SAN FRANCISCO JULY 22-26

Volume 192, Number 3, 1985

BINTREES, CSG TREES, AND TIME

Hanan Samet
Computer Science Department
University of Maryland, College Park, MD 20742

Markku Tamminen
Laboratory for Information Processing Science
Helsinki University of Technology, 02150 Espoo 15, Finland

ABSTRACT

A discussion is presented of the relationship between
two solid representation schemes; constructive solid geometry
(CSG trees) and recursive spatial subdivision exemplified by
the bintree, a generalization of the quadtree and octree.
Detailed algorithms are developed and analyzed for evaluating
CSG trees by bintree conversion, i.e., by determining explicitly
which parts of space are solid and which empty. These tech-
niques enable the addition of the time dimension and motion
to the approximate analysis of CSG trees in a simple manner
to solve problems such as dynamic interference detection. For
“well-behaved” CSG trees, the execution time of the conver-
sion algorithm is directly related to the spatial complexity of
the object represented by the CSG tree (i.e., asymptotically it
is proportional to the number of bintree nodes as the resolu-
tion increases). The set of well-behaved CSG trees includes all
trees that define multidimensional polyhedra in a manner that
does not give rise to tangential intersections at CSG tree
nodes.

CR Categories and Subject Descriptors: 1.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling —
solid and object representations; geometric algorithms and sys-
tems; 1.3.3 [Computer Graphics]: Picture/Image Generation
— display algorithms; viewing algorithms

General Terms: Algorithms, Data Structures

Additional Key Words and Phrases: constructive solid
geometry (CSG), time, motion, conversion, image processing,
hierarchical data structures, bintrees, quadtrees, octrees,
interference detection, solid modeling

1. INTRODUCTION

Constructive solid geometry (CSG) uses trees (CSG
trees) of building block primitives (parallelepipeds, spheres,
cylinders, ...), combined by geometric transformations and
Boolean set operations as a representation of three-dimensional

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 ACM 0-89791-166-0/85/007/0121 $00.75

solid objects [13]. Each primitive solid can be decomposed into
a subtree whose leaves are halfspaces, each described by an
equation of the form:

[(z.y,2)=20.

Substituting this subtree for every occurrence of that primitive
in the original CSG tree gives rise to an expanded tree having
only halfspaces as leaves. In the present article we shall
assume this simple halfspace formulation of CSG (see also
[12,21]). Clearly, the CSG approach can be used to describe
objects of any dimensionality and many interesting solid
modelers have been based on it {14].

It has been known for some time that octree-like recur-
sive subdivision can facilitate the evaluation of CSG trees; e.g.,
the analysis [8,20] and display [21] of solid objects modeled by
them. A hardware processor with such a capability is described
by Meagher [10]. A bintree represents discrete solid objects of
arbitrary dimensionality (e.g., binary images in two dimen-
sions) by a binary tree defining a recursive subdivision of space
and recording which parts are empty (WHITE) and which are
solid (BLACK). The bintree is a dimension-independent vari-
ant of the more familiar quadtree and octree representations.
For example, Figure 1c is a bintree corresponding to a 2-
dimensional binary image (Figure 1a) consisting of two regions.
See the survey of Samet [15] for a comprehensive survey and
bibliography of quadtree related methods. Mentions of arbi-
trary dimensionality are found in the literature (4,5,9,22] but
few concrete applications have been demonstrated.

(o) (b) {c)

Figure 1. Sample image and its bintree. (a) Image
(b) Block decomposition (c) Bintree.

Time and motion are important elements of advanced
solid modeling. In particular, given a moving object we may
wish to determine whether it intersects a stationary object
(static interference detection) or whether it intersects another
moving object (dynamic interference detection). Even though
it appears that the time dimension can be added to CSG trees
in a conceptually simple fashion, rather little attention has

121

& SIGGRAPH?5

been focussed on CSG trees in a dynamic situation. Perhaps
this is due to the difficulty of evaluation in the now four-
dimensional space.

Static interference detection is discussed by Boyse [3]
but only boundary representations are considered. Tilove [19]
has provided a good analysis of the equivalent ‘‘NULL object
detection” problem in the CSG setting. Our work seems to
complement that of Tilove. We do not repeat his formal
analysis of the ‘‘pruning” of CSG trees but show in detail how
a CSG tree can be efliciently pruned against an adaptable grid
(i.e., bintree), even in the case of non-bounded halfspace primi-
tives. We also show that for ‘““well-behaved’”” CSG trees, the
amount of work involved in pruning the CSG tree against all
the cells of such an adaptable grid is asymptotically propor-
tional to the number of cells and does not depend on the
number of nodes in the CSG tree representation.

In the rest of this paper we show how bintree conver-
sion provides an efficient and dimension-independent tool for
evaluating CSG trees. The time dimension is handled without
extra conceptual overhead. Our emphasis is on CSG trees
defined by linear halfspaces and on motion along a piecewise
linear trajectory but the techniques are shown to extend to the
non-linear case. We present and analyze the evaluation
(conversion) algorithm and show that asymptotically, as reso-
lution is increased, the amount of work it involves is directly
related to the spatial complexity of the object represented by
the CSG tree. Thus, despite the added dimension, dynamic
interference detection by bintree conversion is often efficient
(because the object sought is the null object). Finally, we
present some experimental results obtained by using the
discrete solid modeler described in {18]. The simplicity of the
algorithms is striking when compared with algorithms for con-
verting boundary representations to bintrees [17].

2. DEFINITIONS

In our algorithms we use a linear tree representation
that is based on the preorder traversal of a bintree. The
traversal yields a string over the alphabet “(, “B”, “W”
corresponding respectively to internal nodes, BLACK leaves,
and WHITE leaves. This string is called a DF-expression [6].
For the image of Figure 1 it becomes (((BWWW(BW. Note
that bintrees are size-independent: i.e., a given tree can define
an object in a universe of any size. However, we usually por-
tray each bintree as embedded in the d-dimensional unit cube.
Let us say that the resolution of a bintree, say M, is the maxi-
mal number of units into which each side of the d-dimensional
universe of a d-dimensional bintree can be divided. A cube of
side length 1/M is called a vozel.

