 
. as the Chessboard metric, 

dM(p, q) = max(IPx - q,j, IPY - qyll· 

The set of points having dE(p, q) :S Tare 
those points contained in a circle centered 
at p having radius T. Similarly, dA(p, q) :S 
Tyields a diamond, centered at p, with side 
length T· J2, and dM(p, q) 5 T yields a 
square, centered at p, with side length 2 · T. 
For example, by using the Euclidean met­
ric, the skeleton of a circle is its center. The 
skeleton of the rectangle in Figure 29 is the 
set of dashed lines within it. An alternative 
characterization of a skeleton is achieved 
by drawing an analogy to a "brush fire." 
That is, imagine that the boundary of the 
object is set on fire; the remains would be 
the skeleton. 

Computing Sur;eys, Vol. 16, No. 2, June 1984 

Skeletons and medial axis transforms are 
traditionally used in image processing for 
the purpose of obtaining an approximation 
of the image. We wish here to obtain an 
exact representation of the image. The ap­
plication of the concept of metric to an 
image represented by a quadtree is dis­
cussed by Shneier [1981b] and Samet 
(1982b]. In particular, Samet (1982b] has 
shown that the Chessboard metric is most 
appropriate for an image represented by a 
quadtree since it has the property that the 
set of points { q} such that dM(p, q) :ST is 
a square. This metric is used to define the 
Chessboard distance transform for a quad­
tree as a function DIST, which yields for 
each BLACK block in the quadtree the 
Chessboard distance from the center of the 
block to the nearest point which is on a 
BLACK-WHITE boundary. In addition, 
DIST of a WHITE or GRAY block is said 
to be zero, and the border of the image is 
assumed to be BLACK. For example, in 
Figure 30, node 1 has a DIST value of 6, 
whereas node 12 has a DIST value of 0.5, 
assuming a 24 by 24 image. The process of 
computing the Chessboard distance trans­
form is relatively simple. It consists of a 
postorder tree traversal where for each 
BLACK block the eight adjacent (horizon­
tal, vertical, and corner) neighbors are ex­
amined to determine the closest WHITE 
block. This process is analogous to that 
used for connected component labeling and 
perimeter computation . 

The quadtree skeleton is defined as fol­
lows. Given a BLACK block b, it is conven­
ient to use S(b) to refer to the set of pixels 
in the image spanned by a square with side 
width 2·DIST(b) centered about block b. 
Let the set of BLACK blocks in the image 
be denoted by B. The quadtree skeleton is 
the set T of BLACK blocks, denoted by t; , 
satisfying the following properties: 

(1) the set of pixels in B = U, S(t.); 
(2) for any t1 in T there does not exist bk in 

B (bk# t1) such that S(t;) !;;; S(bd; 
(3) for all b1 in B there exists t; in T such 

that S(b;) !: S(t;). 

For example, for the quadtree of Figure 
30, the quadtree skeleton consists of nodes 
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Figure 30. Sample quadtree. 

1, 11, and 15 with Chessboard distance 
transform values of 6, 2, and 4, respectively. 
Property (1) ensures that the entire image 
is spanned by the quadtree skeleton. Prop­
erty (2) is termed the subsumption prop­
erty, wherein bj is subsumed by bk when 
S(bi) ~ S(bk). Property (2) means that the 
elements of the quadtree skeleton are the 
blocks with the largest distance transform 
values. Property (3) ensures that no block 
in B and not in T requires more than one 

element of T for its subsumption. Therefore 
the case where one-half of the block is 
subsumed by one element of T and the 
other half is subsumed by another element 
of T is not permitted. Samet [1983] has 
shown that the quadtree skeleton of an 
image is unique. 

The quadtree medial axis transform 
(QMAT) of an image is the quadtree whose 
BLACK nodes correspond to the BLACK 
blocks comprising the quadtree skeleton 
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and their associated Chessboard distance 
transform values. All remaining nodes in 
the QMAT are WHITE and GRAY with 
distance value zero. For example, Figure 31 
contains the block and tree representations 
of the QMAT of Figure 30. The algorithm 
for the construction of a QMAT from its 
quadtree is straightforward [Samet 1983]. 
In essence, it is a modified postorder tree 
traversal where GRAY nodes are processed 
first, and for each BLACK node a check is 
made to see if it is subsumed by one of its 
eight neighbors. If it is, then the node is 
changed from BLACK to WHITE. This 
algorithm is facilitated by Property (3), 
which ensures that there is no need to check 
whether a node is subsumed partially by 
one neighbor and partially by another 
neighbor. The reverse process of recon­
structing a quadtree from its QMAT is also 
possible [Samet 1985b]. It is potentially 
useful for thinning an image. 

The QMAT has a number of important 
properties. First, it resµlts in a partition of 
the image into a set of possibly nondisjoint 
squares having sides whose lengths are 
sums of powers of two rather than, as in 
the case of quadtrees, a set of disjoint 
squares having sides of lengths that are 
powers of two. Second, the QMA T is more 
compact than the quadtree, as it never con­
tains more nodes than the quadtree and · 
often contains considerably fewer nodes 
(e.g., compare Figures 30 and 31). Third, 
the QMAT representation is less sensitive 
to shift operations in the sense that a small 
shift of the image will not, in general, cause 
the QMA T to get as large as the shifted 
quadtree. This should be apparent when we 
realize that the QMAT is most economical 
storagewise, vis a vis the quadtree when 
large blocks are surrounded by smaller 
blocks; this is normally the situation when 
a shift operation takes place. For example, 
compare Figure 32 and the result of shifting 
it by one pixel to the right, as shown in 
Figure 33. 

2.12 Pyramids 

Given a 2n by 2n image array, say A(n), a 
pyramid is a sequence of arrays lA(i)l such 
that A (i - 1) is a version of A ( i) at half the 
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Figure 31. QMAT corresponding to the quadtree of 
Figure 30. 

resolution of A(i), etc. A (0) is a single pixel. 
For example, Figure 34 shows the structure 
of a pyramid having three levels. It should 
be clear that a pyramid can also be defined 
in a more general way by permitting finer 
scales of resolution than the power of two 
scale. 

At times it is more convenient to define 
a pyramid in the form of a tree. Again, 
assuming a 2n by 2n image, a recursive 
decomposition into quadrants is performed, 
just as in quadtree construction, except that 
we keep subdividing until we reach the 
individual pixels. The leaf nodes of the 
resulting tree represent the pixels, whereas 
the nodes immediately above the leaf nodes 
correspond to the array A(n - 1), which is 
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Figure 32. Sample quadtree. (a) Block decomposi­
tion. (b) Tree representation. (c) QMAT. 

of size 2•-1 by 2•-1
• The nonterminal nodes 

are assigned a value that is a function of 
the nodes below them (i.e., their sons) such 
as the average gray level. 

The above definition of a pyramid is 
based on a nonoverlapping 2 by 2 blocks of 

pixels. An alternative definition uses over­
lapping blocks of pixels. One of the simplest 
schemes makes use of 4 by 4 blocks that 
overlap by 50 percent in both the horizontal 
and vertical directions [Burt et al. 1981]. 
For example, Figure 35 is a 23 by 23 array, 
say A(3), whose pixels are labeled 1-64. 
Figure 36 is A(2) corresponding to Figure 
35, and its elements are labeled A-P. The 
4 by 4 neighborhood corresponding to ele­
ment F in Figure 36 consists of pixels 10-
13, 18-21, 26-29, and 34-37. This method 
implies that each block at a given level 
participates in four blocks at the immedi­
ately higher level. Thus the containment 
relations between blocks no longer form a 
tree. For example, pixel 28 participates in 
blocks F, G, J, and K in the next higher 
level (see Figure 37 where the four neigh­
borhoods corresponding to F, G, J, and K 
are drawn as squares). In order to avoid 
treating border cases differently, each level 
is assumed to be cyclically closed (i.e., the 
top row at each level is adjacent to the 
bottom row and likewise for the columns at 
the extreme left and right of each level). 
Once again, we say that the value of a node 
is the average of the values of the nodes in 
its block on the immediately lower level. 
The overlapped pyramid may be compared 
with the QMAT (see Section 2.11) in the 
sense that both may result in nondisjoint 
decompositions of space. 

Pyramids are used for feature detection 
and extraction since they can be used to 
limit the scope of the search. Once a piece 
of information of interest is found at a 
coarse level, the finer resolution levels can 
be searched. This approach was used for 
approximate pattern matching by Davis 
and Roussopoulos [1980]. Pyramids can 
also be used for encoding information about 
edges, lines, and curves in an image 
[Shneier 1981c]. One note of caution: The 
reduction of resolution will affect the visual 
appearance of edges and small objects 
[Tanimoto 1976]. In particular, at a coarser 
level of resolution edges tend to get smeared 
and region separation may disappear. Pyr­
amids have also been used as the starting 
point for a "split and merge" segmentation 
algorithm [Pietikainen et al. 1982]. 
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Figure 33. The result of shifting the image in Figure 32 by one pixel to the right. 
(a) Block decomposition. (b) Tree representation. (c) QMAT. 

Before leaving this section, it is impor­
tant to reiterate a comment made in 
Section 1 that pyramids and quadtrees, 
although related, are different entities. A 
pyramid is a multiresolution representa­
tion, whereas the quadtree is a variable 
resolution representation. Another analogy 
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is that the pyramid is a complete quadtree 
[Knuth 1975, p. 401]. 

2.13 Quadtree Approximation Methods 

The quadtree can be used as an image ap­
proximation device. By truncating the 
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0 

EE 

Figure 34. Structure of a pyramid having three lev­
els. 

quadtree (i.e., ignoring all nodes below a 
certain level), a crude approximation can 
be realized. Ranade et al. (1982] define a 
sequence of inner and outer approxima­
tions to an image and use it for shape 
approximation. The inner approximation 
consists of treating GRAY nodes as 
WHITE, whereas the outer approximation 
treats them as BLACK. Rosenfeld et al. 
(1982] discuss a quadtree truncation tech­
nique that treats a GRAY node as BLACK 
or WHITE, depending on the type of the 
majority of its constituent pixels. This is 
shown to lead to a very gentle degradation 
of the image in contrast to the abruptness 
of the inner and outer approximation meth­
ods. 

Quadtree-based approximation methods 
have also been devised for use in transmis­
sion of binary and gray-scale images. In 
such a case, it is desirable for the chosen 
method to exhibit compression as well as 
be progressive. By progressive we mean 
that as more of the image is transmitted, 
the receiving device progressively con­
structs a better approximation. At the end 
of the transmission, the original image is 
to be reconstructed perfectly. Progressive 
approximation should be contrasted with 
facsimile techniques that transmit the im­
age a line at a time. Thus the goal is to 
receive a crude picture first and the details 
later, thereby enabling browsing opera­
tions. 

Sloan and Tanimoto (1979] (see also 
Tanimoto (1979)) propose a number of pyr­
amid-based approaches to the problem of 
transmitting a gray-scale image. In Section 
2.12 a pyramid was described as a sequence 

I 2 3 4 5 6 1 e 
9 10 II 12 13 14 15 16 
17 16 19 20 21 22 23 24 

25 26 27 28 29 30 31 32 

33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 

49 50 51 52 53 54 55 56 

57 58 59 60 61 62 63 64 

Figure 35. Example pyramid A(3). 
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Figure 36. A(2) corresponding to Figure 35. 

