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Abstract—
Similarity searching often reduces to finding the k nearest

neighbors to a query object. Finding the k nearest neighbors is
achieved by applying either a depth-first or a best-first algorithm
to the search hierarchy containing the data. These algorithms
are generally applicable to any index based on hierarchical
clustering. The idea is that the data is partitioned into clusters
which are aggregated to form other clusters, with the total
aggregation being represented as a tree. These algorithms have
traditionally used a lower bound corresponding to the minimum
distance at which a nearest neighbor can be found (termed
MINDIST) to prune the search process by avoiding the processing
of some of the clusters as well as individual objects when they
can be shown to be farther from the query object q than
all of the current k nearest neighbors of q. An alternative
pruning technique that uses an upper bound corresponding to
the maximum possible distance at which a nearest neighbor is
guaranteed to be found (termed MAXNEARESTDIST) is described.
The MAXNEARESTDIST upper bound is adapted to enable its use
for finding the k nearest neighbors instead of just the nearest
neighbor (i.e., k = 1) as in its previous uses. Both the depth-first
and best-first k-nearest neighbor algorithms are modified to use
MAXNEARESTDIST, which is shown to enhance both algorithms
by overcoming their shortcomings. In particular, for the depth-
first algorithm, the number of clusters in the search hierarchy
that must be examined is not increased thereby potentially
lowering its execution time, while for the best-first algorithm, the
number of clusters in the search hierarchy that must be retained
in the priority queue used to control the ordering of processing
of the clusters is also not increased, thereby potentially lowering
its storage requirements.

Index Terms— k-nearest neighbors; similarity searching; met-
ric spaces; depth-first nearest neighbor finding; best-first nearest
neighbor finding

I. INTRODUCTION

S IMILARITY searching is an important task when trying
to find patterns in applications involving mining differ-

ent types of data such as images, video, time series, text
documents, DNA sequences, etc. Similarity searching often
reduces to finding the k nearest neighbors to a query object.
This process is facilitated by building an index on the data
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which is usually based on a hierarchical clustering. The idea
is that the data objects are partitioned into clusters (termed
nonobjects) which are aggregated to form other clusters, with
the total aggregation being represented as a tree known as a
search hierarchy. Numerous search hierarchies have been used
for both vector data and non-vector data such as data lying in
a metric space many of which are surveyed in [7], [10], [15],
[20], [26], [30]. The methods that we describe in this paper
are independent of the nature of the data.

The most common strategy for finding the k nearest neigh-
bors is the depth-first method which explores the elements of
the search hierarchy in a depth-first manner (e.g., [14]). The k

nearest neighbors found so far are kept track of in a set L with
the aid of a variable Dk that indicates the distance, using a
suitably defined distance function d, of the current kth-nearest
object from the query object q. The depth-first method visits
every element of the search hierarchy. The branch and bound
variant of the depth-first method yields better performance by
not visiting every nonobject and its objects when it can be
determined that it is impossible for the nonobject to contain
any of the k nearest neighbors of q [14], [21]). For example,
this is true if we know that for every nonobject element e of
the search hierarchy, d(q, e) ≤ d(q, e0) for every object e0 in e

and that the relation d(q, e) > Dk is satisfied1. This can indeed
be achieved if we define d(q, e) as the minimum possible
distance from q to any object e0 in nonobject e (referred to
as MINDIST in contrast to MAXDIST, the maximum possible
distance, which unlike MINDIST cannot be used for pruning).

Letting A(e) denote the set of nonobject immediate descen-
dants ei of nonobject element e of the search hierarchy, using
the above definition of distance for nonobject elements (i.e.,
MINDIST) makes it possible to obtain even better performance
as a result of speeding up the convergence of Dk to its final
value by processing elements of A(e) in increasing order
of d(q, ei) (i.e., a MINDIST ordering). In this way, once an
element ei in A(e) is found such that d(q, ei) > Dk, then
d(q, ej) > Dk for all remaining elements ej of A(e). This
means that none of these remaining nonobject descendants of
e need to be processed further, and the algorithm backtracks

1This stopping condition ensures that all objects at the distance of the kth-
nearest neighbor are examined. Note that if the size of L is limited to k and
if there are two or more objects at distance Dk, then some of them may not
be reported in the set of q’s k nearest neighbors.
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to the parent of e, or terminates if e is the root of the search
hierarchy.

