
The Quadtree and Related Hierarchical Data Structures

HANAN SAMET

Computer Sdence Department, University of Maryland, College Park, Maryland 20742

A tutorial survey is presented of the quadtree and related hierarchical data structures.
They are based on the principle of recursive decomposition. The emphasis is on the
representation of data used in applications in image processing, computer graphics,
geographic information systems, and robotics. There is a greater emphasis on region data
(i.e., two-dimensional shapes) and to a lesser extent on point, curvilinear, and three­
dimensional data. A number of operations in which such data structures find use are
examined in greater detail.

Categories and Subject Descriptors: E.1 [Data]: Data Structures-trees; H.3.2
[Information Storage and Retrieval]: Information Storage-file organization; 1.2.1
[Artificial Intelligence]: Applications and Expert Systems-cartography; 1.2.10
[Artificial Intelligence): Vision and Scene Understanding-representations, data
structures, and transforms; 1.3.3 [Computer Graphics]: Picture/Image Generation­
display algorithms; viewing algorithms; 1.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling-curve, surface, solid, and object representations;
geometric algorithms, languages, and systems; l.4.2 [Image Processing]: Compression
(Coding)-approximate methods; exact coding; 1.4. 7 [Image Processing]: Feature
Measurement-moments; projections; size and shape; J.6 [Computer-Aided
Engineering]: Computer-Aided Design (CAD)

General Terms: Algorithms

Additional Key Words and Phrases: Geographic information systems, hierarchical data
structures, image databases, multiattribute data, multidimensional data structures,
octrees, pattern recognition, point data, quadtrees, robotics

INTRODUCTION

Hierarchical data structures are becoming
increasingly important representation tech­
niques in the domains of computer graph­
ics, image processing, computational geom­
etry, geographic information systems, and
robotics. They are based on the principle of
recursive decomposition (similar to divide
and conquer methods [Aho et al. 1974]).
One such data structure is the quadtree. As
we shall see, the term quadtree has taken
on a generic meaning. In this survey it is
our goal to show how a number of data

structures used in different domains are
related to each other and to quadtrees. This
presentation concentrates on these differ­
ent representations and illustrates how a
number of basic operations that use them
are performed.

Hierarchical data structures are useful
because of their ability to focus on the
interesting subsets of the data. This focus­
ing results in an efficient representation
and improved execution times and is thus
particularly useful for performing set op­
erations. Many of the operations that we
describe can often be performed equally as

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
© 1984 ACM 0360-0300/84/0600-0187 $00.75

Computing Surveys, Vol.16, No. 2, June 1984

188 • Hanan Samet

CONTENTS

INTRODUCTION
1. OVERVIEW OF QUADTREES
2. REGION DATA

2.1 Neighbor-Finding Techniques
2.2 Alternative Ways to Represent Quadtrees
2.3 Conversion
2.4 Set Operations
2.5 Transformations
2.6 Areas and Moments
2. 7 Connected Component Labeling
2.8 Perimeter
2.9 Component Counting
2.10 Space Requirements
2.11 Skeletons and Medial Axis Transforms
2.12 Pyramids
2.13 Quadtree Approximation Methods
2.14 Volume Data

3. POINT DATA
3.1 Point Quadtrees and k-d Trees
3.2 Region-Based Qualities
3.3 Comparison of Point Quadtrees

and Region-Based Quadtrees
3.4 CIF Quadtrees
3.5 Bucket Methods

4. CURVILINEAR DATA
4.1 Strip Trees
4.2 Methods Based on a Regular Decomposition
4.3 Comparison

5. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES

efficiently, or more so, with other data
structures. However, hierarchical data
structures are attractive because of their
conceptual clarity and ease of implemen­
tation.

As an example of the type of problems to
which the techniques described in this sur­
vey are applicable, consider a cartographic
database consisting of a number of maps
and some typical queries. The database
contains a contour map, say at 50-foot ele­
vation intervals, and a land use map clas­
sifying areas according to crop growth. Our
wish is to determine all regions between
400- and 600-foot elevation levels where
wheat is grown. This will require an inter­
section operation on the two maps. Such
an analysis could be rather costly, depend­
ing on the way the data are represented.
For example, areas where corn is grown are

Computing Surveys, Vol. 16, No. 2, June 1984

of no interest, and we wish to spend a
minimal amount of effort searching such
regions. Yet, traditional region representa­
tions such as the boundary code [Freeman
1974] are very local in application, making
it difficult to avoid examining a corn-grow­
ing area that meets the desired elevation
criterion. In contrast, hierarchical methods
such as the region quadtree are more global
in nature and enable the elimination of
larger areas from consideration. Another
query might be to determine whether two
roads intersect within a given area. We
could check them point by point, but a more
efficient method of analysis would be to
represent them by a hierarchical sequence
of enclosing rectangles and to discover
whether in fact the rectangles do overlap.
If they do not, then the search is termi­
nated, but if an intersection is possible,
then more work may have to be done, de­
pending on which method of representation
is used. A similar query can be constructed
for point data-for example, to determine
all cities within 50 miles of St. Louis that
have a population in excess of 20,000 peo­
ple. Again, we could check each city indi­
vidually, but using a representation that
decomposes the United States into square
areas having sides of length 100 miles would
mean that at most four squares need to be
examined. Thus California and its adjacent
states can be safely ignored. Finally, sup­
pose that we wish to integrate our queries
over a database containing many different
types of data (e.g., points, lines, and areas).
A typical query might be, "Find all cities
with a population in excess of 5000 people
in wheat-growing regions within 20 miles
of the Mississippi River." In the remainder
of this survey we shall present a number of
different ways of representing data so that
such queries and other operations can be
efficiently processed.

The coverage and scope of the survey are
focused on region data, and are concerned
to a lesser extent witli point, curvilinear,
and three-dimensional data. Owing to space
limitations, algorithms are presented only
in a descriptive manner. Whenever possi­
ble, however, we have tried to motivate
critical steps by a liberal use of examples.
The concept of a pyramid is discussed only

The Quadtree and Related Hierarchical Data Structures • 189

briefly, and the reader is referred to the
collection of papers edited by Rosenfeld
[1983] for a more comprehensive exposi­
tion. Similarly, we discuss image compres­
sion and coding only in the context of hi­
erarchical data structures. Results from
computational geometry, although related
to many of the topics covered in this survey,
are only discussed briefly in the context of
representations for curvilinear data. For
more details on early results involving some
of these and related topics, the interested
reader may consult the surveys by Bent­
ley and Friedman [1979], Edelsbrunner
[1984), Nagy and Wagle [1979], Requicha
[1980), Srihari [1981], Samet and Rosen­
feld [1980], and Toussaint [1980]. Over­
mars (1983] has produced a particularly
good treatment of point data. A broader
view of the literature can be found in re­
lated bibliographies, for example, Edels­
brunner and van Leeuwen [1983] and Ro­
senfeld [1984]. Nevertheless, given the
broad and rapidly expanding nature of the
field, we are bound to have omitted signif­
icant concepts and references. In addition
we at times devote a disproportionate
amount of attention to some concepts at
the expense of others. This is principally
for expository purposes as we feel that it is
better to understand some structures well
rather than to give the reader a quick run­
through of "buzz words." For these indis­
cretions, we beg your pardon.

1. OVERVIEW OF QUADTREES

The term quadtree is used to describe a
class of hierarchical data structures whose
common property is that they are based on
tbe principle of recursive decomposition of
space. They can be differentiated on the
following bases: (1) the type of data that
they are used to represent, (2) the principle
guiding the decomposition process, and (3)
the resolution (variable or not). Currently,
they are used for point data, regions, curves,
surfaces, and volumes. The decomposition
may be into equal parts on each level (i.e.,
regular polygons and termed a regular de­
composition), or it may be governed by the
input. The resolution of the decomposition
(i.e., the number of times that the decom-

position process is applied) may be fixed
beforehand, or it may be governed by prop­
erties of the input data.

Our first example of quadtree represen­
tation of data is concerned with the repre­
sentation of region data. The most studied
quadtree approach to region representa­
tion, termed a region quadtree, is based on
the successive subdivision of the image ar­
ray into four equal-sized quadrants. If the
array does not consist entirely of l's or
entirely ofO's (i.e., the region does not cover
the entire array), it is then subdivided into
quadrants, subquadrants, etc. until blocks
are obtained (possibly single pixels) that
consist entirely of l's or entirely of O's; that
is, each block is entirely contained in the
region or entirely disjoint from it. Thus the
region quadtree can be characterized as a
variable resolution data structure. For ex­
ample, consider the region shown in Figure
la, which is represented by the 23 by 23

binary array in Figure lb. Observe that the
l's correspond to picture elements (termed
pixe/,s) that are in the region and the O's
correspond to picture elements that are
outside the region. The resulting blocks for
the array of Figure lb are shown in Figure
le. This process is represented by a tree of
degree 4 (i.e., each nonleaf node has four
sons). The root node corresponds to the
entire array. Each son of a node represents
a quadrant (labeled in order NW, NE, SW,
SE) of the region represented by that node.
The leaf nodes of the tree correspond to
those blocks for which no further subdivi­
sion is necessary. A leaf node is said to be
BLACK or WHITE, depending on whether
its corresponding block is entirely inside or
entirely outside of the represented region.
All nonleaf nodes are said to be GRAY. The
quadtree representation for Figure le is
shown in Figure ld.

At this point it is appropriate to define a
few terms. We use the term image to refer
to the original array of pixels. If its ele­
ments are either BLACK or WHITE then
it is said to be binary. If shades of gray are
possible (i.e., gray levels), then the image is
said to be a gray-scale image. In our discus­
sion we are primarily concerned with bi­
nary images. The border of the image is the
outer boundary of the square corresponding

Computing Surveys, Vol.16, No. 2, June 1984

190 Hanan Samet

0 0 0 0 0 0 0 0
0 0 0 0 00 0 0

F G

B
00 0 0 I I I I

:::m··:_,'=::::f= 0 0 0 0
0 0 01
0 0 I I
0 0 I I
0 0 I I

(a)

I
I
I
I
I

(b)

A

I I I
I I I
I I I
I 0 0
0 0 0

37 383940
(d)

1--i= I'-;;;;:;;

J

L

(c)

575859 60

Figure 1. A region, its binary array, its maximal blocks, and the corresponding quad­
tree. (a) Region. (b) Binary array. (c) Block decomposition of the region in (a). Blocks
in the region are shaded. (d) Quadtree representation of the blocks in (c).

to the array. Two pixels are said to be 4-
adjacent if they are adjacent to each other
in the horizontal or vertical directions. If
the concept of adjacency also includes ad­
jacency at a corner (i.e., diagonal adjacen­
cies), then the pixels are said to be 8-adja­
cent. A BLACK region is a maximal four­
connected set of BLACK pixels, that is, a
set S such that for any pixels p, q, in S
there exists a sequence ofpixelsp = po,p1 ,

... , Pn = q in S such that Pi+t is 4-adjacent
to p;, 0 ~ i < n. A WHITE region is a
maximal eight-connected set of WHITE
pixels, which is defined analogously. A pixel
is said to have four edges, each of which is
of unit length. The boundary of a BLACK
region consists of the set of edges of its
constituent pixels that also serve as edges
of WHITE pixels. Similar definitions can
be formulated in terms of blocks. For ex-

Computing Surveys, Vol. 16, No. 2, June 1984

ample, two disjoint blocks, P and Q, are
said to be 4-adjacent if there exists a pixel
p in P and a pixel q in Q such that p and q
are 4-adjacent. Eight-adjacency for blocks
is defined analogously.

Unfortunately, the term quadtree has
taken on more than one meaning. The re­
gion quadtree, as shown above, is a parti­
tion of space into a set of squares whose
sides are all a power of two long. This
formulation is due to Klinger [1971; Klin­
ger and Dyer 1976], who used the term Q­
tree, whereas Hunter [1978] was the first
to use the term quadtree in such a context.
Actually, a more precise term would be
quadtrie, as it is really a trie structure
[Fredkin 1960] (i.e., a data item or key is
treated as a sequence of characters, where
each character has M possible values and a
node at level i in the trie represents an M-

The Quadtree and Related Hierarchical Data Structures • 191

(0, 100) !IOO, 100)

(60, 75)
TORONTO

(B0,65)
BUFFALO

(5,45)
DENVER (35, 40)

f
y

CHICAGO

(:25, 35)
OMAHA

(85, 15)

(50,10) ATLANTA

MOBILE

(90.5) I
MIAMI [

(0,0) !100, OJ

x----
(a)

CHICAGO

~
DENVER TORONTO OMAHA MOBILE

! ! ~ ~
BUFFAl,.O ATLANTA MIAMI

~ ~~
(b)

Figure 2. A point quadtree (b) and the records it represents (a).

way branch depending on the ith charac­
ter). A similar partition of space into rec­
tangular quadrants, also termed a quadtree,
was used by Finkel and Bentley [1974]. It
is an adaptation of the binary search tree
[Knuth 1975] to two dimensions (which can
be easily extended to an arbitrary number
of dimensions). It is primarily used to rep­
resent multidimensional point data, and we
shall refer to it as a point quadtree when
confusion with a region quadtree is possi­
ble. As an example, consider the point

quadtree in Figure 2, which is built for the
sequence Chicago, Mobile, Toronto, Buf­
falo, Denver, Omaha, Atlanta, and Miami.1

Note that its shape is highly dependent
on the order in which the points are added
to it.

' We have taken liberty in the assignment of coordi­
nates to city names so that the same example can be
used throughout the text to illustrate a variety of
concepts.

Computin~ Surveys, Vol. 16, No. 2, June 1984

192 • Hanan Samet

The origin of the principle of recursive
decomposition upon which, as we have said,
all quadtrees are based is difficult to ascer­
tain. Below, in order to give some indication
of the uses of the quadtree, we briefly, and
incompletely, trace some of its applications
to geometric data. Most likely it was first
seen as a way of aggregating blocks of zeros
in sparse matrices. Indeed, Hoare [1972]
attributes a one-level decomposition of a
matrix into square blocks to Dijkstra. Mor­
ton [1966) used it as a means of indexing
into a geographic database. Warnock [1969;
Sutherland et al. 1974) implemented a hid­
den surface elimination algorithm by using
a recursive decomposition of the picture
area. The picture area is repeatedly subdi­
vided into successively smaller rectangles
while a search is made for areas sufficiently
simple to be displayed. The SRI robot proj­
ect [Nilsson 1969] used a three-level de­
composition of space to represent a map of
the robot's world. Eastman [1970] observes
that recursive decomposition might be used
for space planning in an architectural con­
text. He presents a simplified version of the
SRI robot representation. A quadtreelike
representation in the form of production
rules called depth-first (DF)-expressions is
discussed by Kawaguchi and Endo [1980]
and Kawaguchi et al. [1980). Tucker
[1984a) uses quadtree refinement as a con­
trol strategy for an expert vision system.

Parallel to the above development of the
quadtree data structure there has been re­
lated work by researchers in the field of
image understanding. Kelly [1971] intro­
duced the concept of a plan which is a small
picture whose pixels represent gray-scale
averages over 8 by 8 blocks of a larger
picture. Needless effort in edge detection is
avoided by first determining edges in the
plan and then using these edges to search
selectively for edges in the larger picture.
Generalizations of this idea motivated the
development of multiresolution image rep­
resentations, for example, the recognition
cone of Uhr [1972), the preprocessing cone
of Riseman and Arbib (1977), and the pyr­
amid of Tanimoto and Pavlidis (1975). Of
these representations, the pyramid is the
closest relative of the region quadtree. A
pyramid is an exponentially tapering stack

Computing Surveys, Vol. 16, No. 2, June 1984

of arrays, each one-quarter the size of the
previous array. It has been applied to the
problems of feature detection and segmen­
tation. In contrast, the region quadtree is a
variable-resolution data structure.

In the remainder of this paper we discuss
the use of the quadtree and other hierar­
chical data structures as they apply to re­
gion representation, and to a lesser extent,
point data and curvilinear data. Section 2
deals with region representation. We are
primarily concerned with two-dimensional
binary regions and how basic operations
common to computer graphics, image pro­
cessing, and geographic information sys­
tems can be implemented when the under­
lying representation is a quadtree. Never­
theless, we do show how the quadtree can
be extended to represent surfaces and vol­
umes in three dimensions. A brief overview
of pyramids and their applications is also
presented. For more details, the reader is
urged to consult Tanimoto and Klinger
[1980) and Rosenfeld [1983). In Section 3
we present various hierarchical represen­
tations of point data. Our attention is fo­
cused primarily on the point quadtree and
its relative, the k-d tree. A more extensive
discussion of point-space data structures
can be found in the survey of Bentley and
Friedman (1979). In Section 4 we show how
hierarchical data structures are used to
handle curvilinear data. We demonstrate
the way in which the region quadtree can
be adapted to cope with such data and
compare this adaptation with other hier­
archical data structures.

2. REGION DATA

There are two major approaches to region
representation: those that specify the
boundaries of a region and those that or­
ganize the interior of a region. Owing to the
inherent two-dimensionality of region in­
formation, our discussion focuses on the
second approach.

The region quadtree (termed a quadtree
in the rest of this section) is a member of a
class of representations that are character­
ized as being a collection of maximal blocks
that partition a given region. The simplest
such representation is the run length code,
where the blocks are restricted to 1 by m

The Quadtree and Related Hierarchical Data Structures • 193

rectangles [Rutovitz 1968]. A more general
representation treats the region as a union
of maximal square blocks (or blocks of any
desired shape} that may possibly overlap.
Usually, the blocks are specified by their
centers and radii. This representation is
called the medial axis transformation
(MAT) [Blum 1967; Rosenfeld and Pfaltz
1966].

The quadtree is a variant on the maximal
block representation. It requires that the
blocks be disjoint and have standard sizes
(i.e., sides of lengths that are powers of
two) and standard locations. The motiva­
tion for its development was a desire to
obtain a systematic way to represent ho­
mogeneous parts of an image. Thus, in or­
der to transform the data into a quadtree,
a criterion must be chosen for deciding that
an image is homogeneous (i.e., uniform).
One such criterion is that the standard
deviation of its gray levels is below a given
threshold t. By using this criterion the im­
age array is successively subdivided into
quadrants, subquadrants, etc. until homo­
geneous blocks are obtained. This process
leads to a regular decomposition. If one
associates with each leaf node the mean
gray level of its block, the resulting quad­
tree then will completely specify a piece­
wise approximation to the image, where
each homogeneous block is represented by
its mean. The case where t = 0 (i.e., a block
is not homogeneous unless its gray level is
constant) is of particular interest, since it
permits an exact reconstruction of the im­
age from its quadtree.

Note that the blocks of the quadtree do
not necessarily correspond to maximal ho­
mogeneous regions in the image. Most
likely there exist unions of the blocks that
are still homogeneous. To obtain a segmen­
tation of the image into maximal homoge­
neous regions, we must allow merging of
adjacent blocks (or unions of blocks) as
long as the resulting region remains ho­
mogeneous. This is achieved by a "split and
merge" algorithm [Horowitz and Pavlidis
1976]. However, the resulting partition will
no longer be represented by a quadtree;
instead, the final representation is in the
form of an adjacency graph. Thus the quad­
tree is used as an initial step in the segmen-

tation process. For example, Figure 3b, c,
and d demonstrate the results of the appli­
cation, in sequence, of merging, splitting,
and grouping to the initial image decom­
position of Figure 3a. In this case, the image
is initially decomposed into 16 equal-sized
square blocks. Next, the "merge" step at­
tempts to form larger blocks by recursively
merging groups of four homogeneous
"brothers" (e.g., the four blocks in the NW
and SE quadrants of Figure 3b). The "split"
step recursively decomposes blocks which
are not homogeneous (e.g., the NE and SW
quadrants of Figure 3c). Finally, the
"grouping" step aggregates all homogene­
ous 4-adjacent BLACK blocks into one re­
gion apiece; the 8-adjacent WHITE blocks
are likewise aggregated into WHITE re­
gions.

An alternative to the quadtree represen­
tation is to use a decomposition method
that is not regular (i.e., rectangles of arbi­
trary size rather than squares). This alter­
native has the potential of requiring less
space. However, its drawback is that the
determination of optimal partition points
necessitates a search. The homogeneity cri­
terion that is ultimately chosen to guide the
subdivision process depends on the type of
region data that is being represented. In
the remainder of this section we shall as­
sume that our domain is a 2" by 2" binary
image with 1 or BLACK corresponding to
foreground and 0 or WHITE corresponding
to background (e.g., Figure 1). It is inter­
esting to note that Kawaguchi et al. [1983]
use a sequence of m binary-valued quad­
trees to encode image data of 2m gray levels,
where the various gray levels are encoded
by use of Gray codes [McCluskey 1965].
This should lead to compaction (i.e., larger
sized blocks), since the Gray code guaran­
tees that adjacent gray-level values differ
by only one binary digit.

In general, any planar decomposition for
image representation should possess the
following two properties:

(1) The partition should be an infinitely
repetitive pattern so that it can be used
for images of any size.

(2) The partition should be infinitely de­
composable into increasingly finer pat­
terns (i.e., higher resolution).

Computing-Surveys, Vol.16, No. 21 June 1984

194 • Hanan Samet

(a) (b)

(c) (d)

Figure 3. Example illustrating the "split and merge" segmentation procedure.
(a) Start. (b) Merge. (c) Split. (d) Grouping.

Bell et al. [1983] discuss a number of
tilings of the plane (i.e., tessellations) that
satisfy Property (1). They also present a
taxonomy of criteria to distinguish among
the various tilings. Most relevant to our
discussion is the distinction between lim­
ited and unlimited hierarchies of tilings. A
tiling that satisfies Property (2) is said
to be unlimited. An alternative characteri­
zation of such a tiling is that each edge of
each tile lies on an infinite straight line
composed entirely of edges. Four tilings
satisfy this criterion; of these [44),2 consist-

2 The notation is based on the degree of each vertex
taken in order around the "atomic" tiling polygon. For
example, for [4.82

) the first vertex of a constituent
triangle has degree 4, while the remaining two vertices
have degree 8 apiece.

Computing Surveys, Vol. 16, No. 2, June 1984

ing of square atomic tiles (Fig. 4a), and
[63

], consisting of equilateral triangle
atomic tiles (Figure 4b), are well-known
regular tessellations [Ahuja 1983]. For
these two tilings we consider only the mo­
lecular tiles given in Figure 5a and b. The
tilings [44

] and [63
] can generate an infinite

number of different molecular tiles where
each molecular tile consists of n 2 atomic
tiles (n ;:: 1). The remaining nonregular
triangular tilings [4.82

] (Figure 4c) and
[4.6.12] (Figure 4d) are less well under­
stood. One way of generating [4.82

] and
[4.6.12] is to join the centroids of the tiles
of [4 4] and [63

], respectively, to both their
vertices and midpoints of their edges. Each
of the resulting tilings has two types of
hierarchy:'in the case of (4.82] an ordinary
(Figure 5c) and a rotation hierarchy (Figure

The Quadtree and Related Hierarchical Data Structures • 195

(a) (b)

(c) (d)

(e)

Figure 4. Sample tesselations. (a) [4'] square. (b) (63
] equilateral triangle.

(c) [4.82] isoceles triangle. (d) [4.6.12] 30-60 right triangle. (e) [36
] hexagon.

5e) and in the case of [4.6.12] an ordinary
(Figure 5d) and a reflection hierarchy (Fig­
ure 5f). Of the limited tilings, many types
of hierarchies may be generated [Bell et al.
1983]; however, they cannot, in general, be
decomposed beyond the atomic tiling with­
out changing the basic tile shape. This is a
serious deficiency of the hexagonal tessel­
lation [36

) (Figure 4e), which is, however,

regular, since the atomic hexagon can only
be decomposed into triangles.

Thus we see that to represent data in the
Euclidean plane any of the unlimited tilings
could have been chosen. For a regular de­
composition, the tilings [4.82

] and (4.6.12]
are ruled out. Upon comparing "square"
(44

] and "triangular" (63
] quadtrees we find

that they differ in terms of adjacency and

Computing Surveys, Vol. 16, No. 2, June 1984

196 • Hanan Samet

~
I

I
·-:--+-- --• I • :

• I • • I •
(a) (b)

(c) (d)

(e) (f)

Figure 5. Examples illustrating unlimited tilings. (a) [4') hierarchy. (b) [6'] hierarchy. (c) Ordinary
[4.82

) hierarchy. (d) Ordinary [4.6.12] hierarchy. (e) Rotation (4.82
] hierarchy. (f) Reflection [4.6.12]

hierarchy.

Computing Surveys, Vol. 16, No. 2, June 1984

The Quadtree and Related Hierarchical Data Structures • 197

orientation. For example, let us say that
two tiles are neighbors if they are adjacent
either along an edge or at a vertex. A tiling
is uniformly adjacent if the distances be­
tween the centroid of one tile and the cen­
troids of all its neighbors are the same. The
adjacency number of a tiling is the number
of different intercentroid distances between
any one tile and its neighbors. In the case
of [4 4 J, there are only two adjacency dis­
tances, whereas for [63) there are three
adjacency distances. A tiling is said to have
uniform orientation if all tiles with the same
orientation can be mapped into each other
by translations of the plane that do not
involve rotation or reflection. Tiling [44

)

displays uniform orientation, whereas that
of [63

) does not. Thus we see that [44
] is

more useful than [63
). It is also very easy

to implement. Nevertheless, [63
) has its

uses. For example, Yamaguchi et al. [1984)
use a triangular quadtree to generate an
isometric view from an octree (a three­
dimensional region quadtree discussed in
greater detail in Section 2.14) representa­
tion of an object.

The type of quadtree used often depends
on the grid formed by the image sampling
process: Square quadtrees are appropriate
for square grids and triangular quadtrees
are appropriate for triangular grids. In the
case of a hexagonal grid [Burt 1980), since
a hexagon cannot be decomposed into hex­
agons, a rosettelike molecule of seven hex­
agons (i.e., septrees) must be built. Note
that these rosettes have jagged edges as
they are merged to form larger units (e.g.,
Figure 6). The hexagonal tiling is regular,
has a uniform orientation, and most impor­
tantly displays a uniform adjacency. These
properties are exploited by Gibson and Lu­
cas [1982) in the development of algorithms
for septrees (called generalized balanced
ternary or GET for short) analogous to
those existing for quadtrees. Although the
septree can be built up to yield large sep­
trees, the smallest resolution in the septree
must be decided upon in advance, since its
primitive components (i.e., hexagons) can­
not be decomposed into septrees later. Thus
the septree yields only a partial hierarchical
decomposition in the sense that the com­
ponents can always be merged into larger

Figure 6. Example septree or "rosette" for a hexag­
onal grid.

units, but they cannot always be broken
down.

2.1 Neighbor-Finding Techniques

A natural by-product of the treelike nature
of the quadtree representation is that many
basic operations can be implemented as
tree traversals. The difference among them
is in the nature of the computation that is
performed at the node. Often these com­
putations involve the examination of nodes
whose corresponding blocks are "adjacent"
to the block corresponding to the node
being processed. We shall speak of these
adjacent nodes as "neighbors." However,
we must be careful to note that adjacency
in space does not imply that any simple
relationship exists among the nodes in the
quadtree. This relationship is the subject
of this section. In order to be more precise,
we digress briefly and discuss the concepts
of adjacency and neighbor in greater detail.

Each node of a quadtree corresponds to
a block in the original image. We use the
terms block and node interchangeably. The
term that will be used depends on whether
we are referring to decomposition into
blocks (i.e., Figure le) or a tree (i.e., Figure
ld). Each block has four sides and four

Computing Surveys, Vol.16, No. 2, June 1984

198 • Hanan Samet

corners. At times we speak of sides and
corners collectively as directions. Let the
four sides of a node's block be called its N,
E, S, and W sides. The four corners of a
block are labeled NW, NE, SW, and SE
with the obvious meaning. Given two nodes
P and Q whose corresponding blocks do not
overlap, and a direction D, we define a
predicate adjacent such that adjacent(P, Q,
D) is true if there exist two pixels p and q,
contained in P and Q, respectively, such
that either q is adjacent to side D of p, or
corner D of p is adjacent to the opposite
corner of q. In such a case, nodes P and Q
are considered to be neighbors. For exam­
ple, nodes J and 39 in Figure 1 are neigh­
bors, since J is to the west of 39, as are
nodes 38 and H since H is to the NE of 38.
Two blocks may be adjacent both along a
side and along a corner (e.g., B is both to
the north and NE of J; however, 39 is to
the east of J but not to the SE of J). Note
that the adjacent relation also holds for
nonterminal (i.e, GRAY) as well as termi­
nal (i.e., leaf) nodes.