I 2 3 4 5 6 7 8 

9 10 II 12 13 14 15 16 

17 18 19 20 21 22 23 24 

25 26 27 28 24 30 31 32 

33 34 35 36 37 38 39 40 

41 42 43 44 45 46 .tf7 48 

49 50 51 52 53 54 55 56 

57 58 59 60 61 62 63 64 

Figure 37. The overlapping blocks in which pixel 28 
participates. 

of arrays IA(i)I such that A(i - 1) is a 
version of A(i) at half the resolution; A(O) 
is said to be a single element. Given a 2n by 
2n image, the pyramid can be considered to 
be a complete quadtree with A(n) corre­
sponding to the image. The simplest trans­
mission technique that they propose is 
analogous to a breadth-first traversal of the 
complete quadtree. The shortcoming of this 
approach is that redundant information 
must be transmitted (i.e., one-third more 
information), and thus no compression ex­
ists. Sloan and Tanimoto propose a number 
of refinements to this method. First, a level 
number and coordinates for each pixel are 
included, but are transmitted only if they 
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differ from the value of the pixel's prede­
cessor. The second refinement requires that 
the receiver deduce one pixel's value from 
those of its predecessor and its three sib­
lings. By using such a method, there is no 
need for redundant pixel information to be 
transmitted; however, there is no compres­
sion since the amount of information trans­
mitted is equal to the number of pixels. The 
predecessor's value can be a sum of the 
values of the four sons; an even better 
method, in the sense that less computa­
tional overhead is involved, is simply to use 
one of the values of the sons. 

Knowlton [1980) discusses techniques 
for transmission of both gray-scale and bi­
nary images. He makes use of a binary tree 
version of a quadtree (i.e. bintree). In es­
sence, an image is repeatedly split into two 
halves alternating between vertical and 
horizontal splits. For gray-scale images, he 
describes each two-pixel group (hence the 
binary subdivision) by two numbers such 
that the first is analogous to an average, 
termed a composite value, and the second is 
like a differentiator that enables the com­
putation of their corresponding intensities. 
These two pixel groups are recursively ag­
gregated in groups of two to form a binary 
tree. Knowlton shows that all that needs to 
be transmitted is the composite value for 
the root of the tree and the successive sets 
of differentiators. Thus the sequence of 
transmission is a breadth-first traversal of 
the binary tree of differentiator values. The 
result is that an image of p pixels of 2b gray 
levels can be transmitted and reformatted 
by using p·b bits. Use of the composite 
values leads to successively better approx­
imations to the image until an exact recon­
struction is obtained at the end of the 
transmission. Compression can be achieved 
by using Huffman codes [Huffman 1952] 
to encode the differentiator values. 

Knowlton also presents a technique for 
the progressive transmission of binary im­
ages. Again, the binary tree version of the 
quadtree is used to represent the image. 
Nodes are labeled BLACK, WHITE, or 
GRAY. The basic unit of decomposition is 
a pixel and these are aggregated into 2 by 
3 rectangles. At this level all nodes are 
described by using a seven-valued entity 

Computing Surveys, Vol. 16, No. 2, June 1984 

corresponding to the number of constituent 
BLACK pixels. The image is transmitted 
in order of a breadth-first traversal of the 
binary tree. Whenever a block of size 
greater than 2 by 3 is described as BLACK 
or WHITE, it ceases to participate in the 
remainder of the transmission process. In 
order to obtain an approximation, two val­
ues are transmitted for the 2 by 3 GRAY 
blocks. The first set of values is just a five­
valued number indicating the shade of 
GRAY for each block. Next, the exact de­
tails of each pixel in each block are trans­
mitted. Knowlton makes considerable use 
of coding methods to obtain compression 
factors as high as 8: 1 (i.e., for a 2 n and 2 n 

image, instead of transmitting 22
n bits, as 

few as 22
n-

3 bits are necessary). It should 
be noted that these high compression fac­
tors do not necessarily result from the use 
of a bintree over a quadtree. Instead, they 
result from the uniformity of the image (i.e., 
blocks of WHITE and BLACK), and when 
this is not the case, then they result from 
coding groups of pixels. Somewhat similar 
compression results, although they do not 
exhibit progressiveness, have been obtained 
by using DF-expressions [Kawaguchi and 
Endo 1980). 

The notion of a forest (see Section 2.2) 
has been extended by Samet [Samet 1985c] 
to develop a sequence of approximations to 
a quadtree-encoded binary image that also 
exhibits compression as well as progres­
siveness. The approximation sequence con­
sists of using the roots of the elements of 
the forest of Jones and Iyengar (1984). 
Each successive approximation constructs 
a new forest for each element of the pre­
vious approximation that is not a terminal 
node. The only difference is that the second 
approximation uses a forest of maximal 
squares that span the WHITE area of the 
components of the first approximation. 
This process is repeated, alternating 
BLACK and WHITE approximations until 
all elements of the approximation are ter­
minal nodes. This method works by alter­
nating an overestimation of the BLACK 
area with an underestimation, and spiraling 
in to the true image. Thus it avoids the 
one-sidedness of the inner and outer ap­
proximation methods of Ranade et al. 
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[1982]. The nodes comprising the elements 
of the approximation sequences are speci­
fied by use of locational codes. 

It can be shown that use of forest-based 
approximation methods leads to a number 
of interesting properties. First, the total 
number of nodes in the approximation se­
quence does not exceed the minimum of the 
BLACK or WHITE nodes in the original 
quadtree. Using a 512 by 512 image, reduc­
tions as high as 22 percent (with respect to 
the minimum of the BLACK or WHITE 
nodes) in the number of nodes have been 
obtained [Samet 1985c]. As larger images 
are used, the compression factor becomes 
considerably greater. Second, the methods 
yield a saving of space whenever the situa­
tion arises that three out of four sons have 
the same type (i.e., BLACK or WHITE). 
The worst-case scenario from a node­
counting standpoint is the checkerboard 
(all the BLACK nodes must be transmit­
ted). Finally, we observe that the forest 
method is biased in favor of approximating 
objects having the shape of a "panhandle," 
whereas the inner and outer approxima­
tions [Ranade et al. 1982) are insensitive 
to them. 

Ismail and Steele (1980) make use of an 
approximation method, termed aplc, that is 
similar in spirit to the forest method [Sa­
met 1985c]. They treat each M by M block 
in the image as BLACK if at least M 2 

- 1 
of its constituent pixels are BLACK. Sim­
ilarly, a M by M block is treated as WHITE 
if at least M 2 

- 1 of its pixels are WHITE. 
Otherwise, the block is decomposed into 
four blocks, and the same coding process is 
recursively attempted. The principal differ­
ence between the two methods is that the 
forest method is hierarchical, whereas the 
aplc approximation is not in that if four 
brother blocks of size 2 by 2 each contain 
one WHITE pixel, they are treated as four 
2 by 2 BLACK blocks and not as one 4 by 
4 BLACK block. Also, the aplc method does 
not lead to an exact reconstruction of the 
image, whereas the forest method does. 

2.14 Volume Data 

Extension of the quadtree to represent 
three-dimensional objects by use of octrees 

Figure 38. Labeling of octants in an octree (octant 3 
is not visible). 

has been proposed independently by many 
researchers [Hunter 1978; Jackins and 
Tanimoto 1980; Meagher 1982; Reddy and 
Rubin 1978). The process begins with a 2n 
by 2n by 2n object array of unit cubes or 
voxels [Jackins and Tanimoto 1980] (also 
termed obels [Meagher 1982]). The octree 
is an approach to object representation sim­
ilar to the region quadtree, and is based on 
the successive subdivision of an object ar­
ray into octants. If the array does not con­
sist entirely of l's or entirely of O's, then it 
is subdivided into octants, suboctants, etc. 
until cubes (possibly single voxels) are ob­
tained that consist of l's or of O's; that is, 
they are entirely contained in the region or 
entirely disjoint from it. This process is 
represented by a tree of out degree 8 in 
which the root node represents the entire 
object with octants labeled as in Figure 38, 
and the leaf nodes correspond to those 
cubes of the array for which no further 
subdivision is necessary. Leaf nodes are 
said to be BLACK or WHITE (alterna­
tively, FULL or VOID), depending on 
whether their corresponding cubes are en­
tirely_ within or outside of the object, re­
spectively. All nonleaf nodes are said to be 
GRAY. Figure 39 contains an example ob­
ject in the form of a staircase and its cor­
responding octree. The labels denote the 
octant numbers associated with each son 
by using the labeling convention of 
Figure 38. 

Many of the algorithms obtained for the 
region quadtree, for example, the Boolean 
operations, are easily extended to the octree 
domain. Jackins and Tanimoto [1980] have 
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(a) (b) 

Figure 39. Example object (a) and its octree (b). • • BLACK • "Full"; D • 
WHITE• "VOID" (empty); 0 • GRAY. 

adapted Hunter and Steiglitz's [1979a] 
translation algorithm to the three-dimen­
sional domain. They also discuss rotation 
by multiples of 90 degrees. Meagher [1982] 
and Ahuja and Nash [1984) discuss differ­
ent approaches. Meagher [1982] also de­
scribes algorithms to perform scaling, ro­
tation, perspective transformation, and 
hidden surface display. He observes that 
memory and processing time requirements 
for operations involving three-dimensional 
objects are proportional to the surface area. 
This is analogous to Hunter and Steiglitz' 
[1979a] observation that for quadtrees 
these requirements are proportional to the 
perimeter of the object being represented. 
Tamminen and Samet (1984] show how to 
convert a boundary representation of a 
solid to its corresponding octree by use of 
connectivity labeling. Gillespie and Davis 
(1981) discuss the projection of an octree 
onto a plane formed by the axes resulting 
in a quadtree. This is useful for display 
purposes (see also Doctor and Torborg 
1981]). Yau (1984] solves the projection 
problem for sections orthogonal to a coor­
dinate axis as well as the more general 
problem of a projection onto a plane of 
arbitrary position and orientation. Yau and 
Srihari (1983] present an algorithm for 
constructing an N-dimensional octreelike 
representation from multiple (N - !)-di­
mensional cross-sectional images for use in 
processing medical images. Connolly (1984] 
treats a similar problem by using range 
data. Gargantini [1982b] makes use of a 
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pointerless representation termed a linear 
octree (analogous to the linear quadtree 
[Gargantini 1982a]) and shows how a num­
ber of primitive operations can be per­
formed. 

Reddy and Rubin (1978] discuss three 
representations for solid objects, one of 
which is the octree. The second is a three­
dimensional generalization of the point 
quadtree [Finkel and Bentley 1974], that 
is, a decomposition into rectangular paral­
lelepipeds (as opposed to cubes) with planes 
perpendicular to the x, y, and z axes. The 
third breaks the object into rectangular 
parallelepipeds that are not necessarily 
aligned with an axis. The parallelepipeds 
are of an arbitrary size and orientation. The 
top level of the tree has a branching factor 
of N. At this level of the tree, they store N 
transformation matrices, T1 through TN, 
where ~ach matrix is a 4 by 4 transforma­
tion that converts the object space point 
into the coordinate system of its parallel­
epiped. Each parallelepiped is recursively 
subdivided into parallelepipeds in the co­
ordinate space of the enclosing parallele­
piped. Reddy and Rubin prefer the third 
approach for its ease of display. Situated 
somewhere in between the second and third 
approaches outlined above is the method of 
Brooks and Lozano-Perez [1983) (see also 
Lozano-Perez 1981]), who use a recursive 
decomposition of space into an arbitrary 
number of rectangular parallelepipeds, with 
planes perpendicular to the x, y, and z axes, 
to model space in solving the findpath or 
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mover's problem in robotics. This problem 
arises when planning the motion of a robot 
in an environment containing known ob­
stacles and the desired solution is a colli­
sion-free path that is obtained by use of a 
search. Faverjon (1984] discusses an ap­
proach to this problem that uses an octree. 