An alternative strategy is the best-first method (e.g., [1], [8],
[11], [16]–[18], [23]) which explores the nonobject elements
of the search hierarchy in increasing order of their distance
from q (hence the characterization as “best-first”) rather than
in a predetermined order, as in the depth-first method. In
other words, at each step of the algorithm, the next nonobject
element to be visited is the closest one to q which has yet to
be visited. This is achieved by storing the nonobject elements
of the search hierarchy in a priority queue Queue according
to this order. Queue is initialized to contain the root of the
search hierarchy at a distance of 0 from q, and as nonobject
elements are dequeued, their immediate descendants e that
are nonobject elements are enqueued with their corresponding
distances from q if d(q, e) < Dk, while immediate descendants
o that are objects are inserted into L if d(q, o) < Dk, where
Dk, the distance of the current kth-nearest neighbor of q, is
initialized to ∞. The algorithm repeatedly removes nonobject
elements from Queue until it is empty or until encountering
a nonobject element that is farther from q than Dk, at which
time it halts as it has found the k nearest neighbors, which
are now in L. In order for the algorithm to be correct, the
distance d(q, e) of any nonobject element e from the query
object q must be less than or equal to the distance from q

to any object in e’s descendants [19]. Again, as in the depth-
first method, this property is satisfied by letting d(q, e) be
MINDIST.

The drawback of the best-first method is that the priority
queue may be rather large. In particular, the necessary amount
of storage may be as large as the total number of nonobjects
(and hence on the order of the number of objects) if the
distance of each of the nonobjects from the query object q

is approximately the same. In low dimensions, such an event
is relatively rare as its occurrence requires two seemingly inde-
pendent events — that is, that all objects lie in an approximate
hypersphere centered at some point p and that the query object
q be coincident with p. However, in high dimensions, where
most of the data lies on the surface (e.g., [5]) and the curse of
dimensionality [3], [6] comes into play, and in metric spaces
with concentrated distance histograms, this situation is less
rare. In contrast, the amount of storage required by the depth-
first method is bounded. In particular, it is proportional to the
sum of k and the maximum depth of the search hierarchy,
where, in the worst case, all of the sibling nonobject elements
must be retained for each partially explored nonobject element
in the search hierarchy while executing the depth-first search.

Nevertheless, the advantage of the best-first algorithm over
the depth-first algorithm is that it has been shown to be
I/O optimal for k = 1 [4]. This means that the algorithm
does not visit more than the minimum number of nonobject
elements—that is, it avoids visiting nonobject elements that
will eventually be determined to be too far from q due to poor
initial estimates of Dk. This is equivalent to stipulating that
the algorithm is range-optimal, which means that the cost of
finding the k nearest neighbors is the same as that of a range
search with the search radius set to the distance from q to its
kth-nearest neighbor.

As we point out above, the implementations of both the
depth-first and best-first algorithms make heavy use of a lower
bound MINDIST corresponding to the minimum distance at
which a nearest object can be found vis a vis the distance Dk

to the current kth-nearest object from q. In this paper, we show
how to also use an upper bound MAXNEARESTDIST corre-
sponding to the maximum possible distance at which a nearest
neighbor is guaranteed to be found in both the depth-first and
best-first algorithms for finding the k nearest neighbors for
arbitrary values of k. This upper bound was first introduced
in [22] for the case of k = 1 for the purpose of improving the
initial estimate of Dk in the depth-first method. It was also
proposed in [25] as an alternative to the MINDIST ordering
for the processing of the nonobject immediate descendants
of a nonobject element in the depth-first method but again
limited to k = 1. However, for the purpose of ordering,
MINDIST has been shown to be more useful [18], [25] and
hence MAXNEARESTDIST is not discussed further here in
this context. Therefore, in this paper we focus on the first
purpose and show how to use the MAXNEARESTDIST upper
bound for arbitrary values of k (i.e., k ≥ 1) to overcome the
shortcomings that we pointed out earlier of both the depth-
first (i.e., pruning) and best-first (i.e., size of the priority
queue) k-nearest neighbor algorithms. Note that other upper
bounds can be used in the k-nearest neighbor algorithms to
yield what are termed probabilistically approximate nearest
neighbors (e.g., [9], [11]), although they are beyond the scope
of this paper.