A point z in a d-dimensional universe (d-space) is
represented by a row vector ,,%,,,and z; of d+1 homo-
geneous coordinates with z, denoting the scale factor. We
shall only consider the case with z,=—1. In the general case,
the d ordinary Euclidean coordinates are obtained by dividing
Z,,,Z¢ by z, Note that usually the scale factor is taken to
be the last component of z. With our choice, the scale factor
retains its original index when the time dimension is added.

A (linear) halfspace in d-space is defined by an inequal-
ity on the d +1 homogeneous coordinates:

d
33 6;°2; 20 6}

i=0

122

The halfspace is represented by a column vector a. In vector
notation (1) is written as -z >0, with column vector a
representing the halfspace. Figure 2 shows the halfspace
represented by 4z -2y —120. The point set satisfying this rela-
tion lies to the right of the line. (partially shaded). Given a
point r, the value of the left side of (1) at z is called the
value of halfspace a at z.

Y
.

(0,0 (1L0) X

Figure 2. Halfspace corresponding to 4z -2y —12>0.

We shall concentrate on CSG trees in the simplest of
settings, that of halfspaces defined by hyperplanes (linear
halfspaces). Arbitrary CSG tree can be approximated in this
way [2,21]. Also, qualitatively, our methods extend to the gen-
eral case.

In this article we define a data structure for CSG trees
as follows. A CSG tree is a binary tree in which internal nodes
correspond to geometric transformations and Boolean set
operations while leaves correspond to halfspaces.* A node of a
CSG tree is described by a record of type csgnode with six
fields. The first two flelds, LEF'T and RIGHT, contain pointers
to the node’s left and right sons respectively. The TYP fleld
indicates the node’s type. There are five node types - UNION,
INTERSECTION, BLACK, WHITE, and HALFSPACE. Types
UNION and INTERSECTION correspond to the Boolean set
operations. HALFSPACE corresponds to a leaf (i.e., halfspace).
The field HSP contains an identifler for the halfspace. It is an
index to a table, HS, of d +1 element coefficient vectors of the
different halfspaces involved in the CSG tree. The remaining
two fields, MIN and MAX, are used for auxiliary data in our
algorithms. They record the minimum and maximum values,
respectively, of a halfspace in a given bintree block.

Note that our definition of a CSG tree allows for leaves
that are completely BLACK or WHITE as required in our
algorithm. In addition, in contrast to the conventional use of
CSG, we only use the Boolean set operations UNION and
INTERSECTION, as the effect of the third one, MINUS, can
be achieved by application of De Morgan’s laws to all nodes of
type UNION and INTERSECTION. The complement of a
halfspace is obtained by changing the signs of all the
coefficients (i.e., the direction of its normal). Note that our
universe is finite, as required by the bintree representation.

3. CONVERTING CSG TREES TO BINTREES

Our algorithms traverse the universe in a depth-first
manner and evaluate each successive subuniverse against the
CSG tree. This enables pruning areas of no interest. Whenever

+Qur discussion assumes that the transformations have been propagat-
ed to the leaves. We also assume a bounded universe, for simplicity in the
form of the unit cube. Actually, so-called regularized versions of the set
operations must be used [13]. However, we shall not repeat the term regular-
ized.

SAN FRANCISCO JULY 22-26

Volume 12, Number 3, 1985

the hyperplane of a halfspace, say H, passes through a
subuniverse (i.e., a bintree node), say S, then we say that H is
active in S (i.e., there exists a point in S such that a -z =0). A
CSG tree node is said to be active in S if both of its sons are
active in .S. As an example of the use of these terms, consider
the conversion of the triangle given in Figure 3 whose CSG
tree is given in Figure 4. It is composed of the intersection of
the three halfspaces 2x-120, 2y—1>0, and —2x-2y+3>0
labeled A, B, and C respectively. Conversion starts with the
unit square universe. In this case halfspaces A, B, and C are all
active and so is the CSG tree (in other words, it is not totally
BLACK or WHITE). Thus we first have to split the unit
square into two halves (split along the z coordinate). Now,
evaluating the CSG tree against the left half of the bintree,
say L, we find that A is WHITE and thus not active. There-
fore, L will have to be WHITE since A is combined with the
rest of the CSG tree by an INTERSECTION node and the
intersection of WHITE with anything is WHITE.

Y
(0,1}
A C
| B
|
I
1
! -
(0,0 (LO) X

Figure 3. Sample triangle image.

N

P
=]

B C

Figure 4. CSG tree corresponding to Figure 3.

First, let us examine the construction of a bintree
corresponding to a halfspace as given by (1). This is achieved
by traversing the universe in the DF-order and determining
the range of the left side of (1) in each subuniverse. Each node
in the bintree in which the halfspace is active is decomposed
into two sons and the process is recursively applied to them.
The process stops when the halfspace is not active in a bintree
node or if the bintree node corresponds to a voxel. All voxels
in which the halfspace is active are labeled BLACK in the ver-
sion of the algorithm presented here. The resulting bintree is
represented using a DF-expression.

Determining whether a halfspace is active in a bintree
node is facilitated by keeping track of the minimum and
maximum values of g -2 for each bintree node. Whenever the
maximum is <0 the bintree node is WHITE and when the
minimum is 20 it is BLACK. Otherwise the halfspace is active
and subdivision is required. Initially, for the wunit cube, the
minimum value of a-z is the constant factor of a plus the
sum of all negative coefficients in a. The maximum value is
the constant factor of a4 plus the sum of all positive
coefficients in a. For example, for Figure 2, the initial
minimum value is -3 and the initial maximum value is 3.

Whenever a bintree node is subdivided, either the max-
imum or minimum (never both at the same time) of a -z for
each son node changes with respect to that of the father. Let
the subdivision be performed on a hyperplane (e.g., a line in
two dimensions) perpendicular to the axis corresponding to
coordinate i (1<{<d) and let w; be the width of the side
along coordinate ¢ of the block resulting from the subdivision.
The amount of change is §; =g; -w;. For the left son, if §; >0,
then §; is subtracted from the maximum; otherwise, §; is sub-
tracted from the minimum. For the right son, if §; >0, then
the minimum is incremented by §;; otherwise, §; is added to
the maximum.

