IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.

10, NO. 4. JULY 1988 579

Correspondence

Efficient Component Labeling of Images of Arbitrary
Dimension Represented by Linear Bintrees

HANAN SAMET anpD MARKKU TAMMINEN

Abstract—An algorithm is presented to perform connected compo-
nent labeling of images of arbitrary di that are repr d by
a linear bintree. The bintree is a generalization of the quadtree data
structure that enables dealing with images of arbitrary dimension. The
linear bintree is a pointerless representation. The algorithm uses an
active border which is represented by linked lists instead of arrays.
This results in a significant reduction in the space requirements, thereby
making it feasible to process three- and higher dimensional images.
Analysis of the execution time of the algorithm shows almost linear
behavior with respect to the number of leaf nodes in the image, and
empirical tests are in agreement. The algorithm can be modified easily
to compute a (d — 1)-di 1 boundary e (e.g., perimeter
in two dimensions and surface area in three dimensions) with linear
performance.

Index Terms—Computer-aided design, computer graphics, con-
nected component labeling. DF-expressions, hierarchical data struc-
tures, image processing, linear quadtress, octrees, quadtrees.

1. INTRODUCTION

Hierarchical data structures such as the region quadtree [7] and
the octree [3], [4], [9] have been the subject of much research in
recent years (for a survey, see [13]). Their variants have found use
in a number of domains including image processing, computer
graphics, cartography, and computer-aided design.

Quadtrees can be implemented in a number of different ways.
The most common implementation is in the form of an explicit tree
(Fig. 1) which requires the use of pointers. In the interest of saving
space, pointerless quadtree representations in the form of lists are
often used. They can be classified into two categories. The first
treats the image as a collection of leaf nodes (termed a linear quad-
tree in [2]) where each leaf is encoded by a base 2¢ number (4 for
d = 2), termed a location code, corresponding to a sequence of
directional codes that locate the leaf along a path from the root of
the tree. The second represents the image in the form of a preorder
traversal of the nodes of its quadtree (termed a DF-expression [6]).
We shall use the term linear quadtree for the entire class of point-
erless quadtree representations.

In our discussion, we are primarily concerned with binary im-
ages. Two pixels of a two-dimensional image are said to be 4-
adjacent if they are adjacent to each other in the horizontal or ver-
tical directions. A BLACK region is a maximal four-connected set
of BLACK pixels—that is, a set S such that for any pixels, p, g, in
S, there exists a sequence of pixels p = py, py, *** ,p, = qin§
such that p; , | is 4-adjacent to p;, 0 < i < n. BLACK regions are
termed components. A pixel is said to have four edges, each of
which is of unit length. Similar definitions can be formulated in
terms of blocks for images represented by quadtrees. For example,
two disjoint blocks P and Q are said to be 4-adjacent if there exists

Manuscript received July 22, 1986; revised October 12, 1987. This work
was supported in part by the National Science Foundation under Grant DCR-
8605557 and in part by the Finnish Academy.

H. Samet is with the Department of Computer Science, University of
Maryland, College Park, MD 20742.

M. Tamminen is with the Laboratory for Information Processing Sci-
ence, Helsinki University of Technology, Espoo, Finland.

IEEE Log Number 8718594.

(a) (b) (c)

Fig. 1. An image, its maximal blocks, and the corresponding quadtree.
Blocks in the image are shaded; background blocks are blank. (a) Image.
(b) Block decomposition of the image in (a). (c) Quadtree representation
of the blocks in (a).

a pixel p in P and a pixel g in Q such that p and g are 4-adjacent.
8-adjacency for blocks is defined analogously.

Now, consider a d-dimensional image represented as an array of
d-dimensional pixels termed image elements. Each image element
has 2 - d borders (e.g., an edge in two dimensions and a face in
three dimensions), each of which has unit size. Two image ele-
ments are said to be 4-adjacent if they are adjacent in the sense
that they share a border in its entirety (i.e., it has a nonzero (d —
1)-dimensional measure). BLACK regions are defined analogously
as in two dimensions and likewise for blocks.

Connected component labeling [11] is a fundamental task com-
mon to virtually all image processing applications in two as well
as in three dimensions. For a binary image, represented as an array
of d-dimensional pixels (or a collection of d-dimensional blocks in
the case of quadtrees, octrees, etc.), it is the process of assigning
the same label to all 4-adjacent BLACK image elements.

Connected component labeling is also a problem in graph the-
ory. A connection between the image and graph problems is accom-
plished by conceptualizing the image as an undirected graph and
searching the graph for connected image elements. Formally, we
say that a vertex corresponds to a BLACK image element and an
edge corresponds to a (d — 1)-dimensional adjacency between two
BLACK image elements (i.e., they are connected).' Finding the
connected components of the undirected graph of the image yields
its connection graph.* The two principal approaches to performing
connected component labeling correspond loosely to the two ways
in which a graph can be searched—i.e., depth-first and breadth-first
They differ in the time at which equivalences between labels of
adjacent BLACK image elements are propagated.

The depth-first approach labels each component in its entirety
one by one. It requires the whole image to be readily accessible.
If the cost of determining that two BLACK image elements are
adjacent is constant, then an algorithm employing this approach
can be devised that runs in time proportional to the product of the
dimensionality of the image and the number of BLACK image ele-
ments.

In most applications, we must process images which are much
bigger than the capacity of internal memory. Thus, the depth-first
approach is inappropriate and we focus on the breadth-first ap-
proach. This approach examines each pair of adjacent BLACK im-
age elements in succession, and constructs an equivalence table
where initially each BLACK image element is in a separate equiv-
alence class. For each such pair, a two-stage process (also known
as UNION-FIND [19)) is applied. It makes use of a tree to repre-
sent each equivalence class. First, determine the equivalence
classes associated with both BLACK image elements that comprise

'In the case of a nonbinary image, it is necessary to redefine the concept
of a vertex and an edge to include color information.
2Note that in [15], the concepts of an edge and a vertex are different.