Unfortunately, the neighbor relation is
not a function in a mathematical sense.
The problem is that given a node P, and a
direction D, there is often more than one
node, say Q, that is adjacent. For example,
nodes 38, 40, K, and D are all western
neighbors of node N. Similarly, nodes 40,
K, and D are all NW neighbors of node 57.
This means that in order to specify a neigh­
bor more precise information is necessary
about its nature (i.e., leaf or nonterminal)
and location. In particular, it is necessary
to be able to distinguish between neighbors
that are adjacent to the entire side of a
node (e.g., B is a northern neighbor of J)
and those that are only adjacent to a seg­
ment of a node's side (e.g., 37 is one of the
eastern neighbors of J). An alternative
characterization of the difference is that in
the former case we are interested in deter­
mining a node Q such that its correspond­
ing block is the smallest block (possibly
GRAY) of size greater than or equal to the
block corresponding to P, whereas in the
latter case we specify the neighbor in
greater detail, in our case, by indicating the
corner of P to which Q must be adjacent.
The same distinction can also be made for
corner directions. Below we define these

Computing Surveys, Vol.16, No. 2, June 1984

relations more formally. In the construc­
tion of names we use the following corre­
spondence: G for "greater than or equal,"
C for "corner," S for "side," and N for
"neighbor."

(1) GSN(P, D) = Q. Node Q corresponds
to the smallest block (it may be GRAY)
adjacent to side D of node P of size
greater than or equal to the block cor­
responding to P.

(2) CSN(P, D, C) = Q. Node Q corre­
sponds to the smallest block that is
adjacent to side D of the C corner of
nodeP.

(3) GCN(P, C) = Q. Node Q corresponds
to the smallest block (it may be GRAY)
opposite the C corner of node P of size
greater than or equal to the block cor­
responding to P.

(4) CCN(P, C) = Q. Node Q corresponds
to the smallest block that is opposite to
the C corner of node P.

For example, GSN(J, E) = K, GSN(J, S)
= L, CSN(J, E, SE) = 39, GCN(H, NE) =
G, GCN(H, SW)= K, and CCN(H, SW)=
38. From the above we see that GCN is the
corner counterpart of GSN and likewise
CCN for CSN. It should be noted that the
block corresponding to a node returned as
the value of GCN or CCN must overlap
some of the region bounded by the desig­
nated corner. Thus CCN(J, NE) =Band
not 37. The following observations are also
in order. First, none of GSN, CSN, GCN,
or CCN define a 1-to-1 correspondence (i.e.,
a node may be a neighbor in a given direc­
tion of several nodes, e.g., GSN(J, N) = B,
GSN(37, N) = B, and GSN(38, N) = B).
Second, GSN, CSN, GCN, and CCN are
not necessarily symmetric. For example,
GSN(H, W) = B but GSN(B, E) = C.

In the remaining discussions in this sur­
vey we focus strictly on GSN and GCN.
When we use the term neighbor, that is, P
is a neighbor of Q, we mean that Pis a node
of size greater than or equal to Q. For
example, node 40 in Figure ld (or equiva­
lently block 40 in Figure le) has neighbors
38, N, 57, M, 39, and 37. A block that is
not adjacent to a border of the image has a
minimum of five neighbors. This can be
seen by observing that a node cannot be
adjacent to two nodes of greater size on

The Quadtree and Related Hierarchical Data Structures • 199

(a) (b)

Figure 7. Impossible node configurations in a quad­
tree.

opposite sides (e.g., Figure 7a) or on oppo­
site corners (e.g., Figure 7b). For further
clarification, we observe that a split of a
block creates four subblocks of equal size.
Each subblock is 4-adjacent to two other
subblocks (one horizontally adjacent neigh­
bor and one vertically adjacent neighbor)
at one of its vertices and 8-adjacent to the
remaining subblock (corner adjacent neigh­
bor) at the same vertex. As an example,
given node P such that nodes Q and R are
adjacent to its eastern and western sides,
respectively, then at most one of nodes Q
and R can be of greater size than P. Thus
a node can have at most two larger sized
neighbors adjacent to its nonopposite sides.
One of these neighbors can overlap three
neighboring directions, while the other can
overlap two neighboring directions. The re­
maining three neighbors must be of equal
size. For example, for node 37 in Figure 1,
node B overlaps the NW, N, and NE neigh­
boring directions, node J overlaps the W
and SW directions, and the remaining
neighbors are nodes 38, 40, and 39 in the
E, SE, and S directions, respectively. A
node has a maximum of eight neighbors, in
which case all but one of the neighbors in
the corner direction correspond to blocks
of equal size. For example, for node N in
Figure 1, the neighbors are nodes H, I, 0,
Q, P, M, K, and B. It is interesting to
observe that for any BLACK node in the
image, its neighbors cannot all be BLACK
since otherwise merging would have taken
place and the node would not be in the
image. The same result holds for WHITE
nodes.

As mentioned above, most operations on
quadtrees can be implemented as tree tra­
versals, with the operation being performed

by examining the neighbors of selected
nodes in the quadtree. In order that the
operation be performed in the most general
manner, we must be able to locate neigh­
bors in a way that is independent of both
position (i.e., the coordinates) and size of
the node. We also do not want to maintain
any additional Jinks to adjacent nodes. In
other words, we only use the structure of
the tree and no pointers in excess of the
four links from a node to its four sons and
one link to its father for a nonroot node.
This is in contrast to the methods of Klin­
ger and Rhodes [1979], which make use of
size and position information, and those of
Hunter [1978) and Hunter and Steiglitz
[1979a, 1979b), which locate neighbors
through the use of explicit links (termed
ropes and nets). Yet another approach is to
hypothesize a point across the boundary in
the desired direction and then search for it.
This is undesirable for two reasons. First,
hypothesizing a point requires that we
know the size of the block whose neighbor
we are seeking. Second, the search requires
that we make use of coordinate informa­
tion.

Locating adjacent neighbors in the hori­
zontal or vertical directions (i.e., GSN) is
relatively straightforward [Samet 1982a).
The basic idea is to ascend the quadtree
until a common ancestor with the neighbor
is located, and then descend back down the
quadtree in search of the neighboring node.
It is obvious that we can always ascend as
far as the root quadtree and then start our
descent. However, our goal is to find the
nearest common ancestor, as this mini­
mizes the number of nodes that must be
visited. Suppose, for example, that we wish
to find the western neighbor of node N in
Figure 1, that is, GSN(N, W). The nearest
common ancestor is the first ancestor node
which is reached via its NE or SE son (i.e.,
the first ancestor node of which N is not a
western descendant). Next, we retrace the
path used to locate the nearest common
ancestor, except that we make mirror image
moves about an axis formed by the common
boundary between the nodes. In the case of
a western neighbor, the mirror images of
NW and SW are NE and SE, respectively.
Therefore the western neighbor of node N
in Figure 1 is node K. It is located by

Computing Surveys, Vol. 16, ;No. 2, June 1984

200 • Hanan Samet

ascending the quadtree until the nearest
common ancestor A has been located. This
requires going through a NW link to reach
node E, and a SE link to reach node A.
Node K is subsequently located by back­
tracking along the previous path with the
appropriate mirror image moves (i.e., by
following a SW link to reach node D, and
a NE link to reach node K).

Neighbors in the horizontal or vertical
directions need not correspond to blocks of
the same size. If the neighbor is larger, then
only part of the path from the nearest
common ancestor is retraced. Otherwise
the neighbor corresponds to a block of equal
size and a pointer to a BLACK, WHITE,
or GRAY node, as is appropriate, of equal
size is returned. If there is no neighbor (i.e.,
the node whose neighbor is being sought is
adjacent to the border of the image in the
specified direction), then NIL is returned.

Locating a neighbor in a corner direction
(i.e., GCN) is considerably more complex
[Samet 1982a]. Once again, we traverse
ancestor links until a common ancestor of
the two nodes is located. This is a process
that requires two or three steps. First, we
locate the given node's nearest ancestor,
say P, which is also adjacent (horizontally
or vertically) to an ancestor, say Q, of the
sought neighbor (to see how this is deter­
mined, please read on!). If the node P does
not exist, then we are at the true nearest
common ancestor (e.g., when we are at node
D when trying to find the SE neighbor of
node J in Figure 1). Otherwise, the second
step is one that finds Q by using the pro­
cedure for locating horizontally and verti­
cally adjacent neighbors. The final step re­
traces the remainder of the path while it
makes directly opposite moves (e.g., a SE
move becomes a NW move). The nearest
ancestor of the first step is the first ances­
tor node that is not reached by a link equal
to the direction of the desired neighbor
(e.g., to find a SE neighbor, the nearest
such ancestor is the first ancestor node that
is not reached via its son in the SE direc­
tion). 3 As an example of the corner neigh-

3 If the ancestor node is reached by a link directly
opposite to the required direction, then we are already
at the nearest common ancestor of the sought neigh-

Computing Surveys, Vol 16, No. 2, June 1984

bor-finding process, suppose that we wish
to locate the SE neighbor of node 40 in
Figure 1, which is 57, that is, GCN(40, SE).
It is located by ascending the quadtree until
we find the nearest ancestor D, which is
also adjacent (horizontally in this case) to
an ancestor of 57, that is, E. This requires
that we go through a SE link to reach K
and a NE link to reach D. Node E is now
reached by applying the horizontal neigh­
bor-finding techniques in the direction of
the adjacency (i.e., east). This forces us to
go through a SW link to reach node A.
Backtracking results in descending a SE
link to reach node E. Finally, we backtrack
along the remainder of the path by making
180-degree moves; that is, we descend a SW
link to reach node P and a NW link to
reach node 57. Note that neighbors in the
corner directions need not correspond to
blocks of the same size. If the neighbor is
larger, then it is handled in the same man­
ner as outlined above for the horizontal and
vertical directions (i.e., only part of the
path from the nearest common ancestor is
retraced). Webber (1984] discusses proofs
of the correctness of the various neighbor­
finding algorithms presented in this sec­
tion.

Hunter (1978] and Hunter and Steiglitz
(1979a, 1979b] describe a number of algo­
rithms for operating on images represented
by quadtrees by using explicit links from a
node to its neighbors. These links connect
adjacent nodes in the vertical and horizon­
tal directions. A rope is defined as a link
between two adjacent nodes of equal size
where at least one of them is a leaf node.
For example, there is a rope between nodes
K and N in Figure 1. A D-adjacency tree in
direction D exists whenever there is a rope
between a leaf node, say X, and a GRAY
node, say Y. In such a case, the D-adjacency
tree of X is said to be the binary tree rooted
at Y whose nodes consist of all the descend­
ants of Y (BLACK, WHITE, or GRAY)
that are adjacent to X. For example, Figure
8 contains the S-adjacency tree of node B

bor. Otherwise, we obtain the neighbor in the direction
that did not change (i.e., this determines whether we
go in the N, E, S, or W direction for Step 2.

The Quadtree and Related Hierarchical Data Structures • 201

0

37 38

Figure 8. Adjacency tree corresponding to the rope
between nodes D and B in Figure 1 (i.e., B's S­
adjacency tree).

corresponding to the rope between nodes B
and D that crosses the S side of node B.

The process of finding a neighbor by
using a roped quadtree is quite simple. The
rope is essentially a way to short-circuit the
need to find a nearest common ancestor.
Suppose that we want to find the neighbor
of node X on side N using a rope. If a rope
from X on side N exists, then it leads to
the desired neighbor. Otherwise the desired
neighbor is larger. Next, the tree is as­
cended until a node having a rope on side
N, which will lead to the desired neighbor,
is encountered. What we are doing is as­
cending the S-adjacency tree of the north­
ern neighbor of node X. For example, to
find the northern neighbor of node 38 in
Figure 1, we ascend through node K to node
D, which has a rope along its north side
leading to node B (i.e., B's S-adjacency
tree).

At times it is not even desirable to ascend
nodes in the search for a rope. In such a
case Hunter and Steiglitz make use of a
net. This is a linked list whose elements are
all the nodes, regardless of their relative
size, that are adjacent along a given side of
a node. For example, in Figure 1 there is a
net for the southern side of node B consist­
ing of nodes J, 37, and 38.

The advantage of ropes and nets is that
the number of nodes that must be visited
in the process of finding neighbors is re­
duced. However, the disadvantage is that
the storage requirements are increased con­
siderably. In contrast, our methods [Samet
1982a] only make use of the structure of
the quadtree, that is, four links from a
nonleaf node to its sons and a link from a
nonroot node to its father. Using a suitably

defined model, Samet [1982a] and Samet
and Shaffer [1984] have shown that in or­
der to locate a neighbor of greater than or
equal size in the horizontal or vertical di­
rection, on the average, less than four nodes
will be visited when using the nearest com­
mon ancestor techniques, whereas less than
two nodes must be visited on the average
when using ropes.4 Empirical results con­
firming this have been reported by Ro­
senfeld et al. [1982], Samet and Shaffer
[1984], and Tucker [1984b]. Thus in prac­
tice it is not necessary to add the extra
overhead of roping and netting of a quad­
tree, particularly upon considering that it
requires extra storage. It should be noted
that, at times, the algorithms that perform
the basic operations on the image can be
reformulated so that they do not require
the computation of the neighbors. This is
achieved by transmitting the neighbors of
each node in the principal directions as
actual parameters. Such techniques are
termed top down in contrast with the bot­
tom-up methods discussed earlier. One such
technique is used by Jackins and Tanimoto
(1983] in the computation of an n-dimen­
sional perimeter. Their algorithm requires
making n passes over the data and works
only for neighbors that are adjacent along
a side rather than at a corner. Independ­
ently, a similar algorithm was devised that
does not require n passes but only uses one
pass [Rosenfeld et al. 1982b; Samet and
Webber 1982]. Another top-down algo­
rithm that is able to compute all neiiPlbors
(i.e., adjacent along a side as well as a
corner) with just one pass is reported by
Samet [1985a].

2.2 Alternative Ways
to Represent Quadtrees

As is shown in Section 1 the most natural
way to represent a quadtree is to use a tree
structure. In this case each node is repre­
sented as a record with four pointers to the
records corresponding to its sons. If the
node is a leaf node, it will have four pointers

•A similar result is reported by DeMillo et al. [1978]
in the context of embedding a two-dimensional array
in a binary tree.

Computing Surveys, Vol. 16, No. 2, June 1984

202 • Hanan Samet

u w

(a)

37 39

A

68 ~8

(b)

Figure 9. The bintree corresponding to Figure 1. (a) Block decomposition. (b) Bintree
representation of the blocks in (a).

to the empty record. In order to facilitate
certain operations an additional pointer is
at times also included from a node to its
father. This greatly eases the motion be­
tween arbitrary nodes in the quadtree and
is exploited in a number of algorithms in
order to perform basic image processing
operations.

An alternative tree structure that uses
an analogy to the k-d tree [Bentley 1975b]
(see Section 3.1) is the bintree [Knowlton
1980; Samet and Tamminen 1984; Tam­
minen 1984a]. In essence, the space is al­
ways subdivided into two equal-sized parts
alternating between the x and y axes. The
advantage is that a node requires space only
for pointers to its two sons instead of four
sons. In addition, its use generally leads to
fewer leaf nodes. Its attractiveness in­
creases further when dealing with higher
dimensional data (e.g., three dimensions)
since less space is wasted on NIL pointers
for terminal nodes and many algorithms
are simpler to formulate. For example, Fig­
ure 9 is the bintree representation corre­
sponding to the image of Figure 1.

The problem with the tree representation
of a quadtree is that it has a considerable

Computing Surveys, Vol. 16, No. 2, June 1984

amount of overhead associated with it. For
example, given an image that can be aggre­
gated to yield B and W BLACK and
WHITE nodes, respectively, (B + W -
1)/3 additional nodes are necessary for the
internal (i.e., GRAY) nodes. Moreover,
each node requires additional space for the
pointers to its sons. This is a problem when
dealing with large images that cannot fit
into core memory. Consequently, there has
been a considerable amount of interest in
pointerless quadtree representations. They
can be grouped into two categories. The
first treats the image as a collection of leaf
nodes. The second represents the image in
the form of a traversal of the nodes of its
quadtree. The following discussion briefly
summarizes the type of operations that can
be achieved using such representations.
Some of these operations are discussed in
greater detail in subsequent sections in the
context of pointer-based quadtree repre­
sentations.

When an image is represented as a col­
lection of the leaf nodes comprising it, each
leaf is encoded by a base 4 number termed
a locational code, corresponding to a se­
quence of directional codes that locate the

The Quadtree and Related Hierarchical Data Structures • 203

leaf along a path from the root of the quad­
tree. It is analogous to taking the binary
representation of the x and y coordinates
of a designated pixel in the block (e.g., the
one at the lower left corner) and interleav­
ing them (i.e., alternating the bits for each
coordinate). It is difficult to determine the
origin of this technique. It was used as an
index to a geographic database by Morton
[1966] and is termed a Morton matrix.
Klinger and Rhodes [1979) presented it as
a means of organizing quadtrees on exter­
nal st9rage. It has also been widely dis-

~ cussed in the literature in the context of
multidimensional point data (see Section
3.5). A base 5 variant of it (although all
arithmetic operations on the locational
code are performed by using base 4), which
has an additional code as a don't care, is
used by Gargantini [1982a] and Abel and
Smith [1983] (see also Burton and Kollias
[1983], Cook [1978], Klinger and Dyer
[1976], Oliver and Wiseman [1983a], We­
ber [1978], and Woodwark [1982]) to yield
an encoding where each leaf in a 2n by 2n
image is n digits long. A leaf corresponding
to a 2k by 2k block (k < n) will haven - k
don't care digits. As an example, assuming
that codes 0, 1, 2, and 3 correspond to
quadrants NW, NE, SW, and SE, respec­
tively, and 4 denotes a don't care, block H
in Figure 1 is represented by the base 5
number 124. Such an encoding has the in­
teresting property that when the codes of
the leaf nodes are sorted in increasing or­
der, the resulting sequence is the postorder
(also preorder or inorder since the nonleaf
nodes are excluded) traversal of the blocks
of the quadtree.

Actually, in the representation described
above there is no need to include the loca­
tional code of every leaf node. Gargantini
[1982a] only retains the locational codes of
the BLACK nodes and terms the resulting
representation a linear quadtree. The codes
for the WHITE blocks can be obtained by
using the ordering imposed by the sort
without having physically to construct the
quadtree. Lauzon et al. [1984] propose tha
the collection of the leaf nodes be repre­
sented by using a variant of the run length
code [Rutovitz 1968] termed a two-dimen­
sional run encoding. They make use of a

Morton matrix. Once the codes of the leaf
node have been sorted in increasing order,
the resulting list is viewed as a set of sub­
sequences of codes corresponding to blocks
of the same color. The final step in its
construction is to discard all but the first
element of each subsequence of blocks of
the same color. The codes of the interven­
ing blocks can be reconstructed by knowing
the codes of two successive blocks. In com­
parison to linear quadtrees, this represen­
tation is more compact and more efficient
for superposition. However, translation
and rotation by multiples of 90 degrees are
easier with the linear quadtree [Gargantini
1983]. In addition, given a code for a par­
ticular BLACK node, its horizontal and
vertical neighbors can be obtained by per­
forming arithmetic operations on the loca­
tional code [Abel and Smith 1983; Gargan­
tini 1982a]. However, this often involves
search, and can be made more efficient
by special-purpose hardware. Nevertheless,
this result is significant in that many of the
standard quadtree algorithms that rely on
neighbor computation can be applied to
images represented by linear quadtrees.
Abel [1984] describes an organization of
the postorder sequence in the form of a B+ -
tree [Comer 1979].

Jones and Iyengar [1984] (see also Ra­
man and Iyengar [1983]) introduced the
concept of a forest of quadtrees that is a
decomposition of a quadtree into a collec­
tion of subquadtrees, each of which corre­
sponds to a maximal square. The maximal
squares are identified by refining the con­
cept of a nonterminal node to indicate some
information about its subtrees. An internal
node is said to be of type GB if at least two
of its sons are BLACK or of type GB.
Otherwise the node is said to be of type
GW. For example, in Figure 10, nodes C,
E, and F are of type GB and nodes A, B,
and D are of type GW. Each BLACK node
or an internal node with a label of GB is
said to be a maximal square. A forest is the
set of maximal squares that are not con­
tained in other maximal squares and that
span the BLACK area of the image. Thus
the forest corresponding to Figure 10 is {C,
E, FJ. The elements of the forest are iden­
tified by base 4 locational codes. Such a

Computing Surveys, Vol.16, No. 2, June 1984

204 • Hanan Samet

A

3

12
f!l![: t@::

15 16
19

17 18

13 1415 16

Figure 10. A sample image and its quadtree illustrating the concept of a forest.

representation can lead to a savings of
space since large WHITE items are ignored
by it.

The second pointerless representation is
in the form of a preorder tree traversal (i.e.,
depth first) of the nodes of the quadtree.
The result is a string consisting of the
symbols "('', "B", "W" corresponding to
GRAY, BLACK, and WHITE nodes,
respectively. This representation is due
to Kawaguchi and Endo (1980] and is
called a DF-expression. For example, the
image of Figure 1 has
(W(WWBB(W(WBBBWB(BB(BBBWW

as its DF-expression (assuming that sons
are traversed in the order NW, NE, SW,
SE). The original image can be recon­
structed from the DF-expression by observ­
ing that the degree of each nonterminal
(i.e., GRAY) node is always 4. DeCoulon
and Johnsen (1976] use a very similar
scheme termed autoadaptive block coding.
The difference is that the alphabet consists
solely of two symbols, "O" and "1". The "O"
corresponds to a block composed of
WHITE pixels only. Otherwise, a "1" is
used and the block is subdivided into four
subblocks. Therefore the "O" is analogous
to "W" and the "1" is analogous to "(" and
"B". In other words, there is no merging of
BLACK pixels into blocks, and thus the
coding scheme is asymmetric, whereas the
OF-expression method is symmetric with
respect to both BLACK and WHITE. The
two methods are shown to yield encodings

Computing Surveys, Vol. 16, No. 2, June 1984

that require a comparable number of bits.
A binary tree variant of the DF-expression
based on the bintree is discussed by Tam­
minen [1984b].

Kawaguchi et al. [1983] show how a num­
ber of basic image processing operations
can be performed on an image represented
by a DF-expression. In particular, they
demonstrate centroid computation, rota­
tion, scaling, shifting, and set operations.
Representation of an image using a preor­
der traversal is also reported by Oliver and
Wiseman [1983a]. They show how to per­
form operations as mentioned above as well
as merging, masking, construction of a
quadtree from a polygon, and area filling.
Neighbor finding is also possible when tra­
versal-based representations are used, al­
though it is rather cumbersome and time
consuming.

In the remainder of this survey we shall
be using the pointer-based quadtree repre­
sentation unless specified otherwise. This
should not pose a problem as we have al­
ready discussed some of the problems as­
sociated with the pointerless representa­
tions (i.e., that neighbor finding is more
complicated, etc.).

2.3 Conversion

The quadtree is proposed as a representa­
tion for binary images because its hierar­
chical nature facilitates the performance of
a large number of operations. However,
most images are traditionally represented

The Quadtree and Related Hierarchical Data Structures • 205

by use of methods such as binary arrays,
rasters (i.e., run lengths), chain codes (i.e.,
boundaries), or polygons (vectors), some of
which are chosen for hardware reasons
(e.g., run lengths are particularly useful for
rasterlike devices such as television). Tech­
niques are therefore needed that can effi­
ciently switch between these various rep­
resentations.

The most common image representation
is probably the binary array. There are a
number of ways to construct a quadtree
from a binary array. The simplest approach
is one that converts the array to a complete
quadtree (i.e., for a 2n by 2n image, a tree of
height n with one node per pixel). The
resulting quadtree is subsequently reduced
in size by repeated attempts at merging
groups of four pixels or four blocks of a
uniform color that are appropriately
aligned. This approach is simple, but is
extremely wasteful of storage, since many
nodes may be needlessly created. In fact, it
is not inconceivable that available memory
may be exhausted when an algorithm em­
ploying this approach is used, whereas the
resulting quadtree fits in the available
memory.

We can avoid the needless creation of
nodes by visiting the elements of the binary
array in the order defined by the labels on
the array in Figure 11 (which corresponds
to the image of Figure 1). This order is also
known as a Morton matrix [Morton 1966]
(discussed in Section 2.2). By using such a
method a leaf node is never created until it
is known to be maximal. An equivalent
statement is that the situatum does not
arise in which four leaves of the same color
necessitate the changing of the color of
their parent from GRAY to BLACK or
WHITE as is appropriate. For example, we
note that since pixels 25, 26, 27, and 28 are
all BLACK, no quadtree nodes were created
for them; that is, node H corresponds to
the part of the image spanned by them.
This algorithm is shown to have an execu­
tion time proportional to the number of
pixels in the image [Samet 1980b].

At times the array must be scanned in a
row-by-row manner as we build the quad­
tree (e.g., when a raster representation is
used). For example, the pixels of the image

Figure 11. Binary array representation of the region
in Figure la.

Figure 12. A labeling of the pixels of the region in
Figure 1 that indicates the order of visiting them in
the process of constructing a quadtree from the raster
representation.

of Figure 1 would be visited in the order
defined by the labels on the array of Figure
12. The amount of work that is required
depends on whether an odd-numbered or
even-numbered row is being processed. For
an odd-numbered row, the quadtree is con­
structed by processing the row from left to
right, adding a node to the quadtree for
each pixel. As the quadtree is constructed,
nonterminal nodes must also be added in
such a way that at any given instant, a valid
quadtree exists. Even-numbered rows re­
quire more work since merging may also
take place. In particular, a check for a pos­
sible merger must be performed at every
even-numbered vertical position (i.e., every
even-numbered pixel in a row). Upon the
creation of any merger, it must be checked
to determine whether another merger is
possible. In particular, for pixel position
(a . 2;, b . 2j) where (a mod 2) = (b mod 2)
= 1, a maximum of k = min(i, j) mergers
is possible. In this discussion, a pixel posi­
tion is the coordinate of its lower right cor­
ner with respect to an origin in the upper

Computing Surveys, Vol.16, No. 2, June 1984

206 • Hanan Samet

left corner of the image. For example, at
pixel 60 of Figure 12, that is, position
(4, 8), a maximum of two merges is possible.
An algorithm using these techniques, which
has an execution time proportional to the
number of pixels in the image, is described
by Samet [1981a]. Unnikrishnan and Ven­
katesh (1984] present an algorithm for con­
verting rasters to linear quadtrees.

As output is usually produced on a raster
device, we need a method for converting a
quadtree representation into a suitable
form. The most obvious method is to gen -
erate an array corresponding to the quad­
tree, but this method may require more
memory than is available and thus is not
considered here. Samet [1984] describes a
number of quadtree-to-raster algorithms.
All of the algorithms traverse the quadtree
by rows and visit each quadtree node once
for each row that intersects it. For example,
a node that corresponds to a block of size
2k by 2k is visited 2k times, and each visit
results in the output of a sequence of 2k O's
or l's as is appropriate. Some of the algo­
rithms are top down and others are bottom
up. The bottom-up algorithms visit adja­
cent blocks by use of neighbor-finding tech­
niques, whereas the top-down method
starts at the root each time it visits a node.
The bottom-up methods are superior as the
image resolution gets larger (i.e., n for a 2n
by 2n image) since the number of nodes
that must be visited in locating neighbors
is smaller than that necessary when the
process is constantly restarted from the
root. All of the algorithms have execution
times that depend only on the number of
blocks in the image (irrespective of their
color) and not on their particular configu­
ration. In addition, they do not require
memory in excess of that necessary to store
the quadtree being output. For example,
the two images shown in Figure 13 require
the same amount of time to be output since
they both have 11 blocks of size 2 by 2
pixels and 20 blocks of 1 pixel. This is
important when considerations such as re­
fresh times, etc. must be taken into ac­
count.