Faugeras and Ponce (1983] describe a 
hierarchical data structure that they term 
a prism tree. It is a ternary tree structure 
that is a generalization of the strip tree of 
Ballard (1981] (see Section 4) to hierarchi­
cally approximate surfaces by using a prism 
as an enclosing box. The prism tree is built 
from an initial triangulation of an object 
by using a polyhedral approximation algo­
rithm [Faugeras et al. 1984]. Algorithms 
are presented for intersecting surfaces and 
finding neighbors in the sense of Samet 
[1982a]. 

Representing surfaces (i.e., 2~-dimen­
sional images) by hierarchical methods is 
an interesting area in which, unfortunately, 
only a limited amount of work has been 
done. DeFloriani et al. (1982] discuss a data 
structure for multilevel surface represen­
tation consisting of a nested triangulated 
irregular network [Lee and Schachter 1980] 
that is used for surface interpolation and 
also serves as a data compression mecha· 
nism. Gomez and Guzman (1979] use a data 
structure that is somewhat related to the 
point quadtree. It is a recursive subdivision 
of the surface into four triangles of unequal 
size, which uses a process that stops when 
a triangle matches the surface within a 
prespecified error. Carlson [1982] describes 
a quadtree-based data structure for repre· 
senting surfaces to be used in the synthesis 
of three-dimensional objects in the domain 
of computer graphics. In general, the prin­
ciple of recursive subdivision is of consid­
erable importance in the processing of 
curved surfaces [Cohen et al. 1980]. (See 
also Mudur and Koparkar (1984].) 

Multidimensional data in excess of three 
dimensions can also be represented by n­
dimensional generalizations of the quad­
tree. Also interesting is the use of the fourth 
dimension to represent time [Gillespie and 
Davis 1981; Jackins and Tanimoto 1983; 
Yau and Srihari 1983]; however, this rep­
resentation is somewhat difficult since the 

dimensional units of the extra dimension 
are different [i.e., units of time instead of 
distance). Such techniques are potentially 
useful in dealing with time-varying im­
agery. 

3. POINT DATA 

Multidimensional point data can be repre­
sented in a variety of ways. The represen­
tation ultimately chosen for a specific task 
will be heavily influenced by the type of 
operations to be performed on the data. 
Our focus is on dynamic files (i.e., the num­
ber of data can grow and shrink at will) and 
applications involving search. Knuth 
(1973] lists three typical queries: (1) a point 
query, which determines whether a given 
data point is in the database, and if so, the 
address corresponding to it; (2) a range 
query (i.e., region search), which asks for a 
set of data points within a given range (this 
category includes the partially specified 
query); (3) a Boolean query, which consists 
of the previous type combined with the 
Boolean operations AND, OR, NOT, etc. A 
related operation is to find the n nearest 
neighbors of a given point [Bentley 1975a]. 

Nievergelt et al. (1984] group searching 
techniques into two categories: those that 
organize the data to be stored and those 
that organize the embedding space from 
which the data are drawn. In a more formal 
sense, the distinction is between trees and 
tries, respectively. The binary search tree 
[Knuth 1973] is an example of the former 
since the boundaries of different regions in 
the search space are determined by the data 
being stored. Address computation meth­
ods such as radix searching [Knuth 1973] 
(also known as digital searching) are ex­
amples of the latter, since region bounda­
ries are drawn at locations that are fixed 
regardless of the content of the file. The 
distinction can also be seen by comparing 
the region quadtree [Klinger 1971] with the 
point quadtree [Finkel and Bentley 1974]; 
that is, the former is based on a regular 
decomposition, whereas the latter is not. 

In the remainder of this section we fur­
ther elaborate on the point quadtree and 
the k-d tree [Bentley 1975b]. Then, some 
representations that are based on the re-
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gion quadtree (i.e., on a regular decompo­
sition) are discussed and compared with the 
point quadtree. We also present an appli­
cation of a region-based quadtree in repre­
senting small rectangles for very large-scale 
integration (VLSI) applications [Kedem 
1981], concluding with a brief overview of 
methods that replace the hierarchical 
structure of quadtrees by address compu­
tation. These techniques are directed, in 
part, toward ensuring efficient access to 
disk data, and are termed bucket methods. 
In the same context some tree-based meth­
ods are also discussed. All of the examples 
are limited to two dimensions although 
they can be easily generalized to an arbi­
trary number of dimensions. It should be 
borne in mind that our presentation is very 
brief; that is, we do not analyze the per­
formance of these methods. Actually, the 
field of multidimensional data structures is 
a rapidly developing one, and this discus­
sion is necessarily limited to a detailed 
presentation of methods that can be viewed 
as direct applications of a quadtreelike re­
cursive subdivision approach. 

3.1 Point Quacltrees and k-d Trees 

The point quadtree [Finkel and Bentley 
1974] is a multidimensional generalization 
of a binary search tree. In two dimensions, 
each data point is a node in a tree having 
four sons, which are roots of subtrees cor­
responding to quadrants labeled in order 
NW, NE, SW, and SE. Each data point is 
assumed to be unique. The process of in­
serting into point quadtrees is analogous to 
that used for binary search trees. In es­
sence, we search for the desired record on 
the basis of its x and y coordinates. At each 
node of the tree a four-way comparison 
operation is performed and the appropriate 
subtree is chosen for the next test. Reach­
ing the bottom of the tree without finding 
the record means that it should be inserted 
at this position. The shape of the resulting 
tree depends on the order in which records 
are inserted into it. For example, the tree 
in Figure 2 is the point quadtree for the 
sequence Chicago, Mobile, Toronto, Buf­
falo, Denver, Omaha, Atlanta, and Miami. 
Deletion of a node is more complex [Samet 
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1980c] as is balancing [Overmars and van 
Leeuwen 1982]. 

Point quadtrees are especially attractive 
in applications that involve search. How­
ever, they have also been used to solve 
a measure problem for rectangular ranges 
in three-space [van Leeuwen and Wood 
1981]. A typical query is one that requests 
the determination of all records within a 
specified distance of a given record, that is, 
all cities within 50 miles of Washington, 
D.C. The efficiency of the point quadtree 
lies in its role as a pruning device on the 
amount of search that is required. Thus 
many records will not need to be examined. 
For example, suppose that in the hypothet­
ical database of Figure 2 we wish to find all 
cities within eight units of a data point with 
coordinates (83, 10). In such a case, there 
is no need to search the NW, NE, and SW 
quadrants of the root (i.e., Chicago with 
coordinates (35, 40)). Thus we can restrict 
our search to the SE quadrant of the tree 
rooted at Chicago. Similarly, there is no 
need to search the NW and SW quadrants 
of the tree rooted at Mobile (i.e., coordi­
nates (50, 10)). Search operations using 
point quadtrees are analyzed by Bentley 
and Stanat [1975] and Lee and Wong 
[1977]. Note that the search ranges are 
usually orthogonally defined regions such 
as rectangles or boxes. Other shapes are 
also feasible as the above example demon­
strated (i.e., a circle). In order to handle 
more complex search regions such as poly· 
gons, Willard [1982] defines a polygon tree 
where the x-y plane is subdivided by J lines 
that need not be orthogonal, although there 
are other restrictions on these lines. When 
J = 2, the result is a point quadtree with 
nonorthogonal axes. 

Our examples of the use of the point 
quadtree have been limited to two dimen­
sions. The problem with a large number of 
dimensions is that the branching factor 
becomes very large (i.e., 2" for k dimen­
sions), thereby requiring much storage for 
each node as well as many NIL pointers for 
terminal nodes. The k-d tree of Bentley 
[Bentley 1975b] is an improvement on the 
point quadtree that avoids the large 
branching factor. In principle, it is a binary 
search tree with the distinction that at each 
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Figure 40. A k·d tree (b) and the records it represents (a). 

level of the tree a different coordinate is 
tested when determining the direction in 
which a branch is to be made. Therefore in 
the two-dimensional case (i.e., a 2-d tree!), 
we compare x coordinates at the root and 

at even levels (assuming the root is at level 
0) and y coordinates at odd levels. Each 
node has two sons. Figure 40 is the k-d tree 
corresponding to the point quadtree of Fig­
ure 2, where the records have been inserted 
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Figure41. Adaptive k·d tree. (a) Set of points in 2-space. (b) 2-d tree. 

in the same order. Friedman et al. [1977] 
report an improvement on the k-d tree that 
relaxes the requirement of alternating tests 
at the price of storing at each node an 
indication of which coordinate is being 
tested. Using this data structure, termed an 
adaptive k-d tree, we can construct a bal­
anced k-d tree where records are stored only 
at the terminal nodes. Figure 41 is the 
adaptive k-d tree corresponding to the point 
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quadtree of Figure 2. Before constructing 
such a tree we must know all of the con­
stituent records. Thus its shape is inde­
pendent of the order in which the records 
were encountered. However, adding a new 
record requires rebuilding the tree. Thus it 
is not a dynamic data structure. 

In general, k-d trees are superior to point 
quadtrees, with one exception: The point 
quadtree is an inherently parallel data 
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structure and thus the comparison opera­
tion can be performed in parallel for the k 
key values, whereas this cannot be done for 
the k-d tree. Thus we can characterize the 
k-d tree as a superior serial data structure 
and the point quadtree as a superior par­
allel data structure. Linn (1973] discusses 
the use of point quadtrees in a multiproces­
sor environment. 

3.2 Region-Based Quadtrees 

Although conceivably there are many ways 
of adapting the region quadtree to represent 
point data, our discussion is limited to two 
methods. The first method assumes that 
the domain of data points is discrete; they 
are treated as if they are BLACK pixels in 
a region quadtree. An alternative charac­
terization is to think of the data points as 
nonzero elements in a square matrix. The 
resulting data structure is called an MX 
quadtree (MX for matrix), although the 
term MX quadtrie would probably be more 
appropriate. The MX quadtree is organized 
in a similar way to the region quadtree. The 
difference is that leaf nodes are BLACK or 
empty (i.e., WHITE) corresponding to the 
presence or absence, respectively, of a data 
point in the appropriate position in the 
matrix. For example, Figure 42 is the 23 by 
23 MX quadtree corresponding to the data 
of Figure 2. It is obtained by applying the 
mapping f such that f(Z) = Z div 12.5 to 
both x and y coordinates. The result of the 
mapping is reflected in the coordinate val­
ues in the figure. 

Each data point in an MX quadtree cor­
responds to a 1 by 1 square. For ease of 
notation and operation using modulo and 
integer division operations, the data point 
is associated with the lower left corner of 
the square. This adheres to the general 
convention followed throughout this pres­
entation that the NE and SE quadrants are 
closed with respect to the x coordinate and 
the NW and NE quadrants are closed with 
respect to they coordinate. Note that nodes 
corresponding to data points are not 
merged, whereas this is not the case for 
empty leaf nodes. For example, the NW 
and NE sons of node D in Figure 42 are 
NIL and likewise for the NW son of node 

A. However, it is undesirable to merge 
nodes corresponding to data points as this 
results in a loss of the identifying infor­
mation about the data points. Recall that 
each data point is different, whereas the 
empty leaf nodes have the absence of infor­
mation as their common property and thus 
can be safely merged. 

