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Algorithms are presented for moving between adjacent blocks in an octree representation of 
an image. Motion is possible in the direction of a face, edge, and a vertex, and between blocks 
of arbitrary size. The algorithms are based on a generalization and simplification of techniques 
developed earlier for two dimensions (i.e., in quadtrees). They are also applicable to quadtrees. 
The difference lies in the graph-theoretical classification of adjacencies-i.e., in terms of 
vertices, edges, and faces. Algorithms are given for octrees that are implemented with pointers 
and with pointerless representations such as the linear octree. 0 1989 Academic PRSS. ITIC. 

1. INTRODUCTION 

Image representation is an important issue in computer vision, computer graph- 
ics, and image processing. There are many different representations in use. Cur- 
rently there is much interest in the use of hierarchical data structures such as the 
quadtree and octree [19, 20, 21, 25, 261. Quadtrees are used in 2-dimensional 
applications and octrees in 3-dimensional applications. Their development has been 
motivated to a large extent by a desire to save storage by aggregating data having 
identical or similar values. However, this is not always the case, and, in fact, the 
savings in execution time that arise from this aggregation are often of equal or 
greater importance. 

Many of the traditional image processing operations can be performed using 
quadtrees and octrees. For example, computing perimeters [17], labeling connected 
components [16], finding the genus of an image [2], and computing set properties 
[7, 271. Operations in three dimensions are also possible [9, 1,28,29]. The operations 
are frequently implemented as tree traversals. The difference between them is in the 
nature of the computation that is performed at the node. Often, these computations 
involve the examination of nodes whose corresponding blocks are spatially “ad- 
jacent” to the block corresponding to the node being processed. We shall speak of 
these adjacent nodes as “neighbors.” However, we must be careful to note that 
adjacency in space does not imply any simple relationship among the nodes in the 
tree. 

In this paper we show how to move between adjacent blocks in an octree. Motion 
is possible in the direction of a face, edge, and a vertex, and between blocks of 
arbitrary size. Thus unlike others we do not restrict ourselves to motion in the 
direction of a face between voxels of equal size (e.g., [3, 131) which is quite easy as it 
is analogous to motion in the direction of an edge in two dimensions. Our method is 
a generalization and a simplification of the techniques we developed earlier for two 
dimensions (i.e., in quadtrees) [18, 231. The difference is in the graph-theoretical 
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classification of adjacencies-i.e., in terms of vertices, edges, and faces. It is also 
applicable to quadtrees, and it can be easily extended to deal with images of higher 
dimension. We show how it can be used for octrees that are implemented using both 
a pointer and a pointer-less representation such as the linear octree [3]. 

The rest of this paper is organized as follows. Section 2 contains some definitions 
and a description of our notation. Section 3 presents the algorithms for computing 
the neighbors. The algorithms are given for an octree representation that uses 
pointers. Section 4 analyzes their execution time. Section 5 adapts them to a 
pointer-less quadtree representation. Section 6 concludes with a brief discussion of 
the use of these algorithms with quadtrees and their extension to higher dimensional 
data. 

The motivation for this paper was a desire to implement a ray tracing algorithm 
that made use of an octree representation of a scene. Ray tracing is an approximate 
simulation of how the light that is propagated through a scene lands on the image 
plane [15]. This task is useful in computer graphics. However, it is also the basis of 
performing line of sight (in an arbitrary direction) and field of view computations in 
determining visibility in applications in computer vision and robotics. Although 
octrees are frequently used in such applications [5, 10, 301, none of these methods 
uses neighbor finding to trace the ray through the scene. Instead, more complex 
methods are used that involve postulating a point lying outside of a given node. 
computing its address, and then searching through the tree for it. As we will see. the 
method we describe is simpler. 

2. DEFINITIONS AND NOTATION 

The region octree [6, 8, 141 is an extension of the quadtree data structure [12] to 
represent 3-dimensional data. We start with a 2” x 2” x 2” object array of unit 
cubes (termed voxels or obels). The octree is based on the successive subdivision of 
an object array into octants. If the array does not consist entirely of l’s or entirely 
of O’s, then it is subdivided into octants, suboctants, etc., until cubes (possibly single 
voxels) are obtained that consist of l’s or of O’s; i.e., they are entirely contained in 
the region or entirely disjoint from it. This process is represented by a tree of degree 
8 in which the root node represents the entire object, and the leaf nodes correspond 
to those cubes of the array for which no further subdivision is necessary. Leaf nodes 
are said to be BLACK or WHITE (alternatively, FULL or VOID) depending on 
whether their corresponding cubes are entirely within or outside of the object, 
respectively. All non-leaf nodes are said to be GRAY. Figure la is an example of a 
simple 3-dimensional object, in the form of a staircase, whose octree block decom- 
position is given in Fig. lb, and whose tree representation is given in Fig. lc. 

In order to understand the presentation of the algorithms in this section, we first 
give some definitions and explain our notation. Figure 2 shows the coordinate 
system that we are using relative to a cube. It is slightly different than the one used 
to generate Fig. 1. Let L and R denote the resulting lower and upper halves. 
respectively, when the x axis is partitioned. Let D and U denote the resulting lower 
and upper halves, respectively, when the y axis is partitioned. Let B and F denote 
the resulting lower and upper halves, respectively, when the z axis is partitioned. 
Figure 3 illustrates the labelings corresponding to the partitions. 

The labelings in Fig. 3 are also used to identify the faces, edges, and vertices of 
the cube as shown in Fig. 4. The faces are L (left), R (right), D (down), U (up), B 
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(a) (b) (C) 

FIG. 1. (a) Example 3-dimensional object; (b) its octree block decomposition; and (c) its tree 
representation. 

Y 

FIG. 2. Three-dimensional coordinate system. 