The chain code representation [Freeman
1974] (also known as a boundary or border
code) is very commonly used in carto-

Computing Surveys, Vol.16, No. 2, June 1984

Figure 13. Two images that require the same amount
of work to be converted from a quadtree to a raster
representation.

graphic applications. It can be specified,
relative to a given starting point, as a se­
quence of unit vectors (i.e., one pixel wide)
in the principal directions. We can repre­
sent the directions by numbers; for exam­
ple, let i, an integer quantity ranging from
0 to 3, represent a unit vector having a
direction of 90 · i degrees. For example, the
chain code for the boundary of the BLACK
region in Figure 1, moving clockwise start­
ing from the midpoint of the extreme right
boundary, is

32223121312313011101120•32.

The above is a four-direction chain code.
Generalized chain codes involving more
than four directions can also be used. Chain
codes are not only compact, but they also
simplify the detection of features of a re­
gion boundary, such as sharp turns (i.e.,
corners) or concavities. On the other hand,
chain codes do not facilitate the determi­
nation of properties such as elongatedness,
and it is difficult to perform set operations
such as union and intersection as well.
Thus it is useful to be able to construct a
quadtree from a chain code representation
of a binary image. Such an algorithm de­
scribed by Samet [1980a] is briefly outlined
below.

The algorithm has two phases. The first
phase traces the boundary in the clockwise
direction and constructs a quadtree with
BLACK nodes of size unit code length. All
terminal nodes are said to be at level 0 and
correspond to blocks that are adjacent to
the boundary and are within the region
whose boundary is being traced. The pro­
cess begins by choosing a link in the chain
code at random and creating a node for it,
say P. Next, the following link in the chain

The Quadtree and Related Hierarchical Data Structures • 207

code, say NEW, is examined, and its direc­
tion is compared with that of the immedi­
ately preceding link, say OLD. At this
point, three courses of action are possible.
If the directions of NEW and OLD are the
same, then a node, say Q, which is a neigh­
bor of Pin direction OLD, may need to be
added (see Figure 14a). If NEW's direction
is to the right of OLD, a new node is un­
necessary (see Figure 14b); but if NEW's
direction is to the left of OLD, then we may
have to add two nodes. First, a node, say Q,
that is a neighbor of Pin direction OLD is
added (if not already present). Second, a
node, say R, that is a neighbor of Q in
direction NEW is added (see Figure 14c).
These nodes are added to the quadtree by
using the neighbor-finding techniques dis­
cussed previously. As the various links in
the chain code are processed, some nodes
may be encountered more than once, indi­
cating that they are adjacent to the bound­
ary on more than one side. This informa­
tion is recorded for each node. Figure 15
shows the block decomposition and partial
quadtree after the application of the first
phase to the boundary code representation
corresponding to Figure 1. The BLACK
nodes have been labeled in the order in
which they have been visited, starting at
the midpoint of the extreme right boundary
of the image and proceeding in a clockwise
manner. All uncolored nodes in Figure 15
are depicted as short lines emanating from
their father.

The first phase of the algorithm leaves
many nodes uncolored since it only marks
nodes adjacent to the boundary as BLACK.
The second phase of the algorithm per­
forms a postorder traversal of the partial
quadtree resulting from the first phase and
sets all the uncolored nodes to BLACK or
WHITE as is appropriate. For an uncolored
node to eventually correspond to a BLACK
node, it must be totally surrounded by
BLACK nodes since otherwise it would
have been adjacent to the boundary and
could not be uncolored. The algorithm
therefore sets every uncolored node to
BLACK, unless any of its neighbors is
WHITE, or if one of its neighbors is
BLACK with a boundary along the shared
side. This information is easy to ascertain

OLD NEW
: p : Q :
L--l.--.J

(a)

OLD

Li_JNEW
(b)

Figure 14. Examples of the actions to be taken when
the chain code (a) maintains its direction, (b) turns
clockwise, and (c) turns counterclockwise.

by virtue of the boundary adjacency infor­
mation that is recorded for each BLACK
terminal node during the first phase. Also,
any GRAY node that has four BLACK sons
is replaced by a BLACK node. The above
algorithm has a worst-case execution time
that is proportional to the product of the
region's perimeter (i.e., the length of the
chain node) and the log of the diameter of
the image (i.e., n for a 2n by 2n image)
[Samet 1980a). Webber [1984] presents a
variation of this algorithm that shifts the
chain code to an optimal position before
building the quadtree. The total cost of the
shift and build operations is proportional
to the region's perimeter.

It is also useful to be able to convert a
quadtree representation of a region to its
chain code [Dyer et al. 1980]. This is
achieved by traversing the boundary in
such a way that the region always lies to
the right once an appropriate starting point
has been determined. The boundary con­
sists of a sequence of (BLACK, WHITE)
node pairs. Assume for the sake of this
discussion that P is a BLACK node, Q is a
WHITE node, and that the block corre­
sponding to node P is to the north of Q.
For each BLACK-WHITE adjacency, a
two-step procedure is exei::uted. First, the
chain link associated with that part of P's
boundary that is adjacent to Q is output.
The length of the chain is equal to the
minimum of the sizes of the two blocks.

Second, the (BLACK, WHITE) node
pair that defines the subsequent link in the
chain as we traverse the boundary is deter­
mined. There are three possible relative
positions of P and Q as outlined in Figure
16: (1) P extends past Q (Figure 16a), (2)
Q extends past P (Figure 16b), or (3) P and
Q meet at the same point (Figure 16c). In
order to determine the next pair, the adja-

Computing Surveys, Vol.16, No. 2, June 1984

208 • Hanan Samet

16 17 18 19
15 12C

13 14 I
II 12 4 3 2
10 6 !5
9 a 7

(a)

16 17 15 18 19 20 13 II 12 10 9 8 14 4 I 3 2 6 5 7
(b)

Figure 15. Block decomposition (a) and quadtree (b) of the region in Figure 1 after
application of phase one of the chain code to quadtree algorithm.

Q

(b) (c)

(a)

Figure 16. Possible overlap relationships between the (BLACK, WHITE) ad­
jacent node pair (P, Q). The arrow indicates the boundary segment just output.
(a) P extends past Q. (b) Q extends past P. (c) P and Q meet at the same point.

cent nodes X and Y are located by using
the neighbor-finding techniques discussed
previously. At this point the next pair can
be determined by referring to Figure 17 and
choosing the two blocks that are adjacent
to the arrow in the appropriate case. Note
that we assume that the region is four­
connected so that blocks touching only at
a corner are not adjacent. For example, the
new pair in Figure 17g is (P, X); that is, the

Computing Surveys, Vol. 16, No. 2, June 1984

boundary turns right regardless of the type
of node Y. The algorithm has an average
execution time that is proportional to the
region's perimeter [Dyer et al. 1980].

In the <;ase where a region contains holes,
the algorithm can be extended by system­
atically traversing all BLACK nodes upon
completion of the first boundary-following
sequence. Whenever a BLACK node is en­
countered with a boundary edge unmarked

The Quadtree and Related Hierarchical Data Structures • 209

II ~ •. :_:_1.1_ .. !:·:·~.'_i,l_i.,i_l,!.l,;.:p,!:,:;._;,i!llllili;;1111
~:~~rr

Q

(a) (b) (c)

Q .I
(d) (e) (f)

y
Q

(g) (h) (i)

Figure 17. Possible configurations of P, Q, and their neighbor blocks in determining the
next (BLACK, WHITE) pair. The arrow indicates the next boundary segment to be
output.

by the boundary follower, its boundary is
followed, after which the traversal of the
quadtree continues.

The chain code can be used as an ap­
proximation of a polygon by unit vectors.
It is also common to represent polygonal
data by a set of vertices, or even a point
and a sequence of vectors consisting of
pairs (i.e., (magnitude, direction)). Hunter
(1978] and Hunter and Steiglitz (1979a,
1979b] address the problem of representing
simple polygons (i.e., polygons with non­
intersecting edges and without holes) by
using quadtrees. A polygon is represented
by a three-color variant of the quadtree. In
essence, there are three types of nodes­
interior, boundary, and exterior. A node is
said to be of type boundary if an edge of the
polygon passes through it. Boundary nodes

are not subject to merging (they are analo­
gous to BLACK nodes in the matrix (MX)
quadtree described in Section 3.2). Interior
and exterior nodes correspond to areas re­
spectively within and outside of the polygon
and can be merged to yield larger nodes.
Figure 18 illustrates a sample polygon and
its quadtree corresponding to the definition
of Hunter and Steiglitz [1979a]. One dis­
advantage of such a representation for po­
lygonal lines is that a width is associated
with them, whereas in a purely technical
sense these lines have a width of zero. Also
a shift in operations may result in infor­
mation loss. (For more appropriate repre­
sentations of polygonal lines see Section 4.)

Hunter and Steiglitz present two algo­
rithms for building a quadtree from a poly­
gon. The first is a top-down algorithm that

Computing Surveys, Vol.16, No. 2, June 1984

210 • Hanan Samet

.~r '"-=
~=~~ :::::: ~:{

Figure 18. Hunter and Steiglitz's [1979a] quadtree
representation of a polygon.

starts at the root and splits the space into
four blocks, creating the necessary nodes.
Each node whose block (which is not a
pixel) intersects the polygonal boundary is
recursively split. Given a polygon with v
vertices and a perimeter p (in units of pixel
width), construction of a quadtree within a
2n by 2n space from a polygon has an exe­
cution time of 0(v + p + n). Unfortunately,
the quadtree from the polygon construction
algorithm does not distinguish between an
interior and an exterior node. A 'coloring
algorithm is then performed that propa­
gates the color of the boundary nodes in­
ward by initially traversing the boundary
and stacking all sides that are within the
polygon for each boundary node. Coloring
is propagated by examining stack entries
and their adjacent leaves. For stack entry
S, ifthe block corresponding to its adjacent
leaf node, say T, is not smaller and is un­
colored, then Tis colored and all of its sides
with the exception of S are placed on the
stack. S is removed from the stack and
colored. The key to the algorithm is that
boundary nodes (i.e., pixels) are small and
their neighbors get larger as the center of
the polygon is approached. This algorithm
makes use of a netted quadtree to compute
neighboring nodes. It has been shown to
have an execution time proportional to the
number of nodes in the quadtree being
colored.

Computing Surveys, Vol. 16, No. 2, June 1984

The second algorithm for constructing a
quadtree from a polygon is termed an out­
line algorithm. It combines a top-down
decomposition of the space in which the
polygon is embedded with a traversal of the
boundary, resulting in a roped quadtree.
During the construction process neighbors
are computed as a by-product of the top­
down decomposition process. The outline
algorithm similarly has an execution time
of O(v + p + n). Combining the outline
algorithm, a netting process, and the col­
oring algorithm leads to a quadtree for
polygon algorithm with execution time of
O(v + p + n).

2.4 Set Operations

The quadtree is especially useful for per­
forming set operations such as the union
(i.e., overlay) and intersection of several
images. This is described in greater detail
by Hunter (1978], Hunter and Steiglitz
(1979a], and Shneier [1981a]. For example,
obtaining the quadtree corresponding to
the union of S and T merely requires a
traversal of the two quadtrees in parallel,
an examination of corresponding nodes,
and construction of the resulting quadtree,
say in U. If either of the two nodes is
BLACK, then the corresponding node in U
is BLACK. If one node is WHITE, say in
S, then the corresponding node in U is set
to the other node, that is, in T. If both
nodes are GRAY, then U is set to GRAY
and the algorithm is applied recursively to
the sons of S and T. However, once the
sons have been processed, when both nodes
are GRAY, a check must be made if a
merger is to take place since all four sons
could be BLACK. For example, consider
the union of the quadtrees of Figures 19
and 20. Node B in Figure 19 and node E in
Figure 20 are both GRAY. However, the
union of their corresponding sons yields
four BLACK nodes, which must be merged
to yield a BLACK node in U, where the
corresponding nodes in S and T were
GRAY. Figure 21 shows the result of the
union of Figures 19 and 20.

Computing the intersection of two quad­
trees is just as simple. The algorithm de­
scribed above for union is applied, except

The Quadtree and Related Hi.erarchical Data Structures • 211

6
7 ::::::!:::::

9 10

A

I 2 3 4 7 8 9 10

Figure 19. Sample image and its quadtree.

G

24 2526 27

Figure 21. Union of the images in Figures 19 and 20.

that the roles of BLACK and WHITE are
interchanged. When both nodes are GRAY,
the check for a merger is performed to
determine if all four sons are WHITE. Fig­
ure 22 shows the result of the intersection
of Figures 19 and 20.

The time required for these algorithms is
proportional to the minimum of the num­
ber of nodes at corresponding levels of the
two quadtrees. In order to achieve this time
bound, the resulting quadtree is composed

II !::,\~:j= I! 16

:,,,,1?,::t];,;;·\!=.,: ;:::;~:.,: 18

II 20

II 12 13 14 15 16 17 18

Figure 20. Sample image and its quadtree.

29 30
28

,:,~1::::; 32

33 34

I

2930 31 32

Figure 22. Intersection of the images in Figures 19
and 20.

of subtrees from the quadtrees serving as
operands of the set operation. If a new
quadtree is constructed, then the opera­
tions have an execution time that is pro­
portional to the number of nodes in the
quadtrees. An upper bound on this time is
the size of the smaller of the two quadtrees.
The ability to perform set operations
quickly is one of the primary reasons for
the popularity of quadtrees over alternative
representations such as the chain code. The

Computing Surveys, Vol. 16, No. 2, June 1984

212 Hanan Samet

chain code can be characterized as a local
data structure, since each segment of the
chain code conveys information only about
the part of the image to which it is adjacent;
that is, the image is to its right. Performing
an overlay operation on two images repre­
sented by chain codes thus requires a con­
siderable amount of work. In contrast, the
quadtree is a hierarchical data structure
that yields successive refinements at lower
levels in the tree. Of course, a hierarchical
chain code can be defined, but this is pri­
marily useful in handling extreme cases
(null intersection, etc.).

Hunter [1978) suggested a novel ap­
proach to solving the problem of determin­
ing whether or not two polygons intersect
when polygons are represented as quad­
trees. One constructs the two quadtrees
from the polygons, intersects them, and
then checks the result to see whether it is
the empty quadtree. This process has an
execution time of O(v + p + n) (see Section
2.3). Of course, this time bound is a func­
tion of the accuracy required and is subject
to errors resulting from limitations imposed
by the digitization process. In contrast,
Shamos and Hoey [1975) show that the
problem can be solved in O(u log u) time.
The reader is cautioned that in actuality
the different nature of the representations
that are involved may make it difficult to
compare the two algorithms (i.e., the con­
stants and quantities are considerably dif­
ferent).

2.5 Transformations

One of the primary motivations for the
development of the quadtree concept is a
desire to provide an efficient data structure
for computer graphics. Warnock [1969] has
used recursive decomposition as the basis
for the hidden surface elimination algo­
rithm. Hunter's doctoral thesis [Hunter
1978), which addressed the problem of ef­
ficiently performing animation by com­
puter, was a significant extension of the
quadtree concept from both a theoretical
and practical standpoint. In order to do
this, the system must have the capability
of performing a number of basic transfor­
mations. Scaling by a power of two is trivial

Computing Surveys, Vol.16, No. 2, June 1984

when using quadtrees since it is simply a
reduction in resolution. Rotation by mul­
tiples of 90 degrees is equally simple, that
is, a recursive rotation of sons at each level
of the quadtree. For example, Figure 23b is
the result of rotating Figure 23a by 90 de­
grees counterclockwise. Notice how the
NW, NE, SW, and SE sons have become
SW, NW, SE, and NE sons, respectively,
at each level in the quadtree.

It is also useful to transform a quadtree
encoding of a picture in the form of a col­
lection of polygons and holes into another
quadtree by applying a linear operator. One
simple algorithm [Hunter and Steiglitz
1979b] traces all the polygons in the input
quadtree to find vertices. The images of the
vertices that result from the application of
the linear operator determine the polygons
in the output quadtree. The outline and
color algorithm [Hunter and Steiglitz
1979a] (see Section 2.3) is used to construct
the actual output quadtree for each polygon
(as well as holes). The final step is the
superposition of the polygons, which is per­
formed by using techniques discussed in
Section 2.4. The outline algorithm saves
some work by ignoring the boundaries of
the input polygons that will not be visible
in the output. By assuming that the trans­
formation does not change the resolution
(or scale) of the input picture, it can be
shown that the transformation algorithm
requires time and space of O(t + p) [Hunter
and Steiglitz 1979b], where t is the total
number of nodes in the input quadtree and
p is the total perimeter of the nonback­
ground visible portions of the input picture.

The linear transformation algorithm and
the scaling and rotation operations share a
common failing. With the exception of scal­
ing by a power of two, translations, or ro­
tations in multiples of 90 degrees, they
result in approximations. Straight Jines are
not necessarily transformed into straight
lines. This failing is often mistakenly at­
tributed to the quadtree representation,
whereas in fact it is a direct result of the
underlying digitization process. It mani­
fests itself no matter what underlying rep­
resentation is used when doing raster
graphics. (For a quadtree-based represen­
tation that is free of such a problem see the

The Quadtree and Related Hierarchical Data Structures

A

• 213

2

3

6
7 8

9 i'&
:-:·:·'.·:.:

7 8 9 10

(a)

8 j§j
7 9

2

6

(b)

Figure 23. Rotating (a) by 90 degrees counterclockwise yields (b).

discussion of the PM quadtree [Samet and
Webber 1983b] in Section 4.2).

Another operation that is useful in
graphics applications is termed windowing.
It is the process of extracting a rectangular
window from an image represented by a
quadtree and building a quadtree for the
window. An algorithm designed to achieve
this effect for a square window of size 2k by
2k at an arbitrary position in a 2" by 2"
image is described by Rosenfeld et al.
[1982b]. In essence, the new quadtree is
constructed as the input quadtree is decom­
posed and relevant blocks are copied into
the new quadtree. The execution time of
this process depends both on the relative
position of the center of the window with
respect to the center of the input quadtree,

and on the sizes of the blocks in the input
quadtree that overlap the window. A-gen-

• er~lization of this windowing algorithm for
pomter-based quadtrees [Peters 1984] and
linear quadtrees [van Lierop 1984] per­
forms the calculation of a general linear
transformation (including scaling and ro­
tation) without extracting the polygon from
the quadtree and then rebuilding the quad­
tree from the transformed polygon [Hunter
and Steiglitz 1979b]. For rectangular win­
dows, windowing is trivial to implement if
the squarecode representation of Oliver and
Wiseman [1983b] is used. The squarecode
is a variant of the locational code (see Sec­
tion 2.2), which is used to represent the
image as a collection of disjoint squares of
arbitrary side length and at arbitrary posi-

Computing Surveys, Vol. 16, No. 2, June 1984

214 • Hanan Samet

tions by recording the length and the ad­
dress of one of the square's corners.

Quadtrees have also been used for image­
processing operations that involve gray­
scale images rather than binary images. ·
Some examples include image segmenta­
tion [Ranade et al. 1980], edge enhance­
ment [Ranade 1981], image smoothing
[Ranade and Shneier 1981], and threshold
selection [Wu et al. 1982].

2.6 Areas and Moments

Areas and moments for images represented
by quadtrees are extremely simple to com­
pute. To find the area it is necessary to
traverse the quadtree in postorder and ac­
cumulate the sizes of the BLACK blocks.
Assume that the root of a 2n by 2n image is
at level n and the number of pixels in such
an image is 22

n. For a BLACK block at level
k, the contribution to the area is 22

k. Mo­
ments are obtained by summing the mo­
ments of the BLACK blocks. The position
of each BLACK block is easy to ascertain
because the path that was taken to reach
the block is known when processing starts
at the root of the quadtree. Knowledge of
the area and the first moments permits the
computation of the coordinates of the cen­
troid, and thereupon central moments rel­
ative to the centroid can be obtained. It
should be noted that all of these algorithms
have an execution time proportional to the
number of nodes in the quadtree [Shneier
1981a]. Chien and Aggarwal [1984] use a
normalized representation of the quadtree
with respect to the centroid to match noisy
objects against models. This method also
relies on the selection of a principal axis
and scaling to a fixed resolution.

2.7 Connected Component Labeling

Connected component labeling is one of
the basic operations of an image-proces­
sing system. It is analogous to finding the
connected components of a graph. For
example, the image of Figure 24 has two
components. Given a binary array repre­
sentation of an image, the traditional
method of performing this operation [Ro­
senfeld and Pfaltz 1966] would be a

Computing Surveys, Vol.16, No. 2, June 1984

"breadth-first" approach, which scans the
image row by row from left to right and
assigns the same label to adjacent BLACK
pixels that are found to the right and in the
downward direction. During this process
pairs of equivalences may be generated,
thus necessitating two more steps: one to
merge the equivalences and the second to
update the labels associated with the var­
ious pixels to reflect the merger of the
equivalences. (However, Lumia [1983] and
Lumia et al. [1983] have made improve­
ments on Rosenfeld and Pfaltz's [1966]
method of keeping track of equivalences.)

Using a quadtree to perform the same
operation involves an analogous three-step
process [Samet 1981b]. The first step is a
postorder tree traversal (in order NW, NE,
SW, SE), where for each BLACK node that
is encountered, say A, all adjacent BLACK
nodes on the southern and eastern sides of
A are found, and assigned the same label
as A. The adjacency exploration is done by
using the neighbor-finding techniques of
Samet [1982a] (see Section 2.1). At times,
the adjacent node may already have been
assigned a label, in which case the equiva­
lence is noted. The second step merges all
the equivalence pairs that were generated
during the first step. The third step per­
forms another traversal of the quadtree and
updates the labels on the nodes to reflect
the equivalences generated by the first two
steps of the algorithm.

As an example, consider the image of
Figure 24a, whose quadtree block decom­
position is given in Figure 24b and c. All
blocks are labeled with a different identi­
fying number in their upper left corner;
their lower right corner contains the label
assigned by the first step of the connected
component labeling process. Two items are
worthy of further note. First, when block
15 is processed, neither it nor block 31, its
southern neighbor, have been labeled yet
and thus label B is assigned to them. When
block 20 is processed, it has no label, but
its southern neighbor, 31, has already been
assigned B as a label, and thus block 20 is
assigned label B as well. Second, Figure 24b
shows the status of the image at the con­
clusion of the second step of the algorithm.
It has three different labels (i.e., A, B, and

The Quadtree and Related Hierarchical Data Structures • 215

12

9 10 13 1<1 11 11e

!!~ 16 19 mii

D
(a) (b)

12345678 13 14 15 16 17 18 19 20 22 23 24 25 27 28 29 30

(c) .

Figure 24. An image, its maximal blocks, and the corresponding quadtree. Bfocks in the
image are shaded; background blocks are blank. (a) Image. (b) Block decomposition of the
image in (a). (c) Quadtree representation of the blocks in (b).

C) with B equivalent to C. This equivalence
was generated when the eastern adjacency
of block 23 was explored. In essence, block
23 was labeled with C when block 22's
eastern adjacency was explored, whereas
block 31 was labeled with B when block
15's southern adjacency was explored. Thus
we see that the third step of the algorithm
will have to be applied, thereby relabeling
all C blocks with B.

The execution time of connected com­
ponent labeling is obtained by examining
the three steps of the algorithm. Let B be
the number of BLACK nodes in the quad-

tree. Step 1 is a tree traversal in which
neighbors are examined as well. Since the
average cost of examining a neighbor is a
constant [Samet 1982a; Sainet and Shaffer
1984], Step 1 is O(B). Step 3 is also a tree
traversal and is O(B) as well. Step 2, the
merger of equivalence classes, can be done
in O(B log B) time; the algorithm thus has
an average execution time that is O(B Jog
B). In fact, almost linear average execution
time can be obtained by combining Steps 1
and 2 by using the UNION-FIND algo­
rithm (Tarjan 1975]. This is a very impor­
tant result because it means that the exe-

Computing Surveys, Vol. 16, No. 2, June 1984

216 • Hanan Samet

cution time of the connected component
labeling process is dependent only on the
number of blocks in the image and not on
their size. In contrast, the analogous algo­
rithm for the binary array [Rosenfeld and
Pfaltz 1966] has an execution time that is
proportional to the number of pixels and
hence to the area of the blocks. Thus we
see that the hierarchical structure of the
quadtree data structure saves not only
space but time. The cost of the neighbor
computation process is avoided when the
top-down algorithm of Samet (1984d] is
used.

Note that the coloring algorithm of
Hunter and Steiglitz [1979a] by itself does
not achieve the same effect as the con­
nected component labeling algorithm de­
scribed above. The coloring algorithm
starts with a polygon and traverses its
boundary before propagating the boundary
color inward and thereby colors the interior
nodes. It does not need to merge equiva­
lence classes since the polygon is itself one
equivalence class. However, the combina­
tion of the coloring algorithm with a poly­
gon identification step will, in effect, yield
a connected component labeling algorithm.
These results are similar to those achieved
using a "depth-first" approach. Use of such
an approach leads to algorithms having ex­
ecution times that are a function of the
perimeter of the individual polygons. We
also observe that some of the speed of the
coloring algorithm is derived from the use
of nets that avoid neighbor computation;
however, this speed is achieved at the ex­
pense of extra storage for the added links
as well as the stack.

The algorithm that we have described
makes use of a pointer-based quadtree rep­
resentation. Connected component labeling
can also be performed by using some of the
pointerless quadtree representations de­
scribed in Section 2.2. There are two ways
to proceed. The first method simply mimics
the breadth-first algorithm above and re­
quires use of search to implement the
neighbor-finding operation. An alternative
method [Samet and Tamminen 1984, 1985)
makes use of a staircaselike data structure
to remember components on sides of blocks
that have already been processed. This

Computing Surveys, Vol. 16, No. 2, June 1984

method works for perimeter computation
(Section 2.8), component counting (Section
2.9), and also three-dimensional data. Both
the linear quadtree [Gargantini 1982a] and
the DF-expression [Kawaguchi and Endo
1980] representations can be used.

2.8 Perimeter

Computing the perimeter of an image rep­
resented by a quadtree can be done in a
manner analogous to Step 1 of the con­
nected component labeling process de­
scribed in Section 2.7. The difference is
that in the previous case, when connected
components were labeled, the algorithm
searched for adjacent BLACK nodes,
whereas adjacent WHITE nodes must be
searched for when computing the perime­
ter. In other words, a postorder tree tra­
versal is performed, and for each BLACK
node that is encountered its four adjacent
sides are explored in the search for adjacent
WHITE nodes. For each adjacent WHITE
node that is found the length of the corre­
sponding shared side is included in the
perimeter.

Use of such an algorithm will result in a
certain amount of duplication of effort be­
cause each adjacency between two BLACK
blocks is explored twice, and neither of
these adjacency explorations contributes to
the value of the perimeter (e.g., the eastern
side of node N and the western side of node
0 in Figure 1). An alternative algorithm
performs adjacency exploration only for
southern and eastern neighbors. That is,
for each BLACK node a search is made for
adjacent WHITE southern and eastern
neighbors, and for each WHITE node, a
search is made for adjacent BLACK south­
ern and eastern neighbors. The only prob­
lem with such a method is that the northern
and western boundaries of the image are
never explored. This can be alleviated by
embedding the image in a white region, as
shown in Figure 25.