Data points are inserted into an MX 
quadtree by searching for them. This search 
is based on the location of the data point 
in the matrix (e.g., the discretized values of 
its x and y coordinate in the example of 
Figure 42). An unsuccessful search termi­
nates at a leaf node. If this leaf node is 
NIL, the space spanned by it may have to 
be repeatedly subdivided until it is a 1 by 1 
square. This process is termed splitting and 
for a 2" by 2" MX quadtree, it will have to 
be performed at most n times. The shape 
of the MX quadtree is independent of the 
order in which data points are inserted into 
it. Deletion of nodes is slightly more com­
plex and may require collapsing of nodes­
the direct counterpart of the node-splitting 
process outlined above. 

The MX quadtree is useful in a number 
of applications. It serves as a basis of a 
quadtree matrix manipulation system [Sa­
met and Krishnamurthy 1983). It is used 
by Letelier [1983] to represent silhouettes 
of hand motions to aid in the telephonic 
transmission of sign language for the hear­
ing impaired. DeCoulon and Johnsen 
[1976] describe its use in the coding of black 
and white facsimiles for efficient transmis­
sion. 

The MX quadtree is adequate as long as 
the domain of the data points is discrete 
and finite. If this is not the case, then the 
data points cannot be represented since the 
minimum separation between the data 
points is unknown. This leads us to an 
alternative adaptation of the region quad­
tree to point data that associates data 
points (that need not be discrete) with 
quadrants. We call it a PR quadtree (P for 
point and R for region) although again the 
term PR quadtrie would probably be more 
appropriate. The PR quadtree is organized 
in the same way as the region quadtree. 
The difference is that leaf nodes are either 
empty (i.e., WHITE) or contain a data 
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Figure 42. A MX quadtree (b) and the records it represents (a). 

point (i.e., BLACK) and its coordinates. A 
quadrant contains at most one data point. 
For example, Figure 43 is the PR quadtree 
corresponding to the data of Figure 2. Or­
enstein (1982] describes an analogous data 
structure using binary trees rather than 
quadtrees. Such a data structure could be 
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called a k-d PR quadtree or even better 
simply a k-d trie. 

Data points are inserted into PR quad­
trees in a manner analogous to that used to 
insert in a point quadtree; that is, a search 
is made for them. Actually, the search is 
for the quadrant in which the data point, 
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Figure 43. A PR quadtree (b) and the records it represents (a). 

say A, belongs (i.e., a leaf node). If the 
quadrant is already occupied by another 
data point with different x and y coordi­
nates, say B, then the quadrant must re­
peatedly be subdivided (termed splitting) 
until nodes A and B no longer occupy the 
same quadrant. This may result in many 
subdivisions, especially if the Euclidean 
distance between A and B is very small. 

The shape of the resulting PR quadtree is 
independent of the order in which data ' 
points are inserted into it. Deletion of nodes 
is more complex and may require collapsing 
of nodes, that is, the direct counterpart of 
the node-splitting process outlined above. 

Matsuyama et al. [1984) discuss the use 
of a PR quadtree in partitioning a point 
space into "buckets" of a finite capacity. As 
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a bucket overflows, a partition into four, 
equal-sized squares is made. Anderson 
[1983] makes use of a PR quadtree (termed 
a uniform quadtree) to store endpoints of 
line segments to be drawn by a plotter. The 
goal is to minimize pen plotting time by 
choosing the line segment to be output next 
whose end point is closest to the current 
pen position. Samet and Webber [1983] 
represent polygonal maps, for example, Vo­
ronoi diagrams, using a variant of the PR 
quadtree. It has the advantage that edges 
are represented exactly, thereby avoiding 
the edge width problem associated with the 
methods of Hunter and Steiglitz [1979a] 
for polygons. 

3.3 Comparison of Point Quadtrees 
and Region-Based Quadtrees 

The comparison of the MX, PR, and point 
quadtrees reduces, in part, to a comparison 
of their respective decomposition methods. 
A major difference among the three data 
structures is in the size of the regions as­
sociated with each data point. For the point 
quadtree there is no a priori constraint on 
the size of the space spanned by the quad­
tree (i.e., the x and y coordinates of the 
data points). For both the MX and PR 
quadtrees the space spanned by the quad­
tree is constrained to a maximum width 
and height. All three quadtrees result in the 
association of one rectangular region with 
each data point. The point quadtree pro­
duces a rectangle that may, at times, be of 
infinite width and height. For the MX 
quadtree this region must be a square with 
a particular size associated with it. This 
size is fixed at the time the MX quadtree 
is defined and is the minimum permissible 
separation between two data points in the 
domain of the MX quadtree (equivalently, 
it is the maximum number of elements 
permitted in each row and column of the 
corresponding matrix). The PR quadtree 
also has a square region, and its size de­
pends on what other data points are cur­
rently represented by nodes in the quad­
tree. In the case of the MX quadtree there 
is a fixed discrete coordinate system asso­
ciated with the space spanned by the quad­
tree, whereas no such limitation exists for 
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the PR quadtree. The advantage of such a 
fixed coordinate system is that there is no 
need to store coordinate information with 
a data point's leaf node. The disadvantage 
is that the discretization of the domain of 
the data points limits the differentiation 
between data points. 

The size arid shape of a quadtree are 
important from the standpoint of efficiency 
of both storage and search operations. The 
size and shape of the point quadtree are 
extremely sensitive to the order in which 
data points are inserted into it during the 
process of building it. This means that for 
a point quadtree of M records, its maximum 
depth is M - 1 (i.e., one record is stored at 
each level in the tree), whereas its mini­
mum depth is llog.(3.M)J (i.e., each level 
in the tree is completely full), where we 
assume that the root of the tree has a depth 
of 0. In contrast, the shape and size of the 
MX and PR quadtrees are independent of 
the insertion order. For the MX quadtree 
all nodes corresponding to data points ap­
pear at the same depth in the quadtree. The 
depth of the MX quadtree depends on the 
size of the space spanned by the quadtree 
and the maximum number of elements per­
mitted in each row and column of the cor­
responding matrix. For example, for a 2n 
by 2 n matrix, all data points will appear as 
leaf nodes at a depth of n. The size and 
shape of the PR quadtree depend on the 
data points currently in the quadtree. The 
minimum depth of a PR quadtree for M > 
1 data points is rlog4(M - 1)1 (i.e., all the 
data points are at the same level), whereas 
there is no upper bound on the depth in 
terms of the number of data points. In 
particular, for a square region of side length 
s, such that the minimum Euclidean dis­
tance separating two points is d, the maxi­
mum depth of the quadtree can be as high 
as rlog2((s/d). v'2)1. 

The volume of data also affects the com­
parison among the three quadtrees. When 
the volume is very high, the MX quadtree 
loses some of its advantage since an array 
representation may be more economical in 
terms of space, as there is no need for Jinks. 
Whereas the size of the PR quadtree was 
seen to be affected by clustering of data 
points, especially when the number of data 
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points is relatively small, this is not a factor 
in the size of a point quadtree. However, 
when the volume of data is large and is 
uniformly distributed, the effect of cluster­
ing is lessened and there should not be 
much difference in storage efficiency be­
tween the point and PR quadtrees. 

3.4 CIF Quadtrees 

The MX-CIF quadtree is a quadtreelike 
data structure devised by Kedem (1981] 
(and called a quad-CIF tree, where CIF 
denotes Caltech Intermediate Form) for 
representing a large set of very small rec­
tangles for application in VLSI design rule 
checking. The goar is to locate rapidly a 
collection of all objects that intersect a 
given rectangle. An equivalent problem is 
to insert a rectangle into the data structure 
under the restriction that it does not inter­
sect existing rectangles. The MX-CIF 
quadtree is organized in a similar way to 
the region quadtree. A region is repeatedly 
subdivided into four equal-sized quadrants 
until blocks are obtained that do not con­
tain rectangles. As the subdivision takes 
place, a set containing all of the rectangles 
that intersect the lines passing through it 
is associated with each subdivision point. 
For example, Figure 44 contains a set of 
rectangles and its corresponding MX-CIF 
quadtree. Once a rectangle is associated 
with a subdivision point, say P, it is not 
considered to be a member of any of the 
sons of the node corresponding to P. For 
example, in Figure 44, node D spans a space 
that contains both rectangles 11 and 12. 
However, only rectangle 11 is associated 
with node D, whereas rectangle 12 is asso­
ciated with node F. 

Our definition of an MX-CIF quadtree is 
very similar to that of an MX quadtree 
with the following differences. First, data 
are associated with both terminal and non­
terminal nodes. Nevertheless, the analog of 
a WHITE node is present and is a NIL 
pointer in the direction of a quadrant that 
contains no rectangles. Second, we are rep­
resenting rectangles rather than points. 
This is fortunate because it provides a ter­
mination condition for the subdivision 
process in forming an MX quadtree. Sec-

tion 3.2 demonstrates that MX quadtrees 
are defined for a domain whose elements 
must be subdivision points of the space 
being represented. The nonzero width of 
the rectangles ensures that they overlap 
with the subdivision points. 

The set of the rectangles that intersect 
the . lines passing through a subdivision 
point is subdivided into two sets. For ex­
ample, consider subdivision point P cen­
tered at (CX, CY) that partitions a 2·LX 
by 2 ·LY rectangular area. All input rectan­
gles that intersect the line x = ex form one 
set, and all input rectangles that intersect 
the line y = CY form the other set. Equiv­
alently, these sets correspond to the rectan­
gles intersecting the y and x axes, respec­
tively, passing through (CX, CY). If a rec­
tangle intersects both axes (i.e., it contains 
the subdivision point P), then we adopt the 
convention that it is stored with the set 
associated with the y axis. These subsets 
are implemented as binary trees, which in 
actuality are one-dimensional analogs of 
the MX quadtree. For example, Figure 45 
illustrates the binary tree associated with 
the x and y axes passing through A, the 
root of the MX-CIF quadtree of Figure 44. 

Rectangles are inserted into an MX-CIF 
quadtree by searching for the position that 
they are to occupy. We assume that the 
input rectangle does not overlap any of the 
existing rectangles. This position is deter­
mined by a two-step process. First, the first 
subdivision point must be located such that 
at least one of its axis lines (i.e., the quad­
rant lines emanating from the subdivision 
point) intersects the input rectangle. Sec­
ond, having found such a point and an axis, 
say point P and axis V, the subdivision 
process is repeated for the V axis until the 
first subdivision point that is contained 
within the rectangle is located. During the 
process of locating the destination position 
for the input rectangle, the space spanned 
by the MX-CIF quadtree may have to be 
repeatedly subdivided (termed splitting), 
creating new nodes in the process. As was 
the case for the MX quadtree, the shape of 
the resulting MX-CIF quadtree is inde­
pendent of the order in which the rectan­
gles are inserted into it. Deletion of nodes 
is more complex and may require collapsing 
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Figure 44. A MX-CJF quadtree (b) and tbe rectangles it represents (a). 

of nodes, that is, the direct counterpart of 
the node-splitting process outlined above. 