0162-8828/88/0700-0579$01.00 © 1988 IEEE

580 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 4, JULY 1988

AFTER

BEFORE
(—

|
1
]
i
|
1
|
'
[
L

Fig. 2. The active border before and after processing block 4 in Fig. 1.

and the right subtree to positive values. The linear bintree for the
image of Fig. 7 has (B(((BWWB as its DF expression.

lence class on the FIND path is more than one link away from the
root of its tree. Stage two assigns a final label to each BLACK
image element (corresponding to the component of which it is a
member). When path compression is used, the results of Tarjan and
van Leeuwen [20] let us deduce that the worst case execution time
of the total (i.e., both stages) task is almost linear.

Use of a quadtree representation for two-dimensional images re-
sults in connected component labeling algorithms whose compu-
tational complexity is on the order of the number of leaf nodes in
the tree rather than the number of pixels [12]. Similar techniques
are used in octree systems. One such algorithm using a pointer-
based quadtree is reported in [12]. In [15], a general framework
for the computation of geometric properties (including connected
component labeling) of two-dimensional images represented by
linear quadtrees is discussed. The basic idea is that at any instant
(i.e., after processing m leaf nodes), the state of the traversal can
be visualized as a staircase (termed an active border). In particular,
given a traversal that visits sons of nonterminal nodes in the order
SW, SE, NW, NE, the part of the image described by the m leaf
nodes is to the left and below the staircase. For example, for Fig.
1, a traversal in the above order (without GRAY nodes) is 6, 7, 1,
4, 5, 2, 3. Fig. 2 shows the active border before and after pro-
cessing node 4. A heavy line indicates that the adjacent block is
BLACK, while a light line corresponds to an adjacent WHITE
block. Assuming a 2" by 2" image, such a framework requires 2
arrays of 2" records with three fields apiece to represent the active
border.

The techniques described above are good for two-dimensional
data, but for data of three and higher dimensions (e.g., octree),
direct extensions are not very practical due to large storage require-
ments. For example, for a 2" by 2" by 2" object, they require three
arrays of 4" records with three fields apiece for the active border.
In order to obtain efficient multidimensional algorithms, in this pa-
per we develop a new representation of the active border. It takes
advantage of the fact that much of the storage is unnecessary and
represents the active border with linked lists instead of arrays. As
can be seen from the algorithm, this is a nontrivial modification.
The result is a connected component labeling algorithm for data of
arbitrary dimensions that is very efficient from both the standpoints
of space and time. A three-dimensional octree implementation of
the algorithm was used to facilitate the conversion from a boundary
representation to an octree [18]. In that application, the objects
were not allowed to have holes. However, the connected compo-
nent labeling algorithm works in the presence of holes as well.

II. CoNNECTED COMPONENT LABELING USING BINTREES

The region quadtree is based on the successive subdivision of a
d-dimensional image into 2¢ equal-size quadrants until homoge-
neous blocks (i.e., BLACK or WHITE) are encountered. A binary
image tree (termed bintree) [17] is defined analogously, except that
at each stage, we subdivide the image into two parts. Again, as in
the case of the linear quadtree, when d = 2, at odd stages we par-
tition along the x coordinate and at even stages on the y coordinate.
In d dimensions, the coordinate axes are similarly cyclically chosen
for partitioning. Fig. 3 is the bintree corresponding to the image of
Fig. 1(a). We assume that for the x (y) partition, the left subtree
corresponds to the west (south) half of the image and the right sub-
tree corresponds to the east (north) half.

(b)
Fig. 3. The bintree corresponding to Fig. 1. (a) Block decomposition. (b)
Bintree representation of the blocks in (a).

In our algorithms, we use a linear image representation in the
form of a preorder traversal of its bintree (i.e., a DF-expression
[6]). This representation is also applicable to the bintree. The tra-
versal yields a string, termed a linear bintree, over the alphabet
“(,”” ““B,”” and ‘W’ corresponding to the GRAY (i.e., nonleaf),
BLACK, and WHITE nodes, respectively. For example, the DF-
expression for the bintree corresponding to the two-dimensional
image of Fig. 1(a) is (B(W(WB. Modifying our algorithms to deal
with other linear bintree representations is simple.

We label the connected components of an image represented by
a bintree by using the breadth-first approach. It requires us to in-
spect all BLACK border elements. This is done by traversing the
linear bintree. Again, as in the case of the linear quadtree, when d
= 2, at any instant (i.e., after processing m leaf nodes), the state
of the traversal can be visualized as a staircase (termed an active
border) consisting of active border elements. This set can be fur-
ther decomposed into d sets of active border elements. For exam-
ple, when d = 2, a traversal of the bintree such that the western
and southern halves are traversed before the eastern and northern
halves, respectively, the m processed leaf nodes describe a portion
of the image that is to the left and below the staircase. A traversal
in this order (without GRAY nodes) for Fig. 3 is 1, 2, 3, 4. Each
active border element must be given the color of the adjacent d-
dimensional cube that has already been processed. As each leaf in
the list of nodes in the linear bintree is processed, its d border
elements adjacent to the active border (the S and W border ele-
ments in the two-dimensional case) are examined and UNION-
FIND is applied to any resulting adjacencies between BLACK ele-
ments. In addition, the active border is updated to reflect the new
active border elements (i.e., the other d unprocessed border ele-
ments of the node—the N and E border elements in the two-dimen-
sional case). Fig. 4 shows the active border before and after pro-
cessing block 3 of Fig. 3. A heavy line indicates that the adjacent
block is BLACK, while a light line corresponds to an adjacent
WHITE block.

We represent the active border as a singly linked list of records
of type borderlist, with fields DATA and NEXT, which contains
pointers to records corresponding to the active border elements
comprising it. For example, in Fig. 4, the active-x border is the
list (X;, X3, X;) and the active-y border is the list (Y,, Y,). Each
active border element is represented as a record of type borderele-
ment having three fields, SIZ, COL, and LAB, corresponding, re-
spectively, to the size (length in two dimensions, area in three di-
mensions, etc.), color, and label (i.e., equivalence class) of the
side of the block adjacent to the already processed border element.
Initially, there are d active border elements of all size 2"~ ") and
color WHITE.