FIG. 3. Three orthogonal partitions of a cube. 
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LUF 

LF 

LDF 

FIG. 4. Labeling of faces, edges, and vertices based on the partitioning defined in Fig. 3. 

(back), and F (front); however, only R, U, and F are visible. The edges and vertices 
of the cube are labeled by using an appropriate concatenation of labels of the 
adjacent faces. Note that vertex LDB and edges LD, LB, and DB are not visible. 
Similarly, the o&ants are labeled by using a concatenation of these labels as shown 
in Fig. 5 (o&ant LDB is not visible). Figure 6 is a numerical labeling for the o&ants 
(o&ant 0 is not visible). 

The concept of a neighbor in an octree is defined analogously to that in a 
quadtree. We say that node Q is a neighbor of node R in direction I if Q 

FIG. 5. Labeling of octants based on the partitioning defined in Fig. 3 (octant LDB is not visible). 

FIG. 6. Numeric labeling of octants based on the partitioning defined in Fig. 3 (octant 0 is not 
visible). 
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FIG. 7. Example of a quadtree block decomposition 

corresponds to the smallest block (it may correspond to a non-leaf node) adjacent to 
R (i.e., touching even if just at a point) in direction I of size greater than or equal to 
the block corresponding to R. For example, in two dimensions, a node can have a 
minimum of five neighbors (e.g., the node corresponding to block 7 in Fig. 7) and a 
maximum of eight neighbors (e.g., the node corresponding to block 13 in Fig. 7, 
where the southern and western neighbors are non-leaf nodes). The neighbors of a 
node R can be of any color but all of them cannot have the same color as R as then 
a merge would have occurred. 

However, whereas in two dimensions we have eight possible directions, in three 
dimensions, we have 26 possible directions. In particular, in two dimensions, two 
nodes can be adjacent, and hence neighbors, along an edge (four possibilities) or 
along a vertex (four possibilities). In contrast, in three dimensions, two nodes can 
be adjacent, and hence neighbors, along a face (six possibilities), along an edge 
(12 possibilities), or along a vertex (eight possibilities). Such neighbors are termed 
face-neighbors, edge-neighbors, and vertex-neighbors, respectively. These relations 
are shown in Figs. 8a, 8b, and 8c, respectively. 

FIG. 8. Example of (a) a face neighbor, (b) an edge neighbor, and (c) a vertex neighbor. 
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TABLE 1 
ADJ( I, 0) 

I (direction) 

L 
R 
D 
U 
B 
F 

LD 
LU 
LB 
LF 

RD 
RU 
RB 
RF 
DB 
DF 
UB 
UF 

LDB 
LDF 
LUB 
LUF 
RDB 
RDF 
RUB 
RUF 

LDB LDF LUB LUF 

T T T T 
F F F F 
T T F F 
F F T -I- 
T F T F 
F T F T 
T T F F 
F F T T 
T F T F 
F T F T 
F F F F 
F F F F 
F F F F 
F F F F 
T F F F 
F T F F 
F F T F 
F F F T 
T F F F 
F T F F 
F F T F 
F F F T 
F F F F 
F F F F 
F F F F 
F F F F 

RDB 

F 
T 
T 
F 
T 
F 
F 
F 
F 
F 
T 
F 
T 
F 
T 
F 
F 
F 
F 
F 
F 
F 
T 
F 
F 
F 

0 (octant~ 

RDF RUB 

F F 
T T 
T F 
F T 
F T 
T F 
F F 
F F 
F F 
F F 
T F 
F T 
F T 
T F 
F F 
T F 
F T 
F F 
F F 
F F 
F F 
F F 
F F 
T F 
F T 
F F 

RUF 

We now describe an octree implementation that uses pointers. In Section 5 we 
describe a pointerless octree implementation. Assume that each octree node is 
stored as a record of type node containing ten fields. The first nine fields contain 
pointers to the node’s father and its eight sons, which correspond to the eight 
octants. If the node is a leaf node, then it will have eight pointers to the empty 
record. If P is a pointer to a node and 0 is an octant, then these fields are 
referenced as FATHER(P) and SON( P, 0), respectively. We can determine 
the specific octant in which a node, say P, lies relative to its father by use of the 
function SONTYPE( P), which has a value of 0 if SON(FATHER( P), 0) = P. The 
tenth field, NODETYPE, describes the color of the block of the image which the 
node represents-i.e., BLACK, WHITE, or GRAY. The pointer from a node to its 
father is not required but is introduced here to ease the motion between arbitrary 
nodes in the octree. It is exploited in a number of algorithms in order to perform the 
basic operations. 

The predicate ADJ, and the functions REFLECT, COMMON-FACE, and 
COMMON-EDGE aid in the expression of operations involving a block’s octants 
and its faces, edges, and vertices. Tables 1-4 contain the definitions of the ADJ, 
REFLECT, COMMON-FACE, and COMMON-EDGE relationships, respectively. 
Q denotes an undefined value. 
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TABLE 2 
REFLECT( I, 0) 

0 (octant) 

I (direction) LDB LDF LUB LUF RDB RDF RUB RUF 

L RDB 
R RDB 
D LUB 
U LUB 
B LDF 
F LDF 

LD RUB 
LU RUB 
LB RDF 
LF RDF 

RD RUB 
RU RUB 
RB RDF 
RF RDF 
DB LUF 
DF LUF 
UB LUF 
UF LUF 

LDB RUF 
LDF RUF 
LUB RUF 
LUF RUF 
RDB RUF 
RDF RUF 
RUB RUF 
RUF RUF 

RDF RUB RUF 
RDF RUB RUF 
LUF LDB LDF 
LUF LDB LDF 
LDB LUF LUB 
LDB LUF LUB 
RUF RDB RDF 
RUF RDB RDF 
RDB RUF RUB 
RDB RUF RUB 
RUF RDB RDF 
RUF RDB RDF 
RDB RUF RUB 
RDB RUF RUB 
LUB LDF LDB 
LUB LDF LDB 
LUB LDF LDB 
LUB LDF LDB 
RUB RDF RDB 
RUB RDF RDB 
RUB RDF RDB 
RUB RDF RDB 
RUB RDF RDB 
RUB RDF RDB 
RUB RDF RDB 
RUB RDF RDB 