As an example, consider again the halfspace given by
4z -2y 120 as shown in Figure 2. Assume that the universe is
the unit square. The maximum and minimum values 3 and -3
are attained respectively at (1,0) and at (0,1). Subdividing
along the r axis yields two sons. The maximum value of a -z
in the left son has decreased by 1/2 times the coefficient of the
z coordinate (i.e., 2} to 1 and is attained at {(0.5,0), while the
minimum value remains the same. The minimum value of a -z
in the right son has increased by 1/2 times the coeflicient of
the z coordinate (i.e., 2) to -1 and is attained at (0.5,1) while
the maximum value remains the same.

A CSG tree is evaluated, i.e., converted, to a bintree by
traversing the universe in depth-first order and evaluating
each subuniverse against the CSG tree. Leaf nodes
(halfspaces) are evaluated using the method described above
and their results are combined by pruning the CSG tree to the
subuniverse. Pruning means that only that part of the CSG
tree which is active within the subuniverse is retained [19,21].
Once pruning has reduced the CSG tree‘to a leaf node (i.e., a
halfspace), the conversion procedure becomes identical to that
described above for converting a halfspace to a bintree. Each
node in the bintree, say B, in which the CSG tree is active, is
decomposed into two sons and they are in turn intersected
with only that part of the CSG tree that is active in B. This
process stops when the CSG tree is not active in a bintree
node or if the bintree node corresponds to a voxel. All voxels
in which a CSG tree is active are labeled by procedure
CLASSIFY_VOXEL which we do not describe here. At its sim-
plest (as used in the experiments described in Section 6), it
treats all such voxels as BLACK (or WHITE). At its most
complex, CLASSIFY_VOXEL corresponds to Tilove’s NULL
object algorithm applied to the active CSG subtree at the
voxel [19].

The conversion of a CSG tree to a bintree is performed
by procedures CSG_TO_BINTREE, INIT_HALFSPACES,
CSG_TRAVERSE, PRUNE, and HSPEVAL given below.
They make use of BLACK_CSG_NODE and
WHITE_CSG_NODE which are global pointers to BLACK
and WHITE CSG tree nodes. In these and all other pro-
cedures, we shall use the following global constants: D is the
dimensionality of the space, VOXEL_LEVEL is the level of the
bintree corresponding to voxels, and EPSILON is the tolerance
for deciding when a bintree node is WHITE {i.e., at most a
proportion EPSILON of its ‘“‘critical’”” diagonal is contained in
the halfspace) or BLACK.

CSG_TO_BINTREE serves to initialize the traversal
process. First, it invokes INIT_HALFSPACES to traverse the
CSG tree to compute the minimum and maximum values of
each halfspace in the whole universe (i.e., the unit cube). These

123

& S1GGRAPH85

values are stored in the MIN and MAX fields of the CSG tree
node corresponding to each halfspace. Next, it calls on
CSG_TRAVERSE to perform the actual conversion.
CSG_TRAVERSE traverses the universe by recursively subdi-
viding it corresponding to the depth-first traversal order of the
resulting bintree. At each subdivision step, PRUNE is called
to attempt to reduce the size of the CSG tree which will be
evaluated in the bintree block. PRUNE traverses the CSG tree
in depth-first order and removes inactive CSG nodes with the
aid of HSPEVAL which determines if a halfspace is active
within a given bintree block. Assuming that T is CSG node,
PRUNE applies the following four rules to the CSG tree.

(1) BLACK UNION T = BLACK

(2) WHITE UNIONT = T

(3) BLACK INTERSECTIONT = T

(4) WHITE INTERSECTION T = WHITE.

0 H 134 B8 19 2 22

Figure 5. Bintree corresponding to the triangle in Figure 3
before collapsing.

As an example, consider the triangle of Figure 3 whose
CSG tree is given in Figure 4. Figure 5 is the corresponding
bintree, with VOXEL_LEVEL==6. The nodes have been num-
bered in the order in which they were output. Initially, the
entire CSG tree (i.e., Figure 4) is assumed to be active in the
whole universe (i.e., the unit square). Node 1 is output as a
NON-LEAF and we process its left son next. First, we attempt
to prune the CSG tree with respect to the left half of the
universe. Since halfspace A is inactive here (i.e., it is WHITE),
we can apply pruning rule (4) and there is no need to further
process the remainder of the CSG tree in Figure 4. We cutput
node 2 as WHITE and process the right son of node 1 next.
Pruning the CSG tree shows that halfspace A is again inactive
but this time it is BLACK. Since both halfspaces B and C are
active here, pruning rule (3) leaves us with the CSG tree given
by Figure 6. We now output node 3 as NON-LEAF and pro-
cess its left son next. Pruning the CSG tree results in halfspace
B being inactive (i.e., it is WHITE) and pruning rule (4) means
that there is no need to further process this CSG tree. We out-
put node 4 as WHITE and process the right son of node 3
next. This time pruning the CSG tree results in halfspace B
being inactive again but now it is BLACK. Pruning rule (3)
leaves us with just halfspace C. Node 5 is output as NON-
LEAF and the conversion process is applied to its two sons
next.

124

8 C

Figure 6. Result of pruning the CSG tree of Figure 4 in the
right half of the root of its bintree.

The remainder of the conversion is cquivalent to that
described earlier for the conversion of a halfspace as the CSG
tree has been reduced to one hallspace. The result is given in
Figure 5. Note that the secquence of nodes that is output is not
minimal in the sense that collapsing may yet have to be per-
formed (i.e., when two terminal brother nodes are BLACK).
Application of collapsing results in merging nodes 10 and 11,
and nodes 18 and 19.

procedure CSG_TO_BINTREE(P,N,HS);
/* Convert the D-dimensional CSG tree pointed at by P to a
bintree. HS contains N halfspaces. */
begin
value pointer ecsgnode P;
global value integer N;
global value real array HS[{1:N,0:D];
INIT_HALFSPACES(P);
CSG_TRAVERSE(P,0,1.0);
end;

procedure INIT_HALFSPACES(P);