Connected component labeling is performed by procedures
COMPONENTS, TRAVERSE, and INCREMENT. They are given
in the Appendix using a variant of Algol. Procedure COMPO-
NENTS is invoked with the DF expression encoding of the bintree.
First, it initializes the active border. Next, it invokes procedure
TRAVERSE which controls the traversal of the bintree nodes. Dur-
ing this process, each BLACK leaf node is assigned a label (i.e.,
equivalence class) and a copy is made of the DF-expression (in

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 4, JULY 1988 581

BEFORE AFTER
X, X Xz
| I
!
I Y2 | Ye
| X2 ! X3
: |
|
: Yy : Y\
Lo I

Fig. 4. The active border before and after processing block 3 of Fig. 3.

the pair by using FIND. FIND traverses father links in the tree to
locate the root. If the classes differ, then they are combined using
union. UNION merges two trees by making the father of the root
of one tree point at the root of the other tree. Path compression is
applied as part of FIND to make sure that after FIND, no equiva-
reverse order). Finally, it applies procedure PHASEII to adjust the
component labels to their final values. PHASEII just reverses the
DF-expression while applying FIND once for each BLACK image
element. For each leaf node, TRAVERSE calls procedure INCRE-
MENT d times—i.e., once for each of the d borders to perform the
actual updating of the active borders and to propagate equivalences
among labels. If a BLACK leaf node is not identified with any
existing image component, then a new label (i.e., equivalence
class) is generated.

Procedure TRAVERSE is the key to the algorithm. Using list
pointers ACTIVE_BORDER[0], ACTIVE_BORDERI1], - - - ,
ACTIVE_BORDER(d — 1], it keeps track of the heads of the lists
of the elements of the d active borders. For example, assume that
d = 2 and let YL and XL correspond to ACTIVE BORDER [0] and
ACTIVE_BORDER[1], the active-y and active-x borders, respec-
tively, starting at the node currently being processed. We use Fig.
5, the state of the active borders (XL and YL) before and after each
call to TRAVERSE, to illustrate our discussion.

First, in the case of a nonleaf node, its block is split in two and
the procedure is applied recursively to the two halves. Parameter
CURRENT_COORD indicates the direction along which the block
should be partitioned. CURRENT-COORD cycles through all the
directions. VOLUME is the DIMENSION-dimensional area of the
block and WIDTH is the width of the block along directions CUR-
RENT_COORD through DIMENSION-1; its width along the re-
maining directions is WIDTH /2. After finishing one half, say the
first half of a partition on the x(y) coordinate, the pointer to the
active-y (active-x) (note the change in the order of x and y) border
is reset to point at the element of the active-y (active-x) border it
pointed at just prior to the partition (although its actual value may
have changed during processing). It must be reset because we have
swept through its entire range, while this is not true for the re-
maining active borders. For example, after processing node 1 and
before processing node B, the value of YL is reset, but the active-
y border entry is now different from ‘what it was when starting with
node 1. The pointer to the active-x border retains the value it had
at the end of the first half (e.g., XL after processing node 1 and
before processing node B).

Second, in the case of a leaf node, procedure INCREMENT is
invoked DIMENSION times to process all active border elements
bordering on the edge of the new leaf. There are three possible
cases, depending on whether the entering edge is smaller than its
corresponding active border entry, equal in size, or larger. Fig. 6
illustrates the effect of each of these cases on the active border
when d = 2. Note that the list comprising the active border will
grow in size, stay the same, or shrink, respectively, for the three
cases. If the new leaf is BLACK, then the connected component
information is also updated if the corresponding active border entry
or part thereof is BLACK. Once procedure INCREMENT has been
applied to all the active borders, TRAVERSE determines if the leaf
that has just been processed was BLACK and was only adjacent to
WHITE nodes. If this was the case, then a new label (i.e., equiv-
alence class) is generated. Just prior to termination, TRAVERSE
advances the list pointers to elements of the active borders so that

NODE ~ ENTERING LEAVING

>
Pt)

XL > xL (¥
B J_q .—..-—.r)}
—YL
. XL * XU
—_l_r; ._.~ri -
YL
XL = xL (¥
C | —YL |
— —_—
XL (+ XL ¥
3 _l__r; T ._.._Lr;
“ XL * x (¥
_ert - _.__ni.

Fig. 5. State of the active borders (XL) and (YL) before and after each
call to TRAVERSE ford = 2.

ENTERING

ﬁg_mg BEoDR%EER ' ——— ACTIVE BORDER

(a) Entering edge is larger

LEAVING

ﬁgll:ll\\//g BEODRG[EER — =——— ACTIVE BORDER

{b) Entering edge is smaller

ﬁgl'_:zg BEgggER T e ACTWVE BORDER

{c)Entering edge is equal in size
Fig. 6. The state of the active border in procedure INCREMENT. The

comparisons are between the entering edge and its corresponding active
border entry.

(a) (b) ©)
Fig. 7. An object, its maximal blocks, and the corresponding bintree.
Blocks in the object are shaded. (a) Object. (b) Block decomposition of
the object in (a). (c) Bintree representation of the blocks in (b).

they point to the edges corresponding to the block associated with
the node to be processed next.

The equivalence classes are represented by trees. The root of
each tree is the representative element of the class. The links be-
tween the remaining nodes in the tree reflect equivalences. Each
node in the tree corresponds to a record of type eq_class with one
field called FATHER. The nodes in the tree are pointed at by the
LAB field of the active border elements and the leaf nodes.

As another example of the use of our algorithm, consider a three-
dimensional image (i.e., d = 3) in the form of a bintree (e.g., Fig.
7). Assume that the first partition is in the z direction, followed by
y and z, alternating among the three directions thereafter. Using
the coordinate system of Fig. 8, we say that the left subtree cor-
responds to the negative x, y, and z directions relative to the origin

582 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 4, JULY 1988

z
Fig. 8. Bintree coordinate system.