LDB LDF 
LDB LDF 
RUB RUF 
RUB RUF 
RDF RDB 
RDF RDB 
LUB LUF 
LUB LUF 
LDF LDB 
LDF LDB 
LUB LUF 
LUB LUF 
LDF LDB 
LDF LDB 
RUF RUB 
RUF RUB 
RUF RUB 
RUF RUB 
LUF LUB 
LUF LUB 
LUF LUB 
LUF LUB 
LUF LUB 
LUF LUB 
LUF LUB 
LUF LUB 

LUB LUF 
LUB LUF 
RDB RDF 
RDB RDF 
RUF RUB 
RUF RUB 
LDB LDF 
LDB LDF 
LUF LUB 
LUF LUB 
LDB LDF 
LDB LDF 
LUF LUB 
LUF LUB 
RDF RDB 
RDF RDB 
RDF RDB 
RDF RDB 
LDF LDB 
LDF LDB 
LDF LDB 
LDF LDB 
LDF LDB 
LDF LDB 
LDF LDB 
LDF LDB 

ADJ(Z, 0) is true if and only if octant 0 is adjacent to the Zth face, edge, or 
vertex of O’s containing block-e.g., ADJ(‘L’, ‘LDB’) is true as are ADJ(‘LD’, 
‘LDB’) and ADJ(‘LDB’, ‘LDB’). This relation can also be described as being true if 
0 is of type I, or equivalently that Z’s label is a subset of O’s label. 

REFLECT( I, 0) yields the SONTYPE value of the block of equal size (not 
necessarily a brother) that shares the Zth face, edge, or vertex of a block hav- 
ing SONTYPE value 0-e.g., REFLECT(‘L’, ‘RDB’) = ‘LDB’, 
REFLECT(‘LD’, ‘RDB’) = ‘LUB’, and REFLECT(‘RDB’, ‘RDB’) = ‘LUF’. 

COMMON-FACE(Z, 0) yields the type on the face (i.e., label), of O’s contain- 
ing block, that is common to octant 0 and its neighbor in the Zth direction 
(I is an edge or a vertex-e.g., COMMON-FACE(‘LD’, ‘LUF’) = ‘L’ and 
COMMON-FACE(‘LDB’, ‘LUF’) = ‘L’. 

COMMON-EDGE(Z, 0) yields the type of the edge (i.e., label), of O’s contain- 
ing block, that is common to octant 0 and its neighbor in the Zth direction (I is a 
vertex)-e.g., COMMON-EDGE(‘LDB’, ‘LUB’) = ‘LB’. 

For an octree corresponding to a 2” X 2” X 2” image array, we say that the root 
is at level n, and that a node at level i is at a distance of n - i from the root of the 
tree. In other words, for a node at level i, we must ascend (n - i) FATHER links to 
reach the root of the tree. Note that the farthest node from the root of the tree is at 
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I (direction) 

LD 
LU 
LB 
LF 
RD 
RU 
RB 
RF 
DB 
DF 
UB 
UF 

LDB 
LDF 
LUB 
LUF 
RDB 
RDF 
RUB 
RUF 

HANAN SAMET 

TABLE 3 
COMMON-FACE( I, 0) 

0 (octant) 

LDB LDF LUB LUF RDB RDF RUB RUF 

cl cl L L D D sl 61 
L L D cl Q c! U I1 
52 L D L B 0 B 11 
L D L cl n F D F 
D D 1; D cl n R R 
Cl Q U U R R Q cl 
B cl B D cl R D R 
a F Q F R n R cl 
Q D B Q Q D B $1 
D n n F D cl D F 
B cl 0 U B D D U 
n F U cl a F U i1 
D cl 8 L Q D B 62 
a D L I;2 D Q a F 
B L D fl B .Q D U 
L n cl D cl F U $1 
Q D B Q D Q D R 
D D cl F D Q R bl 
B cl D U cl R D 61 
n F U cl R D 11 D 

level 2 0. A node at level 0 corresponds to a single voxel in the image, while a node 
is of size 2” if it is found at level s in the tree. 

3. ALGORITHMS 

First, we show how to locate neighbors of equal size. This is relatively straightfor- 
ward for face-neighbors. Assume that we are trying to find the equal-sized face- 
neighbor of node P in direction 1. The basic idea is to ascend the octree until a 
common ancestor is located, and then descend back down the octree in search of the 
neighboring node. It is obvious that we can always ascend as far as the root of the 

TABLE 4 
COMMON-EDGE( I, 0) 

0 (octant) 

I (direction) LDB LDF 

LDB 
LDF 
LUB 
LUF 
RDB 
RDF 
RUB 
RUF 

Q 
LD 
LB 
cl 

DB 
n 
B 
52 

LD 
n 
i-l 

LF 
cl 

DF 
51 
a 

LUB 

LB 
D 
cl 

LU 
0 
52 

UB 
n 

LUF RDB RDF 

B 
LF 
LU 

cl 
$2 
n 
cl 

UF 

DB 
Q 
cl 
il 
Q 

RD 
RB 

Q 

cl 
DF 

B 
B 

RD 
Q 
cl 

RF 

RUB 

cl 
0 

UB 
cl 

RB 
D 
Q 

RU 

RUF 

D 
D 
s2 

UF 
!a 

RF 
RU 

B 



NEIGHBOR FINDING IN IMAGES 375 

octree and then start our descent. However, our goal is to find the nearest common 
ancestor, as this mi ’ mmizes the number of nodes that must be visited. These 
two steps are described below. They are implemented by procedure OT-EQ- 
FACE-NEIGHBOR. This procedure ignores the situation in which the neighbor 
may not exist (e.g., when the node is on the border of the image). 