/* Compute the minimum and maximum values of each of the
halfspaces of the CSG tree PP in the D-dimensional unit
universe. */

begin

value pointer csgnode P;
integer I,J;
if TYP(P)=‘HALF‘SPACE’ then
begin
1+HSP(P);
MIN(P)—MAX(P)~—HS[1,0];
for J«—1 step 1 until D do
begin
if HS[I,J]>0.0 then MAX(P)«MAX(P)+HS|LJ]
else MIN(P)—MIN(P)+HS[1,J);
end;
end
else
begin
INIT_HALFSPACES(LEFT(P));
INIT_HALFSPACES(RIGHT(P));
end;
end;

procedure CSG_TRAVERSE(P,LEV,W);

/* Convert the portion of the CSG tree P that overlaps the
D-dimensional subuniverse of volume 2BV whose smallest
side has width W. The bintree is constructed by evaluat-
ing the CSG tree in the subuniverse. The evaluation pro-
cess consists of pruning the nodes of the CSG tree that are
outside of the subuniverse, A new copy of the relevant
part of the CSG tree is created as each level is descended
in the bintree. ‘This storage is reclaimed once a
subuniverse at a given level has been processed. */

SAN FRANCISCO JULY 22-26

Volume 19, Number 3, 1985

begin
value pointer csgnode P;
value integer LEV;
value real w;
pointer csgnode FS; /* Pointer to stack of free nodes */
if TYP(P)='BLACK’ or TYP(P)="WHITE’ then
output(TYP(P))
else if LEV=VOXEL_LEVEL then
output(CLASSIFY_VOXEL(P));
else /+ Subdivide and prune the CSG trees */
begin
FS«+first_free(csgnode);
/+ Save pointer to free storage stack */
output(‘NON-LEAF’);
if LEV mod D=0 then W+«W/2;

CSG_TRAVERSE(PRUNE(P,LEV+1,W,LEFT"),LEV+1,W);

free(FS); /+ Release storage for CSG tree nodes */

CSG_TRAVERSE(PRUNE(P,LEV+1,W,'RIGHT"),LEV+1,W);

free(FS);
end;
end;

pointer esgnode procedure PRUNE(P,LEV,W,DIR);

/* Evaluate the portion of the CSG tree P that overlaps the
D-dimensional subuniverse of volume 2V whose smallest
side has width W. The subuniverse corresponds to the DIR
(LEFT or RIGHT) subtree of its father bintree node. */

begin

value pointer csgnode P;
value integer LEV;
value real w;
value direction DIR;
pointer csgnode T,Q; /* Auxiliary variables */
pointer csgnode L,R;
/* Auxiliary pointers to left and right pruned subtrees */
if TYP(P)="HALFSPACE’ then
return(HSPEVAL(P,LEV,W,DIR))
else
begin
Tif TYP(P)=‘UNION’ then BLACK_CSG_NODE
else if TYP(P)='INTERSECTION’ then
WHITE_CSG_NODE
else <error>; /+ Enable a quick application of prun-
ing rules (1) and (4) */
L+—PRUNE(LEFT(P),LEV,W,DIR);
if L=T then return(T)
else
begin
R«—PRUNE(RIGHT(P),LEV,W,DIR);
if R=T then return(T)
else if TYP(L)=OPPOSITE(TYP(T)) then return(R)
/* OPPOSITE of BLACK is WHITE and vice
versa */
else if TYP(R)=OPPOSITE(TYP(T)) then return(L)
else /+ Evaluation has not resulted in eliminating */
begin /+ one of P’s sons */
Q«create(csgnode);
TYP(Q)—TYP(P);
LEFT(Q)<L;
RIGHT(Q)—R;
return(Q);
end;
end;
end;
end;

pointer csgnode procedure HSPEVAL(P,LEV,W,DIR);

/* Determine if the D-dimensional subuniverse of volume
27LEY and smallest side of width W intersects halfspace P
or corresponds to a BLACK or WHITE region. The
subuniverse is the DIR (LEFT or RIGHT) subtree of its
father. If the halfspace intersects the subuniverse, then the
subuniverse will have to be subdivided again and a new
CSG tree node is allocated for the halfspace to record the
new minimum and maximum values of the halfspace. */

begin

value pointer csgnode P;
value integer LEV;
value real w;
value direction DIR;
integer 1,J;
real DELTA;
pointer csgnode Q;
Q+-create_and_copy(P);
J—HSP(P);
I+LEY mod D;
DELTA+~HS[JI+1]*W;
if DIR='LEFT then
begin
if DELTA <0 then MIN(Q)+MIN(Q)-DELTA
else MAX(Q)+—MAX(Q)-DELTA;
end
else
begin
if DELTA >0 then MIN(Q)«—MIN(Q)+DELTA
else MAX(Q)~MAX(Q)+DELTA;
end;

if MIN(Q)>-EPSILON then return(BLACK_CSG_NODE)

else if MAX(Q)<EPSILON then

return(WHITE_CSG_NODE)

else return(Q); /* The subuniverse is intersected */
end;

4. TIME AND MOTION

Often a geometric representation, such as CSG, is not
convenient for a desired computation. The solution that is fre-
quently adopted is to transform the object into another
representation - i.e., one in which the computation is simpler.
In the previous section we saw how a CSG representation can
be converted to a bintree. In this section we show how the
time dimension can be added to a CSG representation so that

motion can be analyzed using the algorithm of the previous
section.

Let T be a solid model described by a CSG tree and
assume that it is defined in some model-specific coordinate sys-

tem. We describe the motion of T in some common world
coordinate system by a time-varying geometric transformation

matrix A (£). Each value of A (¢) is a matrix deflning a rigid
motion from the local coordinates of T to its position and
orientation in world coordinates at time {. Note that if our
world coordinate system is the unit cube, then we may also
have to include a scaling in A (£). We call A (¢) the trajectory
of T. Let A(!) be piecewise linear, meaning that it can be
broken down into a series of segments defilned by time points
(tot 1) so that A; ,=A;B;, where B; is a transformation
matrix corresponding to a translation describing the motion
during that time segment. In the following we discuss the
motion accomplished in one time segment in a more concrete
setting.