NODE XYL XZL YZL
ENTERING LEAVING ENTERING LEAVING ,

| 0]
=
> EHE

Fig. 9. The state of the active borders (XYL, XZL, and YZL) at selected
calls to TRAVERSE for d = 3. The actual arrows designate the value
of XYL, XZL, and YZL as is appropriate. BLACK blocks in the image
are shaded.

ENTERING LEAVING

=

[l (B [[m

]
=
- B E
i
=

and the right subtree to positive values. The linear bintree for the
image of Fig. 7 has (B(((BWWB as its DF-expression.

The algorithm for labeling connected components of a three-di-
mensional bintree is almost identical to that presented for the two-
dimensional case. The main difference is that we now have an ac-
tive-xy, active-xz, and active-yz border consisting of active border
elements which correspond to faces instead of edges. As an ex-
ample of the application of the algorithm, let YZL, XZL, and XYL
correspond to ACTIVE_BORDER [0], ACTIVE_BORDER[1], and
ACTIVE_BORDER [2], the active-yz, active-xz, and active-xy bor-
ders, respectively. Fig. 9 shows the state of the active-xy, active-
xz, and active-yz borders before and after each call to TRAVERSE
corresponding to the leaf nodes in Fig. 7.

III. ANALYSIS
A. Theoretical

A theoretical analysis of the worst case running time of the al-
gorithm finds that it is Q(B + (2E + B) * «(B, 2B + 2E)) where
B is the number of BLACK image elements and E is the number of
adjacencies between them. « is the inverse of the Ackermann func-
tion and grows very slowly. These bounds are a direct result of
using the UNION-FIND method to process equivalences. See [20]
for more details on the exact formulation. In most practical cases,
a(V, 2V + 2E) < 3, and thus the algorithm is ‘‘almost’’ linear.
Its worst-case storage requirements are O (B).

B. Empirical

Ignoring the contribution of UNION-FIND (given in Section
III-A), the time to traverse a d-dimensional linear bintree is directly
proportional to the number of leaf nodes. This is better than results
obtained when using neighbor finding methods [12] and is com-
parable to techniques which transmit neighbors as parameters to
the traversal algorithm [5], [14]. The space requirements of the
algorithms reported here are generally better than of those used in
[15] by virtue of using linked lists instead of arrays. However, the
worst cases are still the same (i.e., a checkerboard image).

In order to gain some more insight into the performance of our
algorithms we conducted experiments. The first series of tests helps
to understand the behavior of the algorithm for ‘‘simple’” (i.e.,
highly aggregated) images. The test images consisted of two-di-
mensional and three-dimensional digital balls of varying diameters
(i.e., M). Each ball was generated so that each pixel (voxel) in-
tersecting the boundary is BLACK, as are the elements totally con-
tained in the ball. Programs were written in the C programming
language and were executed on a VAX 11/750. Three experiments
were performed with balls having a diameter, say M, which was a
power of two and the ball was embedded in a d-dimensional cube
of side length M.

1) The connected components of a two-dimensional ball (i.e.,
disk) with M = 512, 1024, 2048, and 4096.

2) The perimeter of a two-dimensional ball with diameters iden-
tical to those used in 1). This helps determine the effect of the
UNION-FIND algorithm because perimeter computation is closely
related to connected component labeling when the step of merging
equivalence classes is omitted.

3) The connected components of a three-dimensional ball with
M = 32, 64, and 128.

Table I shows the results of the first two experiments. ‘‘Leaf
nodes’’ denotes the number of BLACK and WHITE leaf nodes in
the bintree. ‘‘Labels’’ corresponds to the number of different
equivalence classes that were generated (i.e., the number of nodes
that could not be directly labeled from their neighbors that had
already been processed). ‘‘Max edges’’ indicates the maximum
number of records of type borderelement that were required in the
active border lists. It is useful for determining the space require-
ments and comparing to the case when the active border is repre-
sented as an array [15]. It is interesting to note that for M = 4096,
the method of [15] required 8192 edge records, whereas the method
described here only required a maximum of 382 edge records. Ex-
ecution times are given in CPU seconds. The programs imple-
mented were not optimized; subroutine calls alone accounted for
about 50 percent of the processing time. We see that for this class
of images, the space requirements are small. Table II shows the
results of the third experiment. Column headings are analogous to
those used in Table I, except that in three dimensions, perimeter
means surface area.

The data of Tables I and II are revealing from several standpoints.
First, they illustrate Hunter’s theorem [3] for two-dimensional im-
ages that as the resolution is doubled, the quadtree grows linearly
in the number of nodes. Furthermore, for three-dimensional im-
ages, the number of nodes in the octree grows with the second
power (i.e., proportionally to the boundary of the image [9]). In
our experiments, these results also hold for the number of labels
(i.e., equivalence classes) that are generated. However, no such
easy conclusions can be drawn about the maximum number of edges
(faces) whose number seems to grow more slowly. Nevertheless,
it is interesting to note that in Table II, the maximum number of
faces for M = 128 was 2514, whereas in actuality, were we to
apply an array method similar to [15], then 49,152 array entries
(border elements) would be required to represent the active border.

Second, our data show that the execution time of our connected
component labeling algorithm is approximately linearly related to
the number of leaf nodes in the tree. By measuring separately the
amount of time necessary for computing the perimeter, we saw that
the contribution of the equivalence class merging task (i.e.,
UNION-FIND) to connected component labeling is relatively
small. We also measured the contribution of PHASEII and found
it to be approximately 10 percent of the time. Of course, program
optimizations will increase the relative contribution of the UNION-
FIND step.