Both formulations of the algorithm have
expected execution times that are propor­
tional to the number of nodes in the quad­
tree [Samet 1981c]. Jackins and Tanimoto
(1983] have developed an asymptotically
faster alternative perimeter computation

The Quadtree and Related Hierarchical Data Structures • 217

IMAGE

IMAGE

(a) (b)

Figure 25. An image totally surrounded by back­
ground.

algorithm that works for an arbitrary num­
ber of dimensions. This method achieves
its efficiency by transmitting the neighbors
as parameters rather than by having to rely
on neighbor exploration as happens in the
approach described above. However, it re­
quires that a separate pass be made over
the data for each dimension (see also Samet
(1985a]).

2.9 Component Counting

Once the connected components of the im­
age have been labeled, it is easy to count
them, since the result is the same as the
number of different equivalence classes re­
sulting from Step 2 of the connected com­
ponent labeling algorithm. An alternative
quantity is known as the Euler number or
genus, say G, which is V - E + F, where V,
E, and F correspond to the number of ver­
tices, edges, and faces, respectively, in a
planar graph [Harary 1969). It is defined
as the difference between the number of
connected components and the number of
holes. It is well known [Minsky and Papert
1969) that for a binary image represented
by a binary array G = V - E + F, where V,
E, and F are defined as follows. Let a
BLACK pixel be represented by 1 and a
WHITE pixel by 0. Vis the number of l's
in the image, Eis the number of horizon­
tally adjacent pairs of l's (i.e., 11) or verti­
cally adjacent pairs of l's, and F is the
number of 2 by 2 blocks of l's.

Dyer [1980] has obtained the same result
for a quadtree representation of a binary

image by redefining V, E, and F in the
context of a quadtree. This is accomplished
by letting V be the number of BLACK
blocks, Ebe the number of pairs of adjacent
BLACK blocks in the horizontal and ver­
tical directions (see Figure 26), and F be
the number of triples or quadruples sur­
rounding a point, that is, 2 by 2 blocks of
pixels that are contained by three or four
BLACK blocks (e.g., Figure 27). The algo­
rithm for the computation of the genus is a
postorder tree traversal that is analogous
to Step 1 of the connected component la­
beling algorithm with the additional pro­
viso that when F is determined, the leaf
nodes surrounding the southeastern corner
of a BLACK node must be examined. The
algorithm's expected execution time is pro­
portional to the number of blocks in the
image.

The value of Dyer's result lies not in the
mechanics of the algorithm, but in the the­
ory generated thereby. He has shown that
the quadtree representation is hierarchical
in the sense that the most critical measure
is the number of blocks and not their size.
It also demonstrates another instance of
the use of an algorithm originally formu­
lated for the binary array representation
being used in an analogous manner for a
quadttee representation by treating blocks
(of possibly different sizes) as if they were
pixels. This technique was used previously
in the labeling of connected components.

2.10 Space Requirements

The prime motivation for the development
of the quadtree has been the desire to re­
duce the amount of space necessary to store
data through the use of aggregation of ho­
mogeneous blocks. As the previous discus­
sion has demonstrated, an important by­
product of this aggregation has been to
decrease the execution time of a number of
operations (e.g., connected component la­
beling and component counting). Never­
theless, the quadtree is not always the ideal
representation. The worst case for a quad­
tree of a given depth in terms of storage
requirements occurs when the region cor­
responds to a checkerboard pattern, as in
Figure 28. The amount of space required is

Computing Surveys, Vol. 16, No. 2, June 1984

218 • Hanan Samet

................ ~

.. YES
~
~

Figure 26. Examples of adjacencies for the compu·
tation of the genus of an image.

Figure 27. Example of three or four blocks meeting
at a corner.

obviously a function of the resolution (i.e.,
the number of levels in the quadtree).
Hunter (1978] presents a fundamental
theorem on the space complexity of quad­
trees. He has shown that for a simple poly­
gon (i.e., nonintersecting edges) of perime­
ter p (measured in pixel widths) and a
resolution n, the number of nodes in the
quadtree is of O(p + n). He goes on to show
that O(p + n) is an attainable upper bound.
From this, Hunter obtains a corollary of
great importance, showing that the quad­
tree grows linearly in number of nodes as
the resolution is doubled, whereas a binary
array representation leads to a quadrupling
of the number of pixels through doubling
the resolution. For experiments on carto­
graphic data that verify the linear growth
see Rosenfeld et al. (1982].

The amount of space occupied by a quad­
tree is extremely sensitive to its orienta­
tion. Dyer [1982) has shown that arbitrarily
placing a square of size 2m by 2m at any
position in a 2n by 2n image requires an
average of0(2m+2 + n - m) quadtree nodes.
An alternative characterization of this re­
sult is that the amount of space necessary
is O(p + n), where p is the perimeter (in
pixel widths) of the block. Shifting the im­
age within the space in which it is em­
bedded can reduce the total number of
nodes. Grosky and Jain (1983) have shown
that for a region such that d is the maxi­
mum of its horizontal and vertical extent

Computing Surveys, Vol. 16, No. 2, June 1984

(measured in pixel widths) and 2n-1 < d <
2n, the optimal grid resolution is either n
or n + 1. In other words, embedding the
region in a larger area than 2n+i by 2n+i and
shifting it around will not result in fewer
nodes. This result is used by Li et al. (1982]
to obtain an algorithm that finds the con­
figuration of the quadtree requiring a min­
imum number of nodes. The algorithm
proceeds by using a binary array represen­
tation of the image and attempting trans­
lations of magnitude power of 2 in the
vertical, horizontal, and corner directions.
When d is defined as above, the algorithm
requires 0(22n) space and has an execution
time that is O(n · 22n).

In Section 2.2 we showed that a tree
implementation of a quadtree has overhead
in terms of the internal nodes. For an image
with Band WBLACK and WHITE blocks,
respectively, (4/3) (B + W) nodes are re­
quired. In contrast, a binary array represen­
tation of a 2n by 2n image requires only 22n
bits; however, this quantity grows quite
quickly. Furthermore, if the amount of ag­
gregation is minimal (e.g., a checkerboard
image), then the quadtree is not very effi­
cient. The overhead for the internal nodes
is avoided by using some of the pointerless
representations discussed in Section 2.2
such as the linear quadtree and the DF­
expression. In fact, the DF-expression re­
quires at most two bits per node. The
compression characteristics of DF-expres­
sions compared to boundary and run length
codes are discussed by Tamminen [1984b].

2.11 Skeletons and Medial Axis Transforms

The medial axis of a region [Blum 1967;
Duda and Hart 1973; Pfaltz and Rosenfeld
1967; Rosenfeld and Kak 1982) is a subset
of points, each of which has a distance from
the component of the region (e.g., its
boundary), using a suitably defined metric,
which is a local maximum. The medial axis
transform (MAT) consists of the set of
medial axis or skeleton points and their
associated distance values. Before proceed­
ing any further we shall review the defini­
tion of a metric.

Let d be a function that maps pairs of
points into nonnegative numbers. It is

(a)

A

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 so 52 54 56 se 60 62 64

(b)

Figure 28. A checkerboard (a) and its quadtree (b).

220 • Hanan Samet

Figure 29. A rectangle and its skeleton using dE.

called a metric or a distance function if for
all points p, q, and r the following relations
are satisfied:

(1) d(p, q);:: 0 and d(p, q) = 0
if and only if p = q

(positive definiteness);
(2) dp,q)=d(q,p)

(symmetry);
(3) d(p, r) 5 d(p, q) + d(q, r)

(triangle inequality).

Some of the more common metrics are
examined below in the context of the points
p = (p,, py) and q = (q,, qy). By far the
most popular metric is the Euclidean metric

dE(p, q) = .J(p, - q,) 2 + (py - qy) 2
•

Two other metrics which are used in image
processing are the absolute value metric,
also known as the city block metric (or
Manhattan metric),

and the maximum value metric, also known
. as the Chessboard metric,

dM(p, q) = max(IPx - q,j, IPY - qyll·

The set of points having dE(p, q) :S Tare
those points contained in a circle centered
at p having radius T. Similarly, dA(p, q) :S
Tyields a diamond, centered at p, with side
length T· J2, and dM(p, q) 5 T yields a
square, centered at p, with side length 2 · T.
For example, by using the Euclidean met­
ric, the skeleton of a circle is its center. The
skeleton of the rectangle in Figure 29 is the
set of dashed lines within it. An alternative
characterization of a skeleton is achieved
by drawing an analogy to a "brush fire."
That is, imagine that the boundary of the
object is set on fire; the remains would be
the skeleton.

Computing Sur;eys, Vol. 16, No. 2, June 1984

Skeletons and medial axis transforms are
traditionally used in image processing for
the purpose of obtaining an approximation
of the image. We wish here to obtain an
exact representation of the image. The ap­
plication of the concept of metric to an
image represented by a quadtree is dis­
cussed by Shneier [1981b] and Samet
(1982b]. In particular, Samet (1982b] has
shown that the Chessboard metric is most
appropriate for an image represented by a
quadtree since it has the property that the
set of points { q} such that dM(p, q) :ST is
a square. This metric is used to define the
Chessboard distance transform for a quad­
tree as a function DIST, which yields for
each BLACK block in the quadtree the
Chessboard distance from the center of the
block to the nearest point which is on a
BLACK-WHITE boundary. In addition,
DIST of a WHITE or GRAY block is said
to be zero, and the border of the image is
assumed to be BLACK. For example, in
Figure 30, node 1 has a DIST value of 6,
whereas node 12 has a DIST value of 0.5,
assuming a 24 by 24 image. The process of
computing the Chessboard distance trans­
form is relatively simple. It consists of a
postorder tree traversal where for each
BLACK block the eight adjacent (horizon­
tal, vertical, and corner) neighbors are ex­
amined to determine the closest WHITE
block. This process is analogous to that
used for connected component labeling and
perimeter computation .

The quadtree skeleton is defined as fol­
lows. Given a BLACK block b, it is conven­
ient to use S(b) to refer to the set of pixels
in the image spanned by a square with side
width 2·DIST(b) centered about block b.
Let the set of BLACK blocks in the image
be denoted by B. The quadtree skeleton is
the set T of BLACK blocks, denoted by t; ,
satisfying the following properties:

(1) the set of pixels in B = U, S(t.);
(2) for any t1 in T there does not exist bk in

B (bk# t1) such that S(t;) !;;; S(bd;
(3) for all b1 in B there exists t; in T such

that S(b;) !: S(t;).

For example, for the quadtree of Figure
30, the quadtree skeleton consists of nodes

The Quadtree and Related Hierarchical Data Strw:tures • 221

26

27

37

38

41

43

A

3012 31 32

Figure 30. Sample quadtree.

1, 11, and 15 with Chessboard distance
transform values of 6, 2, and 4, respectively.
Property (1) ensures that the entire image
is spanned by the quadtree skeleton. Prop­
erty (2) is termed the subsumption prop­
erty, wherein bj is subsumed by bk when
S(bi) ~ S(bk). Property (2) means that the
elements of the quadtree skeleton are the
blocks with the largest distance transform
values. Property (3) ensures that no block
in B and not in T requires more than one

element of T for its subsumption. Therefore
the case where one-half of the block is
subsumed by one element of T and the
other half is subsumed by another element
of T is not permitted. Samet [1983] has
shown that the quadtree skeleton of an
image is unique.

The quadtree medial axis transform
(QMAT) of an image is the quadtree whose
BLACK nodes correspond to the BLACK
blocks comprising the quadtree skeleton

Computing Surveys. Vol.16,No. 2,June 1984

222 Hanan Samet

and their associated Chessboard distance
transform values. All remaining nodes in
the QMAT are WHITE and GRAY with
distance value zero. For example, Figure 31
contains the block and tree representations
of the QMAT of Figure 30. The algorithm
for the construction of a QMAT from its
quadtree is straightforward [Samet 1983].
In essence, it is a modified postorder tree
traversal where GRAY nodes are processed
first, and for each BLACK node a check is
made to see if it is subsumed by one of its
eight neighbors. If it is, then the node is
changed from BLACK to WHITE. This
algorithm is facilitated by Property (3),
which ensures that there is no need to check
whether a node is subsumed partially by
one neighbor and partially by another
neighbor. The reverse process of recon­
structing a quadtree from its QMAT is also
possible [Samet 1985b]. It is potentially
useful for thinning an image.

The QMAT has a number of important
properties. First, it resµlts in a partition of
the image into a set of possibly nondisjoint
squares having sides whose lengths are
sums of powers of two rather than, as in
the case of quadtrees, a set of disjoint
squares having sides of lengths that are
powers of two. Second, the QMA T is more
compact than the quadtree, as it never con­
tains more nodes than the quadtree and ·
often contains considerably fewer nodes
(e.g., compare Figures 30 and 31). Third,
the QMAT representation is less sensitive
to shift operations in the sense that a small
shift of the image will not, in general, cause
the QMA T to get as large as the shifted
quadtree. This should be apparent when we
realize that the QMAT is most economical
storagewise, vis a vis the quadtree when
large blocks are surrounded by smaller
blocks; this is normally the situation when
a shift operation takes place. For example,
compare Figure 32 and the result of shifting
it by one pixel to the right, as shown in
Figure 33.

2.12 Pyramids

Given a 2n by 2n image array, say A(n), a
pyramid is a sequence of arrays lA(i)l such
that A (i - 1) is a version of A (i) at half the

Computing Surveys, Vol. 16, No. 2, June 1984

K

33 J L M

A

Figure 31. QMAT corresponding to the quadtree of
Figure 30.

resolution of A(i), etc. A (0) is a single pixel.
For example, Figure 34 shows the structure
of a pyramid having three levels. It should
be clear that a pyramid can also be defined
in a more general way by permitting finer
scales of resolution than the power of two
scale.

At times it is more convenient to define
a pyramid in the form of a tree. Again,
assuming a 2n by 2n image, a recursive
decomposition into quadrants is performed,
just as in quadtree construction, except that
we keep subdividing until we reach the
individual pixels. The leaf nodes of the
resulting tree represent the pixels, whereas
the nodes immediately above the leaf nodes
correspond to the array A(n - 1), which is

The Quadtree and Related Hierarchical Data Structures • 223

2(0)

5(0) 6(0) 9(0) 10(0)

13(0)

11(0) 12(0)

(a)

A

3(Q5) 4(0,5) 5 6 7(Q.5) 8(0.5) 9 10

(c)

Figure 32. Sample quadtree. (a) Block decomposi­
tion. (b) Tree representation. (c) QMAT.

of size 2•-1 by 2•-1
• The nonterminal nodes

are assigned a value that is a function of
the nodes below them (i.e., their sons) such
as the average gray level.

The above definition of a pyramid is
based on a nonoverlapping 2 by 2 blocks of

pixels. An alternative definition uses over­
lapping blocks of pixels. One of the simplest
schemes makes use of 4 by 4 blocks that
overlap by 50 percent in both the horizontal
and vertical directions [Burt et al. 1981].
For example, Figure 35 is a 23 by 23 array,
say A(3), whose pixels are labeled 1-64.
Figure 36 is A(2) corresponding to Figure
35, and its elements are labeled A-P. The
4 by 4 neighborhood corresponding to ele­
ment F in Figure 36 consists of pixels 10-
13, 18-21, 26-29, and 34-37. This method
implies that each block at a given level
participates in four blocks at the immedi­
ately higher level. Thus the containment
relations between blocks no longer form a
tree. For example, pixel 28 participates in
blocks F, G, J, and K in the next higher
level (see Figure 37 where the four neigh­
borhoods corresponding to F, G, J, and K
are drawn as squares). In order to avoid
treating border cases differently, each level
is assumed to be cyclically closed (i.e., the
top row at each level is adjacent to the
bottom row and likewise for the columns at
the extreme left and right of each level).
Once again, we say that the value of a node
is the average of the values of the nodes in
its block on the immediately lower level.
The overlapped pyramid may be compared
with the QMAT (see Section 2.11) in the
sense that both may result in nondisjoint
decompositions of space.

Pyramids are used for feature detection
and extraction since they can be used to
limit the scope of the search. Once a piece
of information of interest is found at a
coarse level, the finer resolution levels can
be searched. This approach was used for
approximate pattern matching by Davis
and Roussopoulos [1980]. Pyramids can
also be used for encoding information about
edges, lines, and curves in an image
[Shneier 1981c]. One note of caution: The
reduction of resolution will affect the visual
appearance of edges and small objects
[Tanimoto 1976]. In particular, at a coarser
level of resolution edges tend to get smeared
and region separation may disappear. Pyr­
amids have also been used as the starting
point for a "split and merge" segmentation
algorithm [Pietikainen et al. 1982].

Computing Surveys, Vol. 16, No. 2, June 1984

224 • Hanan Samet

I 2 3 4 6 1891112131416171819 21222324~26272831323334

(b)

A

F 5<Zl G 10(2)

(c)

Figure 33. The result of shifting the image in Figure 32 by one pixel to the right.
(a) Block decomposition. (b) Tree representation. (c) QMAT.

Before leaving this section, it is impor­
tant to reiterate a comment made in
Section 1 that pyramids and quadtrees,
although related, are different entities. A
pyramid is a multiresolution representa­
tion, whereas the quadtree is a variable
resolution representation. Another analogy

Computing Surveys, Vol. 161 No. 2, June 1984

is that the pyramid is a complete quadtree
[Knuth 1975, p. 401].

2.13 Quadtree Approximation Methods

The quadtree can be used as an image ap­
proximation device. By truncating the

The Quadtree and Related Hierarchical Data Structures • 225

0

EE

Figure 34. Structure of a pyramid having three lev­
els.

quadtree (i.e., ignoring all nodes below a
certain level), a crude approximation can
be realized. Ranade et al. (1982] define a
sequence of inner and outer approxima­
tions to an image and use it for shape
approximation. The inner approximation
consists of treating GRAY nodes as
WHITE, whereas the outer approximation
treats them as BLACK. Rosenfeld et al.
(1982] discuss a quadtree truncation tech­
nique that treats a GRAY node as BLACK
or WHITE, depending on the type of the
majority of its constituent pixels. This is
shown to lead to a very gentle degradation
of the image in contrast to the abruptness
of the inner and outer approximation meth­
ods.

Quadtree-based approximation methods
have also been devised for use in transmis­
sion of binary and gray-scale images. In
such a case, it is desirable for the chosen
method to exhibit compression as well as
be progressive. By progressive we mean
that as more of the image is transmitted,
the receiving device progressively con­
structs a better approximation. At the end
of the transmission, the original image is
to be reconstructed perfectly. Progressive
approximation should be contrasted with
facsimile techniques that transmit the im­
age a line at a time. Thus the goal is to
receive a crude picture first and the details
later, thereby enabling browsing opera­
tions.

Sloan and Tanimoto (1979] (see also
Tanimoto (1979)) propose a number of pyr­
amid-based approaches to the problem of
transmitting a gray-scale image. In Section
2.12 a pyramid was described as a sequence

I 2 3 4 5 6 1 e
9 10 II 12 13 14 15 16
17 16 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Figure 35. Example pyramid A(3).

A B c D

E F G H

I J K L

M N 0 p

Figure 36. A(2) corresponding to Figure 35.

I 2 3 4 5 6 7 8

9 10 II 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 24 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 .tf7 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Figure 37. The overlapping blocks in which pixel 28
participates.

of arrays IA(i)I such that A(i - 1) is a
version of A(i) at half the resolution; A(O)
is said to be a single element. Given a 2n by
2n image, the pyramid can be considered to
be a complete quadtree with A(n) corre­
sponding to the image. The simplest trans­
mission technique that they propose is
analogous to a breadth-first traversal of the
complete quadtree. The shortcoming of this
approach is that redundant information
must be transmitted (i.e., one-third more
information), and thus no compression ex­
ists. Sloan and Tanimoto propose a number
of refinements to this method. First, a level
number and coordinates for each pixel are
included, but are transmitted only if they

Computing Surveys, Vol. 16, No. 2, June 1984

226 • Hanan Samet

differ from the value of the pixel's prede­
cessor. The second refinement requires that
the receiver deduce one pixel's value from
those of its predecessor and its three sib­
lings. By using such a method, there is no
need for redundant pixel information to be
transmitted; however, there is no compres­
sion since the amount of information trans­
mitted is equal to the number of pixels. The
predecessor's value can be a sum of the
values of the four sons; an even better
method, in the sense that less computa­
tional overhead is involved, is simply to use
one of the values of the sons.

Knowlton [1980) discusses techniques
for transmission of both gray-scale and bi­
nary images. He makes use of a binary tree
version of a quadtree (i.e. bintree). In es­
sence, an image is repeatedly split into two
halves alternating between vertical and
horizontal splits. For gray-scale images, he
describes each two-pixel group (hence the
binary subdivision) by two numbers such
that the first is analogous to an average,
termed a composite value, and the second is
like a differentiator that enables the com­
putation of their corresponding intensities.
These two pixel groups are recursively ag­
gregated in groups of two to form a binary
tree. Knowlton shows that all that needs to
be transmitted is the composite value for
the root of the tree and the successive sets
of differentiators. Thus the sequence of
transmission is a breadth-first traversal of
the binary tree of differentiator values. The
result is that an image of p pixels of 2b gray
levels can be transmitted and reformatted
by using p·b bits. Use of the composite
values leads to successively better approx­
imations to the image until an exact recon­
struction is obtained at the end of the
transmission. Compression can be achieved
by using Huffman codes [Huffman 1952]
to encode the differentiator values.

Knowlton also presents a technique for
the progressive transmission of binary im­
ages. Again, the binary tree version of the
quadtree is used to represent the image.
Nodes are labeled BLACK, WHITE, or
GRAY. The basic unit of decomposition is
a pixel and these are aggregated into 2 by
3 rectangles. At this level all nodes are
described by using a seven-valued entity

Computing Surveys, Vol. 16, No. 2, June 1984

corresponding to the number of constituent
BLACK pixels. The image is transmitted
in order of a breadth-first traversal of the
binary tree. Whenever a block of size
greater than 2 by 3 is described as BLACK
or WHITE, it ceases to participate in the
remainder of the transmission process. In
order to obtain an approximation, two val­
ues are transmitted for the 2 by 3 GRAY
blocks. The first set of values is just a five­
valued number indicating the shade of
GRAY for each block. Next, the exact de­
tails of each pixel in each block are trans­
mitted. Knowlton makes considerable use
of coding methods to obtain compression
factors as high as 8: 1 (i.e., for a 2 n and 2 n

image, instead of transmitting 22
n bits, as

few as 22
n-

3 bits are necessary). It should
be noted that these high compression fac­
tors do not necessarily result from the use
of a bintree over a quadtree. Instead, they
result from the uniformity of the image (i.e.,
blocks of WHITE and BLACK), and when
this is not the case, then they result from
coding groups of pixels. Somewhat similar
compression results, although they do not
exhibit progressiveness, have been obtained
by using DF-expressions [Kawaguchi and
Endo 1980).

The notion of a forest (see Section 2.2)
has been extended by Samet [Samet 1985c]
to develop a sequence of approximations to
a quadtree-encoded binary image that also
exhibits compression as well as progres­
siveness. The approximation sequence con­
sists of using the roots of the elements of
the forest of Jones and Iyengar (1984).
Each successive approximation constructs
a new forest for each element of the pre­
vious approximation that is not a terminal
node. The only difference is that the second
approximation uses a forest of maximal
squares that span the WHITE area of the
components of the first approximation.
This process is repeated, alternating
BLACK and WHITE approximations until
all elements of the approximation are ter­
minal nodes. This method works by alter­
nating an overestimation of the BLACK
area with an underestimation, and spiraling
in to the true image. Thus it avoids the
one-sidedness of the inner and outer ap­
proximation methods of Ranade et al.

The Quadtree and Related Hierarchical Data Structures • 227

[1982]. The nodes comprising the elements
of the approximation sequences are speci­
fied by use of locational codes.

It can be shown that use of forest-based
approximation methods leads to a number
of interesting properties. First, the total
number of nodes in the approximation se­
quence does not exceed the minimum of the
BLACK or WHITE nodes in the original
quadtree. Using a 512 by 512 image, reduc­
tions as high as 22 percent (with respect to
the minimum of the BLACK or WHITE
nodes) in the number of nodes have been
obtained [Samet 1985c]. As larger images
are used, the compression factor becomes
considerably greater. Second, the methods
yield a saving of space whenever the situa­
tion arises that three out of four sons have
the same type (i.e., BLACK or WHITE).
The worst-case scenario from a node­
counting standpoint is the checkerboard
(all the BLACK nodes must be transmit­
ted). Finally, we observe that the forest
method is biased in favor of approximating
objects having the shape of a "panhandle,"
whereas the inner and outer approxima­
tions [Ranade et al. 1982) are insensitive
to them.

Ismail and Steele (1980) make use of an
approximation method, termed aplc, that is
similar in spirit to the forest method [Sa­
met 1985c]. They treat each M by M block
in the image as BLACK if at least M 2

- 1
of its constituent pixels are BLACK. Sim­
ilarly, a M by M block is treated as WHITE
if at least M 2

- 1 of its pixels are WHITE.
Otherwise, the block is decomposed into
four blocks, and the same coding process is
recursively attempted. The principal differ­
ence between the two methods is that the
forest method is hierarchical, whereas the
aplc approximation is not in that if four
brother blocks of size 2 by 2 each contain
one WHITE pixel, they are treated as four
2 by 2 BLACK blocks and not as one 4 by
4 BLACK block. Also, the aplc method does
not lead to an exact reconstruction of the
image, whereas the forest method does.

2.14 Volume Data

Extension of the quadtree to represent
three-dimensional objects by use of octrees

Figure 38. Labeling of octants in an octree (octant 3
is not visible).

has been proposed independently by many
researchers [Hunter 1978; Jackins and
Tanimoto 1980; Meagher 1982; Reddy and
Rubin 1978). The process begins with a 2n
by 2n by 2n object array of unit cubes or
voxels [Jackins and Tanimoto 1980] (also
termed obels [Meagher 1982]). The octree
is an approach to object representation sim­
ilar to the region quadtree, and is based on
the successive subdivision of an object ar­
ray into octants. If the array does not con­
sist entirely of l's or entirely of O's, then it
is subdivided into octants, suboctants, etc.
until cubes (possibly single voxels) are ob­
tained that consist of l's or of O's; that is,
they are entirely contained in the region or
entirely disjoint from it. This process is
represented by a tree of out degree 8 in
which the root node represents the entire
object with octants labeled as in Figure 38,
and the leaf nodes correspond to those
cubes of the array for which no further
subdivision is necessary. Leaf nodes are
said to be BLACK or WHITE (alterna­
tively, FULL or VOID), depending on
whether their corresponding cubes are en­
tirely_ within or outside of the object, re­
spectively. All nonleaf nodes are said to be
GRAY. Figure 39 contains an example ob­
ject in the form of a staircase and its cor­
responding octree. The labels denote the
octant numbers associated with each son
by using the labeling convention of
Figure 38.

Many of the algorithms obtained for the
region quadtree, for example, the Boolean
operations, are easily extended to the octree
domain. Jackins and Tanimoto [1980] have

Computing Surveys, Vol. 16, No. 2, June 1984

228 • Hanan Samet

(a) (b)

Figure 39. Example object (a) and its octree (b). • • BLACK • "Full"; D •
WHITE• "VOID" (empty); 0 • GRAY.

adapted Hunter and Steiglitz's [1979a]
translation algorithm to the three-dimen­
sional domain. They also discuss rotation
by multiples of 90 degrees. Meagher [1982]
and Ahuja and Nash [1984) discuss differ­
ent approaches. Meagher [1982] also de­
scribes algorithms to perform scaling, ro­
tation, perspective transformation, and
hidden surface display. He observes that
memory and processing time requirements
for operations involving three-dimensional
objects are proportional to the surface area.
This is analogous to Hunter and Steiglitz'
[1979a] observation that for quadtrees
these requirements are proportional to the
perimeter of the object being represented.
Tamminen and Samet (1984] show how to
convert a boundary representation of a
solid to its corresponding octree by use of
connectivity labeling. Gillespie and Davis
(1981) discuss the projection of an octree
onto a plane formed by the axes resulting
in a quadtree. This is useful for display
purposes (see also Doctor and Torborg
1981]). Yau (1984] solves the projection
problem for sections orthogonal to a coor­
dinate axis as well as the more general
problem of a projection onto a plane of
arbitrary position and orientation. Yau and
Srihari (1983] present an algorithm for
constructing an N-dimensional octreelike
representation from multiple (N - !)-di­
mensional cross-sectional images for use in
processing medical images. Connolly (1984]
treats a similar problem by using range
data. Gargantini [1982b] makes use of a

Computing Surveys, Vol.16, No. 2, June 1984

pointerless representation termed a linear
octree (analogous to the linear quadtree
[Gargantini 1982a]) and shows how a num­
ber of primitive operations can be per­
formed.