The most common search query is one 
that seeks to determine whether a given 
rectangle overlaps (i.e., intersects) any of 
the existing rectangles. It is a prerequisite 
to the successful insertion of a rectangle. 
Range queries can also be performed. How­
ever, they are more usefully cast in terms 
of finding all the rectangles within a given 
area. Another popular query seeks to deter­
mine whether one collection of rectangles 
can be overlaid on another collection with-
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out any of the component rectangles inter­
secting one another. These two operations 
can be implemented by using variants of 
algorithms developed for handling set op­
erations (i.e., union and intersection) in 
region-based quadtrees [Hunter and Steig­
litz 1979a; Shneier 1981a]. In particular, 
the range query can be answered by inter­
secting the query rectangle with the MX­
CIF quadtree. The overlay query can be 
answered by a two-step process. The two 
MX-CIF quadtrees are first intersected. If 
the result is empty, then they can be safely 
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overlaid and all that is needed is to perform 
a union of the two MX-CIF quadtrees. Boo­
lean queries can also be handled easily. 

The problem of determining whether a 
given rectangle overlaps any of an existing 
set of rectangles by use of quadtrees is also 
addressed by Abel and Smith [1983]. Each 
rectangle is associated with the node cor­
responding to the smallest block that to­
tally encloses it (i.e., its minimum bounding 
"quadrant"). This is the same representa­
tion used by Kedem, except that Kedem 
uses binary trees to organize the rectangle 
associated with each quadtree node. Abel 
and Smith do not use a pointer-based quad­
tree representation. Instead, they represent 
each rectangle by the locational code (see 
Section 2.2) of its node. These codes are 
subsequently organized in a B+-tree [Comer 
1979]. Note that many rectangles have 
identical locational codes, and thus the rec­
tangle dimensions must also be stored along 
with the locational codes in the B+ -tree. 
For example, for the set of rectangles in 
Figure 44, rectangles 2, 6, 7, 8, 9, and 10 
have the same locational code as do rectan­
gles 3, 4, and 5, albeit a different one. 
Hinrichs and Nievergelt [1983] describe 
another approach to this problem that is 
based on use of the Grid File, a hierarchical 
organization of point data, discussed in 
Section 3.5. 

3.5 Bucket Methods 

All of the data structures discussed above 
are primarily designed for in core applica­
tions, although their uses can be extended 

elsewhere. The problem is that when data 
are stored in external storage, the need to 
follow pointers may lead to page faults. To 
overcome this, methods have been designed 
that collect the points into sets (termed 
buckets) corresponding to the storage unit 
(i.e., page) of the disk. The remaining task 
is to organize the access to these buckets; 
this is often done by replacing the tree 
structure with an array, thereby facilitating 
address computation. We term such tech­
niques bucket methods, and their aim is to 
ensure efficient access to disk data. The 
simplest bucket method is the fixed-grid 
(or cell) method [Knuth 1973, p. 554; Bent­
ley and Friedman 1979], which is popular 
among cartographers. It divides the space 
into equal-sized cells (i.e., squares and 
cubes for two- and three-dimensional data, 
respectively) having the width equal to the 
search radius. If data are sought by using 
only a fixed-search radius, then the fixed 
grid is an efficient structure. It is also effi­
cient when points are uniformly distributed 
(it corresponds to hashing [Knuth 1973]). 
For a nonuniform distribution it is less 
efficient, because buckets may be unevenly 
filled, leading to nearly empty pages as well 
as long overflow chains. The data structure 
is essentially a directory in the form of a k­
dimensional array with one entry per cell. 
Each cell may be implemented as a linked 
list to represent the points within it. Figure 
46 is an example in which a grid 'represen­
tation for the data of Figure 2 is shown for 
a search radius consisting of a square of 
size 20 by 20; that is, by assuming a 100 by 
100 coordinate space, we have 25 squares 
of equal size. Its deficiency is a fixed size 
for the blocks, which results in both over­
flow and underflow. The methods pre­
sented below are examples of attempts to 
address this deficiency from both hierar­
chical and nonhierarchical viewpoints. We 
conclude with a discussion of some related 
work from the hashing area. 

The Grid File of Nievergelt et al. [1984] 
is a variation of the grid method, which 
relaxes the requirement that cell division 
lines be equidistant. Its goal is to retrieve 
records with at most two disk accesses. This 
is done by using a grid directory consisting 
of grid blocks, which are analogous to the 
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Figure 46. Grid representation corresponding to Figure 2 with a search 
radius of 20. 

cells of the fixed-grid method. All records 
in one grid block are stored in the same 
bucket. However, several grid blocks can 
share a bucket as long as the union of these 
grid blocks forms a k-dimensional rectangle 
(i.e., a convex region) in the space of rec­
ords. Although the regions of the buckets 
are piecewise disjoint, together they span 
the space of records. 

The purpose of the grid directory is to 
maintain a dynamic correspondence be­
tween the grid blocks in the record space 
and the data buckets. The grid directory 
consists of two parts. The first is a dynamic 
k-dimensional array, which contains one 
entry for each grid block. The values of the 
elements are pointers to the relevant data 
buckets. Usually buckets will have a capac­
ity of 10-1000 records. Thus the entry in 
the grid directory is small in comparison to 
a bucket. We are not concerned with how 
records are organized within a bucket (e.g., 
linked list and tree). The grid directory may 
be kept on disk. The second part of the grid 
directory is a set of k one-dimensional ar­
rays called linear scales. These scales define 
a partition of the domain of each attribute 
and enable the accessing of the appropriate 
grid blocks by aiding in the computation of 
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their address on the basis of the value of 
the relevant attributes. The linear scales 
are kept in core. It should be noted that the 
linear scales are useful in guiding a range 
query by indicating the grid directory ele­
ments that overlap the query range. 

As an example, consider Figure 4 7, which 
shows the Grid File representation for the 
data in Figure 2. The bucket capacity is 
two records. There are k = 2 different at­
tributes. The grid directory consists of nine 
grid blocks and six buckets labeled A-F. 
We refer to grid blocks as if they are array 
elements; that is, grid block (i, j) is the 
element in row i (starting at the bottom) 
and column j (starting at the left) of the 
grid directory. Grid blocks (2, 2), (3, 1), and 
(3, 3) are empty; however, they do share 
buckets with other grid blocks. In particu­
lar, grid block (3, 1) shares bucket D with 
grid block (2, 1), grid blocks (3, 2) and (3, 3) 
share bucket B, and grid blocks (2, 2) and 
(2, 3) share bucket E. The sharing is indi­
cated by the broken lines. Figure 48 con­
tains the linear scales for the two attributes 
(i.e., the x andy coordinates). For example, 
executing a FIND command with x = 80 
and y = 65 causes the access of the bucket 
associated with the grid block in row 2 and 
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Figure 47. Grid directory for the data of Figure 2. 

column 3 of the grid directory of Figure 47. 
The Grid File is attractive, in part, be­

cause of its graceful growth as more and 
more records are inserted. As the buckets 
overflow, a splitting process is applied that 
results in the creation of new buckets and 
a movement ofrecords. Two types of bucket 
splits are possible. The first, and most com­
mon, occurs when several grid blocks share 
a bucket that has overflowed. For example, 
suppose Boise at (10, 80) and Fargo at (15, 
75) are inserted in sequence in Figure 47. 
Boise is inserted in bucket D because it 
belongs in grid block (3, 1), which currently 
shares bucket D with grid block (2, 1). 
Fargo also belongs to grid block (3, 1); 
however, bucket D is now full. In this case, 
we merely need to allocate a new bucket 
and adjust the mapping between grid blocks 
and buckets. The second type of a split 
arises when we must refine a grid partition. 
It is triggered by an overflowing bucket, all 
of whose records lie in a single grid block 
(e.g., the overflow of bucket A upon inser­
tion of Kansas City at (30, 30) in Figure 
4 7). In this case there exists a choice with 
respect to the dimension (i.e., axis) and the 
location of the splitting point (i.e., we do 
not have to split at the midpoint of an 
interval). 

The counterpart of splitting is merging. 
There are two possible instances when 
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2. 3 
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Figure 48. Linear scales for (a) x and (b) y corre· 
sponding to the grid directory of Figure 47. 

merging is appropriate: (1) Bucket merging, 
the most common instance, arises when a 
pair of neighboring buckets are empty or 
nearly empty and their coalescing has re­
sulted in a convex bucket region; (2) direc­
tory merging arises when two adjacent cross 
sections in the grid directory each have 
identical bucket values. For example, in the 
case of the two-dimensional grid directory 
of Figure 49, where all grid blocks in column 
2 are in bucket C and all grid blocks in 
column 3 are in bucket D, if the merging 
threshold is satisfied, then buckets C and 
D can be merged and the linear scales mod­
ified to reflect this change. Generally, di­
rectory merging is of little practical interest 
since, even if merging is allowed to occur, 
it is probable that splitting will soon have 
to take place. 

Merrett and Otoo describe a technique 
termed multipaging [Merrett 1978; Merrett 
and Otoo 1982] which is very similar to the 
Grid File. It also uses a directory and main­
tains a set of linear scales called axial ar­
rays. In fact, the Grid File uses multipaging 
as an index to a paged data structure. A 
database that is organized by using multi­
paging differs from the Grid File in that it 
requires bucket overflow areas. This means 
that it has a different bucket overflow cri­
terion. Thus it does not guarantee that 
every record can be retrieved with two disk 
accesses. In particular, multipaging makes 
use of a load factor and a probe factor, 
which are related to the number of over­
flowing data items. This makes insertion 
and deletion (as well as bucket splitting 
and merging) somewhat more complicated 
than when the Grid File is used. 
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Figure 49. Example grid directory illustrating direc­
tory merging. 

The EXCELL method of Tamminen 
(1981 J is a bintree together with a directory 
array providing access by address compu­
tation. It can also be viewed as an adapta­
tion of extendible hashing [Fagin et al. 
1979] to multidimensional point data. It 
implements EXHASH, the extendible 
hashing hash function, by interleaving the 
most significant bits of the data (analogous 
to the locational codes discussed in Section 
2.2). Similar in spirit to the Grid File, it is 
based on a regular decomposition and is 
useful in providing efficient access to, and 
an efficient representation of, geometric 
data. It also makes use of a grid directory; 
however, all grid blocks are of the same 
size. The principal difference is that grid 
refinement for the Grid File splits only one 
interval in two and results in the insertion 
of a (k - !)-dimensional cross section. In 
contrast, a grid refinement for the EX­
CELL method splits all intervals in two 
(thus the partition points are fixed) for the 
particular dimension and results in dou­
bling the size of the grid directory. There­
fore the grid directory grows more gradually 
when the Grid File is used, whereas use of 
EXCELL reduces the need for grid refine­
ment operations at the expense of larger 
directories in general because of a sensitiv­
ity to the distribution of the data. However, 
a large bucket size reduces the effect of 
nonuniformity unless the data consist en -
tirely of a few clusters. The fact that all 
grid blocks define equal-sized regions (and 
convex as well) means that EXCELL does 
not require a set of linear scales to access 
the grid directory as is needed for the Grid 
File. 

An example of the EXCELL method is 
considered in Figure 50, which shows the 
representation for the data in Figure 2. 
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Figure 50. EXCELL representation corresponding 
to Figure 2. 