Third, from the limited data that we have, it seems that for a
given image size (i.e., in terms of leaf nodes), the three-dimen-
sional case requires approximately 30 percent more time than the
two-dimensional case. This is not surprising since the active border
now has three lists instead of two and INCREMENT must process
each of these lists.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 4, JULY 1988

TABLE 1
Two-DIMENSIONAL CONNECTED COMPONENT LABELING (CCL) AND PERIMETER

Leaf BLACK Max CCL Perimeter
M Nodes Nodes Labels Edges (seconds) (seconds)
512 2840 1524 86 157 1.8 6
1024 5840 3028 178 211 3.4 1
2048 11 740 5916 343 287 6.8 9
4096 23 680 11928 687 382 13.7 2
TABLE 11
PERFORMANCE OF THREE-DIMENSIONAL CONNECTED COMPONENT LABELING (CCL)
Leaf BLACK Max CCL Perimeter
M nodes Nodes Labels Faces (seconds) (seconds)
32 3296 1656 50 571 2.9 2.7
64 13 960 6896 189 1187 11.3 10.6
128 58 712 29 676 755 2514 46.8 43.1
TABLE III
COMPARISON OF THREE-DIMENSIONAL CONNECTED COMPONENT LABELING METHODS
Storage Requirements
Image Size CPU Time (seconds) (New Method)
Leaf BLACK Method of {8] New Maximum
NBANDS Voxels Nodes Nodes Components (VAX 11/780) (VAX 11/750) Labels Faces
2 20 000 10 806 4837 214 72.8 7.5 653 325
4 40 000 20 114 9903 312 145.0 14.5 912 553
8 80 000 39 329 19 577 410 290.7 28.5 1321 1065
16 160 000 78 988 39 383 704 582.3 56.1 2248 2331
32 320 000 157 479 78 537 1194 1147.5 111.7 3993 4873

In order to get a more complicated benchmark, we used images
similar to those used in a study performed by Lumia [8] of a dif-
ferent connected component labeling algorithm for three-dimen-
sional images that are represented by arrays. Using these tests to
compare the two algorithms is not fair as they are different. In par-
ticular, Lumia’s method does not use the UNION-FIND algo-
rithm. Also, Lumia’s method makes use of a matrix-like represen-
tation, whereas we use a three-dimensional bintree. Nevertheless,
the results are worth noting from a qualitative standpoint. The test
images consist of a number, NBANDS, of two-dimensional 100 X
100 checkerboard sections as described in more detail in [8]. For
the purpose of building a bintree, we embedded each image into a
128 X 128 space with the checkerboard sections as yz planes. In
contrast to the previous series, the test images exhibited almost no
aggregation—an average leaf node of the bintree contained only
two voxels. Thus, these images are a ‘‘bad case’’ for our algo-
rithm. Table III summarizes our results and also contains a column
describing the performance of Lumia’s algorithms (on a VAX
11/780). Table III verifies the conclusions of Table II in that pro-
cessing time is approximately proportional to the number of leaf
nodes and storage requirements are small. Processing times of the
new algorithm compare very favorably to those reported by Lumia,
even when the new method is applied without the two voxel/leaf
compression that results from use of the bintree (in this case, pro-
cessing times would be approximately doubled).

To help interpret Table III further, we note some more details.
1) PHASEII requires approximately 10 percent of the processing
time as does image input. 2) We generated the bintree procedurally
from Lumia’s description. This required more than twice the CPU
time necessary for connected component labeling.

IV. CONCLUDING REMARKS

We have presented a general algorithm for labeling connected
components of d-dimensional images represented by linear bin-
trees. Our implementation was for a linear quadtree in the form of
a DF-expression. However, the same algorithm can be used for a
linear quadtree in the form of a set of location codes. We used a
generalized data structure, termed a bintree, which can be easily
adapted to any d-dimensional image. The algorithm is an improve-
ment over a previous method described in [15] in that it has been
formulated to treat images of arbitrary dimensionality. Also, it re-
quires considerably less space, and hence is feasible for such im-
ages. Nevertheless, the approach described in [15] still has merit.
It is a general method for computing geometric properties of two-
dimensional images represented by linear quadtrees. These prop-
erties included perimeter and genus (i.e., Euler number) as well as
connected component labeling. The perimeter could be easily com-
puted within the framework presented here. However, it is not im-
mediately clear how the d-dimensional genus could be computed
using the methods presented here. The problem is that to compute
the genus in two dimensions for quadtrees [1], we can make use of
the method of Minsky and Papert [10] which, unfortunately, is not
easily generalizable to images of higher dimensions. On the other
hand, genus computation is not a very critical operation in image
processing systems. For other work involving the application of
hierarchical methods to images of arbitrary dimension see [21],
[5].
It is difficult to compare our techniques to existing methods since
the efficiency of our algorithms is directly proportional to the
amount of aggregation that exists in the image. Our largest three-

584

dimensional image contained over 2 million voxels, yet its labeling
required less than 47 s of CPU time (Table II), while an image
containing 320 000 voxels required about 112 s of CPU time (Ta-
ble III). The strength of our techniques lies in the ability to take
advantage of homogeneity. The results reinforce our earlier obser-
vation that quadtree methods derive their significance from the sav-
ing in execution time that they yield, which is also directly pro-
portional to the space saving.

Our method requires an equivalence table which may have as
many elements as there are BLACK blocks in the entire image.
However, this problem can be easily overcome by making use of
the concept of active equivalence classes. This concept has been
analyzed in great detail in [16]. In particular, we say that an equiv-
alence class E is active as long as there is at least one image ele-
ment, which refers to it, in the active border. Whenever no element
of the active border refers to E, then we reuse E by associating its
storage space with another component. Using such a method means
that the number of different labels (i.e., equivalence classes) is
bounded by the maximum number of active border elements. A
general algorithm, applicable to array as well as hierarchical image
representations and employing this concept, is given in [16], and
its incorporation in the procedures of this paper is straightforward.
In particular, the only required change is that with each equiva-
lence class, a count is maintained of the number of active border
elements that refer to it. The control structure of the modified al-
gorithm remains the same.