Reddy and Rubin (1978] discuss three
representations for solid objects, one of
which is the octree. The second is a three­
dimensional generalization of the point
quadtree [Finkel and Bentley 1974], that
is, a decomposition into rectangular paral­
lelepipeds (as opposed to cubes) with planes
perpendicular to the x, y, and z axes. The
third breaks the object into rectangular
parallelepipeds that are not necessarily
aligned with an axis. The parallelepipeds
are of an arbitrary size and orientation. The
top level of the tree has a branching factor
of N. At this level of the tree, they store N
transformation matrices, T1 through TN,
where ~ach matrix is a 4 by 4 transforma­
tion that converts the object space point
into the coordinate system of its parallel­
epiped. Each parallelepiped is recursively
subdivided into parallelepipeds in the co­
ordinate space of the enclosing parallele­
piped. Reddy and Rubin prefer the third
approach for its ease of display. Situated
somewhere in between the second and third
approaches outlined above is the method of
Brooks and Lozano-Perez [1983) (see also
Lozano-Perez 1981]), who use a recursive
decomposition of space into an arbitrary
number of rectangular parallelepipeds, with
planes perpendicular to the x, y, and z axes,
to model space in solving the findpath or

The Quadtree and Related Hierarchical Data Structures • 229

mover's problem in robotics. This problem
arises when planning the motion of a robot
in an environment containing known ob­
stacles and the desired solution is a colli­
sion-free path that is obtained by use of a
search. Faverjon (1984] discusses an ap­
proach to this problem that uses an octree.

Faugeras and Ponce (1983] describe a
hierarchical data structure that they term
a prism tree. It is a ternary tree structure
that is a generalization of the strip tree of
Ballard (1981] (see Section 4) to hierarchi­
cally approximate surfaces by using a prism
as an enclosing box. The prism tree is built
from an initial triangulation of an object
by using a polyhedral approximation algo­
rithm [Faugeras et al. 1984]. Algorithms
are presented for intersecting surfaces and
finding neighbors in the sense of Samet
[1982a].

Representing surfaces (i.e., 2~-dimen­
sional images) by hierarchical methods is
an interesting area in which, unfortunately,
only a limited amount of work has been
done. DeFloriani et al. (1982] discuss a data
structure for multilevel surface represen­
tation consisting of a nested triangulated
irregular network [Lee and Schachter 1980]
that is used for surface interpolation and
also serves as a data compression mecha·
nism. Gomez and Guzman (1979] use a data
structure that is somewhat related to the
point quadtree. It is a recursive subdivision
of the surface into four triangles of unequal
size, which uses a process that stops when
a triangle matches the surface within a
prespecified error. Carlson [1982] describes
a quadtree-based data structure for repre·
senting surfaces to be used in the synthesis
of three-dimensional objects in the domain
of computer graphics. In general, the prin­
ciple of recursive subdivision is of consid­
erable importance in the processing of
curved surfaces [Cohen et al. 1980]. (See
also Mudur and Koparkar (1984].)

Multidimensional data in excess of three
dimensions can also be represented by n­
dimensional generalizations of the quad­
tree. Also interesting is the use of the fourth
dimension to represent time [Gillespie and
Davis 1981; Jackins and Tanimoto 1983;
Yau and Srihari 1983]; however, this rep­
resentation is somewhat difficult since the

dimensional units of the extra dimension
are different [i.e., units of time instead of
distance). Such techniques are potentially
useful in dealing with time-varying im­
agery.

3. POINT DATA

Multidimensional point data can be repre­
sented in a variety of ways. The represen­
tation ultimately chosen for a specific task
will be heavily influenced by the type of
operations to be performed on the data.
Our focus is on dynamic files (i.e., the num­
ber of data can grow and shrink at will) and
applications involving search. Knuth
(1973] lists three typical queries: (1) a point
query, which determines whether a given
data point is in the database, and if so, the
address corresponding to it; (2) a range
query (i.e., region search), which asks for a
set of data points within a given range (this
category includes the partially specified
query); (3) a Boolean query, which consists
of the previous type combined with the
Boolean operations AND, OR, NOT, etc. A
related operation is to find the n nearest
neighbors of a given point [Bentley 1975a].

Nievergelt et al. (1984] group searching
techniques into two categories: those that
organize the data to be stored and those
that organize the embedding space from
which the data are drawn. In a more formal
sense, the distinction is between trees and
tries, respectively. The binary search tree
[Knuth 1973] is an example of the former
since the boundaries of different regions in
the search space are determined by the data
being stored. Address computation meth­
ods such as radix searching [Knuth 1973]
(also known as digital searching) are ex­
amples of the latter, since region bounda­
ries are drawn at locations that are fixed
regardless of the content of the file. The
distinction can also be seen by comparing
the region quadtree [Klinger 1971] with the
point quadtree [Finkel and Bentley 1974];
that is, the former is based on a regular
decomposition, whereas the latter is not.

In the remainder of this section we fur­
ther elaborate on the point quadtree and
the k-d tree [Bentley 1975b]. Then, some
representations that are based on the re-

Computing Surveys, Vol. 16, No. 2, June 1984

230 • Hanan Samet

gion quadtree (i.e., on a regular decompo­
sition) are discussed and compared with the
point quadtree. We also present an appli­
cation of a region-based quadtree in repre­
senting small rectangles for very large-scale
integration (VLSI) applications [Kedem
1981], concluding with a brief overview of
methods that replace the hierarchical
structure of quadtrees by address compu­
tation. These techniques are directed, in
part, toward ensuring efficient access to
disk data, and are termed bucket methods.
In the same context some tree-based meth­
ods are also discussed. All of the examples
are limited to two dimensions although
they can be easily generalized to an arbi­
trary number of dimensions. It should be
borne in mind that our presentation is very
brief; that is, we do not analyze the per­
formance of these methods. Actually, the
field of multidimensional data structures is
a rapidly developing one, and this discus­
sion is necessarily limited to a detailed
presentation of methods that can be viewed
as direct applications of a quadtreelike re­
cursive subdivision approach.

3.1 Point Quacltrees and k-d Trees

The point quadtree [Finkel and Bentley
1974] is a multidimensional generalization
of a binary search tree. In two dimensions,
each data point is a node in a tree having
four sons, which are roots of subtrees cor­
responding to quadrants labeled in order
NW, NE, SW, and SE. Each data point is
assumed to be unique. The process of in­
serting into point quadtrees is analogous to
that used for binary search trees. In es­
sence, we search for the desired record on
the basis of its x and y coordinates. At each
node of the tree a four-way comparison
operation is performed and the appropriate
subtree is chosen for the next test. Reach­
ing the bottom of the tree without finding
the record means that it should be inserted
at this position. The shape of the resulting
tree depends on the order in which records
are inserted into it. For example, the tree
in Figure 2 is the point quadtree for the
sequence Chicago, Mobile, Toronto, Buf­
falo, Denver, Omaha, Atlanta, and Miami.
Deletion of a node is more complex [Samet

Computing Surveys, Vol. 16, No. 2, June 1984

1980c] as is balancing [Overmars and van
Leeuwen 1982].

Point quadtrees are especially attractive
in applications that involve search. How­
ever, they have also been used to solve
a measure problem for rectangular ranges
in three-space [van Leeuwen and Wood
1981]. A typical query is one that requests
the determination of all records within a
specified distance of a given record, that is,
all cities within 50 miles of Washington,
D.C. The efficiency of the point quadtree
lies in its role as a pruning device on the
amount of search that is required. Thus
many records will not need to be examined.
For example, suppose that in the hypothet­
ical database of Figure 2 we wish to find all
cities within eight units of a data point with
coordinates (83, 10). In such a case, there
is no need to search the NW, NE, and SW
quadrants of the root (i.e., Chicago with
coordinates (35, 40)). Thus we can restrict
our search to the SE quadrant of the tree
rooted at Chicago. Similarly, there is no
need to search the NW and SW quadrants
of the tree rooted at Mobile (i.e., coordi­
nates (50, 10)). Search operations using
point quadtrees are analyzed by Bentley
and Stanat [1975] and Lee and Wong
[1977]. Note that the search ranges are
usually orthogonally defined regions such
as rectangles or boxes. Other shapes are
also feasible as the above example demon­
strated (i.e., a circle). In order to handle
more complex search regions such as poly·
gons, Willard [1982] defines a polygon tree
where the x-y plane is subdivided by J lines
that need not be orthogonal, although there
are other restrictions on these lines. When
J = 2, the result is a point quadtree with
nonorthogonal axes.

Our examples of the use of the point
quadtree have been limited to two dimen­
sions. The problem with a large number of
dimensions is that the branching factor
becomes very large (i.e., 2" for k dimen­
sions), thereby requiring much storage for
each node as well as many NIL pointers for
terminal nodes. The k-d tree of Bentley
[Bentley 1975b] is an improvement on the
point quadtree that avoids the large
branching factor. In principle, it is a binary
search tree with the distinction that at each

The Quadtree and Related Hierarchical Data Structures • 231

(0,100) (I00, 100)

(60, 7!5)
TORONTO" (80. 6!5)

BUFFALO

(!5,45)
DENVER

t
y

'
(3!5, 40)

(2!5,35) CHICAGO

OMAHA

(8!5, 1!5)
(!50, IO) ATLANTA
MOBILE

(90,!5) t
MIAMI

10,0l (100,0)

x-
(a)

(b)

Figure 40. A k·d tree (b) and the records it represents (a).

level of the tree a different coordinate is
tested when determining the direction in
which a branch is to be made. Therefore in
the two-dimensional case (i.e., a 2-d tree!),
we compare x coordinates at the root and

at even levels (assuming the root is at level
0) and y coordinates at odd levels. Each
node has two sons. Figure 40 is the k-d tree
corresponding to the point quadtree of Fig­
ure 2, where the records have been inserted

Computing Surveys, Vol. 16, No. 2, June 1984

232 • Hanan Samet

t
y

•
(5, 45)
DENVER

(0,0l

•
(25,35)
OMAHA

.(35,40)
CHICAGO

(50, 10)
MOBILE•

• (60,75)
TORONlt (80,65)

•BUFFALO

(85, 15)
ATLANTA•

(90,5)
MIAMI•

(100,0)
x-

(a)

MOBILE CHICAGO
(50, IOI (35,451

(b)

ATLANTA TORONTO BUFFALO
(85,151 (60,751 (80,651

Figure41. Adaptive k·d tree. (a) Set of points in 2-space. (b) 2-d tree.

in the same order. Friedman et al. [1977]
report an improvement on the k-d tree that
relaxes the requirement of alternating tests
at the price of storing at each node an
indication of which coordinate is being
tested. Using this data structure, termed an
adaptive k-d tree, we can construct a bal­
anced k-d tree where records are stored only
at the terminal nodes. Figure 41 is the
adaptive k-d tree corresponding to the point

Computing Surveys, Vol. 16, No. 2, June 1984

quadtree of Figure 2. Before constructing
such a tree we must know all of the con­
stituent records. Thus its shape is inde­
pendent of the order in which the records
were encountered. However, adding a new
record requires rebuilding the tree. Thus it
is not a dynamic data structure.

In general, k-d trees are superior to point
quadtrees, with one exception: The point
quadtree is an inherently parallel data

The Quadtree and Related Hierarchical Data Structures • 233

structure and thus the comparison opera­
tion can be performed in parallel for the k
key values, whereas this cannot be done for
the k-d tree. Thus we can characterize the
k-d tree as a superior serial data structure
and the point quadtree as a superior par­
allel data structure. Linn (1973] discusses
the use of point quadtrees in a multiproces­
sor environment.

3.2 Region-Based Quadtrees

Although conceivably there are many ways
of adapting the region quadtree to represent
point data, our discussion is limited to two
methods. The first method assumes that
the domain of data points is discrete; they
are treated as if they are BLACK pixels in
a region quadtree. An alternative charac­
terization is to think of the data points as
nonzero elements in a square matrix. The
resulting data structure is called an MX
quadtree (MX for matrix), although the
term MX quadtrie would probably be more
appropriate. The MX quadtree is organized
in a similar way to the region quadtree. The
difference is that leaf nodes are BLACK or
empty (i.e., WHITE) corresponding to the
presence or absence, respectively, of a data
point in the appropriate position in the
matrix. For example, Figure 42 is the 23 by
23 MX quadtree corresponding to the data
of Figure 2. It is obtained by applying the
mapping f such that f(Z) = Z div 12.5 to
both x and y coordinates. The result of the
mapping is reflected in the coordinate val­
ues in the figure.

Each data point in an MX quadtree cor­
responds to a 1 by 1 square. For ease of
notation and operation using modulo and
integer division operations, the data point
is associated with the lower left corner of
the square. This adheres to the general
convention followed throughout this pres­
entation that the NE and SE quadrants are
closed with respect to the x coordinate and
the NW and NE quadrants are closed with
respect to they coordinate. Note that nodes
corresponding to data points are not
merged, whereas this is not the case for
empty leaf nodes. For example, the NW
and NE sons of node D in Figure 42 are
NIL and likewise for the NW son of node

A. However, it is undesirable to merge
nodes corresponding to data points as this
results in a loss of the identifying infor­
mation about the data points. Recall that
each data point is different, whereas the
empty leaf nodes have the absence of infor­
mation as their common property and thus
can be safely merged.

Data points are inserted into an MX
quadtree by searching for them. This search
is based on the location of the data point
in the matrix (e.g., the discretized values of
its x and y coordinate in the example of
Figure 42). An unsuccessful search termi­
nates at a leaf node. If this leaf node is
NIL, the space spanned by it may have to
be repeatedly subdivided until it is a 1 by 1
square. This process is termed splitting and
for a 2" by 2" MX quadtree, it will have to
be performed at most n times. The shape
of the MX quadtree is independent of the
order in which data points are inserted into
it. Deletion of nodes is slightly more com­
plex and may require collapsing of nodes­
the direct counterpart of the node-splitting
process outlined above.

The MX quadtree is useful in a number
of applications. It serves as a basis of a
quadtree matrix manipulation system [Sa­
met and Krishnamurthy 1983). It is used
by Letelier [1983] to represent silhouettes
of hand motions to aid in the telephonic
transmission of sign language for the hear­
ing impaired. DeCoulon and Johnsen
[1976] describe its use in the coding of black
and white facsimiles for efficient transmis­
sion.

The MX quadtree is adequate as long as
the domain of the data points is discrete
and finite. If this is not the case, then the
data points cannot be represented since the
minimum separation between the data
points is unknown. This leads us to an
alternative adaptation of the region quad­
tree to point data that associates data
points (that need not be discrete) with
quadrants. We call it a PR quadtree (P for
point and R for region) although again the
term PR quadtrie would probably be more
appropriate. The PR quadtree is organized
in the same way as the region quadtree.
The difference is that leaf nodes are either
empty (i.e., WHITE) or contain a data

Computing Surveys, Vol. 16, No. 2, June 1984

234 • Hanan Samet

(0,8) (8,8)

(4,6)
TORONTO

(6,S)
8UFFAL.0

t
y

(0,3) 2,3)
DENVEI CHICAGO

(2,2)
OMAHA -~I) -... "M

(4,0I (7,0)
MOBIL.E MIAMI

(0,0) (8,0)
x­

(a)

TORONTO BUFFAL.0 DENVER CHICAGO OMAHA MOBILE ATLANTA MIAMI

(b)

Figure 42. A MX quadtree (b) and the records it represents (a).

point (i.e., BLACK) and its coordinates. A
quadrant contains at most one data point.
For example, Figure 43 is the PR quadtree
corresponding to the data of Figure 2. Or­
enstein (1982] describes an analogous data
structure using binary trees rather than
quadtrees. Such a data structure could be

Computing Surveys, Vol.16, No. 2, June 1984

called a k-d PR quadtree or even better
simply a k-d trie.

Data points are inserted into PR quad­
trees in a manner analogous to that used to
insert in a point quadtree; that is, a search
is made for them. Actually, the search is
for the quadrant in which the data point,

The Quadtree and Related Hierarchical Data Structures • 235

(0,100) (100,100)

(60, 75)
TORONTO

• (80,65)
BUFFALO

t
y • (5,45) i<J', 40)

OEN VER l;HCAGO

(25,3510
OMAHA

•

Bll,1$)

~
t (50,101 1~~1

I MOBILE •
(0,0) (100,0)

x-
(a)

CHICAGO OMAHA ATLAN'lll MIAMI

(b)

Figure 43. A PR quadtree (b) and the records it represents (a).

say A, belongs (i.e., a leaf node). If the
quadrant is already occupied by another
data point with different x and y coordi­
nates, say B, then the quadrant must re­
peatedly be subdivided (termed splitting)
until nodes A and B no longer occupy the
same quadrant. This may result in many
subdivisions, especially if the Euclidean
distance between A and B is very small.

The shape of the resulting PR quadtree is
independent of the order in which data '
points are inserted into it. Deletion of nodes
is more complex and may require collapsing
of nodes, that is, the direct counterpart of
the node-splitting process outlined above.

Matsuyama et al. [1984) discuss the use
of a PR quadtree in partitioning a point
space into "buckets" of a finite capacity. As

Computing Surveys, Vol. 16, No. 2, June 1984

236 • Hanan Samet

a bucket overflows, a partition into four,
equal-sized squares is made. Anderson
[1983] makes use of a PR quadtree (termed
a uniform quadtree) to store endpoints of
line segments to be drawn by a plotter. The
goal is to minimize pen plotting time by
choosing the line segment to be output next
whose end point is closest to the current
pen position. Samet and Webber [1983]
represent polygonal maps, for example, Vo­
ronoi diagrams, using a variant of the PR
quadtree. It has the advantage that edges
are represented exactly, thereby avoiding
the edge width problem associated with the
methods of Hunter and Steiglitz [1979a]
for polygons.

3.3 Comparison of Point Quadtrees
and Region-Based Quadtrees

The comparison of the MX, PR, and point
quadtrees reduces, in part, to a comparison
of their respective decomposition methods.
A major difference among the three data
structures is in the size of the regions as­
sociated with each data point. For the point
quadtree there is no a priori constraint on
the size of the space spanned by the quad­
tree (i.e., the x and y coordinates of the
data points). For both the MX and PR
quadtrees the space spanned by the quad­
tree is constrained to a maximum width
and height. All three quadtrees result in the
association of one rectangular region with
each data point. The point quadtree pro­
duces a rectangle that may, at times, be of
infinite width and height. For the MX
quadtree this region must be a square with
a particular size associated with it. This
size is fixed at the time the MX quadtree
is defined and is the minimum permissible
separation between two data points in the
domain of the MX quadtree (equivalently,
it is the maximum number of elements
permitted in each row and column of the
corresponding matrix). The PR quadtree
also has a square region, and its size de­
pends on what other data points are cur­
rently represented by nodes in the quad­
tree. In the case of the MX quadtree there
is a fixed discrete coordinate system asso­
ciated with the space spanned by the quad­
tree, whereas no such limitation exists for

CQmputing Surveys, Vol.16, No. 2,June 1984

the PR quadtree. The advantage of such a
fixed coordinate system is that there is no
need to store coordinate information with
a data point's leaf node. The disadvantage
is that the discretization of the domain of
the data points limits the differentiation
between data points.

The size arid shape of a quadtree are
important from the standpoint of efficiency
of both storage and search operations. The
size and shape of the point quadtree are
extremely sensitive to the order in which
data points are inserted into it during the
process of building it. This means that for
a point quadtree of M records, its maximum
depth is M - 1 (i.e., one record is stored at
each level in the tree), whereas its mini­
mum depth is llog.(3.M)J (i.e., each level
in the tree is completely full), where we
assume that the root of the tree has a depth
of 0. In contrast, the shape and size of the
MX and PR quadtrees are independent of
the insertion order. For the MX quadtree
all nodes corresponding to data points ap­
pear at the same depth in the quadtree. The
depth of the MX quadtree depends on the
size of the space spanned by the quadtree
and the maximum number of elements per­
mitted in each row and column of the cor­
responding matrix. For example, for a 2n
by 2 n matrix, all data points will appear as
leaf nodes at a depth of n. The size and
shape of the PR quadtree depend on the
data points currently in the quadtree. The
minimum depth of a PR quadtree for M >
1 data points is rlog4(M - 1)1 (i.e., all the
data points are at the same level), whereas
there is no upper bound on the depth in
terms of the number of data points. In
particular, for a square region of side length
s, such that the minimum Euclidean dis­
tance separating two points is d, the maxi­
mum depth of the quadtree can be as high
as rlog2((s/d). v'2)1.

The volume of data also affects the com­
parison among the three quadtrees. When
the volume is very high, the MX quadtree
loses some of its advantage since an array
representation may be more economical in
terms of space, as there is no need for Jinks.
Whereas the size of the PR quadtree was
seen to be affected by clustering of data
points, especially when the number of data

The Quadtree and Related Hierarchical Data Structures • 237

points is relatively small, this is not a factor
in the size of a point quadtree. However,
when the volume of data is large and is
uniformly distributed, the effect of cluster­
ing is lessened and there should not be
much difference in storage efficiency be­
tween the point and PR quadtrees.

3.4 CIF Quadtrees

The MX-CIF quadtree is a quadtreelike
data structure devised by Kedem (1981]
(and called a quad-CIF tree, where CIF
denotes Caltech Intermediate Form) for
representing a large set of very small rec­
tangles for application in VLSI design rule
checking. The goar is to locate rapidly a
collection of all objects that intersect a
given rectangle. An equivalent problem is
to insert a rectangle into the data structure
under the restriction that it does not inter­
sect existing rectangles. The MX-CIF
quadtree is organized in a similar way to
the region quadtree. A region is repeatedly
subdivided into four equal-sized quadrants
until blocks are obtained that do not con­
tain rectangles. As the subdivision takes
place, a set containing all of the rectangles
that intersect the lines passing through it
is associated with each subdivision point.
For example, Figure 44 contains a set of
rectangles and its corresponding MX-CIF
quadtree. Once a rectangle is associated
with a subdivision point, say P, it is not
considered to be a member of any of the
sons of the node corresponding to P. For
example, in Figure 44, node D spans a space
that contains both rectangles 11 and 12.
However, only rectangle 11 is associated
with node D, whereas rectangle 12 is asso­
ciated with node F.

Our definition of an MX-CIF quadtree is
very similar to that of an MX quadtree
with the following differences. First, data
are associated with both terminal and non­
terminal nodes. Nevertheless, the analog of
a WHITE node is present and is a NIL
pointer in the direction of a quadrant that
contains no rectangles. Second, we are rep­
resenting rectangles rather than points.
This is fortunate because it provides a ter­
mination condition for the subdivision
process in forming an MX quadtree. Sec-

tion 3.2 demonstrates that MX quadtrees
are defined for a domain whose elements
must be subdivision points of the space
being represented. The nonzero width of
the rectangles ensures that they overlap
with the subdivision points.

The set of the rectangles that intersect
the . lines passing through a subdivision
point is subdivided into two sets. For ex­
ample, consider subdivision point P cen­
tered at (CX, CY) that partitions a 2·LX
by 2 ·LY rectangular area. All input rectan­
gles that intersect the line x = ex form one
set, and all input rectangles that intersect
the line y = CY form the other set. Equiv­
alently, these sets correspond to the rectan­
gles intersecting the y and x axes, respec­
tively, passing through (CX, CY). If a rec­
tangle intersects both axes (i.e., it contains
the subdivision point P), then we adopt the
convention that it is stored with the set
associated with the y axis. These subsets
are implemented as binary trees, which in
actuality are one-dimensional analogs of
the MX quadtree. For example, Figure 45
illustrates the binary tree associated with
the x and y axes passing through A, the
root of the MX-CIF quadtree of Figure 44.

Rectangles are inserted into an MX-CIF
quadtree by searching for the position that
they are to occupy. We assume that the
input rectangle does not overlap any of the
existing rectangles. This position is deter­
mined by a two-step process. First, the first
subdivision point must be located such that
at least one of its axis lines (i.e., the quad­
rant lines emanating from the subdivision
point) intersects the input rectangle. Sec­
ond, having found such a point and an axis,
say point P and axis V, the subdivision
process is repeated for the V axis until the
first subdivision point that is contained
within the rectangle is located. During the
process of locating the destination position
for the input rectangle, the space spanned
by the MX-CIF quadtree may have to be
repeatedly subdivided (termed splitting),
creating new nodes in the process. As was
the case for the MX quadtree, the shape of
the resulting MX-CIF quadtree is inde­
pendent of the order in which the rectan­
gles are inserted into it. Deletion of nodes
is more complex and may require collapsing

Computing Surveys, Vol. 16, No. 2, June 1984

238 • Hanan Samet

2

- r;4 ri.f.l
~1-

-..;,1·-

I

.

6

. . r.-- -- 9 . . .
Ii.

.
8

10 11

f ~
(a)

A {2,6,7,8,9,10}

(b)

F
{12}

Figure 44. A MX-CJF quadtree (b) and tbe rectangles it represents (a).

of nodes, that is, the direct counterpart of
the node-splitting process outlined above.

The most common search query is one
that seeks to determine whether a given
rectangle overlaps (i.e., intersects) any of
the existing rectangles. It is a prerequisite
to the successful insertion of a rectangle.
Range queries can also be performed. How­
ever, they are more usefully cast in terms
of finding all the rectangles within a given
area. Another popular query seeks to deter­
mine whether one collection of rectangles
can be overlaid on another collection with-

Computing Surveys, Vol.16, No. 2, June 1984

out any of the component rectangles inter­
secting one another. These two operations
can be implemented by using variants of
algorithms developed for handling set op­
erations (i.e., union and intersection) in
region-based quadtrees [Hunter and Steig­
litz 1979a; Shneier 1981a]. In particular,
the range query can be answered by inter­
secting the query rectangle with the MX­
CIF quadtree. The overlay query can be
answered by a two-step process. The two
MX-CIF quadtrees are first intersected. If
the result is empty, then they can be safely

The Quadtree and Related Hierarchical Data Structures • 239

XA YA 8

(a) (b)

YL
2

Figure 45. Binary trees for the (a) x aitis and (b) y
aitis passing through node A in Figure 44.

overlaid and all that is needed is to perform
a union of the two MX-CIF quadtrees. Boo­
lean queries can also be handled easily.

The problem of determining whether a
given rectangle overlaps any of an existing
set of rectangles by use of quadtrees is also
addressed by Abel and Smith [1983]. Each
rectangle is associated with the node cor­
responding to the smallest block that to­
tally encloses it (i.e., its minimum bounding
"quadrant"). This is the same representa­
tion used by Kedem, except that Kedem
uses binary trees to organize the rectangle
associated with each quadtree node. Abel
and Smith do not use a pointer-based quad­
tree representation. Instead, they represent
each rectangle by the locational code (see
Section 2.2) of its node. These codes are
subsequently organized in a B+-tree [Comer
1979]. Note that many rectangles have
identical locational codes, and thus the rec­
tangle dimensions must also be stored along
with the locational codes in the B+ -tree.
For example, for the set of rectangles in
Figure 44, rectangles 2, 6, 7, 8, 9, and 10
have the same locational code as do rectan­
gles 3, 4, and 5, albeit a different one.
Hinrichs and Nievergelt [1983] describe
another approach to this problem that is
based on use of the Grid File, a hierarchical
organization of point data, discussed in
Section 3.5.