(1) Locate the nearest common ancestor. This is the first ancestor node reached 
by a son of type 0 such that ADJ(Z, 0) is false. In other words, Z’s label is not a 
subset of O’s label. 

(2) Retrace the path that was taken to locate the nearest common ancestor by 
using the function REFLECT to make mirror image moves about the face shared by 
the neighboring nodes. 

recursive pointer node procedure OT-EQ-FACE-NEIGHBOR(P, 1); 
/* Locate an equal-sized face-neighbor of node P in direction I. */ 
begin 

value pointer node P; 
value face I; 
retum(SON(if ADJ(I,SONTYPE(P)) then 

end; 

OT-EQ-FACE-NEIGHBOR(FATHER(P),I) 
else FATHER(P), 
REFLECT(I,SONTYPE(P)))); 

Locating an edge-neighbor is more complex. Assume that we are trying to find the 
equal-sized edge-neighbor of node P in direction I. Our initial aim is to locate the 
nearest common ancestor of P and its neighbor. We need to ascend the tree to do 
so. We must also account for the situation in which the ancestors of P and its 
neighbor are adjacent along a face. Let N denote the node that is currently being 
examined in the ascent. There are three cases described below. They are imple- 
mented by procedure OT-EQ-EDGE-NEIGHBOR. This procedure ignores the 
situation in which the neighbor may not exist (e.g., when the node is on the border 
of the image). 

(1) As long as N is a son of type 0 such that ADJ(Z, 0) is true, we continue to 
ascend the tree. In other words, Z’s label is a subset of O’s label. 

(2) If the father of N and the ancestor of the desired neighbor, say A, 
are adjacent along a face, then calculate A by use of procedure OT-EQ- 
FACE-NEIGHBOR. This situation and the exact direction of A are determined by 
the function COMMON-FACE applied to Z and the son type of N. Once A has 
been obtained, the desired neighbor is located by applying the retracing step 
outlined in step 3. 

(3) Otherwise, N is a son of a type, say 0, such that neither of the labels of the 
faces comprising edge Z is a subset of O’s label. Its father, say T, is the nearest 
common ancestor. The desired neighbor is obtained by simply retracing the path 
used to locate T, except that we now make directly opposite moves about the edge 
shared by the neighboring nodes. This process is facilitated by use of the function 
REFLECT. 

recursive pointer node procedure OT-EQ-EDGE-NEIGHBOR(P, I); 
/ * Locate an equal-sized edge-neighbor of node P in direction I. * / 
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begin 
value pointer nude P; 
value edge I; 
retum(SON(if ADJ(1, SONTYPE( then 

end ; 

OT-EQ-EDGE-NEIGHBOR(FATHER(P), I) 
else if COMMON-FACE(I,SONTYPE(P)) # Q then 

OT-EQ-FACE-NEIGHBOR(FATHER(P), 
COMMON-FACE(I,SONTYPE(P))) 

else FATHER(P), 
REFLECT(I,SONTYPE(P)))); 

Locating a vertex-neighbor is very similar to locating an edge-neighbor. Assume 
that we are trying to find the equal-sized vertex-neighbor of node P in direction I. 
Again, our initial aim is to locate the nearest common ancestor of P and its 
neighbor. We need to ascend the tree to do so. We must also account for the 
situation that the ancestors of P and its neighbor are adjacent along an edge. Let N 
denote the node that is currently being examined in the ascent. There are four cases 
described below. They are implemented by procedure OT-EQ-VERTEX 
-NEIGHBOR. This procedure ignores the situation that the neighbor may not exist 
(e.g., when the node is on the border of the image). 

(1) As long as N is a son of type 0 such that ADJ(Z, 0) is true, we continue to 
ascend the tree. In other words, Z’s label is a subset of O’s label. 

(2) If the father of N and the ancestor of the desired neighbor, say A, 
are adjacent along an edge, then calculate A by use of procedure OT-EQ- 
EDGE-NEIGHBOR. This situation and the exact direction of A are determined by 
the function COMMON-EDGE applied to Z and the son type of N. Once A has 
been obtained, the desired neighbor is located by applying the retracing step 
outlined in step 4. 

(3) If the father of N and the ancestor of the desired neighbor, say A, 
are adjacent along a face, then calculate A by use of procedure OT-EQ- 
FACE-NEIGHBOR. This situation and the exact direction of A are determined by 
the function COMMON-FACE applied to Z and the son type of N. Once A has 
been obtained, the desired ‘neighbor is located by applying the retracing step 
outlined in step 4. 

(4) Otherwise, N is a son of a type, say 0, such that none of the labels of the 
faces comprising vertex Z is a subset of O’s label. Its father, say T, is the nearest 
common ancestor. The desired neighbor is obtained by simply retracing the path 
used to locate T except that we now make directly opposite moves about the vertex 
shared by the neighboring nodes. This process is facilitated by use of the function 
REFLECT. 

recursive pointer node peedure OT-EQ-VERTEX-NEIGHBOR(P,I); 
/ * Locate an equal-sized vertex-neighbor of node P in direction I. * / 
begin 

value putnter nude P; 
value vertex I; 
retum(SON(if ADJ(I,SONTYPE(P)) then 

OT-EQ-VERTEXNEIGHBOR(FATHER(P),I) 
else if COMMON-EDGE(I,SONTYPE(P)) # Q then 

OT-EQ-EDGE-NEIGHBOR(FATHER(P), 
COMMON-EDGE(I,SONTYPE(P))) 
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end; 

else if COMMON-FACE(I,SONTYPE(P)) # B then 
OT-EQ-FACE-NEIGHBOR(FATHER(P), 

COMMON-FACE(I,SONTYPE(P))) 
eke FATHER(P), 
REFLECT(I,SONTYPE(P)))); 