The rest of this paper is organized as follows. Section II de-
fines the MAXNEARESTDIST upper bound, while Section III
describes how to use it in the process of finding the k

nearest neighbors by incorporating it into the set L of the
k nearest neighbors found so far, while Section IV discusses
the management of L in greater detail. Section V demonstrates
how to incorporate it in a depth-first k-nearest neighbor algo-
rithm to eliminate some elements from further consideration,
while Section VI demonstrates how to incorporate it in a
best-first k-nearest neighbor algorithm to reduce the size of
the priority queue of nonobject elements remaining to be
processed. Section VII presents the results of an experiment
where use of MAXNEARESTDIST does indeed improve the
performance of both the depth-first and best-first k-nearest
neighbor algorithms, while concluding remarks are made in
Section VIII.

II. THE MAXNEARESTDIST UPPER BOUND

The key motivation for the introduction of the MAX-
NEARESTDIST upper bound in k-nearest neighbor finding
have been the observations that until the first set of k candidate
nearest neighbors has been found (which enables setting Dk

to a value other than the initial value of ∞),
1) regardless of the algorithm that is used, no visits of

nonobject elements of the search hierarchy can be pre-
vented, and

2) in the best-first method, no insertion of nonobject ele-
ments into the priority queue can be avoided.

In fact, Larsen and Kanal [22] first introduced MAXNEAREST-
DIST as an alternative to the MAXDIST upper bound that
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was proposed by Fukunaga and Narendra [14] as a means
of obtaining an upper bound on D1 when finding the near-
est neighbor using the depth-first method (see Figure 1a).
In particular, Fukunaga and Narendra’s proposal for using
MAXDIST assumed a very simple search hierarchy where
objects are clustered into groups where cluster c has a cluster
center M which need not necessarily correspond to an object
in the cluster and all objects in c lie within a distance
rmax of M . Thus in this context, the minimum distance
at which the nearest neighbor could be found was indeed
MAXDIST=d(q, M) + rmax.

Larsen and Kanal [22] improved upon Fukunaga and Naren-
dra [14] by noting that once the cluster center is not re-
quired correspond to an object in the cluster, the clusters
can be formed even more tightly by taking advantage of
the knowledge that rmin is the distance from cluster center
M to M ’s closest object within cluster c. This results in
a cluster having the shape of a spherical shell as shown
in Figure 1b. In particular, they point out that the distance
from the query object q to its nearest object, which we
term MAXNEARESTDIST, regardless of which cluster it is in,
cannot exceed d(q, M) + rmin and thus D1 could be reset if
it exceeds this value.

Figure 1c illustrates the relationship between MINDIST,
MAXNEARESTDIST, and MAXDIST by assuming a Euclidean
distance metric and a cluster c in the form of a mini-
mum bounding hypersphere of the objects lying within it.
In this case, we see that the value of MAXNEARESTDIST

is
√

d(q, M)2 + r2
max and does lie between MINDIST and

MAXDIST. Note that if we assume that the minimum bounding
hypersphere in Figure 1c is a spherical shell with rmin as
its inner radius and a Euclidean distance metric d, then
MAXNEARESTDIST is the minimum of

√

d(q, M)2 + r2
max

and d(q, M) + rmin.

III. USING MAXNEARESTDIST IN k-NEAREST NEIGHBOR

FINDING

Using MAXNEARESTDIST to tighten the estimate Dk when
finding the k nearest neighbors instead of just the nearest
neighbor (i.e., D1 when k = 1) is not a simple matter,
although neither Fukunaga and Narendra [14] nor Larsen
and Kanal [22] give it any mention in their depth-first al-
gorithms. In particular, note that the simple solution used
for k = 1 of resetting D1 cannot be generalized to k by
simply resetting Dk to MaxNearestDist(q, e) whenever
MaxNearestDist(q, e) < Dk for nonobject element e.
The problem is that the distance s from q to some of the
k nearest neighbors of q may lie within the range MAX-
NEARESTDIST(q, e) < s ≤ Dk, and thus resetting Dk to
MaxNearestDist(q, e) may cause them to be missed (e.g.,
object o in Figure 2, assuming a Euclidean distance metric).