APPENDIX.
CODE FOR THE ALGORITHM

procedure COMPONENTS (DIMENSION, WIDTH_OF_UNI-

VERSE, DF);

/* Label the connected components of a WIDTH_OF_UNIVERSE
by WIDTH_OF_UNIVERSE by --- by WIDTH_OF_UNI-
VERSE (WIDTH_OF_UNIVERSE = 2") DIMENSION-di-
mensional image represented by DF, a preorder traversal of its
bintree. PHASEII_NODES points to the start of the list of nodes
used in the second phase of the algorithm. Each node is repre-
sented by a record of type node having two fields, COL and
LAB, corresponding to its color and the equivalence class which
is assigned to it. */

begin
global value integer DIMENSION;
value integer WIDTH_OF_UNIVERSE;
global value pointer dfnodelist DF;
global pointer nodelist PHASEII NODES;
pointer borderlist array ACTIVE_BORDER

[0:DIMENSION-1];
integer J;
/* Initialize each element of ACTIVE_BORDER to represent
one active borderelement of size WIDTH_OF_UNI-
VERSEPMENSION'! 51d adjacent to WHITE blocks in each of
the DIMENSION directions: */
for J < O step 1 until DIMENSION-1 do
begin
ACTIVE_BORDER[J] « create(borderlist):
DATA(ACTIVE_BORDER[J]) - create(border
element);
SIZ(DATA(ACTIVE_BORDER{J])) “«
OF_UNIVERSE T (DIMENSION-1);
COL(DATA(ACTIVE_BORDER[J])) < ‘WHITE’;
LAB(DATA(ACTIVE_BORDER[J])) « NIL;

end;

if not empty (DF) then
begin
PHASEII_NODES < NIL;
TRAVERSE (WIDTH_OF UNIVERSE 1 DIMENSION,
ACTIVE_BORDER, 0,
WIDTH_OF_UNIVERSE);

WIDTH_

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 4, JULY 1988

PHASEII(PHASEII_NODES); /* Set the final label of

each leaf using FIND */

end;

end;

procedure TRAVERSE (VOLUME, ACTIVE_BORDER, CUR-

RENT_COORD, WIDTH);

/* Compute the contribution of a node whose corresponding DI-
MENSION-dimensional rectangular parallelepiped has volume
VOLUME. CURRENT_COORD of its sides have width
WIDTH/2 and the remaining DIMENSION-CURRENT-
_COORD sides are of width WIDTH. For each nonterminal
node, CURRENT_COORD indicates the direction along which
the corresponding block should be partitioned and TRAVERSE
is recursively applied to the two halves. ACTIVE_BORDER
contains pointers to the active borders in the DIMENSION di-
rections. ACTIVE_BORDER[0], ACTIVE BORDER(1],

-, and ACTIVE_BORDER [DIMENSION-1} point to the
part of the active border that is adjacent to the parallelepiped
currently being processed. */

begin
value real VOLUME, WIDTH;
reference pointer borderlist array
[0: DIMENSION-1};
value integer CURRENT_COORD;
global integer DIMENSION;
global pointer dfnodelist DF;
global pointer nodelist PHASEII NODES;
pointer borderlist TEMP;
pointer node CURRENT _NODE;
integer J;

CURRENT_NODE <« create (node);
COL(CURRENT_NODE) < NEXT (DF);

/* Get the next element in the preorder traversal */
LAB(CURRENT_NODE) « NIL;
if COL(CURRENT_NODE) = ‘GRAY’ then

begin /* Nonleaf node */

/* Add CURRENT_NODE to the front of PHASE-
II_NODES so that the second phase can update the
labels to their final equivalence classes. */

addtolist (PHASEII_NODES, CURRENT NODE);

TEMP < ACTIVE_BORDER [CURRENT_COORD];

/* Save pointer to start of ACTIVE_BORDER
[CURRENT_COORD]J */

if (CURRENT_COORD + 1) mod DIMENSION = 0

then WIDTH < WIDTH /2;

VOLUME «+ VOLUME/2;

TRAVERSE (VOLUME, ACTIVE_BORDER,

(CURRENT_COORD + 1) mod DIMEN-
SION, WIDTH);
/* Partition on CURRENT_COORD */

ACTIVE_BORDER [CURRENT_COORD] « TEMP;

TRAVERSE(VOLUME, ACTIVE_BORDER,

(CURRENT_COORD + 1) mod DIMEN-
SION, WIDTH);

ACTIVE_BORDER

end

else
begin /* Leaf node */

/* Compute each border element’s contribution to the ac-
tive border. In computing the ‘‘size’’ parameter we
must distinguish between active borders 0 - -
CURRENT_COORD_1 and CURRENT _COORD
+ -+ DIMENSION-1. */

for J < 0 step | until DIMENSION-1 do
INCREMENT (CURRENT_NODE, ACTIVE BOR-
DER[J}],
if] = CURRENT_COORD then VOLUME/WIDTH
else 2*VOLUME/WIDTH,

if COL(CURRENT_NODE) = ‘BLACK’ then

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.

begin

/* Assign CURRENT_NODE'’s equivalence class
to its corresponding active border elements */

if null (LAB(CURRENT NODE)) then /* New
equivalence class */

begin
LAB(CURRENT_NODE) - create
(eq_class);
FATHER (LAB(CURRENT_NODE)) < NIL;
end;

for J « O step 1 until DIMENSION-1 do
LAB(DATA(ACTIVE_BORDER[J])) « LAB
(CURRENT_NODE);
end;

/* Advance the pointer to the start of the appropriate ac-

tive border: */

for] < O step | until DIMENSION-1 do
ACTIVE_BORDER[J] «
(ACTIVE_BORDER[J]);

/* Add CURRENT_NODE to the front of PHASE-
II_NODES so that the second phase can update the
labels to their final equivalence classes. */

addtolist (PHASEII_ NODES, CURRENT_NODE),

end;

end;

procedure INCREMENT (LEAF, ACTIVE_BORDER, SIZE);

/* Update the active border for a side of leaf node LEAF having
size SIZE. SIZE corresponds to width in the two-dimensional
case and to area in the three-dimensional case. ACTIVE_BOR-
DER is a pointer to a list of border elements constituting the
active border in the present direction. LEAF is adjacent to the
first border element in ACTIVE_BORDER. */

begin
value pointer node LEAF;
value pointer borderlist ACTIVE_BORDER;
value integer SIZE;
pointer borderlist NEIGHBOR, Q; /* Auxiliary variables */
integer I;
if SIZE > SIZ(DATA (ACTIVE_BORDER)) then

begin /* Neighbor is a nonleaf node—case (a) of Fig. 6 */

I« 0;