125

« S|IGGRAPH85

Translating a halfspace, say given by (1), along a vec-
tor v gives rise to the translated halfspace
d d
36236 20 2)
=0 1==0
If point z satisfles (1), then the transformed (translated) point
z 4v satisfies (2). In order to be dimensionally-consistent with
the d-dimensional unit cube, our discussion always assumes a
unit time interval. Motion in a unit time interval, and at a
fixed speed defined by vector s with s,==0, is described by a
vector v such that for all ¢, v; =s;-t. Thus using v to
translate halfspace {1) we find that at each instant, say ¢, it
corresponds to the halfspace givem by (3), below. Letting ¢
vary, we obtain a linear halfspace with an additional variable
t.

d d
3o 53 a08)t 20 (3)
i=0 i=0

When we have a CSG tree in motion, transformation (3) can
be applied to each halfspace separately and the tree of Boolean
set operations applied to the resulting (d-+1)-dimensional
halfspaces to define a set of points in (location,time)-space
satisfying the CSG tree.

For dynamic interference detection, we must determine
whether the intersection of two (location,time) objects is
empty while for static interference detection, we must check
whether two stationary objects intersect or whether a moving
object intersects a stationary one. The intersection of two
different (location,time) CSG trees, (each derived from a
separate motion but with a common ‘‘time axis”) is obtained
by attaching them as sons to a newly created CSG node of
type INTERSECTION. The actual evaluation of the intersec-
tion can be performed by applying the bintree conversion algo-
rithm of Section 3 in the (d +1)-dimensional space with time
included. For static interference detection there is no need to
add time as an extra dimension if we can otherwise solve for
the swept area of the moving object. Note also that in the
case of interference detection there is often little motivation
for storing the entire resulting tree. Instead, a variable can be
included in the tree traversal algorithm to indicate the
minimal ¢ value of a BLACK node encountered so far in the
traversal. Any subtree whose minimum value of ¢ is greater
than this value need not be inspected.

Usually primary interest is not in motion along a
straight vector but in more complicated trajectories. Assume
that such trajectories can be approximated by a sequence of
segments, each with motion corresponding to a linear transla-
tion at a fixed speed. For example, suppose that we wish to
determine whether two motions, defined by piecewise linear
trajectories A ,; and A,; of objects T, and T, respectively,
intersect in the unit time interval. Let the time intervals
defining the n, and n, linear pieces of the trajectories be
(¢10-t 11,7) and (£40,t4,,**), respectively. Now, during the time
interval (0,min(¢,,,f,,)) both motions are linear and their
intersection can be determined as discussed above. This same
procedure is applied to the remaining intervals (a maximum of
n,+n,-1 intervals) each preceded by an application of the

appropriate transformations A,-J- to the halfspaces of T, and
T,

In the general case, a CSG tree can contain non-linear
halfspaces or the motion itself cannot be described as a series
of translations. Nevertheless, we can still use methods similar
to the ones described above. In particular, each bintree node

126

corresponds to a {d-1)-dimensional interval such that
2052 <2, Yoy <Yy -, Lot <ty Interval arithmetic is a
method of evaluating functions f(z,y.,) in cases where the
arguments are not exact values but intervals. The value of the
interval function corresponding to function f is also an inter~
val - i.e., a range covering any values that / can obtain given
as arguments any values in the argument intervals. It should
be clear that interval arithmetic is appropriate for the CSG
tree to bintree conversion process since for an arbitrary func-
tion the value of the corresponding interval function covers the
function’s possible values in the bintree node. If zero does not
belong to this range, then the bintree block need not be subdi-
vided.

For example, let us apply the above to determine the
(location,time) bintree of a linear halfspace a subjected to
arbitrary motion defined by the matrix function A (). Denot-
ing intervals by capital letters, the interval function that must
be evaluated at each node of the Dbintree is
F(X, T)y=(A"Y(T)a)X where X is an interval in d-
dimensional space and T is a time interval. Remember that
at each time instant ¢, A (¢) is a linear transformation and the
image of a halfspace, say @, is obtained by multiplying a by
the inverse of A (¢). When A (¢) contains a rotation, the inter-
val function will be a linear composition of sine and cosine
functions with respect to T'. In any sub-interval of T, where
the composite function is monotonic, interval arithmetic can
be applied in a fashion to provide tight bounds for the result-
ing interval.

Interval arithmetic is easy to incorporate in our CSG
tree to bintree conversion since we merely need to recast pro-
cedure HSPEVAL in terms of interval evaluations. Procedure
INT_HSPEVAL given below achieves this and can be substi-
tuted for procedure HSPEVAIL of Section 3 in procedure
PRUNE. Notice the use of INTERVAL_EVALUATE to deter-
mine the range of the function corresponding to the non-linear
halfspace. Its value is a pointer to a record of type snterval
with two flelds MIN and MAX corresponding to an interval
covering the function values in the node.

pointer csgnode procedure INT_HSPEVAL(P,LEV,W,DIR);
/* Use interval arithmetic to determine if the D-dimensional
subuniverse of volume 22EV intersects non-linear halfspace
P or is BLACK or WHITE. W is its smallest side. The
subuniverse is the DIR subtree of its father. */
begin
value pointer csgnode P; /* A leaf of the CSG tree x/
value integer LEV;
value real w;
value direction DIR;
interval I,
1—~INTERVAL_EVALUATE(P,LEV,W,DIR);
return(if MAX(I) <EPSILON then WHITE_CSG_NODE
else if MIN(I) >-EPSILON then
BLACK_CSG_NODE
else ‘HALFSPACE’);
end;

Interval arithmetic has been applied to the somewhat
similar task of evaluating curved surfaces by recursive subdivi-
sion [1,11]. Nevertheless, this technique should be used with
caution. In particular, interval arithmetic does not necessarily
yield the minimal range covering the function’s values given
the domains of the arguments; instead, it may be a wider
interval guaranteed to cover the function’s values. This

SAN FRANCISCO JULY 22-26

Volume 19, Number 3, 1985

estimate may sometimes be very poor, and the poorer the sub-
stitute for the true range of function values, the more unneces-
sary subdivision we must perform in the bintree conversion.
There are many function transformations that can be applied
to tighten the ranges [1].

Usually we are not interested in time as such. Often it
merely serves as an auxiliary variable for describing motion.
For instance, the process of determining the swept area for
static interference detection is equivalent to a transformation
that eliminates the time dimension. In geometric terms it is a
projection parallel to the ¢-axis. In general, we do not know
bhow to perform such a projection directly in the CSG
representation. Given a CSG tree having A OP B as its root,
we cannot necessarily distribute the projection operation - i.e.,

PROJ(A OP B) ;é PROJ(A) OP PROIJ(B)
For example, suppose we are given two non-intersecting
objects as in Figure 7 that are moving at identical speeds in
the directioh of the z -axis. Clearly, their swept areas intersect
whereas the objects themselves do not intersect.

e

Figure 7. Example of two disjoint objects A and B whose
projection on the y-axis is non-empty.