In general, neighbors need not correspond to blocks of the same size. If the 
neighbor is larger, then only part of the path from the nearest common ancestor is 
retraced. Otherwise the neighbor corresponds to a block of equal size and a pointer 
to a BLACK, WHITE, or GRAY node, as is appropriate, of equal size is returned. 
If there is no neighbor (i.e., the node whose neighbor is being sought is adjacent to 
the border of the image in the specified direction), then NIL is returned. This 
process is encoded below by procedures OT-GTEQ-FACE-NEIGHBOR, 
OT-GTEQ-EDGE-NEIGHBOR, and OT-GTEQ-VERTEX-NEIGHBOR. They 
replace OT-EQ-FACE-NEIGHBOR, OT-EQ-EDGE-NEIGHBOR, and OT- 
EQ-VERTEX-NEIGHBOR, respectively. 

recursive pointer node proeednre OT-GTEQ-FACE-NEIGHBOR(P,I); 
/ * Locate a face-neighbor of node P, of size greater than or equal to P, in direction I. If such 

a node does not exist, then return NIL. * / 
begin 

value pointer node P; 
value face I; 
pointer node Q; 
Q + if not mrB(FATHER(P)) and ADJ(I,SONTYPE(P)) then 

/ * Find a common ancestor * / 
OT-GTEQ-FACE-NEIGHBOR(FATHER(P),I) 

else FATHER(P); 
/* Follow the reflected path to locate the neighbor */ 
return@ not null(Q) and GRAY(Q) then SON(Q,REFLECT(I,SONTYPE(P))) 

else Q); 
end; 

recursive pointer node proeednre OT-GTEQ-EDGE-NEIGHBOR(P,I); 
/* Locate an edge-neighbor of node P, of size greater than or equal to P, in direction I. If 

such a node does not exist, then return NIL. * / 
begin 

value pointer node P; 
value edge I; 
pointer node Q; 
/* Find a common ancestor */ 
Q + if null(FATHER(P)) then NIL 

else if ADJ(I,SONTYPE(P)) then 
OT-GTEQ-EDGE-NEIGHBOR(FATHER(P),I) 

else if COMMON-FACE(I,SONTYPE(P)) + n then 
OT-GTEQ-FACE-NEIGHBOR(FATHER(P), 

COMMON-FACE(I,SONTYPE(P))) 
else FATHER(P); 

/ * Follow opposite path to locate neighbor * / 
return(if not null(Q) and GRAY(Q) then SON(Q,REFLECT(I.SONTYPE(P))) 

eke Q); 
end; 

recursive pointer node procedure OT-GTEQ-VERTEX -NEIGHBOR(P,I); 
/* Locate a vertex-neighbor of node P, of size greater than or equal to P, in direction I. If 

such a node does not exist, then return NIL. */ 
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begin 
value pointer node P; 
value vertex I; 
pointer nude Q; 
/* Find a common ancestor */ 
Q + if nuU(FATHER(P)) then NIL 

else if ADJ(I,SONTYPE(P)) then 
OT-GTEQ-VERTEX-NEIGHBOR(FATHER(P),I) 

else if COMMON-EDGE(I,SONTYPE(P)) f D then 
OT-GTEQ-EDGE-NEIGHBOR(FATHER(P), 

COMMON-EDGE(I,SONTYPE(P))) 
else if COMMON-FACE(I,SONTYPE(P)) + a then 

OT-GTEQ-FACE-NEIGHBOR(FATHER(P), 
COMMON-FACE(I,SONTYPE(P))) 

else FATHER(P); 
/ * Follow opposite path to locate the neighbor + / 
retum(if nut null(Q) and GRAY(Q) then 

SON(Q,REFLECT(I,SONTYPE(P))) 
else Q); 

end; 

4. ANALYSIS 

The analysis of the algorithms that we have presented depends on the assump- 
tions about the underlying random image model. The most natural way to analyze 
the execution time of these functions is in terms of the number of nodes that must 
be visited in locating the desired neighbor [18, 231. The analysis of each function is 
decomposed into two stages. They correspond to the process of locating the nearest 
common ancestor, and then locating the desired neighbor. The worst-case analysis is 
0(n). However, it is rare. We use an average case-analysis that makes use of a 
random image model in which each leaf node is assumed to be equally likely to 
appear at any position and level in the octree. Using such a model with an 
octree means that there are 1,8,64,512,. . _, 8’ leaf nodes at levels n, n - 1, 
n - 2, n - 3,..., n - i, respectively, or equivalently that i 1 ($)’ of the nodes are 
at level i. Of course, this is not a realizable situation, although in practice it does 
model the image well [18, 231. 

Observe that our notion of a random image differs from the conventional one 
which implies that every voxel has an equal probability of being BLACK or 
WHITE. Such an assumption leads to a very low probability of aggregation (i.e., 
nodes corresponding to blocks of size greater than one voxel). Clearly, for such an 
image the octree is the wrong representation (e.g., a checkerboard-like solid). The 
problem with the conventional random image model is that it assumes independence 
which is clearly not the case (i.e., a voxel’s value is typically related to that of its 
neighbors). 