Again, the convention is adopted that a 
rectangle is open with respect to its upper 
and right boundaries and closed with re­
spect to its lower and left boundaries. The 
capacity of the bucket is two records. There 
are k = 2 different attributes. The grid 
directory is implemented as an array and 
in this case it consists of eight grid blocks 
(labeled in the same way as for the Grid 
File) and six buckets labeled A-F. Note 
that grid blocks (2, 3) and (2, 4) share 
bucket C, whereas grid blocks (2, 1) and 
(2, 2), despite being empty, share bucket D. 
The sharing is indicated by the broken 
lines. Furthermore, when a bucket size of 1 
is used, the partition of space induced by 
EXCELL equals that of a PR k-d tree 
[Orenstein 1982]. 

As a database represented by the EX­
CELL method grows, buckets will overflow. 
This leads to the application of a splitting 
process that results in the creation of new 
buckets and a movement of records. As in 
the case of the Grid File, two types of 
bucket splits are possible. The first, and 
most common, occurs when several grid 
blocks share a bucket that has overflowed. 
In this case, a new bucket is allocated and 
the mapping between grid blocks and buck­
ets is adjusted. The second type of a split 
arises when a grid partition must be re-
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fined; this causes a doubling of the direc­
tory. It is triggered by an overflowing 
bucket that is not shared among several 
grid blocks (e.g., the overflow of bucket A 
upon insertion of Kansas City (30, 30) in 
Figure 50). The split occurs along the dif­
ferent attributes in a cyclic fashion (first 
split along attribute x, then y, then x, etc.). 
For both types of bucket splits, a situation 
may arise in which none of the elements in 
the overflowing buckets belongs to the 
newly created bucket, with the result that 
the directory will have to be doubled more 
than once. This results from the fact that 
the splitting points are fixed for EXCELL. 
For example, this will occur when we at­
tempt to insert Kansas City at (30, 30) in 
Figure 50 since the first directory doubling 
at y = 25 and y = 75 will still have Chicago, 
Omaha, and Kansas City in the same grid 
block. Thus we see that the size of the 
EXCELL grid directory is sensitive to the 
distribution of the data. However, a large 
bucket size reduces the effect of nonuni­
formity unless the data consist entirely of 
a few clusters. 

The counterpart of splitting is merging. 
However, it is considerably more limited in 
scope for EXCELL than for the Grid File. 
Also, it is less likely to arise because EX­
CELL has been designed primarily for use 
in geometrical applications in which dele­
tion of records is not so prevalent. As with 
the Grid File, however, there are two cases 
where merging is appropriate, that is, 
bucket merging and directory merging. 

Both the Grid File and EXCELL organ­
ize space into buckets and use directories 
in the form of arrays to access them. The 
similarity to the quadtree lies in the map­
pings induced by the directories (i.e., EX­
CELL with the region quadtree and the 
Grid File with the point quadtree). Trees 
can also be used to access the buckets 
[Knott 1971). Matsuyama et al. [1984) 
compare a technique of accessing buckets 
by use of a PR quadtree with one that uses 
an adaptive k-d tree. Robinson (1981) in­
troduces the k-d-B-tree, which is a gener­
alization of the B-tree to allow multiattri­
bute access. O'Rourke [1981; O'Rourke and 
Sloan 1984) makes use of an adaptive k-d 
tree, which he calls a dynamically quantized 

space, to access buckets of data for use in 
multidimensional histogramming to aid in 
the focusing of the Hough transform. Sloan 
(1981; O'Rourke and Sloan 1984] addresses 
the same problem as O'Rourke, albeit with 
a different data structure, which he calls a 
dynamically quantized pyramid. It is based 
on the pyramid data structure (see Section 
2.12). Here the number of buckets is fixed. 
It differs from the conventional pyramid in 
that the partition points at the various 
levels are allowed to vary rather than being 
fixed and are adjusted as data are entered. 
The result is somewhat related to a com­
plete point quadtree [Knuth 1975, p. 401] 
with buckets. 

There has also been considerable work 
on representing multidimensional point 
data by use of linear hashing. Linear hash­
ing [Litwin 1980] methods are attractive 
because they provide for linear growth of 
the file (i.e., one bucket at a time) without 
requiring a directory. In contrast, extendi­
ble hashing [Fagin et al. 1979] (e.g., EX­
CELL) and the Grid File methods require 
extra storage in the form of directories. 
When a bucket overflows, the directory 
doubles in size in the case of extendible 
hashing, whereas in the case of the Grid 
File it results in the insertion of a (k - !)­
dimensional cross section. Neither EX­
CELL nor the Grid File need overflow 
pages, whereas methods based on linear 
hashing generally do, although this may be 
unnecessary. Bit interleaving (e.g., attrib­
uted by Bentley [1975a] to McCreight, but 
see the discussion of the Morton matrix 
[Morton 1966] in Section 2.2) is used by a 
number of researchers [Burkhardt 1983; 
Orenstein 1983; Orenstein and Merrett 
1984; Ouksel and Scheuermann 1983; Tropf 
and Herzog 1981] to create a linear order 
on the multidimensional domain of the 
data. Tropf and Herzog (1981] and Oren­
stein and Merrett [1984] discuss its use in 
range searching. Burkhardt [1983] terms it 
shuffle order, and adapts it to linear 
hashing in the same way that EXCELL 
adapts it to extendible hashing, and uses 
it to evaluate range queries. Ouksel and 
Scheuermann [1983] call it z order. Oren­
stein (1983] discusses the problems associ­
ated with such an approach. He points out 
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that the resulting file may contain a num­
ber of sparsely filled ·buckets, which will 
result in poor performance for sequential 
access. He goes on to propose a modifica­
tion that unfortunately, unlike linear hash­
ing, does not result in a bucket retrieval 
cost of one or two disk reads (for the hash 
operations). In contrast, directory-based 
methods such as the Grid File and EX­
CELL do not suffer from such a problem 
to the same extent because, since the direc­
tory consists of grid blocks and several grid 
blocks can share a bucket, the sparseness 
issue can be avoided. 

4. CURVILINEAR DATA 

Section 2 was devoted to approaches to 
region representation that are based on de­
scriptions of their interiors. In this section 
we focus on representations that specify 
boundaries of regions. This is done in the 
more general context of data structures for 
curvilinear data. The simplest representa­
tion is the polygon in the form of vectors 
[Nagy and Wagle 1979], which are usually 
specified in the form of lists of pairs of x 
and y coordinate values corresponding to 
their start and end points. One of the most 
common representations is the chain code 
[Freeman 1974] (described in Section 2.3), 
which is an approximation of a polygon. 
Other popular representations include ras­
ter-oriented methods [Merrill 1973; Peu­
quet 1979], as well as a combination of 
vectors and rasters (e.g., vasters [Peuquet 
1983]). There has also been considerable 
interest recently in hierarchical represen­
tations. These are primarily based on rec­
tangular approximations to the data [Bal­
lard 1981; Burton 1977; Peucker 1976]. In 
particular, Burton [1977] uses upright rec­
tangles, Ballard (1981] uses rectangular 
strips of arbitrary orientation, and Peucker 
[1976] uses sets of bands. There also exist 
methods that are based on a regular decom­
position in two dimensions, as reported by 
Hunter and Steiglitz [1979a], Shneier 
(1981c], and Martin [1982]. Note that our 
primary focus is on the facilitation of set 
operations and not ease of display, which 
is a characterization of B-splines and Be­
zier methods [Cohen et al. 1980]. 
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In many applications polygons are not 
unrelated, but together form a partition of 
the study area (termed a polygonal map). It 
is possible to use the above representations 
for each curve that bounds two adjacent 
regions. However, it is often preferable to 
represent the complete network of bound­
aries with a single hierarchical data struc­
ture. Some examples include the line quad­
tree of Samet and Webber (1984], the PM 
quadtree of Samet and Webber [1983], and 
the edge variant of the EXCELL method 
of Tamminen [1981]. In order to avoid con­
fusion with the point space formulation of 
the EXCELL method, discussed in Section 
3.5, we shall use the term edge-EXCELL. 
In the remainder of this section, we elabo­
rate further on the strip tree and also on 
the representations that are based on a 
regular decomposition, concluding with a 
brief comparison of these methods. 

4.1 Strip Trees 

The strip tree is a hierarchical representa­
tion of a single curve that is obtained by 
successively approximating segments of it 
by enclosing rectangles. The data structure 
consists of a binary tree whose root repre­
sents the bounding rectangle of the entire 
curve. For example, consider Figure 51, 
where the curve between points P and Q, 
at locations (xp, yp) and (xQ, YQ), respec­
tively, is modeled by a strip tree. The rec­
tangle associated with the root, A in this 
example, corresponds to a rectangular strip 
of maximum width, enclosing the curve, 
whose sides are parallel to the line joining 
the endpoints of the curve (i.e., P and Q). 
Next, this rectangle is decomposed into two 
parts at one of the points (termed a splitting 
point) on the rectangle that is also part of 
the curve. There is at least one such split­
ting point. If there are more, then the de­
composition is performed by using the 
point that is at a maximum distance from 
the line joining the endpoints of the curve. 
If the curve is both continuous and differ­
entiable at the splitting point, then, of 
course, the boundaries of the rectangle that 
pass through these points are tangents to 
the curve. This splitting process is recur-
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E 

Figure 51. A curve and its decomposition into strips. 

Figure 52. Strip tree corresponding to Figure 51. 

sively applied to the two sons until every 
strip is of a width less than a predetermined 
value. For Figure 51, the first splitting op­
eration results in the creation of strips B 
and C. Strip C is further split, creating 
strips D and E, at which point the splitting 
process ceases. Figure 52 shows the result­
ing binary tree. Note that each node in the 
strip tree is implemented as a record with 
eight fields. Four fields contain the x and y 
coordinates of the endpoints, two fields 
contain pointers to the two sons of the 
node, and two fields contain information 
about the width of the strip (i.e., WL and WR 

of Figure 51). 
Figure 51 is a relatively simple example. 

In order to be able to cope with more com­
plex curves, the notion of a strip tree must 
be extended. In particular, closed curves 
(e.g., Figure 53) and curves that extend past 
their endpoints (Figure 54) require some 
special treatment. The general idea is that 
these curves are enclosed by rectangles that 
are split into two rectangular strips, and 
from now on the strip tree is used as before. 
Note that the strip tree concept and the 
related algorithms are regarded by Ballard 

Figure 53. Modeling a closed curve by a strip tree. 

Figure 54. Modeling a curve that extends past its 
endpoints by a strip tree. 

as completely expanded down to a primitive 
level of unit line segments on a discrete 
grid, even when the underlying curves are 
collinear. In order to be able to handle 
curves that consist of disconnected seg­
ments, strips are classified as either regular 
or not and a special bit is associated with 
each strip to indicate its status. Formally, 
a curve is said to be regular if it is connected 
and has its endpoints touching the ends of 
the strip. 