Fortunately, projection in the discrete bintree domain
is simple. Approximate evaluation of a CSG tree involving a
projection operation is a two-step process. We first generate
the (d +1)-dimensional bintree and then project it to d dimen-
sions to obtain an evaluation of the projected CSG tree as a
d-dimensional bintree (see [16]). Projection consists of elim-
inating one coordinate and keeping track of all occupied loca~
tions in the resulting d-dimensional space. In three dimen-
sions, the projection algorithm is almost identical to that for
viewing a three-dimensional bintree in the direction of a coor-
dinate axis [18]. The only difference is that in viewing, some
shading information must be recorded at each 2-d pixel that is
“covered”, whereas the projecuion discussed here only records
whether or not such a pixel is covered.

5. ANALYSIS

A quick perusal of procedure CSG_TO_BINTREE, as
given in Section 3, reveals that the amount of work performed
in the conversion is proportional to the sum of the sizes of the
CSG trees that are active at the bintree nodes (i.e., blocks)
that are evaluated. This number can be quite large even
though procedure CSG_TRAVERSE attempts to prune the
CSG tree each time it descends to a deeper level in the tree.
However, in a typical case, as we descend in the bintree, many
of the CSG tree nodes are no longer active thereby reducing
the number of CSG nodes that must be visited. We are not
interested in the absolute worst-case value of the complexity.
Instead, we shall focus on the ‘‘practical” efficiency of these
algorithms. Very poor cases can be attained by constructing a

complicated CSG tree that evaluates to the NULL object in
such a way that the whole CSG tree is active in a large
number of nodes. For example, consider the intersection of a
halfspace with its complement. In fact, a pruned CSG ftree
may be active in a bintree block even though the CSG tree
deflnes a NULL object in the region corresponding to the
block. For example, consider the CSG tree given in Figure 8a
consisting of the two circles L1 and R and the halfspaces A
and B as shown in Figure 8b. The CSG tree of Figure 8a is
active in the bintree block represented by the dashed square in
Figure 8b even though the object defined by it does not extend
so far.

WA
A

A
Lk R i
{ A)
g h N A
(a) A B (b)
Figure 8, (a) A CSG tree and (b) its corresponding object.

First, let us examine the number of halfspaces that are
active at each node of voxel size in a bintree of a polyhedron.
This discussion is heuristic in that we speak of voxels as if
they were infinitely small. At each vertex, at least three
halfspaces are active. Elsewhere at each edge of the polyhedron
exactly two halfspaces are active. Elsewhere at each face, only
one halfspace is active. We can estimate the total number of
active halfspaces by counting the number of voxels that inter-
sect the edges, vertices, and faces of the polyhedron. We know
that the total number of voxels intersecting faces is propor-
tional to the surface area [9] while the total number of voxels
that intersect edges is proportional to the sum of the edge
lengths at the given resolution [4]. The number of voxels con-
taining vertices is always bounded by the number of vertices
irrespective of resolution. Assuming a resolution of M, the
number of voxels with more than one active halfspace grows
only linearly with M, while the total number of voxels grows
with M2 Thus the average number of halfspaces active in a
node of voxel size approaches one asymptotically in a CSG tree
that corresponds to a polyhedron. A similar result will hold for
polyhedron-like objects of arbitrary dimension.

It should be clear that the amount of work necessary in
performing the conversion is at least proportional to the
number of nodes in the bintree. It has been shown [18] that
there exists a class of CSG trees for which the complexity of
evaluation is of the same order as the number of nodes in the
bintree of the corresponding object. Such CSG trees are said
to be “well-behaved” and this concept applies also to CSG
trees with non-linear halfspaces. This characteristic is deter-
mined solely by the way the objects defined by the pair of
brother subtrees of the CSG tree intersect each other. In a
well-behaved CSG tree the intersections are not allowed to be
‘“‘tangential’”’. In two dimensions, this means that the
boundaries of the objects corresponding to brother subtrees
intersect at only a finite number of points. In three dimen-
sions, for polyhedra, the boundaries should not coincide but
are permitted to intersect along one-dimensional edges. In the
general case, for d dimensions, the permitted intersection must

127

« S1GGRAPH85

similarly be at most (d-2)-dimensional (see [16] for more
details). Generalizing Hunter’s and Meagher’s image complex-
ity results for polygons and polyhedra to d dimensions leads
to a complexity of O (M d'l) bintree nodes for bintrees of reso-
lution M. This bound is attainable in a manner that does not
depend on the number of nodes in the CSG tree. The following
theorem, a variant of whose proof can be found in [16], sum-
marizes the above discussion.

Theorem: Let T be a well-behaved CSG tree defining a non-
degenerate d-dimensional object. The proportion of bintree
nodes where more than one CSG tree node is active
approaches zero asymptotically as the resolution increases.

The above results lead us to draw the following unex-
pected but practical conclusions about the performance of our
algorithms for the conversion of CSG trees to bintrees when
the CSG trees are well-behaved.

(1) The ‘“practical” complexity of CSG tree evaluation is
O (M%) as resolution M is increased.

(2) The average number of active CSG tree nodes in a bin-
tree block approaches one asymptotically as resolution is
increased.

(3) The computational complexity of converting a CSG tree
approximation of a given object to a bintree is asymptoti-
cally independent of the number of halfspaces used in the
approximation.

Result (3) means that the linear approximation of curved
halfspaces can be computationally practical even though it
leads to a great increase in the size of the CSG tree. Of course,
the above results are asymptotical and thus are directly
relevant only when the number of halfspaces is not large in
comparison to the resolution.

6. EMPIRICAL RESULTS

In order to test our predictions, we conducted a
number of experiments with polyhedron-like objects in several
dimensions. Our experiments have been performed with ver-
sions of the algorithms of Section 3, as implemented in C in
the system [18] and executed on a VAX 11/750 running ver-
sion 4.2BSD of UNIX. Note that the contribution to CPU time
incurred by writing the packed DF-expression into a file is
quite noticeable.