The first stage of the analysis is with respect to a node P at level i and a direction 
I. Depending on the nature of I, there are different positions where P might be 
located. If Z is a face, then there are (2n-i)2 . (2”-’ - 1) possible positions where P 
might be located. The -1 results from the fact that along one of the axial 
directions, one element will not have a neighbor in direction I. Of these positions, 
2”-‘. 2”-’ . 2’ have their nearest common ancestor at level n, 2”-;. 2”-’ . 2l at 
level n - 1, . . . , and 2”-’ . 2”-’ . 2”-‘-* at level i + 1. To reach a nearest common 
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ancestor at level j, j - i nodes must be visited. Therefore, the average is 

n-l n 

C C 2n-;. 2n-i . 2-i. (j _ i) 

i=O j=i+l 

n-l 
’ 

;Fo 2”-i 
. 2n-i . (2,-1 - 1) 

This can be simplified to yield 

- . 2*” + 7 
2- (21n 7) 

18 . 23” - 21 - 2*” + 3 
<2 
- 

for n 2 1. 

If 1 is an edge, then there are 2”-’ . (2’-i - l)* possible positions where P might 
be located. The - 1 results from the fact that along two of the axial directions, one 
element will not have a neighbor in direction I that is in the image. Of these 
positions, 2”-’ . 4’ . (2 . (2’-’ - 1) - 1) have neighbors in direction I such that the 
nearest common ancestor is at level n, 2”-’ . 4l . (2 . (2”-‘-’ - 1) - 1) at level 
n - l,..., and 2”-’ . 4fl-i-1 . (2 * (2n-i-(n-i-1) - 1) - 1) at level i + 1. To reach 
a nearest common ancestor at level j, j - i nodes must be visted. Therefore, the 
average is 

n-l n 
C C 2”-’ . 4-j. (2 . (2”-;-(“-A _ 1) _ 1) . (j _ i) 

i=O j=i+l 
n-1 

C 2n-i . (2n-i _ 1)’ 
i=o 

This can be simplified to yield 

8 (28n - 28) . 2*” - (21n - 49) . 2” - 21 8 
-- 
3 12 + 23” - 28 . 2*” + 21 . 2” 

I- for n 
- 5 3 

2 1. 

If I is a vertex, then there are (2fl-i - 1)3 possible positions where P might be 
located. The - 1 results from the fact that along each of the axial directions, one 
element will not have a neighbor in direction I that is in the image. Of these 
positions, 8’ . (3 . (2n-i - l)* - 3 . (2n-i - 1) + 1) have neighbors in direction I 
such that the nearest common ancestor is at level n, 8l . (3 . (2”,-“’ - l)* - 3 . 
(2”-i-’ - 1) + 1) at level n - 1,. .., and 8”-i-1 . (3 . (2n-i-(n-i-i) - I)* - 3 . 
(2n-i-(n-i-1) - 1) + 1) at level i + 1. To reach a nearest common ancestor at level 
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1, j - i nodes must be visited. Therefore, the average is 

n-l n 
C C 8-j. (3 . (2”-;-(“-A - 1)’ _ 3 . (2”-‘-(n-1) _ 1) + 1) . (j _ i j 

i=O j=i+l 
n-1 

c (2,--r - 1J3 
r=O 

This can be simplified to yield 

22 (147n - 217) - 22n+3 - (441n - 1239) . 2”+* + 147 . n* - 441n - 3220 
-- 
7 21 . 23n+4 - 147 . 22n+3 + 441 . 2”+* - 294n - 924 

22 
I- 

7 
for n 2 1. 

When the neighbors are of equal size, then the analyses for the second stage are 
the same as for the first stage. The result is that the average number of nodes visited 
by OT-EQ-FACE-NEIGHBOR, OT-EQ-EDGE-NEIGHBOR, and OT-EQ- 
VERTEX-NEIGHBOR is bounded by 4, ‘j”, and 9, respectively. 

When the neighbors are not of equal size, then, depending on the position of the 
node P, a number of different sizes of neighbors are possible. For example, suppose 
we have a 23 x 23 x 23 image and we are looking at a node of size one voxel (i.e., 
1 X 1 x 1). In this case, its position may be such that it can have three possible 
neighbors-i.e., one each of size 1 X 1, 2 X 2, and 4 X 4 at node distances of 3, 2, 
and 1, respectively, from the nearest common ancestor. We use the average contri- 
bution of these three cases as the cost of the second stage. This means that the 
quantity (j - i) in the analyses of OT-EQ-FACE-NEIGHBOR, 
OT-EQ-EDGE-NEIGHBOR, and OT-EQ-VERTEX-NEIGHBOR is replaced by 

&. 5(j - k). 
k=l 

Using this model, the average number of nodes visted by OT-GTEQ-FACE- 
NEIGHBOR, OT-GTEQ-EDGE-NEIGHBOR, and OT-GTEQ-VERTEX- 
NEIGHBOR is bounded by :, {, and z, respectively: 

5. POINTERLESS OCTREE REPRESENTATIONS 

Pointerless octree representations are used because they may lead to significant 
savings in space as there is no need to store pointers (but see 1241). They can be 
grouped into two categories. The first treats the image as a collection of leaf nodes 
while the second represents the image in the form of a traversal of the nodes of its 
tree. Their disadvantage is that performing neighbor finding is more complex than 
when using a pointer-based representation. In this section we concentrate on a 
variant of the first category which is known as a linear octree [4]. We show how a 
neighbor of greater than or equal size is computed in the direction of a face, edge, or 
vertex. 

The second category is exemplified by the DF-expression [11] (denoting depth- 
first). Neighbor finding is very complicated when this representation is used since 
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there is no notion of random access. For example, a node is only identified by its 
position in the traversal of the quadtree and is represented by a code corresponding 
to its type (i.e., BLACK, WHITE, or GRAY). There is no explicit information on 
the path from the root of the octree to it. Thus in order to perform neighbor finding, 
it is necessary to start at the root of the tree and locate the node whose neighbor we 
are seeking, remember the path to it, compute the path to its neighbor, and then 
sequentially search the list for the neighbor starting at the root of the tree. This is a 
cumbersome process. 