Like point and region quadtrees, strip 
trees are useful in applications that involve 
search and set operations. For example, 
suppose that we wish to determine whether 
a road crosses a river. By using a strip tree 
representation for these features, answer­
ing this query means basically that we per­
form an intersection of the corresponding 
strip trees. Three cases are possible, as is 
shown in Figure 55. Figure 55a and b cor­
respond to the answers NO and YES, re-
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Figure 55. Three possible results of intersecting two strip trees. (a) Null. (b) Clear. (c) 
Possible. 

spectively, whereas Figure 55c requires us 
to descend further down the strip tree. 
Other operations that can be performed 
efficiently by using the strip tree data struc­
ture include the computation of the union 
of two curves, length of a curve, areas of 
closed curves, intersection of curves with 
areas, point membership, etc. [Ballard 
1981). In particular, for closed curves that 
are well behaved, intersection and point 
membership have an expected execution 
time of O(log v ), where v is the number of 
points describing the curve. Strip trees are 
also used by Gaston and Lozano-Perez 
[1984] in robotic tactile recognition and 
localization. 

The strip tree can be characterized as a 
top-down approach to curve approxima­
tion. Burton [1977) defines a related struc­
ture termed a BSPR (binary searchable 
polygonal representation), which is a bot­
tom-up approach to curve approximation. 
Once again, the primitive unit of approxi­
mation is a rectangle; however, in the case 
of the BSPR all rectangles are upright (i.e., 
they have a single orientation). The curve 
to be approximated is decomposed into a 
set of simple sections, where each simple 
section corresponds to a segment of the 
curve that is monotonic in both the x and 
y values of the points comprising it. The 
tree is built by combining pairs of adjacent 
simple sections to yield compound sections. 
This process is repeatedly applied until the 
entire curve is approximated by one com­
pound section. Thus we see that terminal 
nodes correspond to simple sections and 

Computing Surveys, Vol. 16, No. 2, June 1984 

nonterminal nodes correspond to com­
pound sections. For a curve with 2n simple 
sections, the corresponding BSPR has n 
levels. 

As an example of a BSPR consider the 
regular octagon in Figure 56a having ver­
tices A-H. It can be decomposed into four 
simple sections, that is, ABCD, DEF, FGH, 
and HA. Figure 56b shows a level 1 approx­
imation to the four simple sections consist­
ing of rectangles AIDN, DJFN, HMFK, 
and AMHL, respectively. Pairing up adja­
cent simple sections yields compound sec­
tions AIJF corresponding to AIDN and 
DJFN, and AFKL corresponding to HMFK 
and AMHL (see Figure 56c). More pairing 
yields the rectangle for compound section 
IJKL (see Figure 56d). The resulting BSPR 
tree is shown in Figure 56e. By using the 
BSPR, Burton shows how to perform point 
in polygon determination and polygon in­
tersection. These operations are imple­
mented by tree searches and splitting op­
erations. 

Both the strip tree and the BSPR share 
the property of being independent of the 
grid system in which they are embedded. 
An advantage of the BSPR representation 
over the strip tree is the absence of a need 
for special handling of closed curves. How­
ever, the BSPR is not as flexible as the 
strip tree. In particular, the resolution of 
the approximation is fixed (i.e., once the 
width of the rectangle is selected, it cannot 
be varied). In fact, this is similar to the 
advantage of quadtree-based decomposi­
tion methods over hexagon-based systems 
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Figure 56. (a) A regular octagon and (b)-(d) the three successive approxi­
mations resulting from the use of BSPR. (e) The resulting BSPR. 

pointed out in Section 2; that is, for the 
hexagon, we must decide a priori on the 
finest resolution. 

4.2 Methods Based on a Regular 
Decomposition 

Strip tree methods approximate curvilinear 
data with rectangles. Quadtree methods 
achieve similar results by use of a collection 
of disjoint squares having sides of length 
power of two. A number of variants of 
quadtrees are currently in use, and can be 
differentiated by the type of data that they 

are designed to represent. All but the PM 
quadtree of Samet and Webber [1983) and 
the edge-EXCELL of Tamminen [1981) are 
pixel based and yield approximations 
whose accuracy is constrained in part by 
the resolution of the data that they repre­
sent. They can be used to represent both 
linear and nonlinear curves. The latter 
need not be continuous or differentiable. In 
contrast, the PM quadtree and the edge­
EXCELL yield an exact representation of 
polygons or collections of polygons. 

The edge quadtree of Shneier [1981c) is 
an attempt to store linear feature infor-
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mation (e.g., curves) for an image (binary 
and gray scale) in a manner analogous to 
that used for storing region information. A 
region containing a linear feature or part 
thereof is subdivided into four squares re­
peatedly until a square is obtained that 
contains a single curve that can be approx­
imated by a single straight line. Each leaf 
node contains the following information 
about the edge passing through it: magni­
tude (i.e., 1 in the case of a binary image or 
the intensity in case it is a gray-scale im­
age), direction, intercept, and a directional 
error term (i.e., the error induced by ap­
proximating the curve by a straight line 
using a measure such as least squares). If 
an edge terminates within a node, then a 
special flag is set and the intercept denotes 
the point at which the edge terminates. 
Application of this process leads to quad­
trees in which long edges are represented 
by large leaves or a sequence of large leaves. 
However, small leaves are required in the 
vicinity of corners or intersecting edges. Of 
course, many leaves will contain no edge 
information at all. As an example of the 
decomposition that is imposed by the edge 
quadtree, consider Figure 57, which is the 
edge quadtree corresponding to the polygon 
of Figure lB when represented on a 24 by 24 

grid. Note that the edge quadtree in Figure 
57 requires fewer blocks than Figure lB, 
which is the representation of the polygon 
when using the methods of Hunter and 
Steiglitz [1979a]. 

Closely related to the edge quadtree is 
the least square quadtree of Martin [1982). 
In that representation, leaf nodes corre­
spond to regions that contain a single curve 
that can be approximated by k (fixed a 
priori) straight lines within a least square 
tolerance. This enables the handling of 
curved lines and uses fewer nodes than the 
edge quadtree with greater precision. A cru­
der method is described by Omolayole and 
Klinger [1980], where all parts of the image 
that contain edge data are repeatedly de­
composed until a 2 by 2 quadrant is ob­
tained in which they store templatelike rep­
resentations of the edges. This is quite sim­
ilar to the MX quadtree, except that the 
data are edges rather than points. However, 
it is too low a level of representation in that 
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Figure 57. The edge quadtree corresponding to the 
polygon of Figure 18. 

it does not take advantage of the hierarchi­
cal nature of the data structure. 

The line quadtree of Samet and Webber 
[1984] addresses the issue of hierarchically 
representing images that are segmented 
into a number of different regions rather 
than mere foreground and background, as 
is the case for conventional quadtrees. In 
particular, it encodes both the area of the 
individual regions and their boundaries in 
a hierarchical manner. This is in contrast 
to the region quadtree, which encodes only 
areas hierarchically, and the strip tree, 
which encodes only curves hierarchically. 
The line quadtree partitions the set of re­
gions (termed a map) via a recursive de­
composition technique that successively 
subdivides the map until blocks (possibly 
single pixels) that have no line segments 
pas~ing through their interior are obtained. 
With each leaf node, a code is associated 
that indicates which of its four sides form 
a boundary (not a partial boundary) of any 
single region. Thus, instead of distinguish­
ing leaf nodes on the basis of being BLACK 
or WHITE, boundary adjacency informa­
tion is used. This boundary information is 
hierarchical in that it is also associated with 
nonterminal nodes. In essence, wherever a 
nonterminal node does not form a T-junc­
tion with any of the boundaries of its de­
scendants along a particular side, this side 



The Quadtree and Rewted Hierarchical Data Structures 

is then marked as being adjacent to a 
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boundary. 
As an illustration of a line quadtree, con­

sider the polygonal map of Figure 58 whose 
corresponding line quadtree (i.e., block de­
composition) is shown in Figure 59. The 
bold lines indicate the presence of bound­
aries. Note that the south side of the block 
corresponding to the root is on a boundary 
that is also the border of the image. As 
another example, the western side of the 
SW son of the root in Figure 59 does not 
indicate the presence of a boundary (i.e., 
the side is represented by a light line) even 
though it is adjacent to the border of the 
image. The problem is that the SW son of 
the root has its NW and SW sons in differ-
ent regions, as is signaled by the presence 
of a T-junction along its western side. Hav­
ing the boundary information at the non­
terminal nodes enables boundary following 
algorithms to be performed quickly, in ad­
dition to facilitating the process of super­
imposing one map on top of another. Ob­
serve also that the line quadtree has the 
same number of nodes as a conventional 
quadtree representation of the image. 
Boundaries of leaf nodes that are partially 
on the boundary between two regions can 
have their boundaries reconstructed by ex­
amining their neighbors along the shared 
boundary. For example, the southern side 
of the NW son of the SW son of the root 
in Figure 59, say A, represents a partial 
boundary. The exact nature of the bound­
ary is obtained by examining the NE and 
NW sons of the southern brother of A. 

The PM quadtree of Samet and Webber 
(1983) and the edge-EXCELL of Tammi­
nen [1981) are attempts to overcome some 
of the problems associated with the follow­
ing three structures: the line quadtree, the 
edge quadtree, and the quadtree formula­
tion of Hunter and Steiglitz (termed an MX 
quadtree) for representing polygonal maps 
(i.e., collections of straight lines). In gen­
eral, all three of these representations cor­
respond to approximations of a map. The 
line quadtree is based on the approximation 
that results from digitizing the areas of the 
polygons comprising a polygonal map. For 
the edge and MX quadtrees, the result is 
still an approximation because the vertices 

Figure 58. Example polygon.al map to illustrate line 
quadtrees. 

are represented by pixels in the edge quad­
tree and boundaries are represented by 
BLACK pixels in the MX quadtree. In 
other words, the MX quadtree is based on 
a digitization of the boundaries of the poly­
gons, whereas the edge quadtree is based 
on a piecewise linear approximation of the 
boundaries of the polygons. Another dis­
advantage of these three representations is 
that certain properties of polygonal maps 
cannot be directly represented by them. For 
example, it is impossible for five line seg­
ments to meet at a vertex. In the case of 
the edge and MX quadtrees, we would have 
difficulty in detecting the vertex and for 
the line quadtree the situation cannot be 
handled because all regions comprising the 
map must be rectilinear. Note that it is 
impossible for five rectilinear regions to 
meet at a point. Other problems include a 
sensitivity to shift and rotation, which may 
result in a loss of accuracy in the original 
approximation. Finally, owing to their ap­
proximate nature, these data structures will 
most likely require a considerable amount 
of storage, since each line is frequently 
approximated at the pixel level, thereby 
resulting in quadtrees that are fairly deep. 

The PM quadtree represents a polygonal 
map by using the PR quadtree discussed in 
Section 3.2. Each vertex in the map corre­
sponds to a data point in the PR quadtree. 
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Figure 59. Line quadtree corresponding to Figure 58. 

We define a q-edge to be a segment of an 
edge of the map that either spans an entire 
block in the PR quadtree (e.g., segment RS 
in Figure 61) or extends from a boundary 
of a block to a vertex within the block (i.e., 
when the block contains a vertex, e.g., seg­
ment CV in Figure 61). 