3.5 Bucket Methods

All of the data structures discussed above
are primarily designed for in core applica­
tions, although their uses can be extended

elsewhere. The problem is that when data
are stored in external storage, the need to
follow pointers may lead to page faults. To
overcome this, methods have been designed
that collect the points into sets (termed
buckets) corresponding to the storage unit
(i.e., page) of the disk. The remaining task
is to organize the access to these buckets;
this is often done by replacing the tree
structure with an array, thereby facilitating
address computation. We term such tech­
niques bucket methods, and their aim is to
ensure efficient access to disk data. The
simplest bucket method is the fixed-grid
(or cell) method [Knuth 1973, p. 554; Bent­
ley and Friedman 1979], which is popular
among cartographers. It divides the space
into equal-sized cells (i.e., squares and
cubes for two- and three-dimensional data,
respectively) having the width equal to the
search radius. If data are sought by using
only a fixed-search radius, then the fixed
grid is an efficient structure. It is also effi­
cient when points are uniformly distributed
(it corresponds to hashing [Knuth 1973]).
For a nonuniform distribution it is less
efficient, because buckets may be unevenly
filled, leading to nearly empty pages as well
as long overflow chains. The data structure
is essentially a directory in the form of a k­
dimensional array with one entry per cell.
Each cell may be implemented as a linked
list to represent the points within it. Figure
46 is an example in which a grid 'represen­
tation for the data of Figure 2 is shown for
a search radius consisting of a square of
size 20 by 20; that is, by assuming a 100 by
100 coordinate space, we have 25 squares
of equal size. Its deficiency is a fixed size
for the blocks, which results in both over­
flow and underflow. The methods pre­
sented below are examples of attempts to
address this deficiency from both hierar­
chical and nonhierarchical viewpoints. We
conclude with a discussion of some related
work from the hashing area.

The Grid File of Nievergelt et al. [1984]
is a variation of the grid method, which
relaxes the requirement that cell division
lines be equidistant. Its goal is to retrieve
records with at most two disk accesses. This
is done by using a grid directory consisting
of grid blocks, which are analogous to the

Computing Surveys, Vol. 16, No. 2, June 1984

240 • Hanan Samet

(0,100)

(!5,4!5)
DENVER

•

(100,100)

(60, 7!5)
TORONTO

(80, 6!5)
BUFFALO

(3!5, 40)
CHICAGO

•
(2!5, 3!5)
OMAHA

(!50,10) .(6!5, 1!5)
MOBILE ATLANTA • (90,!5.J

MIAMI
(0,0) (100,0)

Figure 46. Grid representation corresponding to Figure 2 with a search
radius of 20.

cells of the fixed-grid method. All records
in one grid block are stored in the same
bucket. However, several grid blocks can
share a bucket as long as the union of these
grid blocks forms a k-dimensional rectangle
(i.e., a convex region) in the space of rec­
ords. Although the regions of the buckets
are piecewise disjoint, together they span
the space of records.

The purpose of the grid directory is to
maintain a dynamic correspondence be­
tween the grid blocks in the record space
and the data buckets. The grid directory
consists of two parts. The first is a dynamic
k-dimensional array, which contains one
entry for each grid block. The values of the
elements are pointers to the relevant data
buckets. Usually buckets will have a capac­
ity of 10-1000 records. Thus the entry in
the grid directory is small in comparison to
a bucket. We are not concerned with how
records are organized within a bucket (e.g.,
linked list and tree). The grid directory may
be kept on disk. The second part of the grid
directory is a set of k one-dimensional ar­
rays called linear scales. These scales define
a partition of the domain of each attribute
and enable the accessing of the appropriate
grid blocks by aiding in the computation of

Computing Surveys, Vol. 16, No. 2. June 1984

their address on the basis of the value of
the relevant attributes. The linear scales
are kept in core. It should be noted that the
linear scales are useful in guiding a range
query by indicating the grid directory ele­
ments that overlap the query range.

As an example, consider Figure 4 7, which
shows the Grid File representation for the
data in Figure 2. The bucket capacity is
two records. There are k = 2 different at­
tributes. The grid directory consists of nine
grid blocks and six buckets labeled A-F.
We refer to grid blocks as if they are array
elements; that is, grid block (i, j) is the
element in row i (starting at the bottom)
and column j (starting at the left) of the
grid directory. Grid blocks (2, 2), (3, 1), and
(3, 3) are empty; however, they do share
buckets with other grid blocks. In particu­
lar, grid block (3, 1) shares bucket D with
grid block (2, 1), grid blocks (3, 2) and (3, 3)
share bucket B, and grid blocks (2, 2) and
(2, 3) share bucket E. The sharing is indi­
cated by the broken lines. Figure 48 con­
tains the linear scales for the two attributes
(i.e., the x andy coordinates). For example,
executing a FIND command with x = 80
and y = 65 causes the access of the bucket
associated with the grid block in row 2 and

The Quadtree and Related Hierarchical Data Structures • 241

(0, IOO) (100,100)

@
@l

@ ~60,75) I
l'alONTOI

• I ---------

t
y

@ I .<eo,65)

® I BUFFALO
I

® (5,4e) I

•DEMVER
I

•
(2!5.35). (35,40) © ® OM-.HA CHICAGO

(lie.IS)
"'11..ANTA

(50.10) •
@ •MOelL.E (90,5)

MIAMI•

(0,0) x- (100,0)

Figure 47. Grid directory for the data of Figure 2.

column 3 of the grid directory of Figure 47.
The Grid File is attractive, in part, be­

cause of its graceful growth as more and
more records are inserted. As the buckets
overflow, a splitting process is applied that
results in the creation of new buckets and
a movement ofrecords. Two types of bucket
splits are possible. The first, and most com­
mon, occurs when several grid blocks share
a bucket that has overflowed. For example,
suppose Boise at (10, 80) and Fargo at (15,
75) are inserted in sequence in Figure 47.
Boise is inserted in bucket D because it
belongs in grid block (3, 1), which currently
shares bucket D with grid block (2, 1).
Fargo also belongs to grid block (3, 1);
however, bucket D is now full. In this case,
we merely need to allocate a new bucket
and adjust the mapping between grid blocks
and buckets. The second type of a split
arises when we must refine a grid partition.
It is triggered by an overflowing bucket, all
of whose records lie in a single grid block
(e.g., the overflow of bucket A upon inser­
tion of Kansas City at (30, 30) in Figure
4 7). In this case there exists a choice with
respect to the dimension (i.e., axis) and the
location of the splitting point (i.e., we do
not have to split at the midpoint of an
interval).

The counterpart of splitting is merging.
There are two possible instances when

X: 0 I 4!5 I 10 J 100

2. 3
(a)

Y: 0 I 4a I 70 1100

2. 3
(b)

Figure 48. Linear scales for (a) x and (b) y corre·
sponding to the grid directory of Figure 47.

merging is appropriate: (1) Bucket merging,
the most common instance, arises when a
pair of neighboring buckets are empty or
nearly empty and their coalescing has re­
sulted in a convex bucket region; (2) direc­
tory merging arises when two adjacent cross
sections in the grid directory each have
identical bucket values. For example, in the
case of the two-dimensional grid directory
of Figure 49, where all grid blocks in column
2 are in bucket C and all grid blocks in
column 3 are in bucket D, if the merging
threshold is satisfied, then buckets C and
D can be merged and the linear scales mod­
ified to reflect this change. Generally, di­
rectory merging is of little practical interest
since, even if merging is allowed to occur,
it is probable that splitting will soon have
to take place.

Merrett and Otoo describe a technique
termed multipaging [Merrett 1978; Merrett
and Otoo 1982] which is very similar to the
Grid File. It also uses a directory and main­
tains a set of linear scales called axial ar­
rays. In fact, the Grid File uses multipaging
as an index to a paged data structure. A
database that is organized by using multi­
paging differs from the Grid File in that it
requires bucket overflow areas. This means
that it has a different bucket overflow cri­
terion. Thus it does not guarantee that
every record can be retrieved with two disk
accesses. In particular, multipaging makes
use of a load factor and a probe factor,
which are related to the number of over­
flowing data items. This makes insertion
and deletion (as well as bucket splitting
and merging) somewhat more complicated
than when the Grid File is used.

Computing Surveyst Vol. 16, No. 2, June 1984

242 • Hanan Samet

A c D E

A D F

B c D G

Figure 49. Example grid directory illustrating direc­
tory merging.

The EXCELL method of Tamminen
(1981 J is a bintree together with a directory
array providing access by address compu­
tation. It can also be viewed as an adapta­
tion of extendible hashing [Fagin et al.
1979] to multidimensional point data. It
implements EXHASH, the extendible
hashing hash function, by interleaving the
most significant bits of the data (analogous
to the locational codes discussed in Section
2.2). Similar in spirit to the Grid File, it is
based on a regular decomposition and is
useful in providing efficient access to, and
an efficient representation of, geometric
data. It also makes use of a grid directory;
however, all grid blocks are of the same
size. The principal difference is that grid
refinement for the Grid File splits only one
interval in two and results in the insertion
of a (k - !)-dimensional cross section. In
contrast, a grid refinement for the EX­
CELL method splits all intervals in two
(thus the partition points are fixed) for the
particular dimension and results in dou­
bling the size of the grid directory. There­
fore the grid directory grows more gradually
when the Grid File is used, whereas use of
EXCELL reduces the need for grid refine­
ment operations at the expense of larger
directories in general because of a sensitiv­
ity to the distribution of the data. However,
a large bucket size reduces the effect of
nonuniformity unless the data consist en -
tirely of a few clusters. The fact that all
grid blocks define equal-sized regions (and
convex as well) means that EXCELL does
not require a set of linear scales to access
the grid directory as is needed for the Grid
File.

An example of the EXCELL method is
considered in Figure 50, which shows the
representation for the data in Figure 2.

Computing Surveys, Vol. 16, No. 2, June 1984

(0,100) (I00,100)

I I

I I
I (60,?el I
I TORONTO I
I • 1(80,65)

t
I fBUFFALO

I I •
@ 1@ © •©

y
• l35,40)

CHICAGO
(5,45) •
OEN VER

(25,35)
OMAHA (85,15)

(50,10)
ATl..ANTA

•(90,5)

® ® ®BILE ®M!AMI

(0,0) x- (100,0)

Figure 50. EXCELL representation corresponding
to Figure 2.

Again, the convention is adopted that a
rectangle is open with respect to its upper
and right boundaries and closed with re­
spect to its lower and left boundaries. The
capacity of the bucket is two records. There
are k = 2 different attributes. The grid
directory is implemented as an array and
in this case it consists of eight grid blocks
(labeled in the same way as for the Grid
File) and six buckets labeled A-F. Note
that grid blocks (2, 3) and (2, 4) share
bucket C, whereas grid blocks (2, 1) and
(2, 2), despite being empty, share bucket D.
The sharing is indicated by the broken
lines. Furthermore, when a bucket size of 1
is used, the partition of space induced by
EXCELL equals that of a PR k-d tree
[Orenstein 1982].

As a database represented by the EX­
CELL method grows, buckets will overflow.
This leads to the application of a splitting
process that results in the creation of new
buckets and a movement of records. As in
the case of the Grid File, two types of
bucket splits are possible. The first, and
most common, occurs when several grid
blocks share a bucket that has overflowed.
In this case, a new bucket is allocated and
the mapping between grid blocks and buck­
ets is adjusted. The second type of a split
arises when a grid partition must be re-

The Quadtree and Related Hierarchical Data Structures • 243

fined; this causes a doubling of the direc­
tory. It is triggered by an overflowing
bucket that is not shared among several
grid blocks (e.g., the overflow of bucket A
upon insertion of Kansas City (30, 30) in
Figure 50). The split occurs along the dif­
ferent attributes in a cyclic fashion (first
split along attribute x, then y, then x, etc.).
For both types of bucket splits, a situation
may arise in which none of the elements in
the overflowing buckets belongs to the
newly created bucket, with the result that
the directory will have to be doubled more
than once. This results from the fact that
the splitting points are fixed for EXCELL.
For example, this will occur when we at­
tempt to insert Kansas City at (30, 30) in
Figure 50 since the first directory doubling
at y = 25 and y = 75 will still have Chicago,
Omaha, and Kansas City in the same grid
block. Thus we see that the size of the
EXCELL grid directory is sensitive to the
distribution of the data. However, a large
bucket size reduces the effect of nonuni­
formity unless the data consist entirely of
a few clusters.

The counterpart of splitting is merging.
However, it is considerably more limited in
scope for EXCELL than for the Grid File.
Also, it is less likely to arise because EX­
CELL has been designed primarily for use
in geometrical applications in which dele­
tion of records is not so prevalent. As with
the Grid File, however, there are two cases
where merging is appropriate, that is,
bucket merging and directory merging.

Both the Grid File and EXCELL organ­
ize space into buckets and use directories
in the form of arrays to access them. The
similarity to the quadtree lies in the map­
pings induced by the directories (i.e., EX­
CELL with the region quadtree and the
Grid File with the point quadtree). Trees
can also be used to access the buckets
[Knott 1971). Matsuyama et al. [1984)
compare a technique of accessing buckets
by use of a PR quadtree with one that uses
an adaptive k-d tree. Robinson (1981) in­
troduces the k-d-B-tree, which is a gener­
alization of the B-tree to allow multiattri­
bute access. O'Rourke [1981; O'Rourke and
Sloan 1984) makes use of an adaptive k-d
tree, which he calls a dynamically quantized

space, to access buckets of data for use in
multidimensional histogramming to aid in
the focusing of the Hough transform. Sloan
(1981; O'Rourke and Sloan 1984] addresses
the same problem as O'Rourke, albeit with
a different data structure, which he calls a
dynamically quantized pyramid. It is based
on the pyramid data structure (see Section
2.12). Here the number of buckets is fixed.
It differs from the conventional pyramid in
that the partition points at the various
levels are allowed to vary rather than being
fixed and are adjusted as data are entered.
The result is somewhat related to a com­
plete point quadtree [Knuth 1975, p. 401]
with buckets.

There has also been considerable work
on representing multidimensional point
data by use of linear hashing. Linear hash­
ing [Litwin 1980] methods are attractive
because they provide for linear growth of
the file (i.e., one bucket at a time) without
requiring a directory. In contrast, extendi­
ble hashing [Fagin et al. 1979] (e.g., EX­
CELL) and the Grid File methods require
extra storage in the form of directories.
When a bucket overflows, the directory
doubles in size in the case of extendible
hashing, whereas in the case of the Grid
File it results in the insertion of a (k - !)­
dimensional cross section. Neither EX­
CELL nor the Grid File need overflow
pages, whereas methods based on linear
hashing generally do, although this may be
unnecessary. Bit interleaving (e.g., attrib­
uted by Bentley [1975a] to McCreight, but
see the discussion of the Morton matrix
[Morton 1966] in Section 2.2) is used by a
number of researchers [Burkhardt 1983;
Orenstein 1983; Orenstein and Merrett
1984; Ouksel and Scheuermann 1983; Tropf
and Herzog 1981] to create a linear order
on the multidimensional domain of the
data. Tropf and Herzog (1981] and Oren­
stein and Merrett [1984] discuss its use in
range searching. Burkhardt [1983] terms it
shuffle order, and adapts it to linear
hashing in the same way that EXCELL
adapts it to extendible hashing, and uses
it to evaluate range queries. Ouksel and
Scheuermann [1983] call it z order. Oren­
stein (1983] discusses the problems associ­
ated with such an approach. He points out

Computing Surveys, Vol.16, No. 2, June 1984

244 • Hanan Samet

that the resulting file may contain a num­
ber of sparsely filled ·buckets, which will
result in poor performance for sequential
access. He goes on to propose a modifica­
tion that unfortunately, unlike linear hash­
ing, does not result in a bucket retrieval
cost of one or two disk reads (for the hash
operations). In contrast, directory-based
methods such as the Grid File and EX­
CELL do not suffer from such a problem
to the same extent because, since the direc­
tory consists of grid blocks and several grid
blocks can share a bucket, the sparseness
issue can be avoided.

4. CURVILINEAR DATA

Section 2 was devoted to approaches to
region representation that are based on de­
scriptions of their interiors. In this section
we focus on representations that specify
boundaries of regions. This is done in the
more general context of data structures for
curvilinear data. The simplest representa­
tion is the polygon in the form of vectors
[Nagy and Wagle 1979], which are usually
specified in the form of lists of pairs of x
and y coordinate values corresponding to
their start and end points. One of the most
common representations is the chain code
[Freeman 1974] (described in Section 2.3),
which is an approximation of a polygon.
Other popular representations include ras­
ter-oriented methods [Merrill 1973; Peu­
quet 1979], as well as a combination of
vectors and rasters (e.g., vasters [Peuquet
1983]). There has also been considerable
interest recently in hierarchical represen­
tations. These are primarily based on rec­
tangular approximations to the data [Bal­
lard 1981; Burton 1977; Peucker 1976]. In
particular, Burton [1977] uses upright rec­
tangles, Ballard (1981] uses rectangular
strips of arbitrary orientation, and Peucker
[1976] uses sets of bands. There also exist
methods that are based on a regular decom­
position in two dimensions, as reported by
Hunter and Steiglitz [1979a], Shneier
(1981c], and Martin [1982]. Note that our
primary focus is on the facilitation of set
operations and not ease of display, which
is a characterization of B-splines and Be­
zier methods [Cohen et al. 1980].

C-Omputing Surveys, Vol.16, No. 2, June 1984

In many applications polygons are not
unrelated, but together form a partition of
the study area (termed a polygonal map). It
is possible to use the above representations
for each curve that bounds two adjacent
regions. However, it is often preferable to
represent the complete network of bound­
aries with a single hierarchical data struc­
ture. Some examples include the line quad­
tree of Samet and Webber (1984], the PM
quadtree of Samet and Webber [1983], and
the edge variant of the EXCELL method
of Tamminen [1981]. In order to avoid con­
fusion with the point space formulation of
the EXCELL method, discussed in Section
3.5, we shall use the term edge-EXCELL.
In the remainder of this section, we elabo­
rate further on the strip tree and also on
the representations that are based on a
regular decomposition, concluding with a
brief comparison of these methods.

4.1 Strip Trees

The strip tree is a hierarchical representa­
tion of a single curve that is obtained by
successively approximating segments of it
by enclosing rectangles. The data structure
consists of a binary tree whose root repre­
sents the bounding rectangle of the entire
curve. For example, consider Figure 51,
where the curve between points P and Q,
at locations (xp, yp) and (xQ, YQ), respec­
tively, is modeled by a strip tree. The rec­
tangle associated with the root, A in this
example, corresponds to a rectangular strip
of maximum width, enclosing the curve,
whose sides are parallel to the line joining
the endpoints of the curve (i.e., P and Q).
Next, this rectangle is decomposed into two
parts at one of the points (termed a splitting
point) on the rectangle that is also part of
the curve. There is at least one such split­
ting point. If there are more, then the de­
composition is performed by using the
point that is at a maximum distance from
the line joining the endpoints of the curve.
If the curve is both continuous and differ­
entiable at the splitting point, then, of
course, the boundaries of the rectangle that
pass through these points are tangents to
the curve. This splitting process is recur-

The Quadtree and Related Hierarchical Data Structures • 245

E

Figure 51. A curve and its decomposition into strips.

Figure 52. Strip tree corresponding to Figure 51.

sively applied to the two sons until every
strip is of a width less than a predetermined
value. For Figure 51, the first splitting op­
eration results in the creation of strips B
and C. Strip C is further split, creating
strips D and E, at which point the splitting
process ceases. Figure 52 shows the result­
ing binary tree. Note that each node in the
strip tree is implemented as a record with
eight fields. Four fields contain the x and y
coordinates of the endpoints, two fields
contain pointers to the two sons of the
node, and two fields contain information
about the width of the strip (i.e., WL and WR

of Figure 51).
Figure 51 is a relatively simple example.

In order to be able to cope with more com­
plex curves, the notion of a strip tree must
be extended. In particular, closed curves
(e.g., Figure 53) and curves that extend past
their endpoints (Figure 54) require some
special treatment. The general idea is that
these curves are enclosed by rectangles that
are split into two rectangular strips, and
from now on the strip tree is used as before.
Note that the strip tree concept and the
related algorithms are regarded by Ballard

Figure 53. Modeling a closed curve by a strip tree.

Figure 54. Modeling a curve that extends past its
endpoints by a strip tree.

as completely expanded down to a primitive
level of unit line segments on a discrete
grid, even when the underlying curves are
collinear. In order to be able to handle
curves that consist of disconnected seg­
ments, strips are classified as either regular
or not and a special bit is associated with
each strip to indicate its status. Formally,
a curve is said to be regular if it is connected
and has its endpoints touching the ends of
the strip.

Like point and region quadtrees, strip
trees are useful in applications that involve
search and set operations. For example,
suppose that we wish to determine whether
a road crosses a river. By using a strip tree
representation for these features, answer­
ing this query means basically that we per­
form an intersection of the corresponding
strip trees. Three cases are possible, as is
shown in Figure 55. Figure 55a and b cor­
respond to the answers NO and YES, re-

Computing Surveys, Vol. 161 No. 2, June 1984

246 • Hanan Samet

D
OR

I I
(a) (b) (c)

Figure 55. Three possible results of intersecting two strip trees. (a) Null. (b) Clear. (c)
Possible.

spectively, whereas Figure 55c requires us
to descend further down the strip tree.
Other operations that can be performed
efficiently by using the strip tree data struc­
ture include the computation of the union
of two curves, length of a curve, areas of
closed curves, intersection of curves with
areas, point membership, etc. [Ballard
1981). In particular, for closed curves that
are well behaved, intersection and point
membership have an expected execution
time of O(log v), where v is the number of
points describing the curve. Strip trees are
also used by Gaston and Lozano-Perez
[1984] in robotic tactile recognition and
localization.

The strip tree can be characterized as a
top-down approach to curve approxima­
tion. Burton [1977) defines a related struc­
ture termed a BSPR (binary searchable
polygonal representation), which is a bot­
tom-up approach to curve approximation.
Once again, the primitive unit of approxi­
mation is a rectangle; however, in the case
of the BSPR all rectangles are upright (i.e.,
they have a single orientation). The curve
to be approximated is decomposed into a
set of simple sections, where each simple
section corresponds to a segment of the
curve that is monotonic in both the x and
y values of the points comprising it. The
tree is built by combining pairs of adjacent
simple sections to yield compound sections.
This process is repeatedly applied until the
entire curve is approximated by one com­
pound section. Thus we see that terminal
nodes correspond to simple sections and

Computing Surveys, Vol. 16, No. 2, June 1984

nonterminal nodes correspond to com­
pound sections. For a curve with 2n simple
sections, the corresponding BSPR has n
levels.

As an example of a BSPR consider the
regular octagon in Figure 56a having ver­
tices A-H. It can be decomposed into four
simple sections, that is, ABCD, DEF, FGH,
and HA. Figure 56b shows a level 1 approx­
imation to the four simple sections consist­
ing of rectangles AIDN, DJFN, HMFK,
and AMHL, respectively. Pairing up adja­
cent simple sections yields compound sec­
tions AIJF corresponding to AIDN and
DJFN, and AFKL corresponding to HMFK
and AMHL (see Figure 56c). More pairing
yields the rectangle for compound section
IJKL (see Figure 56d). The resulting BSPR
tree is shown in Figure 56e. By using the
BSPR, Burton shows how to perform point
in polygon determination and polygon in­
tersection. These operations are imple­
mented by tree searches and splitting op­
erations.

Both the strip tree and the BSPR share
the property of being independent of the
grid system in which they are embedded.
An advantage of the BSPR representation
over the strip tree is the absence of a need
for special handling of closed curves. How­
ever, the BSPR is not as flexible as the
strip tree. In particular, the resolution of
the approximation is fixed (i.e., once the
width of the rectangle is selected, it cannot
be varied). In fact, this is similar to the
advantage of quadtree-based decomposi­
tion methods over hexagon-based systems

The Quadtree and Related Hierarchical Data Structures • 247

' E

G

•

H

A B
(a) (b)

(c) (d)

(e)

Figure 56. (a) A regular octagon and (b)-(d) the three successive approxi­
mations resulting from the use of BSPR. (e) The resulting BSPR.

pointed out in Section 2; that is, for the
hexagon, we must decide a priori on the
finest resolution.

4.2 Methods Based on a Regular
Decomposition

Strip tree methods approximate curvilinear
data with rectangles. Quadtree methods
achieve similar results by use of a collection
of disjoint squares having sides of length
power of two. A number of variants of
quadtrees are currently in use, and can be
differentiated by the type of data that they

are designed to represent. All but the PM
quadtree of Samet and Webber [1983) and
the edge-EXCELL of Tamminen [1981) are
pixel based and yield approximations
whose accuracy is constrained in part by
the resolution of the data that they repre­
sent. They can be used to represent both
linear and nonlinear curves. The latter
need not be continuous or differentiable. In
contrast, the PM quadtree and the edge­
EXCELL yield an exact representation of
polygons or collections of polygons.

The edge quadtree of Shneier [1981c) is
an attempt to store linear feature infor-

Computing Surveys, Vol.16, No. 2, June 1984

24B • Hanan Samet

mation (e.g., curves) for an image (binary
and gray scale) in a manner analogous to
that used for storing region information. A
region containing a linear feature or part
thereof is subdivided into four squares re­
peatedly until a square is obtained that
contains a single curve that can be approx­
imated by a single straight line. Each leaf
node contains the following information
about the edge passing through it: magni­
tude (i.e., 1 in the case of a binary image or
the intensity in case it is a gray-scale im­
age), direction, intercept, and a directional
error term (i.e., the error induced by ap­
proximating the curve by a straight line
using a measure such as least squares). If
an edge terminates within a node, then a
special flag is set and the intercept denotes
the point at which the edge terminates.
Application of this process leads to quad­
trees in which long edges are represented
by large leaves or a sequence of large leaves.
However, small leaves are required in the
vicinity of corners or intersecting edges. Of
course, many leaves will contain no edge
information at all. As an example of the
decomposition that is imposed by the edge
quadtree, consider Figure 57, which is the
edge quadtree corresponding to the polygon
of Figure lB when represented on a 24 by 24

grid. Note that the edge quadtree in Figure
57 requires fewer blocks than Figure lB,
which is the representation of the polygon
when using the methods of Hunter and
Steiglitz [1979a].

Closely related to the edge quadtree is
the least square quadtree of Martin [1982).
In that representation, leaf nodes corre­
spond to regions that contain a single curve
that can be approximated by k (fixed a
priori) straight lines within a least square
tolerance. This enables the handling of
curved lines and uses fewer nodes than the
edge quadtree with greater precision. A cru­
der method is described by Omolayole and
Klinger [1980], where all parts of the image
that contain edge data are repeatedly de­
composed until a 2 by 2 quadrant is ob­
tained in which they store templatelike rep­
resentations of the edges. This is quite sim­
ilar to the MX quadtree, except that the
data are edges rather than points. However,
it is too low a level of representation in that

Computing Surveys, Vol. 16, No. 2, June 1984

Figure 57. The edge quadtree corresponding to the
polygon of Figure 18.

it does not take advantage of the hierarchi­
cal nature of the data structure.