When an image is represented as a collection of the leaf nodes comprising it, there 
are a number of methods of representing the individual leaf nodes. In the linear 
octree, each leaf node (BLACK and WHITE) is represented by its locational code. 
Assuming an image of side length 2”, the locational code of each leaf node of side 
length 2k is n digits long where the leading n - k digits contain the directional 
codes that locate the leaf along a path from the root of the tree. The k trailing digits 
contain the directional codes that locate the voxel in the block’s LDB comer. The 
resulting number is the same as that which is obtained by interleaving the bits that 
comprise the values of the x, y, and z coordinates. Therefore, each leaf node in the 
octree is encoded by a base 8 number. 

The directional codes are numeric equivalents of the different octants (i.e., 
0, 1, 2, 3,4, 5, 6, 7 for LDB, LDF, LUB, LUF, RDB, RDF, RUB, RUF, respec- 
tively). We assume that the origin is in the LDB comer of the block and thus for 
a block of side length 2k, the directional codes stored in the k trailing digits are 0. 

A node’s locational code is implemented by a record of type locationalcode with 
three fields PATH, LEV, and COL corresponding to the path from the root to the 
node, the level of the node, and the color of the node, respectively. For an image of 
maximum side length 2”, the path, say P, is implemented as an array of type path of 
n directional codes stored in the order P[n - l]P[n - 21 . * . P[l]P[O]. 

Neighbor finding when the image is represented as a collection of the locational 
codes of its constituent nodes is very similar to the procedure used for a pointer-based 
octree representation. The key difference is that there is never a need to traverse 
links since the only operation is one of bit manipulation. This difference is of no 
consequence when the tree is represented in internal memory. However, when 
storage requirements are such that the tree is represented in external memory (e.g., 
using a B-tree as in [22]), then this difference is very important for it means that 
there is no need to traverse links between nodes that may be on different pages, a 
situation that could cause a page fault. In such a situation, bit manipulation will, in 
most cases, be considerably faster than link traversal. 

Given a node A with locational code P, finding its neighbor in direction I of size 
greater than or equal to A is quite simple. During this process, we first construct Ti 
the path component of the locational code of the equal-sized desired neighbor, say 
Q. The result is analogous to the calculation of the address of the node’s block 
except that it is more complex since we are not dealing with the individual values of 
the x, y, and z coordinates of the address. 

The algorithm is as follows. Starting with the digit position in the path corre- 
sponding to the link from A to its father (i.e., PATH(P)[LEV( P)]), reflect each 
directional code in the designated direction (and assign it to the corresponding entry 
in T) until encountering the nearest common ancestor of A and Q. The nearest 



382 HANAN SAMET 

common ancestor is detected by using the function ADJ. Note that unlike the 
algorithm for computing neighbors in a pointer-based octree, there is no need to 
descend the tree since reflection occurs while ascending the tree. 

Once T has been computed, we must still determine if such a node actually exists, 
as well as its color. Recall that we are interested in the neighbor of greater than or 
equal size, while T is the path to a neighboring node of equal size. Assume, without 
loss of generality, that the collection of locational codes, say L, is implemented as a 
list. Search L for the locational code whose path has the maximum value that is still 
less than or equal to that of T, say R-i.e., PATH(R) i T. If the level of R is 
greater than or equal to that of T (i.e., LEV(P)), then R’s node contains the node 
represented by T, and R is returned as the neighbor. Otherwise, there is no leaf 
node in the tree that corresponds to the desired neighbor, and the neighbor is 
GRAY. 

Given a 2” x 2” x 2” image whose octree contains m leaf nodes, the neigh- 
bor computation process described above has a worst-case execution time of 
O(log, m + n). This assumes that the locational codes are stored in a list sorted by 
the numbers formed by the paths to the nodes. 

Procedure LC-OT-GTEQ-NEIGHBOR, given below, is used to calculate the 
locational code of the neighbor of a node, say A with locational code P, in all 
directions (i.e., face, edge, and vertex) in a linear octree. It makes use of procedures 
LC-OT-EQ-FACE -NEIGHBOR, LC~OT~EQ~EDGE~NEIGHBOR, and LC-OT 
-EQ-VERTEX-NEIGHBOR to calculate the locational code of an equal-sized 
neighbor of A in the required direction. These procedures are quite general and can 
be used with different variants of locational codes. Note the use of arrays as values 
that can be transmitted as parameters to procedures as well as returned as the values 
of procedures. 

LC-OT-GTEQ-NEIGHBOR uses procedure MAXLEQ (not given here) to find 
the locational code of a node whose path has the maximum value that is still less 
than or equal to that of the path to A’s equal-sized neighbor. If the node is smaller 
than A, then the locational code of an appropriate GRAY node is returned. The 
function TYPE aids in the determination of the type of the neighbor’s direction (i.e., 
vertex, edge, or face). In order to facilitate the bit manipulation operations, 
the second argument to the functions ADJ, REFLECT, COMMON-EDGE, and 
COMMON-FACE is now the numeric code of the octant. Similarly, the value of 
the REFLECT function is the numeric code of the octant. 

locationalcode procedure LC-OT-GTEQ-NEIGHBOR(N,L,I,P); 
/* Given a 2N x 2N X 2N image represented by a linear octree in the form of a list L, of the 

locational codes of its nodes, return the locational code of the neighbor in direction I of 
a node with locational code P. If no neighbor exists, then NIL is returned. As- 
sumeN>O. */ 

begin 
value integer N; 
value pointer list L; 
value direction I; 
value pointer locationakode P; 
patharrayqO:N- 11; 
pointer locationalcode B,Q; 
if LEV(P) 2 N then return(NIL);/ * No neighbor exists in direction I * / 
T + if TYPE(I) =‘FACE’ then 