NEIGHBOR < ACTIVE_BORDER;

while I NEQ SIZE do
begin

/* Update the active border for all border elements
that are adjacent to the side of LEAF that is being
processed. */

if COL(LEAF) = ‘BLACK’ and COL

(DATA(NEIGHBOR)) = ‘BLACK’ then

LAB(LEAF) < UNION(LAB(LEAF),
(LAB (DATA (NEIGHBOR))));
I < [+ SIZ(DATA(NEIGHBOR));
NEIGHBOR < NEXT (NEIGHBOR);
end;
Q < NEXT(ACTIVE_BORDER);
NEXT (ACTIVE_BORDER) < NEIGHBOR;
borderlist_dispose (Q, NEIGHBOR);
/* Reclaim storage for active border elements starting
at Q up to but not including NEIGHBOR */

NEXT

FIND

end
else /* Neighbor is a leaf—cases (b) and (c) of Fig. 6
*/
begin
if COL(LEAF) = ‘BLACK’ and COL
(DATA(ACTIVE_BORDER)) = ‘BLACK’ then
LAB(LEAF) <« UNION(LAB(LEAF),
(LAB(DATA (ACTIVE_BORDER))));
if SIZE < SIZ(DATA (ACTIVE_BORDER)) then
/* Neighbor is larger—case (b) of Fig. 6 */

FIND

10, NO. 4, JULY 1988 585

begin /* Update the active border */
NEIGHBOR <« create (borderlist; /* Add a new
border element */
DATA (NEIGHBOR) « create (borderelement);
/* Compute unprocessed portion of the active bor-

der: */
SIZ (DATA (NEIGHBOR)) « SI1Z
(DATA (ACTIVE_BORDER))-SIZE;
COL (DATA (NEIGHBOR)) - COL
(DATA (ACTIVE_BORDER));
LAB (DATA (NEIGHBOR)) “« LAB

(DATA (ACTIVE_BORDER));
NEXT(NEIGHBOR) <« NEXT (ACTIVE_BOR-
DER);
/* Update head of active border list: */
NEXT (ACTIVE_BORDER) < NEIGHBOR;
end;
end;
/* Update the active border to reflect the new leaf */
SIZ(DATA (ACTIVE_BORDER)) « SIZE;
COL (DATA (ACTIVE_BORDER)) < COL (LEAF);
end;

pointer nodelist procedure PHASEII(OLD_NODE_LIST);

/* Update the equivalence classes of all elements of list NODES
that are leaf nodes (i.e., their LAB field) to the correct equiv-
alence class by using FIND. During this process, list NODES
will be reversed and the original order of the DF expression will
be restored. nodelist has two fields, DATA and NEXT. */

begin
value pointer nodelist OLD_NODE_LIST;
pointer nodelist NEW_NODE_LIST
NEW_NODE_LIST « NIL;
while not null(OLD_NODE_LIST) do

begin
if COL(DATA(OLD_NODE_LIST)) NEQ ‘GRAY’ then
LAB(DATA(OLD_NODE_LIST)) — FIND
(LAB(DATA (OLD_NODE_LIST)));
addtolist(NEW_NODE_LIST, DATA (OLD_NODE_
LIST));
OLD_NODE_LIST < NEXT(OLD_NODE_LIST);
end;
return(NEW_NODE_LIST);
end;

pointer eq_class procedure UNION (LABEL1, LABEL2);

/* Merge equivalence class LABEL1 with equivalence class
LABEL2. If LABELL1 is not NIL and if LABELI is not equal
to LABEL2, then set the FATHER field of LABELI to
LABEL2. */

begin
value pointer eq_class LABEL!1, LABEL2;
if not null (LABEL1) and LABEL1 NEQ LABEL2 then

FATHER (LABEL1) < LABEL2;
return(LABEL2);

end;

pointer eq_class procedure FIND (LABEL1);

/* Determine the equivalence class containing equivalence class
LABELL1. Perform path compression at the same time—i.e.,
when an equivalence class requires more than one link to reach
the head of the class. In this case, the appropriate link is set. */

begin
value pointer eq_class LABELI;
pointer eq_class R, TEMP;
if null(FATHER (LABEL1)) then return(LABELI)
else

begin
R < LABELL;
do R < FATHER (R) until null (FATHER (R));

586 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10. NO. 4, JULY 1988

do
begin /* Short circuit the path by linking LABELI1 to
R */
TEMP < FATHER(LABEL1);
FATHER(LABELI1) < R;
LABEL1 < TEMP;
end
until null (FATHER (LABEL1));
return (R);
end;
end;

ACKNOWLEDGMENT

We thank M. Mantyla, A. Rosenfeld, and R. E. Webber for
their comments.

REFERENCES

[1] C.R. Dyer, ‘‘Computing the Euler number of an image from its quad-
tree,”” Comput. Graphics Image Processing, vol. 13, pp. 270-276,
July 1980.

[2] 1. Gargantini, ‘‘An effective way to represent quadtrees,”” Commun.
ACM, vol. 25, pp. 905-910, Dec. 1982.

[3] G. M. Hunter, *‘Efficient computation and data structures for graph-
ics,”” Ph.D. dissertation, Dep. Elec. Eng. Comput. Sci., Princeton
Univ., Princeton, NJ, 1978.

[4] C. L. Jackins, and S. L. Tanimoto, ‘‘Oct-trees and their use in rep-
resenting three-dimensional objects,”” Comput. Graphics Image Pro-
cessing, vol. 14, pp. 249-270, Nov. 1980.

[5] —, “‘Quad-trees, oct-trees, and k-trees—A generalized approach to
recursive decomposition of Euclidean space,’’ IEEE Trans. Paitern
Anal. Machine Intell., vol. PAMI-5, pp. 533-539, Sept. 1983.

[6] E. Kawaguchi and T. Endo, ‘‘On the method of binary picture rep-
resentation and its application to data compression,”” IEEE Trans.
Pattern Anal. Machine Intell., vol. PAMI-2, pp. 27-35, Jan. 1980.