For every leaf in the PR quadtree we 
partition all of its q-edges into seven 
classes. Each of these classes is stored in a 
balanced binary tree [Aho et al. 1974]. One 
class corresponds to the set of q-edges that 
meet at a vertex within the block's region. 
This class is ordered in an angular manner. 
The remaining q-edges that pass through 
the block's region must enter at one side 
and exit via another. This yields six classes: 
NW, NS, NE, EW, SW, and SE, where SW 
denotes q-edges that intersect both the 
southern and western boundaries of the 
block's region. Note that these classes are 
often empty. The q-edges of these classes 
are ordered by the position of their inter­
cepts along the perimeter of the block's 

Computing Surveys, Vol.16, No. 2, June 1984 

region. A q-edge that coincides with the 
boundary of a leaf's region is placed in 
either class NS or EW as is appropriate. 
For example, consider the polygonal map 
of Figure 60 and its corresponding PM 
quadtree in Figure 61. The block containing 
vertex C has one balanced binary tree for 
the q-edges intersecting vertex C (three 
balanced binary tree nodes for q-edges CM, 
CN, and CV) and one balanced binary tree 
for the q-edges intersecting the NW bound­
ary (one balanced binary tree node for q­
edge ST). In total, the PM quadtree of 
Figure 61 contains seven quadtree leaf 
nodes, and nine nonempty balanced binary 
trees containing seventeen nodes. 

The PM quadtree provides a convenient, 
reasonably efficient data structure for per­
forming a variety of operations. Point-in­
polygon determination is achieved by find­
ing a bordering q-edge with respect to each 
of the seven classes and then selecting the 
closest of the seven as the true bordering 
q-edge. The execution time of this proce-
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Figure 60. Example polygonal map to illustrate PM 
quadtrees. 

dure is proportional to the depth of the PM 
quadtree. It should be noted that the depth 
of the PM quadtree is inversely propor­
tional to the log of the minimum separation 
between two vertices plus the log of the 
number of edges in the polygonal map [Sa­
met and Webber 1983]. Besides point-in­
polygon determination, there exist efficient 
algorithms for insertion of an edge into the 
map, overlaying two maps, clipping and 
windowing a map, and range searching (i.e., 
determining all polygons within a given 
distance of a point). 

The edge-EXCELL method [Tamminen 
1981] is an application of the EXCELL 
method for point data (described in Section 
3.5) to polygonal maps. It is based on a 
regular decomposition. The principles guid­
ing the decomposition process and the data 
structure are identical to those used for 
representing points. The only difference is 
that now the data consist of straight-line 
segments that intersect the cells (i.e., grid 
blocks). Once again, a grid directory is used 
that maps the cells into storage areas of a 
finite capacity (e.g., buckets), which often 
reside on disk. As the buckets overflow (i.e., 
the number of line segments intersecting 
them exceeds the capacity of the bucket), 
buckets are split into two equal-sized grid 
blocks, which may also lead to a doubling 
in the size of the directory. If the polygonal 
map contains a vertex at which m lines 
intersect, and m is greater than the bucket 
capacity, then no matter how many times 
the bucket is split, it will be impossible to 
store all the line segments in one bucket. 

Figure 61. PM quadtree corresponding to Figure 60. 

In such a case, edge-EXCELL makes use 
of overflow buckets. This is a disadvantage 
of edge-EXCELL when compared with the 
PM quadtree. 

Using edge-EXCELL, point-in-polygon 
determination is achieved by a two-step 
process. First, the cell in which the point 
lies is located. Second, the corresponding 
polygon is determined by finding the closest 
polygon boundary in any given direction by 
use of a technique known as ray casting 
[Roth 1982] (similar to searching for the 
closest q-edge when using the PM quad­
tree). Tamminen [1983] has shown that, in 
practice, this requires on the average little 
more than one cell access. Edge-EXCELL 
has also been used to do hidden line elimi­
nation [Tamminen 1982]. 

4.3 Comparison 

The chain code is the most compact of the 
representations. However, it is a very local 
data structure and is thus rather cumber­
some when attempting to perform set op­
erations such as intersection of two curves 
represented using it. In addition, like the 
strip tree, and to a lesser extent the BSPR, 
it is not tied to a particular coordinate 
system. This is a problem with methods 
based on a regular decomposition, although 
it is somewhat reduced for the PM quadtree 
and edge-EXCELL. 

Representations based on a regular de­
composition have a number of advantages 
over the strip tree. First, more than one 
curve can be represented with one instance 
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of the data structure-a very important 
feature for maps. Second, they are unique. 
In contrast, only one curve can be repre­
sented by a single strip tree. Also, the strip 
tree is not unique when the curve is closed, 
not regular, or contains more than one end­
point. However, the strip tree is invariant 
under shifts and rotations. The line quad­
tree is better than the MX quadtree of 
Hunter and Steiglitz [1979a], which repre­
sents boundary lines as narrow BLACK 
regions, for two reasons. First, narrow re­
gions are costly in terms of the number of 
nodes in the quadtree. Second, it commits 
the use to a specific thickness of the bound­
ary line, which may be unfortunate, for 
example, when regenerating the picture on 
an output device. Also such arbitrary deci­
sions of representation accuracy are not 
very appropriate when data are to be stored 
in a database. 

At this point it might be appropriate to 
speculate on some other data structures for 
curvilinear data. Representations based on 
regular decomposition are attractive be­
cause they enable efficient computation of 
set operations. In particular, at times it is 
convenient to perform the operations on 
different kinds of geometric entities (e.g., 
intersecting curves with areas). The strip 
tree is an elegant data structure from the 
standpoint of approximation. However, it 
has the disadvantage that decomposition 
points are independent of the coordinate 
system of the image (i.e., they are at arbi­
trary points dependent on the data rather 
than at predetermined positions as is the 
case with a data structure that is based on 
a regular decomposition). Thus answering 
a query such as, "Find all wheat growing 
regions within 20 miles of the Mississippi 
River," is not easy to do when the river is 
represented as a strip tree and the wheat­
growing regions are represented by region 
quadtrees. The problem is that, whereas 
quadtree methods merely require pointer­
chasing operations, strip tree methods may 
lead to complex geometric computations. 
What is desired is a regular decomposition 
strip tree or variant thereof. 

The data structures discussed in this sec­
tion are rooted in the image-processing area 
and were designed primarily to represent 
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curves and lines. Computational geometry 
is another area where similar problems 
arise [Edelsbrunner 1984; Toussaint 1980]. 
This is a rapidly changing field, which has 
its roots in the work of Shamos and Hoey 
(1975; Shamos 1978] and focuses on prob­
lems of asymptotical computational com­
plexity of geometric algorithms. However, 
a full presentation of this field is beyond 
the scope of this survey. Nevertheless, in 
the following we do give a brief sample of 
the types of results attainable for similar 
problems. Many of the solutions (e.g., Lip­
ton and Tarjan (1977]) are based on the 
representation of line segments as edges 
and vertices in a graph. 

For example, an alternative to the PM 
quadtree and edge-EX CELL is the K-struc­
ture of Kirkpatrick [1983]. It is a hierar­
chical structure based on triangulation 
rather than a regular decomposition. The 
notion of hierarchy in the K-structure is 
radically different from that of a quadtree, 
in that instead of replacing a group of tri­
angles by a single triangle at the next higher 
level, a group of triangles is replaced by a 
smaller group of triangles. Triangles are 
grouped for replacement because they share 
a common vertex. The smaller group results 
from eliminating the common vertex and 
then retriangulating. Kirkpatrick (1983] 
shows that at each level of the hierarchy, 
at least one twenty-fourth of the vertices 
can be eliminated in this manner. The ver­
tices that have been eliminated are guar­
anteed to have degree of 11 or less, thus 
bounding the cost of retriangulating. Let v 
denote the number of vertices in a polygo­
nal map. Then, the size of a K-structure is 
guaranteed to be O(v) although the worst­
case constant of proportionality is 24 times 
the amount of information stored at a node. 
It also leads to an O(log v) query time for 
point-in-polygon determination. The con­
struction process has a worst-case execu­
tion time of O(v) for a triangular subdivi­
sion and O(u log v) for a general one. The 
latter is dominated by the cost of triangu­
lating the original polygonal map [Hertel 
and Mehlhorn 1983). Since a triangulation 
constitutes a convex map, that is, a planar 
subdivision formed of convex regions, the 
work of Nievergelt and Preparata [1982] is 
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relevant. They show that the cost of per­
forming a map overlay operation is O(v log 
v + s), wheres is the number of intersec­
tions of all line segments in the two maps. 
Finally, it is worth noting that the hierar­
chical nature of the K-structure may lead 
to an efficient range-searching algorithm. 

Another alternative to the K -structure 
is the layered dag of Edelsbrunner et al. 
[1985]. This structure is a modification of 
a binary tree, which is used to store a y­
monotone subdivision of a polygonal map. 
A y-monotone subdivision of a polygonal 
map is created by partitioning the regions 
of a map until no vertical line intersects a 
region's boundary more than twice. Note 
that the resulting map need not be convex; 
however, the asymptotic worst-case analy­
sis of the layered dag is identical to that of 
the K-structure. The number of line seg­
ments that must be inserted to check a y­
monotone subdivision is usually consider­
ably fewer than the number needed for 
triangulation. 

When the K-structure and the layered 
dag are compared with the PM quadtree 
(and to some extent edge-EXCELL), the 
qualitative comparison is analogous to that 
of a point quadtree with a PR quadtree. All 
of these structures have their place; the one 
to use depends on the nature of the data 
and the importance of guaranteed worst­
case performance. The K-structure and the 
layered dag organize the data to be stored, 
whereas the PM quadtree organizes the 
embedding space from which the data are 
drawn. The K-structure and the layered dag 
have better worst-case execution time 
bounds for similar operations compared 
with those considered for the PM quadtree. 
However, considerations such as ease of 
implementation and integration with rep­
resentations of other data types must also 
be taken into account in making an evalu­
ation. In the case of dynamic files, at pres­
ent it would seem to be more convenient to 
use the PM quadtree since a general updat­
ing algorithm for the K-structure or the 
layered dag have not been reported. 

5. CONCLUSIONS 

In this paper we have attempted to give a 
survey of a large number of hierarchical 

data structures and show how they are in­
terrelated. Undoubtedly, some data struc­
tures may have been overlooked, but any 
such omissions were unintentional. The 
idea of recursive decomposition is the un­
derlying basis of each structure discussed. 
In the past, there has been considerable 
confusion between these similar represen­
tations (e.g., the point quadtree and the 
region quadtree). Consequently, readers of 
the literature are cautioned about compar­
isons involving "quadtrees." Our focus has 
been on execution time efficiencies al­
though storage requirements have also been 
taken into consideration. 

For the future we foresee the following 
quad trends. Complexity measures for im­
ages represented by quadtrees are likely to 
be proposed [Creuzburg 1981). Quadtrees 
and their variants will be used in compu­
tational domains [Rheinholdt and Mesz­
tenyi 1980; Samet and Krishnamurthy 
1983; Yerry and Shepard 1983). With the 
current interest in VLSI, it is certain that 
increasingly these data structures will find 
themselves being implemented in hardware 
[Besslich 1982; Dyer 1981; Ibrahim 1984; 
Milford and Willis 1984; Woodwark 1982). 
Another trend is the development of inte­
grated geographical databases that permit 
the interaction between data of differing 
types [Matsuyama et al. 1984; McKeown 
and Denlinger 1984; Rosenfeld et al. 1982, 
1983]. This would facilitate efficiently an­
swering queries like, "Find all cities with a 
population in excess of 5000 people in 
wheat-growing regions within 20 miles of 
the Mississippi River." At this point we 
have traveled a full circle in our survey and 
if we still do not know how to answer this 
query, then, by now, maybe we at least 
know why-an appropriate point for us to 
get off and for you, the reader, to get on! 
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