LC-OT-EQ-FACE-NEIGHBOR(N,I,PATH(P),LEV(P)) 
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else if TYPE(I) =‘EDGE’ then 
LC-OT-EQ-EDGE-NEIGHBOR(N,I,PATH(P),LEV(P)) 

else LC-OT-EQ-VERTEX-NEIGHBOR(N,I,PATH(P),LEV(P)); 
if null(T) then r&un(NIL)/ + No neighbor exists in direction I * / 
else B * MAXLEQ(T,L); /* Find maximum locational code in L that is I T */ 
if LEV(B) 2 LEV(P) then return(B) 
else / * The neighbor is smaller; create a new GRAY node * / 

begin 
Q + create(locationalcode); 
PATH(Q) + T; 
LEV(Q) + LEV(P); 
COL(Q) +- ‘GRAY’; 
r-m(Q); 

end; 
end; 

path array Procedure LC-OT-EQ-FACE-NEIGHBOR(N,I,P,LEVEL); 
/* Given a 2N x 2N x 2N image represented by a linear octree, return the path from the 

root to the face-neighbor in direction I of a node at level LEVEL whose path from the 
rootis P. l / 

begin 
value integer N; 
value face I; 
value path array P[O:N - 11; 
value integer LEVEL; 
do 

begin 
P[LEVEL] + REFLECT(I,P[LEVEL]); 
LEVEL +- LEVEL + 1; 

end 
until LEVEL = N or ADJ(I,P[LEVEL - 11); 

retum(if not ADJ(I,P[LEVEL - 11) then NIL 
else P); 

end; 

path array Procedure LO-OT-EQ-EDGE-NEIGHBOR(N,I,P,LEVEL); 
/: Given a 2N x 2N x 2N image represented by a linear octree, return the path from the 

root to the edge-neighbor in direction I of a node at level LEVEL whose path from the 
rootis P. */ 

begin 
value integer N; 
value edge I; 
vaIwpathanayP[O:N-11; 
value integer LEVEL; 
direction-code PREVIOUS; 
do 

begin 
PREVIOUS + P[LEVEL]; 
P[LEVEL] +- REFLECT(I,PREVIOUS); 
LEVEL +- LEVEL + 1; 

end 
until LEVEL = N or not ADJ(I,PREVIOUS); 

return(if ADJ(I,PREVIOUS) then NIL 
else if COMMON-FACE(I,PREVIOUS) + Q then 

LC~OT~EQ~FACE~NEIGHBOR(N,COMMON-FACE(I,PREVIOUS), 
P,LEVEL) 

else P); 
end 
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path array pmcedure LC-OT-EQ-VERTEX-NEIGHBOR(N,I,P,LEVEL); 
/* Given a 2N x 2N x 2N image represented by a linear octree, return the path from the 

root to the vertex-neighbor in direction I of a node at level LEVEL whose path from the 
rootis P. */ 

begin 
value integer N; 
value vertex I; 
vaIuepathmayP[O:N-11; 
value integer LEVEL; 
direction-code PREVIOUS; 
do 

begin 
PREVIOUS + P[LEVEL]; 
P[LEVEL] +- REFLECT(I,PREVIOUS); 
LEVEL + LEVEL + 1; 

end 
until LEVEL = N or not ADJ(I,PREVIOUS); 

retum(if ADJ(I,PREVIOUS) then NIL 
else if COMMON-EDGE(I,PREVIOUS) f 0 then 

LC-OT-EQ-EDGE-NEIGHBOR(N,COMMON-EDGE(I,PREVIOUS), 
P,LEVEL) 

else if COMMON-FACE(I,PREVIOUS) # s2 then 
LC-OT-EQ-FACE~NEIGHBOR(N,COMMON-FACE(I,PREVIOUS). 

P,LEVEL) 
else P); 

end; 

The process of constructing the locational code of the equal-sized neighbor is 
analogous to the calculation of the address of the block except that it is more 
complex since we are dealing with the directional codes rather than the values of 
the X, y, and z coordinates of the address. In our procedures (e.g., LC-OT- 
GTEQ-NEIGHBOR, etc.), we have represented the path component of each 
locational code by an array. Of course, in actuality, we cannot use arrays as they are 
very wasteful of storage and would defeat the purpose of using a linear octree. 
Moreover, procedure MAXLEQ, which searches the list of locational codes for the 
nearest value, is cumbersome when using an array representation of a locational 
code. Thus, the locational code must be represented as a number. Decoding the 
individual directional codes is quite easy in this case sine each directional code can 
be represented by three bits and thus it can be done using shift and mask 
operations. 

6. CONCLUDING REMARKS 

We have shown how to find neighbors in all directions of nodes in images 
represented by octrees. In the case of an octree representation that uses pointers, 
our algorithms do not make use of coordinate information, knowledge of the size of 
the image or blocks, or any storage in excess of that imposed by the nature of the 
octree data structure. When the octree is implemented using a pointerless represen- 
tation, then the process of neighbor finding is analogous to calculating the address 
of a neighboring node of equal size, say N, and then searching a list of node 
addresses to find the smallest block of greater than or equal size that contains N. 

It is easy to adapt our algorithms to quadtrees. In this case, we only need to find 
edge-neighbors and vertex-neighbors. These are accomplished by procedures analo- 
gous to OT-EQ-FACE-NEIGHBOR and OT-EQ-EDGE-NEIGHBOR, respec- 
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tively. In addition, procedure COMMON-EDGE is used in place of procedure 
COMMON-FACE. Our techniques can also be easily adapted to images of higher 
dimension. The only requirement is the extension of relations such as ADJ, 
REFLECT, COMMON-FACE, and COMMON-EDGE, as well as the addition of 
an appropriate COMMON relation for each additional dimension for the new form 
of adjacency. Of course, the corresponding tables will also grow considerably larger. 
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