The line quadtree of Samet and Webber
[1984] addresses the issue of hierarchically
representing images that are segmented
into a number of different regions rather
than mere foreground and background, as
is the case for conventional quadtrees. In
particular, it encodes both the area of the
individual regions and their boundaries in
a hierarchical manner. This is in contrast
to the region quadtree, which encodes only
areas hierarchically, and the strip tree,
which encodes only curves hierarchically.
The line quadtree partitions the set of re­
gions (termed a map) via a recursive de­
composition technique that successively
subdivides the map until blocks (possibly
single pixels) that have no line segments
pas~ing through their interior are obtained.
With each leaf node, a code is associated
that indicates which of its four sides form
a boundary (not a partial boundary) of any
single region. Thus, instead of distinguish­
ing leaf nodes on the basis of being BLACK
or WHITE, boundary adjacency informa­
tion is used. This boundary information is
hierarchical in that it is also associated with
nonterminal nodes. In essence, wherever a
nonterminal node does not form a T-junc­
tion with any of the boundaries of its de­
scendants along a particular side, this side

The Quadtree and Rewted Hierarchical Data Structures

is then marked as being adjacent to a

• 249

boundary.
As an illustration of a line quadtree, con­

sider the polygonal map of Figure 58 whose
corresponding line quadtree (i.e., block de­
composition) is shown in Figure 59. The
bold lines indicate the presence of bound­
aries. Note that the south side of the block
corresponding to the root is on a boundary
that is also the border of the image. As
another example, the western side of the
SW son of the root in Figure 59 does not
indicate the presence of a boundary (i.e.,
the side is represented by a light line) even
though it is adjacent to the border of the
image. The problem is that the SW son of
the root has its NW and SW sons in differ-
ent regions, as is signaled by the presence
of a T-junction along its western side. Hav­
ing the boundary information at the non­
terminal nodes enables boundary following
algorithms to be performed quickly, in ad­
dition to facilitating the process of super­
imposing one map on top of another. Ob­
serve also that the line quadtree has the
same number of nodes as a conventional
quadtree representation of the image.
Boundaries of leaf nodes that are partially
on the boundary between two regions can
have their boundaries reconstructed by ex­
amining their neighbors along the shared
boundary. For example, the southern side
of the NW son of the SW son of the root
in Figure 59, say A, represents a partial
boundary. The exact nature of the bound­
ary is obtained by examining the NE and
NW sons of the southern brother of A.

The PM quadtree of Samet and Webber
(1983) and the edge-EXCELL of Tammi­
nen [1981) are attempts to overcome some
of the problems associated with the follow­
ing three structures: the line quadtree, the
edge quadtree, and the quadtree formula­
tion of Hunter and Steiglitz (termed an MX
quadtree) for representing polygonal maps
(i.e., collections of straight lines). In gen­
eral, all three of these representations cor­
respond to approximations of a map. The
line quadtree is based on the approximation
that results from digitizing the areas of the
polygons comprising a polygonal map. For
the edge and MX quadtrees, the result is
still an approximation because the vertices

Figure 58. Example polygon.al map to illustrate line
quadtrees.

are represented by pixels in the edge quad­
tree and boundaries are represented by
BLACK pixels in the MX quadtree. In
other words, the MX quadtree is based on
a digitization of the boundaries of the poly­
gons, whereas the edge quadtree is based
on a piecewise linear approximation of the
boundaries of the polygons. Another dis­
advantage of these three representations is
that certain properties of polygonal maps
cannot be directly represented by them. For
example, it is impossible for five line seg­
ments to meet at a vertex. In the case of
the edge and MX quadtrees, we would have
difficulty in detecting the vertex and for
the line quadtree the situation cannot be
handled because all regions comprising the
map must be rectilinear. Note that it is
impossible for five rectilinear regions to
meet at a point. Other problems include a
sensitivity to shift and rotation, which may
result in a loss of accuracy in the original
approximation. Finally, owing to their ap­
proximate nature, these data structures will
most likely require a considerable amount
of storage, since each line is frequently
approximated at the pixel level, thereby
resulting in quadtrees that are fairly deep.

The PM quadtree represents a polygonal
map by using the PR quadtree discussed in
Section 3.2. Each vertex in the map corre­
sponds to a data point in the PR quadtree.

Computing Surveys. Vol. 16, No. 2, June 1984

250 • Hanan Samet

D[g]J
DD

DD
[8]]0

Figure 59. Line quadtree corresponding to Figure 58.

We define a q-edge to be a segment of an
edge of the map that either spans an entire
block in the PR quadtree (e.g., segment RS
in Figure 61) or extends from a boundary
of a block to a vertex within the block (i.e.,
when the block contains a vertex, e.g., seg­
ment CV in Figure 61).

For every leaf in the PR quadtree we
partition all of its q-edges into seven
classes. Each of these classes is stored in a
balanced binary tree [Aho et al. 1974]. One
class corresponds to the set of q-edges that
meet at a vertex within the block's region.
This class is ordered in an angular manner.
The remaining q-edges that pass through
the block's region must enter at one side
and exit via another. This yields six classes:
NW, NS, NE, EW, SW, and SE, where SW
denotes q-edges that intersect both the
southern and western boundaries of the
block's region. Note that these classes are
often empty. The q-edges of these classes
are ordered by the position of their inter­
cepts along the perimeter of the block's

Computing Surveys, Vol.16, No. 2, June 1984

region. A q-edge that coincides with the
boundary of a leaf's region is placed in
either class NS or EW as is appropriate.
For example, consider the polygonal map
of Figure 60 and its corresponding PM
quadtree in Figure 61. The block containing
vertex C has one balanced binary tree for
the q-edges intersecting vertex C (three
balanced binary tree nodes for q-edges CM,
CN, and CV) and one balanced binary tree
for the q-edges intersecting the NW bound­
ary (one balanced binary tree node for q­
edge ST). In total, the PM quadtree of
Figure 61 contains seven quadtree leaf
nodes, and nine nonempty balanced binary
trees containing seventeen nodes.

The PM quadtree provides a convenient,
reasonably efficient data structure for per­
forming a variety of operations. Point-in­
polygon determination is achieved by find­
ing a bordering q-edge with respect to each
of the seven classes and then selecting the
closest of the seven as the true bordering
q-edge. The execution time of this proce-

The Quadtree and Related Hierarchical Data Structures • 251

(0,1) (l,ll

A A

Figure 60. Example polygonal map to illustrate PM
quadtrees.

dure is proportional to the depth of the PM
quadtree. It should be noted that the depth
of the PM quadtree is inversely propor­
tional to the log of the minimum separation
between two vertices plus the log of the
number of edges in the polygonal map [Sa­
met and Webber 1983]. Besides point-in­
polygon determination, there exist efficient
algorithms for insertion of an edge into the
map, overlaying two maps, clipping and
windowing a map, and range searching (i.e.,
determining all polygons within a given
distance of a point).

The edge-EXCELL method [Tamminen
1981] is an application of the EXCELL
method for point data (described in Section
3.5) to polygonal maps. It is based on a
regular decomposition. The principles guid­
ing the decomposition process and the data
structure are identical to those used for
representing points. The only difference is
that now the data consist of straight-line
segments that intersect the cells (i.e., grid
blocks). Once again, a grid directory is used
that maps the cells into storage areas of a
finite capacity (e.g., buckets), which often
reside on disk. As the buckets overflow (i.e.,
the number of line segments intersecting
them exceeds the capacity of the bucket),
buckets are split into two equal-sized grid
blocks, which may also lead to a doubling
in the size of the directory. If the polygonal
map contains a vertex at which m lines
intersect, and m is greater than the bucket
capacity, then no matter how many times
the bucket is split, it will be impossible to
store all the line segments in one bucket.

Figure 61. PM quadtree corresponding to Figure 60.

In such a case, edge-EXCELL makes use
of overflow buckets. This is a disadvantage
of edge-EXCELL when compared with the
PM quadtree.

Using edge-EXCELL, point-in-polygon
determination is achieved by a two-step
process. First, the cell in which the point
lies is located. Second, the corresponding
polygon is determined by finding the closest
polygon boundary in any given direction by
use of a technique known as ray casting
[Roth 1982] (similar to searching for the
closest q-edge when using the PM quad­
tree). Tamminen [1983] has shown that, in
practice, this requires on the average little
more than one cell access. Edge-EXCELL
has also been used to do hidden line elimi­
nation [Tamminen 1982].

4.3 Comparison

The chain code is the most compact of the
representations. However, it is a very local
data structure and is thus rather cumber­
some when attempting to perform set op­
erations such as intersection of two curves
represented using it. In addition, like the
strip tree, and to a lesser extent the BSPR,
it is not tied to a particular coordinate
system. This is a problem with methods
based on a regular decomposition, although
it is somewhat reduced for the PM quadtree
and edge-EXCELL.

Representations based on a regular de­
composition have a number of advantages
over the strip tree. First, more than one
curve can be represented with one instance

Computing Surveys, Vol. 16, No. 2, June 1984

252 • Hanan Samet

of the data structure-a very important
feature for maps. Second, they are unique.
In contrast, only one curve can be repre­
sented by a single strip tree. Also, the strip
tree is not unique when the curve is closed,
not regular, or contains more than one end­
point. However, the strip tree is invariant
under shifts and rotations. The line quad­
tree is better than the MX quadtree of
Hunter and Steiglitz [1979a], which repre­
sents boundary lines as narrow BLACK
regions, for two reasons. First, narrow re­
gions are costly in terms of the number of
nodes in the quadtree. Second, it commits
the use to a specific thickness of the bound­
ary line, which may be unfortunate, for
example, when regenerating the picture on
an output device. Also such arbitrary deci­
sions of representation accuracy are not
very appropriate when data are to be stored
in a database.

At this point it might be appropriate to
speculate on some other data structures for
curvilinear data. Representations based on
regular decomposition are attractive be­
cause they enable efficient computation of
set operations. In particular, at times it is
convenient to perform the operations on
different kinds of geometric entities (e.g.,
intersecting curves with areas). The strip
tree is an elegant data structure from the
standpoint of approximation. However, it
has the disadvantage that decomposition
points are independent of the coordinate
system of the image (i.e., they are at arbi­
trary points dependent on the data rather
than at predetermined positions as is the
case with a data structure that is based on
a regular decomposition). Thus answering
a query such as, "Find all wheat growing
regions within 20 miles of the Mississippi
River," is not easy to do when the river is
represented as a strip tree and the wheat­
growing regions are represented by region
quadtrees. The problem is that, whereas
quadtree methods merely require pointer­
chasing operations, strip tree methods may
lead to complex geometric computations.
What is desired is a regular decomposition
strip tree or variant thereof.

The data structures discussed in this sec­
tion are rooted in the image-processing area
and were designed primarily to represent

Computing Surveys, Vol. 16, No. 2, June 1984

curves and lines. Computational geometry
is another area where similar problems
arise [Edelsbrunner 1984; Toussaint 1980].
This is a rapidly changing field, which has
its roots in the work of Shamos and Hoey
(1975; Shamos 1978] and focuses on prob­
lems of asymptotical computational com­
plexity of geometric algorithms. However,
a full presentation of this field is beyond
the scope of this survey. Nevertheless, in
the following we do give a brief sample of
the types of results attainable for similar
problems. Many of the solutions (e.g., Lip­
ton and Tarjan (1977]) are based on the
representation of line segments as edges
and vertices in a graph.

For example, an alternative to the PM
quadtree and edge-EX CELL is the K-struc­
ture of Kirkpatrick [1983]. It is a hierar­
chical structure based on triangulation
rather than a regular decomposition. The
notion of hierarchy in the K-structure is
radically different from that of a quadtree,
in that instead of replacing a group of tri­
angles by a single triangle at the next higher
level, a group of triangles is replaced by a
smaller group of triangles. Triangles are
grouped for replacement because they share
a common vertex. The smaller group results
from eliminating the common vertex and
then retriangulating. Kirkpatrick (1983]
shows that at each level of the hierarchy,
at least one twenty-fourth of the vertices
can be eliminated in this manner. The ver­
tices that have been eliminated are guar­
anteed to have degree of 11 or less, thus
bounding the cost of retriangulating. Let v
denote the number of vertices in a polygo­
nal map. Then, the size of a K-structure is
guaranteed to be O(v) although the worst­
case constant of proportionality is 24 times
the amount of information stored at a node.
It also leads to an O(log v) query time for
point-in-polygon determination. The con­
struction process has a worst-case execu­
tion time of O(v) for a triangular subdivi­
sion and O(u log v) for a general one. The
latter is dominated by the cost of triangu­
lating the original polygonal map [Hertel
and Mehlhorn 1983). Since a triangulation
constitutes a convex map, that is, a planar
subdivision formed of convex regions, the
work of Nievergelt and Preparata [1982] is

The Quadtree and Related Hierarchical Data Structures • 253

relevant. They show that the cost of per­
forming a map overlay operation is O(v log
v + s), wheres is the number of intersec­
tions of all line segments in the two maps.
Finally, it is worth noting that the hierar­
chical nature of the K-structure may lead
to an efficient range-searching algorithm.

Another alternative to the K -structure
is the layered dag of Edelsbrunner et al.
[1985]. This structure is a modification of
a binary tree, which is used to store a y­
monotone subdivision of a polygonal map.
A y-monotone subdivision of a polygonal
map is created by partitioning the regions
of a map until no vertical line intersects a
region's boundary more than twice. Note
that the resulting map need not be convex;
however, the asymptotic worst-case analy­
sis of the layered dag is identical to that of
the K-structure. The number of line seg­
ments that must be inserted to check a y­
monotone subdivision is usually consider­
ably fewer than the number needed for
triangulation.

When the K-structure and the layered
dag are compared with the PM quadtree
(and to some extent edge-EXCELL), the
qualitative comparison is analogous to that
of a point quadtree with a PR quadtree. All
of these structures have their place; the one
to use depends on the nature of the data
and the importance of guaranteed worst­
case performance. The K-structure and the
layered dag organize the data to be stored,
whereas the PM quadtree organizes the
embedding space from which the data are
drawn. The K-structure and the layered dag
have better worst-case execution time
bounds for similar operations compared
with those considered for the PM quadtree.
However, considerations such as ease of
implementation and integration with rep­
resentations of other data types must also
be taken into account in making an evalu­
ation. In the case of dynamic files, at pres­
ent it would seem to be more convenient to
use the PM quadtree since a general updat­
ing algorithm for the K-structure or the
layered dag have not been reported.

5. CONCLUSIONS

In this paper we have attempted to give a
survey of a large number of hierarchical

data structures and show how they are in­
terrelated. Undoubtedly, some data struc­
tures may have been overlooked, but any
such omissions were unintentional. The
idea of recursive decomposition is the un­
derlying basis of each structure discussed.
In the past, there has been considerable
confusion between these similar represen­
tations (e.g., the point quadtree and the
region quadtree). Consequently, readers of
the literature are cautioned about compar­
isons involving "quadtrees." Our focus has
been on execution time efficiencies al­
though storage requirements have also been
taken into consideration.

For the future we foresee the following
quad trends. Complexity measures for im­
ages represented by quadtrees are likely to
be proposed [Creuzburg 1981). Quadtrees
and their variants will be used in compu­
tational domains [Rheinholdt and Mesz­
tenyi 1980; Samet and Krishnamurthy
1983; Yerry and Shepard 1983). With the
current interest in VLSI, it is certain that
increasingly these data structures will find
themselves being implemented in hardware
[Besslich 1982; Dyer 1981; Ibrahim 1984;
Milford and Willis 1984; Woodwark 1982).
Another trend is the development of inte­
grated geographical databases that permit
the interaction between data of differing
types [Matsuyama et al. 1984; McKeown
and Denlinger 1984; Rosenfeld et al. 1982,
1983]. This would facilitate efficiently an­
swering queries like, "Find all cities with a
population in excess of 5000 people in
wheat-growing regions within 20 miles of
the Mississippi River." At this point we
have traveled a full circle in our survey and
if we still do not know how to answer this
query, then, by now, maybe we at least
know why-an appropriate point for us to
get off and for you, the reader, to get on!

ACKNOWLEDGMENTS

I have benefited greatly from comments by Bernard
Diaz, Gary Knott, Azriel Rosenfeld, Deepak Sherle·
kar, Markku Tamminen, and Robert E. Webber. The
referees are also to be commended for the thorough·
ness of their reviews. This work was supported in part
by the National Science Foundation under Grant
MCS-83-02118.

Computing Surveys, VoJ. 16, No. 2, June 1984

254 • Hanan Samet

REFERENCES

ABEL, D .• J. 1984. A B•-tree structure for large quad­
trees. Comput. Vision Gr. Image Process. 27, 1
(July),.19-31.

ABEL, D. J., AND SMITHJ. L. 1983. Adata structure
and algorithm based on a linear key for a rectan­
gle retrieval problem. Comput. Vision Gr. Image
Process. 24, 1 (Oct.), 1-13.

AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D.
1974. The Design and Analysis of Computer Al­
gorithms. Addison-Wesley, Reading, Mass.

AHUJA, N. 1983. On approaches to polygonal decom­
position for hierarchical image representation.
Comput. Vision Gr. Image Process. 24, 2 (Nov.)
200-214.

AHUJA, N., AND NASH, C. 1984. Octree representa­
tions of moving objects. Comput. Vision Gr. Image
Process. 26, 2 (May), 207-216.

ANDERSON, D. P. 1983. Techniques for reducing pen
plotting time. ACM Trans. Gr. 2, 3 (July), 197-
212.

BALLARD, D. H. 1981. Strip trees: A hierarchical
representation for curves. Commun. ACM 24, 5
(May), 310-321. See also corrigendum, Commun.
ACM 25, 3 (Mar. 1982), 213.

BELL, s. B. M., DIAZ, B. M., HOLROYD, F., AND
JACKSON, M. J. 1983. Spatially referenced
methods of processing raster and vector data.
Image Vision Comput. 1, 4 (Nov.), 211-220.

BENTLEY, J. L. 1975a. A survey of techniques for
fixed radius near neighbor searching. SLAC Rep.
No. 186, Stanford Linear Accelerator Center,
Stanford University, Stanford, Calif., Aug.

BENTLEY, J. L. 1975h. Multidimensional binary
search trees used for associative searching. Com­
mun. ACM 18, 9 (Sept.), 509-517.

BENTLEY, J. L., AND FRIEDMAN, J. H. 1979. Data
structures for range searching. ACM Comput.
Surv. 11, 4 (Dec.), 397-409.

BENTLEY, J. L., AND STANAT, D. F. 1975. Analysis
of range searches in quad trees. Inf. Process. Lett.
3, 6 (July), 170-173.

BESSLICH, P. W. 1982. Quadtree construction of bi­
nary images by dyadic array transformations. In
Proceedings of the IEEE Conference on Pattern
Recognition and Image Processing (Las Vegas,
Nev., June). IEEE, New York, pp. 550-554.

BLUM, H. 1967. A transformation for extracting new
descriptors of shape. In Models for the Perception
of Speech and Visual Form, W. Wathen-Dunn,
Ed. M.l.T. Press, Cambridge, Mass., pp. 362-380.

BROOKS, R. A., AND LOZANO-PEREZ, T. 1983. A
subdivision algorithm in configuration space for
findpath with rotation. In Proceedings of the 7th
International Joint Conference on Artificial Intel­
ligence (Karlsruhe, West Germany, Aug.). Kauf­
mann, Los Altos, Calif., pp. 799-806.

BURKHARDT, W. A. 1983. Interpolation-based index
maintenance. BIT 23, 3, 274-294.

BURT, P. J. 1980. Tree and pyramid structures for
coding hexagonally sampled binary images. Com-

Computing Surveys, Vol. 16, No. 2, June 1984

put. Graphics Image Process. 14, 3 (Nov.), 249-
270.

BURT, P. J., HONG, T. H., AND ROSENFELD, A.
1981. Segmentation and estimation of image re­
gion properties through cooperative hierarchical
computation. IEEE Trans. Syst. Man Cybern. 11,
12 (Dec.), 802-809.

BURTON, W. 1977. Representation of many-sided
polygons and polygonal lines for rapid processing.
Commun. ACM 20, 3 (Mar.), 166-171.

BURTON, F. w., AND KOLLIAS, J. G. 1983. Comment
on the explicit quadtree as a structure for com­
puter graphics. Comput. J. 26, 2 (May), 188.

CARLSON, W. E. 1982. An algorithm and data struc­
ture for 3D object synthesis using surface patch
intersections. Comput. Gr. SIGGRAPH 82 Conf.
Proc. 16, 3, 255-264.

CHIEN, c. H., AND AGGARWAL, J. K. 1984. A nor­
malized quadtree representation. Comput. Vision
Gr. Image Process. 26, 3 (June), 331-346.

COHEN, E., LYCHE, T., AND RIESENFELD, R.
1980. Discrete B-splines and subdivision tech­
niques in computer-aided geometric design and
computer graphics. Comput. Gr. Image Process.
14, 3 (Oct.), 87-111.

COMER, D. 1979. The ubiquitous B-tree. ACM Com­
put. Surv. 11, 2 (June), 121-137.

CONNOLLY, C. I. 1984. Cumulative generation of
octree models from range data. In Proceedings of
the International Conference on Robotics (Atlanta,
Ga., Mar.). IEEE, New York, pp. 25-32.

COOK, B. G. 1978. The structural and algorithmic
basis of a geographic data base. In Proceedings of
the First International Advanced Study Sympos­
ium on Topowgical Data Structures for Geographie
Information Systems, G. Dutton, Ed., Harvard
Papers on Geographic Information Systems, Har­
vard University Press, Cambridge, Mass.

CREUTZBURG, E. 1981. Complexities of quadtrees
and the structure of pictures. Tech. Rep. N/81/
74, Computer Science Dept., Friedrich-Schiller
University, Jena, East Germany.

DAVIS, L. S., AND ROUSSOPOULOS, N. 1980. Ap­
proximate pattern matching in a pattern database
system. Inf. Syst. 5, 2, 107-119.

DECOULON, F., AND JOHNSEN, u. 1976. Adaptive
block schemes for source coding of black-and­
white facsimile. Electron. Lett. 12, 3, 61-62. See
also erratum, Electron. Lett. 12, 6 (1976), 152.

DEFLORIANI, L., FALCIDIENO, B., NAGY, G., AND
PIENOVI, C. 1982. Yet another method for trian­
gulation and contouring for automated cartogra­
phy. In Proceedings of the American Congress on
Surveying and Mapping (Hollywood, Fla.), F. S.
Cardwell, R. Black, and B. M. Cole, Eds. Ameri­
can Society of Photogrammetry, pp. 101-110.

DEMILLO, R. A., EISENSTAT, S. C., AND LIPTON, R.
J. 1978. Preserving average proximity in arrays.
Commun. ACM 21, 3 (Mar.), 228-231.

DOCTOR, L. J., AND TORBORG, J. G. 1981. Display
techniques for octree-encoded objects. IEEE
Comput. Gr. Appl. J, 1 (July), 39-46.

The Quadtree and Related Hierarchical Data Structures • 255

DUDA, R. 0., ANO HART, P. E. 1973. Pattern Clas­
sification and Scene Analysis. Wiley, New York.

DYER, C. R. 1980. Computing the Euler number of
an image from its quadtree. Comput. Gr. Image
Process. 13, 3 (July), 270-276.

DYER, C. R. 1981. A VLSI pyramid machine for
parallel image processing. In Proceedings of the
IEEE Conference on Pattern Recognition and Im­
age Processing (Dallas, Tex.). IEEE, New York,
pp. 381-386.

DYER, C. R. 1982. The space efficiency of quadtrees.
Comput. Gr. Image Process. 19, 4 (Aug.), 335-348.

DYER, C. R., RoSEN~'ELO, A., ANO SAMET, H.
1980. Region representation: Boundary codes
from quadtrees. Commun. ACM 23, 3 (Mar.), 171-
179.

EASTMAN, C. M. 1970. Representations for space
planning. Commun. ACM 13, 4 (Apr.), 242-250.

EOELSBRUNNER, H. 1984. Key-problems and key­
methods in computational geometry. In Proceed­
ings of the Symposium of Theoretical Aspects of
Computer Science (Paris, France), Lecture Notes
in Computer Science, vol. 166. Springer Verlag,
New York, pp. 1-13.

EDELSBRUNNER, H., AND VAN LEEUWEN, J. 1983.
Multidimensional data structures and algo­
rithms: A bibliography. Rep. Fl04, Institute for
Information Processing, Technical University of
Graz, Graz, Austria, Jan.

EDELSBRUNNER, H., GUIBAS, L. J., ANO STOLFI, J.
1985. Optimal point location in a monotone
subdivision. SIAM J. Comput. in press.

FAGIN, R., NIEVERGELT, J., PIPPENGER, N., AND
STRONG, H. R. 1979. Extendible hashing~A
fast access method for dynamic files. ACM Trans.
Database Syst. 4, 3 (Sept.), 315-344.

FAUGERAS, 0. D., AND PONCE, J. 1983. Prism trees:
A hierarchical representation for 3-d objects. In
Proceedings of the 7th International Joint Confer­
ence on Artificial Intelligence (Karlsruhe, West
Germany, Aug.). Kaufmann, Los Altos, Calif., pp.
982-988.

FAUGERAS, 0. D., HEBERT, M., MUSS!, P., AND BoIS­
SONNAT, J. D. 1984. Polyhedral approximation
of 3-d objects without holes. Comput. Vision Gr.
Image Process. 25, 2 (Feb.), 169-183.

FAVER.JON, B. 1984. Obstacle avoidance using an
octree in the configuration space of a manipula­
tor. In Proceedings of the I nternationol Confer­
ence on Robotic., (Atlanta, Ga., Mar.). IEEE, New
York, pp. 504-512.

FINKEL, R. A., AND BENTLEY, J. L. 1974. Quad trees:
A data structure for retrieval on composite keys.
Acta Inf. 4, 1, 1-9.

FREDKIN, E. 1960. Trie memory. Commun. ACM 3,
9 (Sept.), 490-499.

FREEMAN, H. 1974. Computer processing of line­
drawing images. ACM Comput. Surv. 6, 1 (Mar.),
57-97.

FRIEDMAN, J. H., BENTLEY, J. L., AND FINKEL, R. A.
1977. An algorithm for finding best matches in

logarithmic expected time. ACM Trans. Math.
Softw. 3, 3 (Sept.), 209-226.

GARGANTINI, I. 1982a. An effective way to represent
quadtrees. Commun. ACM 25, 12 (Dec.), 905-910.

GARGANTINI, I. 1982b. Linear octtrees for fast pro·
cessing of three dimensional objects. Comput. Gr.
Image Process. 20, 4 (Dec.), 365-374.

GARGANTINI, I. 1983. Translation, rotation, and su­
perposition of linear quadtrees. Int. J. Man­
Mach. Stud. 18, 3 (Mar.), 253-263.

GASTON, P. C., ANO LOZANO-PEREZ, T. 1984. Tac­
tile recognition and localization using object
models: The case of polyhedra on a plane. IEEE
Trans. Pattern Anal Mach. Intell. 6, 3 (May),
257-266.

GIBSON, L., AND LUCAS, D. 1982. Vectorization of
raster images using hierarchical methods. Com­
put. Gr. Image Process. 20, 1 (Sept.), 82-89.

GILLESPIE, R., ANO DAVIS, w. A. 1981. Tree data
structures for graphics and image processing. In
Proceedings of the 7th Conference of the Canadian
Man-Computer Communi.cations Society (Water·
loo, Canada, June), pp. 155-161.

GOMEZ, D., AND GUZMAN, A. 1979. Digital model
for three-dimensional surface representation.
Geo-Process. 1, 53-70.

GROSKY, w. I., AND JAIN, R. 1983. Optimal quad­
trees for image segments. IEEE Trans. Pattern
Anal Mach. Intell. 5, 1 (Jan.), 77-83.

HARARY, F. 1969. Graph Theory. Addison-Wesley,
Reading, Mass.

HERTEL, S., ANO MEHLHORN, K. 1983. Fast trian­
gulation of simple polygons. In Proceedings of the
1983 International Foundations of Computation
Theory Conference (Borgholm, Sweden, Aug.),
Lecture Notes in Computer Science, vol. 158.
Springer Verlag, New York, pp. 207-218.

HINRICHS, K., ANO NIEVERGELT, J. 1983. The Grid
File: A data structure to support proximity quer­
ies on spatial objects. Rep. 54, Institut fur Infor­
matik, ETH, Zurich, July.

HOARE, C. A. R. 1972. Notes on data structuring. In
Structured Programming, 0. J. Dahl, E.W. Dijk­
stra, and C. A. R. Hoare, Eds. Academic Press,
London, p. 154.

HOROWITZ, S. L., ANO PAVLIOIS, T. 1976. Picture
segmentation by a tree traversal algorithm. J.
ACM 23, 2 (Apr.), 368-388.

HUFFMAN, D. A. 1952. A method for the construc­
tion of minimum-redundancy codes. Proc. IRE
40, 9 (Sept.), 1098-1101.

HUNTER, G. M. 1978. Efficient computation and
data structures for graphics. Ph.D. dissertation,
Department of Electrical Engineering and Com­
puter Science, Princeton University, Princeton,
N.J.