[7]1 A. Klinger, *‘Patterns and search statistics,”” in Optimizing Methods
in Statistics, J. S. Rustagi, Ed. New York: Academic, 1971, pp.
303-337.

[8] R. Lumina, ‘‘A new three-dimensional connected components algo-
rithm,”” Comput. Vision, Graphics, Image Processing, vol. 23, pp.
207-217, Aug. 1983.

[9] D. Meagher, ‘‘Geometric modeling using octree encoding,’’ Compu.
Graphics Image Processing, vol. 19, pp. 129-147, June 1982.

[10] M. Minsky and S. Papert, Perceptrons: An Introduction to Compu-
tational Geometry. Cambridge, MA: M.L.T. Press, 1969.

[11] A. Rosenfeld and J. L. Pfaltz, ‘‘Sequential operations in digital image
processing,’” J. ACM, vol. 13, pp. 471-494, Oct. 1966.

[12] H. Samet, ‘‘Connected component labeling using quadtrees,”” J.
ACM, vol. 28, pp. 487-501, July 1981.

[13] —, “‘The quadtree and related hierarchical data structures,”” ACM
Comput. Surveys, vol. 16, pp. 187-260, June 1984.

[14] H. Samet, ‘A top-down quadtree traversal algorithm,"’ IEEE Trans.
Pattern Anal. Machine Intell., vol. PAMI-7, Jan. 1985; also, Univ.
Maryland, College Park, Comput. Sci. TR-1237.

[15] H. Samet and M. Tamminen, ‘‘Computing geometric properties of
images represented by linear quadtrees,”’ /EEE Trans. Pattern Anal.
Machine Intell., vol. PAMI-7, Mar. 1985.

[16] H. Samet and M. Tamminen, ‘‘An improved approach to connected
component labeling of images,”” in Proc. CVPR86 Conf., Miami
Beach, FL, June 1986, pp. 312-318.

{17] M. Tamminen, ‘‘Component on quad- and octtrees,”” Commun. ACM,
vol. 27, pp. 248-249, Mar. 1984.

[18] M. Tamminen and H. Samet, ‘‘Effective octree conversion by con-
nectivity labeling,”” in Proc. SIGGRAPH ’84 Conf., Minneapolis,
MN, July 1984, pp. 43-51.

[19] R. E. Tarjan, *‘Efficiency of a good but not linear set union algo-
rithm,”’ J. ACM, vol. 22, pp. 215-225, Apr. 1975.

[20] R. E. Tarjan and J. van Leeuwen, ‘‘Worst-case analysis of set union
algorithms,”” J. ACM, vol. 31, pp. 245-281, Apr. 1984.

[21] M. Yau and S. N. Srihari, ‘‘A hierarchical data structure for multi-
dimensional digital images,”” Commun. ACM, vol. 26, pp. 504-515,
July 1983.

A Multilevel Parallel Processing Approach to Scene
Labeling Problems

HSI-HO LIU, TZAY Y. YOUNG, anp AMITAVA DAS

Abstract—A parallel tree search procedure and multilevel array ar-
chitectures are presented for scene labeling problems. In the scene la-
beling problem, when the number of variables is not large, e.g., less
than 100, its solutions and search space are not expected to increase
very fast with problem size. The multilevel arrays only use a polynom-
ial number of processors at each level and a bus or mesh connection
for interlevel communication. This approach is very efficient compared
to the binary-tree machine if the number of nodes in the search tree of
labeling problem increases polynomially with the number of variables.
Because of its regular and simple structure, the multilevel array is par-
ticularly suitable for VLSI implementation.

Index Terms—Multilevel array, parallel processing, scene labeling,
tree search, VLSI.

1. INTRODUCTION

The labeling problem plays an important role in scene labeling
{21, (12] and matching [1] of the computer vision, and many other
problems such as graph coloring and graph homomorphisms [2].
In this correspondence, we present a parallel processing approach
for the scene labeling problem. The number of applicable labels in
the scene labeling problem is usually a small constant, and each
variable is also constrained by a small number of variables. From
our experience in several medium-size problems (e.g., problems
with 100 variables), the number of solutions and search effort did
not increase very fast.

The labeling algorithms can generally be divided into three
groups [10]: basic tree search such as backtracking, filtering [14],
or discrete relaxation [12], and hybrid approach {3]. Backtracking
algorithms are guaranteed to find any solutions, but are extremely
inefficient. Filtering can reduce the number of applicable labelings
for each variable, yet a tree search is still needed to find out which
labeling is compatible with which, and that can be very time con-
suming. Some hybrid algorithms such as forward checking have
been shown to be very efficient [3]. However, it needs to pass a lot
of information from node to node along every tree path, which
makes it not a good candidate for parallel, particularly VLSI, im-
plementation. The approach we adopt here applys filtering first and
then uses the multilevel parallel tree search to find the solutions.

II. THE CONSISTENT LABELING PROBLEM AND PARALLEL
PROCESSING
A. Problem Definition

LetA = {a,, - -- , a,} be a set of units or variables to be
labeled, L = {/;, - -, [,} a set of labels, T a set of variable
constraint relations, and R a set of label compatibility relations.
The labeling problem is to find all consistent labelings where a
labeling of variables (a;, - -+, a,) is an n tuple (;, - - -, L),
l,eL,i=1,-- -, n,and aconsistent labeling is a labeling which
satisfies all compatibility relations. Let L; S L be the set of labels
applicable to variable a;, and let d; be the number of labels in L;, i
=1, » - -, n. The variable constraint relation 7 can be represented

Manuscript received December 23, 1986; revised June 23, 1987. This
work was supported in part by the National Science Foundation under Grant
DCR 85-09737.

H.-H. Liu was with the Department of Electrical and Computer Engi-
neering, University of Miami, Coral Gables, FL 33124. He is now with
the Department of Electrical Engineering, Vanderbilt University, Nash-
ville, TN 37235.

T. Y. Young and A. Das are with the Department of Electrical and
Computer Engineering, University of Miami, Coral Gables, FL 33124.

IEEE Log Number 8718597.

0162-8828/88/0700-0586%01.00 © 1988 IEEE