At each bintree node a fixed amount of work is per-
formed for each CSG tree node that is active in it. Thus an
implementation-independent measure of work is the total
number of CSG tree nodes active at all of the bintree nodes.
This is reported as the statistic ‘““CSG evaluations’” below. The
statistic “Halfspace evaluations” forms part of it and denotes
the number of halfspace value range computations performed.
Note that the algorithm can be implemented in a manner that
requires only one addition operation for each such evaluation
[16]. From these values we can derive the average number of
active CSG tree nodes (or halfspaces) in a bintree node for the
purpose of comparison with the theoretical analysis. Note that
the program that we instrumented used a pointer-less CSG
tree representation, which allows less pruning than the algo-
rithm we have described in Section 3. Thus the number of
CSG node evaluations reported below is an upper bound on
the true value obtained by the algorithm.

For our first experiment we approximated a circle with
an 1ll-gon and formed its bintree at resolution 4096. This

128

approximation produced a bintree with 80828 nodes and
required 87592 CSG tree node and 81823 halfspace evalua-
tions. Thus on the average each bintree node contained less
than 1.1 active CSG tree nodes which correlates with our pred-
iction. The CPU time required was 19.2 seconds, including
about B seconds necessary to output the packed DF-expression.
The time required to performn the same task by a program
specifically designed to convert convex polyhedra was 17.1
CPU seconds so that the overhead of the general CSG tree
representation was not very large.

The second experiment demonstrates that the complex-
ity of CSG tree evaluation is O(Md"l) as resolution M is
increased. For this experiment we tabulate in Table 1 the CPU
conversion times for a series of approximations of a unit circle
by 5, 11, and 19 halfspaces at various resolutions. Notice that
the execution time doubles with resolution as predicted for
d =2. The different approximations are not completely com-
parable as they represent different objects. Thus the bintree at
resolution 4096 contains 76294, 80628 and 81410 nodes for 5,
11 and 19 halfspaces respectively.

Table 1. Conversion times (CPU seconds) for different discs.

Number of Resolution
Halfspaces 256 512 1024 2048 4096
5 1.2 2.1 4.2 8.5 16.2
11 1.7 2.9 4.7 9.4 17.1
19 2.5 3.8 6.1 10.8 18.6

The third experiment shows that the size of the three-
dimensional bintree of a polyhedron is proportional to the
square of the resolution and a four-dimensional bintree is pro-
portional to the third power of the resolution. The execution
times for large values of resolution exhibited similar behavior.
For this we modeled the motion of two identical square blocks
situated at opposite corners of the unit square, moving
towards each other, so that at time £ =1 they overlap on an
area of size 0.05 by 0.05. We also performed an identical
three-dimensional experiment (two moving boxes) resulting in
a four-dimensicnal bintree. In the first case (Figure 9) we have
a total of 8 halfspaces and in the second case we have a total
of 12 halfspaces. Tables 2 and 3 contain the result of the
evaluation of the three-dimensional and four-dimensional trees
at varying resolutions. Note that for these examples, the max-
imum sizes of the universes are 2°* and 2% voxels respectively.

0.25

025 X

Figure 9. Intersection of two moving objects.

SAN FRANCISCO JULY 22-26

Volume 12, Number 3, 1985

Table 2. Intersecting two moving 2-d blocks.
. CPU BIN Halfspace CSG
Resolution seconds nodes evaluations | evaluations

64 0.7 826 1641 3124
128 1.3 2898 4357 7300
256 3.2 10866 13552 19358
512 10.3 42514 47684 59254
1024 37.6 172802 183335 207248
2048 144.1 699362 720631 769768

Table 3. Intersecting two moving 3-d blocks.

Resoluti CPU BIN Halfspace CSG
esolution seconds nodes evaluations evaluations
16 0.8 370 1846 3900
32 1.2 898 3354 7008
64 3.1 4658 10471 21326
128 12.5 31458 49969 90614
256 67.4 231570 295662 430730
512 428.0 1826466 2071158 2695692
eofx T 7 ‘ v]
2
Ow
2\
3 '\”\
w
S o} .
E]
a.‘ a
X
1l 1 1 i H 1
64 128 256 512 1024 2048
RESOLUTION

Figure 10. The number of halfspace evaluations per bintree
node as a function of resolution for Table 2.

Figure 10 shows the number of halfspace evaluations
per bintree node as a function of resolution in the experiment
of Table 2. Notice that the asymptotical bound does hold in
this case. Nevertheless, inspection of Tables 2 and 3 shows
that the convergence to this bound is not necessarily very fast
in the high dimensional (location,time)-space. Therefore this
method should be used primarily when the CSG tree is
expected to evaluate to NULL. Furthermore, it is much more
eflicient to determine just the first moment of intersection. In
order to illustrate this point, we modified the coeflicient of
time in the experiment reported in Table 3 so that the true
intersection was localized within eight three-dimensional vox-
els. The resulting four-dimensional evaluation at resolution 512
produced 530 bintree nodes (of which 8 were BLACK),
evaluated 2765 halfspaces and 5884 CSG tree nodes, and
required 1.2 CPU seconds.

The above experiments have only dealt with convex
objects (i.e., intersections of halfspaces). To study the perfor-
mance of our algorithms with a UNION operation, we per-
formed one more simple experiment. We used hexagons to
approximate five disks with radii 0.3 and centers at (0.0,0.0),

(0.25, 0.25), (0.5,0.5), (0.75,0.75) and (1.0,1.0). The CSG tree
that describes the union of these five circles within the unit
square was of depth 6 and contained 30 leaves and 29 internal
nodes (see Figure 11). Table 4 contains the results on a VAX
11/780.

Lo x

Figure 11. Union of five hexagons within the unit cube.

Table 4. Union of flve disks approximated as hexagons.
Resolution CPU BIN Halfsp 'fxce
seconds nodes evaluations
1024 2.1 14418 17748
2048 3.9 28828 204890
4006 7.1 57654 58353

7. CONCLUDING REMARKS

The analysis of the execution time of CSG to bintree
conversion was based on our definition of well-behaved which
eliminated certain objects. If we expect such objects (beside
the extensions reported below), the more complicated CSG tree
redundancy checking algorithms of Tilove [19] should be used
once the pruned tree has reached a certain (small) size. Note,
however, that if we apply as CLASSIFY_VOXEL a CSG
evaluation at the center of the voxel, no incorrect ‘‘false posi-
tive’’ bintree nodes result (i.e., nodes that should be com-
pletely WHITE but are classificd as BLACIK).