HUNTER, G. M., AND STEIGLITZ, K. 1979a. Opera­
tions on images using quad trees. IEEE Trans.
Pattern Anal. Mach. Intell. 1, 2 (Apr.), 145-153.

HUNTER, G. M., AND STEIGLITZ, K. 1979b. Linear
transformation of pictures represented by quad

Computing Surveys, Vol.16, No. 2, June 1984

256 • Hanan Samet

trees. Comput. Gr. Image Process. 10, 3 (July),
289-296.

IBRAHIM, H. A. H. 1984. The connected component
labeling algorithm on the NON-VON supercom­
puter. In Proceedings of the Workshop on Com­
puter Vision: Representation and Control (Anna­
polis, Md., Apr.). IEEE, New York, pp. 37-45.

ISMAIL, M. G. B., AND STEELE, R. 1980. Adaptive
pel location coding for bilevel facsimile signals.
Electron. Lett. 16, (May), 361-363

JACKINS, C., AND TANIMOTO, s. L. 1980. Oct-trees
and their use in representing three-dimensional
objects. Comput. Gr. Image Process. 14, 3 (Nov.),
249-270.

JACKINS, C., AND TANIMOTO, s. L. 1983. Quad-trees,
oct-trees, and k-trees-A generalized approach to
recursive decomposition of Euclidean space.
IEEE Trans. Pattern Anal. Mach. InteU. 5, 5
(Sept.), 533-539.

JONES, L., AND IYENGAR, s. s. 1984. Space and time
efficient virtual quadtrees. IEEE Trans. Pattern
Anal. Mach. Intel!. 6, 2 (Mar.), 244-247.

KAWAGUCHI, E., AND ENDO, T. 1980. On a method
of binary picture representation and its applica­
tion to data compression. IEEE Trans. Pattern
Anal. Mach. Intell. 2, 1 (Jan.), 27-35.

KAWAGUCHI, E., ENDO, T., AND YOKOTA, M.
1980. DF-expression of binary-valued picture
and its relation to other pyramidal representa­
tions. In Proceedings of the 5th International Con­
ference on Pattern Recognitum (Miami Beach,
Fla., Dec.). IEEE, New York, pp. 822-827.

KAWAGUCHI, E., ENDO, T., AND MATSUNAGA, J.
1983. Depth-first expression viewed from digital
picture processing. IEEE Trans. Pattern Anal.
Mach. Intell. 5, 4 (July), 373-384.

KEDEM, G. 1981. The Quad-CIF tree: A data struc­
ture for hierarchical on-line algorithms. Tech.
Rep. 91, Computer Science Dept., The University
of Rochester, Rochester, New York, Sept.

KELLY, M. D. 1971. Edge detection in pictures by
computer using planning. Mach. IntelL 6, 397-
409.

KIRKPATRICK, D. 1983. Optimal search in planar
subdivisions. SIAM J Comput. 12, 1 (Feb.), 28-
35.

KLINGER, A. 1971. Patterns and search statistics. In
Optimizing Methods in Statistics, J. S. Rustagi,
Ed. Academic Press, New York, pp. 303-337.

KLINGER, A., AND DYER, C. R. 1976. Experiments
in picture representation using regular decompo­
sition. Comput. Gr. Image Process. 5, 1 (Mar), 68-
105.

KLINGER, A., AND RHODES, M. L. 1979. Organiza­
tion and access of image data by areas. IEEE
Trans. Pattern Anal. Mach. Intel!. I, 1(Jan.),50-
60.

KNOTT, G. D. 1971. Expandable open addressing
hash table storage and retrieval. In Proceedings
of SIGFIDET Workshop on Data Description,
Access, and Control (San Diego, Calif., Nov.).
ACM, New York, pp. 187-206.

Computing Surveys, Vol. 16, No. 2, June 1984

KNOWLTON, K. 1980. Progressive transmission of
grey-scale and binary pictures by simple, effi­
cient, and lossless encoding schemes. Proc. IEEE
68, 7 (July), 885-896.

KNUTH, D. E. 1973. The Art of Computer Program­
ming, vol. 3, Sorting and Searching. Addison­
Wesley, Reading, Mass.

KNUTH, D. E. 1975. The Art of Computer Program­
ming, vol. 1, Fundamental Algorithms, 2nd ed.
Addison-Wesley, Reading, Mass.

LAUZON, J.P., MARK, D. M., KIKUCHI, L., AND GUE­
VARA, J. A. 1984. Two-dimensional run-encod­
ing for quadtree representation. Unpublished
manuscript, Department of Geography, State
University of New York at Buffalo, Buffalo, New
York.

LEE, D. T., AND SHACTER, B. J. 1980. Two algo­
rithms for constructing a Delaunay triangulation.
Int. J. Comput. Inf. Sci. 9, 3 (June), 219-242.

LEE, D. T., AND WONG, C. K. 1977. Worst-case
analysis for region and partial region searches in
multidimensional binary search trees and quad
trees. Acta Inf. 9, 1, 23-29.

LETELIER, P. 1983. Transmission d'images 8. bas de­
bit pour un systeme de communication telepho­
nique adapte aux sourds. These de docteur-ingen­
ieur, Universite de Paris·Sud, Paris, Sept.

LI, M., GROSKY, w. I., AND JAIN, R. 1982. Norma­
lized quadtrees with respect to translations. Com­
put. Gr. Image Process. 20, 1 (Sept.), 72-81.

LINN, J. 1973. General methods for parallel search­
ing. Tech. Rep. 81, Digital Systems Laboratory,
Stanford University, Stanford, Calif., May.

LIPTON, R. J., AND TAR.JAN, R. E. 1977. Application
of a planar separator theorem. In Proceedings of
the 18th Annual IEEE Symposium on the Foun­
dations of Computer Science (Providence, R. I.,
Oct.). IEEE, New York, pp. 162-170.

LITWIN, W. 1980. Linear hashing: A new tool for file
and table addressing. In Proceedings of the 6th
International Conference on Very Large Data
Bases (Montreal, Oct.). IEEE, New York, pp.
212-223.

LOZANO-PEREZ, T. 1981. Automatic planning of ma­
nipulator transfer movements. IEEE Trans. Syst.
Man Cybern. 11, 10 (Oct.), 681-698.

LUMIA, R. 1983. A new three-dimensional connected
components algorithm. Com.put. Vision Gr. Image
Process. 23, 2 (Aug.), 207-217.

LUMIA, R., SHAPIRO, L., AND ZUNIGA, 0. 1983. A
new connected components algorithm for virtual
memory computers. Comput. Vision Gr. Image
Process. 22, 2 (May), 287-300.

MARTIN, J. J. 19B2. Organization of geographical
data with quad trees and least square approxi­
mation. In Proceedings of the IEEE Conference
on Pattern Recognition and Image Processing (Las
Vegas, Nev., June). IEEE, New York,pp. 458-
463.

MATSUYAMA, T., HAO, L. v., AND NAGAO, M.
1984. A file organization for geographic infor­
mation systems based on spatial proximity. Com-

The Quadtree and Related Hierarchical Data Structures • 257

put. Vision Gr. Image Process. 26, 3 (June), 303-
318.

McCLUSKEY, E. J. 1965. Introduction to the Theory
of Switching Circuits. McGraw-Hill, New York,
pp. 60-61.

MCKEOWN, D. M., JR., AND DENLINGER, J. L.
1984. Map-guided feature extraction from aerial
imagery. In Proceedings of the Workslwp on Com­
puter Vision: Representation and Control (Anna­
polis, Md., Apr.). IEEE, New York, pp. 205-213.

MEAGHER, D. 1982. Geometric modeling using oc­
tree encoding. Comput. Gr. Image Process. 19, 2
(June), 129-147.

MERRETT, T. H. 1978. Multidimensional paging for
efficient database querying. In Proceedings of the
International Conference on Management of Data
(Milan, Italy, June), pp. 277-289.

MERRETT, T. H., AND 0TOO, E. J. 1981. Dynamic
multipaging: A storage structure for large shared
data banks. In Improuing Database Usability and
Responsiveness, P. Scheuermann, Ed. Academic
Press, New York, pp. 237-254.

MERRILL, R. D. 1973. Representations of contours
and regions for efficient computer search. Com­
mun. ACM 16, 2 (Feb.), 69-82.

MILFORD, D. J., AND WILLIS, P. c. 1984. Quad
encoded display. IEE Proc. 131, E3 (May), 70-
75.

MINSKY, M., AND PAPERT, S. 1969. Perceptrom: An
Introduction to Computational Geometry. M.J.T.
Press, Cambridge, Mass.

MORTON, G. M. 1966. A computer oriented geodetic
data base and a new technique in file sequencing.
Unpublished manuscript, IBM, Ltd., Ottawa,
Canada.

MUDUR, S. P., AND KOPARKAR, P.A. 1984. Interval
methods for processing geometric objects. IEEE
Comput. Gr. Appl. 4, 2 (Feb.), 7-17.

NAGY, G., AND WAGLE, S. 1979. Geographic data
processing. ACM Comput. Surv. I I, 2 (June), 139-
181.

NIEVERGELT,J., AND PREPARATA, F. P.1982. Plane­
sweep algorithms for intersecting geometric fig­
ures. Commun. ACM 25, 10 (Oct.), 739-746.

N!EVERGELT, J., HINTERBERGER, H., AND SEVCIK, K.
C. 1984. The Grid File: An adaptable, symme­
tric multikey file structure. ACM Trans. Database
Syst. 9, 1 (Mar.), 38-71.

NILSSON, N. J. 1969. A mobile automaton: An ap­
plication of artificial intelligence techniques. In
Proceedings of the 1st International Joint Confer­
ence on Artificial Intelligence (Washington D.C.).
Kaufmann, Los Altos, Calif., pp. 509-520.

OLIVER, M. A., AND WISEMAN, N. E. 1983a, Opera­
tions on quadtree-encoded images. Comput. J. 26,
1 (Feb.), 83-91.

OLIVER, M. A., AND WISEMAN, N. E. 1983b. Opera­
tions on quadtree leaves and related image areas.
Comput. J. 26, 4 (Nov.), 375-380.

OMOLAYOLE, J. 0., AND KLINGER, A. 1980. A hier­
archical data structure scheme for storing pic­
tures. In Pictorial Information Systems, S. K.

Chang and K. S. Fu, Eds. Springer-Verlag, Berlin
and New York, 1980.

ORENSTEIN, J. A. 1982. Multidimensional tries used
for associative searching. Inf Process. Lett. 14, 4
(June), 150-157.

ORENSTEIN, J. A. 1983. A dynamic hash file for
random and sequential accessing. In Proceedings
of the 6th International Conference on Very Large
Data Bases (Florence, Italy, Oct.). IEEE, New
York, pp. 132-141.

ORENSTEIN, J. A., AND MERRETT, T. H. 1984. A
class of data structures for associative searching.
In Proceedings of the 3rd ACM SIGACT-SIG­
MOD Symposium on Principles of Database Sys­
tems (Waterloo, Ontario, Apr.). ACM, New York,
pp. 181-190.

O'ROURKE, J. 1981. Dynamically quantized spaces
for focusing the Hough Transform. In Proceed­
ings of tlw 6th International Joint Conference on
Artificial Intelligence (Vancouver, B.C., Aug.).
Kaufmann, Los Altos, Calif., pp. 737-739.

O'ROURKE, J., AND SLOAN, K. R., JR. 1984.
Dynamic quantization: Two adaptive data struc­
tures for multidimensional squares. IEEE Tram.
Pattern Anal. Mach. lntell. 6, 3 (May), 266-
280.

OUKSEL, M., AND SCHEUERMANN, P. 1983. Storage
mappings for muJtjdimensional linear dynamic
hashing. In Proceedings of tlw 2nd ACM SI­
GACT-SIGMOD Symposium on Principles of Da­
taba.<e Systems (Atlanta, Ga., Mar.). ACM, New
York, pp. 90-105.

OVERMARS, M. H. 1983. T/w Design of Dynamic
Data Structures, Lecture Notes in Computer Sci­
ence, vol. 156. Springer-Verlag, New York.

OVERMARS, M. H., AND VAN LEEUWEN, J.
1982. Dynamic multi-dimensional data struc­
tures based on quad- and k-d trees. Acta Inf. 17,
3, 267-285.

PETERS, F. 1984. An algorithm for transformations
of pictures represented by quadtrees, Dept. of
Mathematics and Computing Science, Eindhoven
University of Technology, Eindhoven, The Neth­
erlands.

PEUCKER, T. 1976. A theory of the cartographic line.
Int. Yearb. Cartogr. 16, 34-43.

PEUQUET, D. J. 1979. Raster processing: An alter­
native approach to automated cartographic data
handling. Am. Cartogr. 2 (Apr.), 129-239.

PEUQUET, D. J. 1983. A hybrid data structure for the
storage and manipulation of very large spatial
data sets. Comput. Vision Gr. Image Process. 24,
1 (Oct.), 14-27.

PFALTZ, J. L., AND ROSENFELD, A. 1967. Computer
representation of planar regions by their skele­
tons. Commun. ACM 10, 2 (Feb.), 119-122.

P!ETIKAINEN, M., ROSENFELD, A., AND WALTER, I.
1982. Split-and-link algorithms for image seg­
mentation. Pattern Recognition 15, 4, 287-298.

RAMAN. v ., AND IYENGAR, s. s. 1983. Properties
and applications of forests of quadtrees for pic­
torial data representation. BIT 23, 4, 4 72-486.

Computing Surveys, Vol. 161 No. 2, June 1984

258 • Hanan Samet

RAN ADE, S. 1981. Use of quadtrees for edge enhance­
ment. IEEE Trans. Syst. Man, Cybern. 11, 5
(May), 370-373.

RANADE, S., AND SHNEIER, M. 1981. Using quad­
trees to smooth images. IEEE Trans. Syst. Man
Cybern. 11, 5 (May), 373-376.

RANADE, S., ROSENFELD, A., AND PREWITT, J.M. S.
1980. Use of quadtrees for image segmentation.
TR-878, Dept. of Computer Science, University
of Maryland, College Park, Md., Feb.

RANADE, S., ROSENFELD, A., AND SAMET, H. 1982.
Shape approximation using quadtrees. Pattern
Recognition 15, 1, 31-40.

REDDY, D.R., AND RUBIN, S. 1978. Representation
of three-dimensional objects. CMU-CS-78-113,
Computer Science Dept., Carnegie-Mellon Uni­
versity, Pittsburgh, Apr.

REQUICHA, A. A. G. 1980. Representations of rigid
solids: Theory, methods, and systems.ACM Com­
put. Surv. 12, 4 (Dec.), 437-464.

RHEINBOLDT, W. C., AND MESZTENYI, C. K. 1980.
On a data structure for adaptive finite element
mesh refinements. ACM Trans. Math. Softw. 6, 2
(June), 166-187.

RISEMAN, E. M., AND ARBIB, M. A. 1977.
Computational techniques in the visual segmen­
tation of static scenes. Comput. Gr. Image Process.
6, 3 (June), 221-276.

ROBINSON, J. T. 1981. The k-d-B-tree: A search
structure for large multidimensional dynamic in­
dexes. In Proceedings of the SIGMOD Conference
(Ann Arbor, Mich., Apr.). ACM, New York, pp.
10-18.

ROSENFELD, A., ED. 1983. Multiresolution Image
Processing and Analysis. Springer-Verlag, Berlin
and New York.

ROSENFELD, A. 1984. Picture processing 1984. Com­
put. Vision Gr. Image Process. 26, 3 (June), 347-
384.

ROSENFELD, A., AND KAK, A. c. 1982. Digital Pic­
ture Processing, 2nd ed. Academic Press, New
York.

ROSENFELD, A., AND PFALTZ, J. L. 1966. Sequential
operations in digital image processing. J. ACM
13, 4 (Oct.), 471-494.

ROSENFELD, A., SAMET, H., SHAFFER, C., AND WEB­
BER, R. E. 1982. Application of hierarchical
data structures to geographical information sys­
tems. TR-1197, Computer Science Dept., Univer­
sity of Maryland, College Park, Md, June.

ROSENFELD, A., SAMET, H., SHAFFER, C., AND WEB­
BER, R. E. 1983. Application of hierarchical
data structures to geographical information sys­
tems phase II. TR-1327, Computer Science Dept.,
University of Maryland, College Park, Md., Sept.

ROTH, S. D. 1982. Ray casting for modeling solids.
Comput. Gr. Image Process. 18, 2 (Feb.), 109-144.

RuTOVITZ, D. 1968. Data structures for operations
on digital images. In Pictorial Pattern Recogni­
tion, G. C. Cheng et al., Eds. Thompson Book
Co., Washington D.C., pp. 105-133.

Computing Surveys, Vol. 16, No. 2, June 1984

SAMET, H. 1980a. Region representation: Quadtrees
from boundary codes. Commun. ACM 23, 3
(Mar.), 163-170.

SAMET, H. 1980b. Region representation: Quadtrees
from binary arrays. Comput. Gr. Image Process.
13, 1 (May), 88-93.

SAMET, H. 1980c. Deletion in two-dimensional quad
trees. Commun. ACM 23, 12 (Dec.), 703-710.

SAMET, H. 1981a. An algorithm for converting ras­
ters to quadtrees. IEEE Trans. Pattern Anal.
Mach. Intel/. 3, 1 (Jan.), 93-95.

SAMET, H. 1981b. Connected component labeling
using quadtrees. J. ACM 28, 3 (July), 487-501.

SAMET, H. 198lc. Computing perimeters of images
represented by quadtrees. IEEE Trans. Pattern
Anal. Mach. Intell. 3, 6 (Nov.), 683-687.

SAMET, H. 1982a. Neighbor finding techniques for
images represented by quadtrees. Comput. Gr.
Image Process. 18, 1 (Jan.), 37-57.

SAMET, H. 1982b. Distance transform for images
represented by quadtrees. IEEE Trans. Pattern
Anal. Mach. Intell. 4, 3 (May), 298-303.

SAMET, H. 1983. A quadtree medial axis transform.
Commun. ACM 26, 9 (Sept.), 680-693. See also
corrigendum, Commun. ACM 27, 2 (Feb. 1984),
151.

SAMET, H. 1984. Algorithms for the conversion of
quadtrees to rasters. Comput. Vision Gr. Image
Process. 26, 1(Apr.),1-16.

SAMET, H. 1985a. A top-down quadtree traversal
algorithm. IEEE Trans. Pattern Anal. Mach. In­
tel/. 7, 1 (Jan.) in press. Also TR-1237, Computer
Science Dept., University of Maryland.

SAMET, H. 1985b. Reconstruction of quadtrees from
quadtree medial axis transforms. Comput. Vision
Gr. Image Process. 29, 2 (Feb.) in press. Also TR-
1224, Computer Science Dept., University of
Maryland.

SAMET, H. 1985c. Data structures for quadtree ap­
proximation and compression. Commun. ACM 28
in press. Also TR-1209, Computer Science Dept.,
University of Maryland.

SAMET, H., AND KRISHNAMURTHY, E. V. 1983. A
quadtree-based matrix manipulation system. Un­
published manuscript of work in progress.

SAMET, H., AND ROSENFELD, A. 1980. Quadtree
structures for image processing. In Proceedings of
the 5th International Conference on Pattern Rec­
ognition (Miami Beach, Fla., Dec.). IEEE, New
York, pp. 815-818.

SAMET, H., AND SHAFFER, C. A. 1984. A model for
the analysis of neighbor finding in pointer-based
quadtrees. TR-1432, Computer Science Dept.,
University of Maryland, College Park, Md., Aug.

SAMET, H., AND TAMMINEN, M. 1984. Efficient im­
age component labeling. TR-1420, Computer Sci­
ence Dept., University of Maryland, College Park,
Md., July.

SAMET, H., AND TAMMINEN, M. 1985. Computing
geometric properties of images represented by

The Quadtree and Related Hierarchical Data Structures • 259

linear quadtrees. IEEE Trans. Pattern Anal.
Mach. Intell. 7, 1 (Jan.) in press. Also TR-1359,
Computer Science Dept., University of Maryland.

SAMET, H., AND WEBBER, R. E. 1982. On encoding
boundaries with quadtrees. TR-1162, Computer
Science Dept., University of Maryland, College
Park, Md., Feb.

SAMET, H., AND WEBBER, R. E. 1983. Using quad­
trees to represent polygonal maps. In Proceedings
of Computer Vision and Pattern Recognition 83
(Washington, DC, June). IEEE, New York, pp.
127-132. Also TR-1372, Computer Science Dept.,
University of Maryland.

SAMET, H., AND WEBBER, R. E. 1984. On encoding
boundaries with quadtrees. IEEE Trans. Pattern
Anal. Mach. Intel/. 6, 3 (May), 365-369.

SHAMOS, M. I., 1978. Computational geometry.
Ph.D. dissertation, Dept. of Computer Science,
Yale University1 New Haven, Conn.

SHAMOS, M. I., AND HOEY, D. 1975. Closest-point
problems. In Proceedings of the 16th Annual
IEEE Symposium on the Foundati.ons of Com­
puter Science (Berkeley, Calif., Oct.). IEEE, New
York, pp. 151-162.

SHNEIER, M. 1981a. Calculations of geometric prop­
erties using quadtrees. Comput. Gr. Image Proc­
ess. 16, 3 (July), 296-302.

SHNRIER, M. 1981b. Path-length distances for quad­
trees. _Inf. Sci. 23, 1 (Feb.), 49-67.

SHNEIER, M. 1981c. Two hierarchical linear feature
representations: Edge pyramids and edge quad­
trees. Comput. Gr. Image Process. 17, 3 (Nov.),
211-224.

SLOAN, K. R., JR. 1981. Dynamically quantized pyr­
amids. In Proceedings of the 6th International
Joint Conference on Artificial Intelligence (Van­
couver, B.C., Aug.). Kaufmann, Los Altos, Calif.,
pp. 734-736.

SLOAN, K. R., JR., AND TANIMOTO, S. L. 1979.
Progressive refinement of raster images. IEEE
Trans. Comput. 28, 11 (Nov.), 871-874.

SRIHARI, S. N. 1981. Representation of three-dimen­
sional digital images. ACM Comput. Surv. 13, 1
(Dec.), 399-424.

SUTHERLAND, I. E., SPROULL, R. F., AND SCHU·
MACKER, R. A. 1974. A characterization of ten
hidden-surface algorithms. ACM Comput. Surv.
6, 1 (Mar.), 1-55.

TAMMINEN, M. 1981. The EXCELL method for ef­
ficient geometric access to data. Acta Polytech.
Scand. Mathematics and Computer Science Se-
ries No. 34, Helsinki. _

TAMMINEN, M. 1982. Hidden lines using the EX­
CELL method. Comput. Gr. Forum 11, 3, 96-105.

TAMMINEN, M. 1983. Performance analysis of cell
based geometric file organizations. Comput. Vi­
si.on Gr. Image Process. 24, 2 (Nov.), 168-181.

TAMMINEN, M. 1984a. Comment on quad- and oct­
trees. Commun. ACM 27, 3 (Mar.), 248-249.

TAMMINEN, M. 1984b. Encoding pixel trees. Com­
pul. Vision Gr. Image Process. 28, 1 (Oct.), 44-57.

TAMMINEN, M., AND SAMET, H. 1984. Efficient OC·

tree conversion by connectivity labeling. In Pro­
ceedings of the SIGGRAPH 84 Conference (Min­
neapolis, Minn., July). ACM, New York, pp.
43-51.

TANIMOTO, S. 1976. Pictorial feature distortion in a
pyramid. Comput. Gr. Image Process. 5, 3 (Sept.),
333-352.

TANIMOTO, S. 1979. Image transmission with gross
information first. Comput. Graph. Image Process.
9, 1 (Jan.), 72-76.

1'ANIMOTO, S., AND KLINGER, A. EDS. 1980.
Structured Computer Vi.si.on. Academic Press,
New York.

TANIMOTO, s .. AND PAVLIDIS, T. 1975. A hierarchi­
cal data structure for picture processing. Comput.
Gr. Image Process. 4, 2 (June), 104-119.

TARJAN, R. E. 1975. Efficiency of a good but not
linear set union algorithm. J. ACM 22, 2 (Apr.),
215-225.

TOUSSAINT, G. T. 1980. Pattern recognition and
geometrical complexity. In Proceedings of the 5th
International Conference on Pattern Recognition
(Miami Beach, Fla., Dec.). IEEE, New York, pp.
1324-1346.

TROPF, H., AND HERZOG, H. 1981. Multidimen­
sional range search in dynamically balanced
trees. Angew. Inf 2, 71-77.

TUCKER, L. W. 1984a. Control strategy for an expert
vision system using quadtree refinement. In Pro­
ceedings of the Workshop on Computer Vision:
Representati.on and Control (Annapolis, Md.,
Apr.). IEEE, New York, pp. 214-218.

TUCKER, L. W. 1984b. Computer vision using quad­
tree refinement. Ph.D. dissertation, Dept. Elec­
trical Engineering and Computer Science, Poly­
technic Institute of New York, Brooklyn, N.Y.,
May.

UttR, L. 1972. Layered "recognition cone" networks
that preprocess, classify, and describe. IEEE
Trans. Comput. 21, 7 (July), 758-768.

UNNIKRISHNAN, A., AND VENKATESH, Y. V. 1984.
On the conversion of raster to linear quadtrees.
Department of Electrical Engineering, Indian In­
stitute of Science, Bangalore, India, May.

VAN LEEUWEN, J., AND WOOD, D. 1981. The mea­
sure problem for rectangular ranges in d-space.
J. Algorithms 2, 3 (Sept.), 282-300.

VAN LIEROP, M. L. P. 1984. Transformations on
pictures represented by leafcodes. Dept. of Math·
ematics anri Computing Science, Eindhoven Uni­
versity of Technology, Eindhoven, The Nether­
lands.

WARNOCK, J. L. 1969. A hidden surface algorithm
for computer generated half tone pictures. TR 4-
15, Computer Science Dept., University of Utah,
Salt Lake City, June.

WEBBER, R. E. 1984. Analysis of quadtree algo­
rithms. Ph.D. dissertation, Computer Science
Dept., University of Maryland, College Park,

Computing Surveys, Vol. 16, No. 2, June 1984

260 • Hanan Samet

Md., Mar. Also TR-1376, Computer Science
Dept., University of Maryland.

WEBER, W. 1978. Three types of map data struc­
tures, their ANDs and NOTs, and a possible OR.
In Proceedings of th£ 1st International Advanced
Study Symposium on Topological Data Structures
for Geographic Information Systems, G. Dutton,
Ed. Harvard Papers on Geographic Information
Systems, Harvard Univ. Press, Cambridge, Mass.

WILLARD, D. E. 1982. Polygon retrieval. SIAM J.
Comput. 11, 1(Feb.),149-165.

WOODWARK, J. R. 1982. The explicit quadtree as a
structure for computer graphics. Comput. J. 25, 2
(May), 235-238.

Wu, A. Y., HONG, T. H., AND ROSENFELD, A.
1982. Threshold selection using quadtrees.

IEEE Trans. Pattern Anal. Mach. IntelL 4, 1
(Jan.), 90-94.

YAMAGUCHI, K., KUNll, T. L., FUJIMURA, K., AND
TORIYA, H. 1984. Octree-relateddata structures
and algorithms. IEEE Comput. Gr. Appl. 4, 1
(Jan.), 53-59.

YAU, M. 1984. Generating quadtrees of cross-sec­
tions from octrees. Comput. Vision Gr. Image
Process. 27, 2 (Aug.), 211-238.

YAU, M., AND SRIHARI, s. N. 1983. A hierarchical
data structure for multidimensional digital im­
ages. Commun. ACM 26, 7 (July), 504-515.

YERRY, M. A., AND SHEPARD, M. s. 1983. A modi­
fied quadtree approach to finite element mesh
generation. IEEE Comput. Gr. AppL 3, 1 (Jan./
Feb.), 39-46.

Received November 1983; final revision accepted June 1984.

Computing Surveys, Vol.16, No. 2, June 1984