As presented, the algorithm of Section 3 does not han-
dle the case that both a halfspace and its complement are
leaves of the CSG tree. This case is actually quite common
when a CSG tree is composed of a union of convex com-
ponents (e.g., a triangulation). Nevertheless, the performance
of our algorithms, as well as the analytical results of Section 5,
remain valid by adding the following rule to the CSG evalua-
tion in procedure PRUNE:

If in a bintree node only a halfspace and its comple-
ment are active, then the node is BLACK if the root
of the active CSG tree is UNION, and WHITE other-
wise.

Our algorithms have several useful applications aside
from volume-like computations and interference checking.
Viewing three-dimensional CSG models is a prime application
[7]. In this case bintree conversion would be performed solely
for the sake of generating shaded output. The method of view-

129

“ SIGGRAPH'85

A

ing three-dimensional bintrees in the direction of a coordinate
axis described in 18] can be used in this case because the eye-
point dependent operations (e.g., perspective transformation of
halfspaces, etc.) can precede bintree conversion. Shading
would be generated from the normals of the halfspaces active
at each visible node at voxel level. Evaluation would proceed
from front to back and be combined with projection so that
the nodes known to be covered would not be generated. The
efficiency of our conversion algorithm is such that this might
be a practical alternative as a system for viewing faceted
three-dimensional CSG trees [2].

ACKNOWLEDGEMENTS

This work was supported in part by the National Science
Foundation under Grant DCR-8302118 and in part by the Fin-
nish Academy. We thank Jarmo Alander, Olli Karonen, Petri
Koistinen, Walter Kropatsch, Martti Mantyla, Reijo Sulonen,
and Robert E. Webber for comments.

REFERENCES

[1] J. Alander, Interval arithmetic methods in the processing
of curves and sculptured surfaces, Proceedings of the Sizth
International Symposium on CAD/CAM, Zagreb, Yugosla-
via (1984).

[2] P.R. Atherton, A scan-line hidden surface removal pro-
cedure for constructive solid geometry, Computer Graph-
ies 17, 3(1983), 73-82.

[3] J.W. Boyse, Interference detection among solids and sur-
faces, Communications of the ACM 22, 1(January 1979),
3-9.

[4] G.M. Hunter, Efficient computation and data structures
for graphics, Ph.D. dissertation, Department of Electrical
Engineering and Computer Science, Princeton University,
Princeton, NJ, 1978.

{8] €. Jackins and S.L. Tanimoto, Quad-trees, oct-trees, and
k-trees - a generalized approach to recursive decomposi-
tion of Euclidean space, IEEE Transactions on Pattern
Analysis and Machine Intelligence 5, 5(September 1983),
533-539.

[6] E. Kawaguchi and T. Endo, On a method of binary pic-
ture representation and its application to data compres-
sion, IEEE Transactions on Pattern Analysis and Machine
Intelligence 2, 1(January 1980), 27-35.

{7] P. Koistinen, M. Tamminen, and H. Samet, Viewing solid
models by bintree conversion, to appear in Proceedings of
the FUROGRAPHICS ’85 Conference, Nice, September
1985.

(8] Y.T. Lee and A.A.G. Requicha, Algorithms for computing
the volume and other integral properties of solids. I and
I, Communications of the ACM 25, 9(September 1982),
635-650.

[9] D. Meagher, Octree encoding: a new technique for the
representation, manipulation and display of arbitrary 3-D
objects by computer, Report IPL-TR-80-111, Rensselaer
Polytechnic Institute, Troy, New York, 1980.

130

[10] D. Meagher, The Solids engine: a processor for interactive
solid modeling, Proceedings of the NICOGRAPH ’84
Conference, Tokyo, November 1984.

{11] S.P. Mudur and P.A. Koparkar, Interval methods for pro-
cessing geometric objects, [EEE Computer Graphics and
Applications 4, 2(February 1084), 7-17.

[12] N. Okino, Y. Kakazu, and H. Kubo, TIPS-1: Technical
information processing system for computer aided design,
drawing and manufacturing, in Computer Languages for
Numerical Control, J. Hatvany, Ed., North Holland,
Amsterdam, 1973, 141-150,

[13] A.A.G. Requicha, Representations of rigid solids: theory,
methods, and systems, ACM Computing Surveys 12,
4(December 1980), 437-464.

{14] A.A.G. Requicha and H.B. Voelcker, Solid modeling:

current status and research directions, [EEE Computer
Graphics and Applications 3, 7(1983), 25-37.

(15] H. Samet, The quadtree and related hierarchical data
structures, ACM Computing Surveys 16, 2(June 1984),
187-260.

[16] H. Samet and M. Tamminen, Approximating CSG trees of
moving objects, Computer Science TR-1472, University of
Maryland, College Park, MD, January 1985.

[17] M. Tamminen and H. Samet, Efficient octree conversion
by connectivity labeling, Computer Graphics 18, 3(July
1984), pp. 43-51 (also Proceedings of the SIGGRPAH ‘84
Conference, Minneapolis, July 1984).

[18] M. Tamminen, P. Koistinen, J. Hamalainen, O. Karonen,
P. Korhonen, R. Raunio, and P. Rekola, Bintree: a dimen-
sion independent image processing system, Report-
HTKK-TKO-C9, Helsinki University of Technology, 1984.

[19] R.B. Tilove, A null-object detection algorithm for con-
structive solid geometry, Communications of the ACM 27,
7(July 1984), 684-694.

[20] A.F. Wallis and JR. Woodwark, Creating large solid
models for NC toolpath verification, Proceedings of CAD
84, 1984.

{21] J.R. Woodwark and K.M. Quinlan, Reducing the effect of
complexity on volume model evaluation, Computer-aided
Design 14, 2(1982), 89-95.

[22] M. Yau and S.N. Srihari, A hierarchical data structure for
multidimensional digital images, Communicalions of the
ACM 26, 7(July 1983), 504-515.