The problem is that given the way in which the MAX-
NEARESTDIST upper bound is defined here, its primary role
is to set an upper bound on the distance from the query object
to its nearest neighbor in a particular nonobject element. It is
important to observe that this is not the same as saying that
the upper bound computed by using MAXNEARESTDIST is

q M

e

rmax

s

o

rmin

Dk

MaxNearestDist (q,e)

Figure 2: Example showing that we cannot
simply reset Dk to MaxNearestDist(q,e) when-
ever MaxNearestDist(q,e)< Dk for nonobject el-
ement e which is a spherical shell so that
MaxNearestDist(q,e)= d(q, M) + rmin, assuming a
Euclidean distance metric.

the minimum of the maximum possible distances to the kth-
nearest neighbor of the query object, which is not true. Instead,
the way in which the MAXNEARESTDIST upper bound should
be, and is, used in k-nearest neighbor finding is to provide
upper bounds for a number of different clusters. Only once
we have obtained k distinct such upper bounds, do we have
an upper bound on the distance to the kth-nearest neighbor.

We make use of the MAXNEARESTDIST upper bound by
expanding the role played by the set L of the k nearest
neighbors encountered so far so that it also contains nonobject
elements e, such that MaxNearestDist(q, e) < Dk, that
have been encountered so far (in the course of either the
depth-first or best-first k-nearest neighbor algorithms) along
with their corresponding MAXNEARESTDIST values, as well
as continuing its role of containing objects with their corre-
sponding distance values from q. In particular, each time we
process a nonobject element e of the search hierarchy, we
insert in L all of e’s nonobject child elements along with their
corresponding MAXNEARESTDIST values. In addition, before
we attempt to insert the nonobject child elements of e into L,
we remove e from L. The insertion of e into L requires some
care so that we are sure to always find e when attempting to
remove it.

IV. MANAGEMENT OF L

In this section we discuss the management of the set L of
the k nearest neighbors encountered so far using the principles
outlined in Section III. This discussion is independent of
whether a depth-first or best-first algorithm is used to find the
k nearest neighbors of query object q. In particular, we only
assume that each time we process a nonobject element e of
the search hierarchy, we insert in L all of e’s nonobject child
elements along with their corresponding MAXNEARESTDIST

values. In addition, before we attempt to insert the nonobject
child elements of e into L, we remove e from L.
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Figure 1: Examples showing the calculation of MaxDist, MaxNearestDist, and MinDist when objects are
clustered into groups where the cluster centers do not necessarily correspond to objects in the clusters. (a)
Cluster c has a cluster center M and all objects in c lie within a distance rmax of M, (b) adding the condition
that rmin is the distance from M to M’s closest object within c, and (c) the cluster is the minimum bounding
hypersphere of a set of objects whose cluster center is determined to be M.

Given these assumptions about the new algorithms, the rest
of this section is organized as follows. Section IV-A presents
the implementation of L. Section IV-B proves a couple of
key properties of L when used to store nonobject elements
along with their corresponding MAXNEARESTDIST values in
k-nearest neighbor finding. They are independent of which of
the two variants of the original k-nearest neighbor algorithm is
used. In particular, the only property of the algorithms that is
used in the proofs is that they process the nonobject elements
of the search hierarchy in increasing order of their MINDIST

values either locally (depth-first algorithm) or globally (best-
first algorithm). Section IV-C describes in greater detail the
process of inserting nonobject elements in L, while Section IV-
D discusses the process of the explicit removal of nonobject
elements from L. The actual code for the two variants of the k-
nearest neighbor finding algorithms that incorporate the MAX-
NEARESTDIST upper bound is given in Sections V and VI.

A. Implementation of L

The variants of the k-nearest neighbor algorithms that we
describe need to be able to insert and remove specific ob-
jects and nonobjects with corresponding MAXNEARESTDIST

values into and from the set L. In addition, we want to be
able to access as well as delete the farthest of the k nearest
neighbors. We implement L using a priority queue as it enables
the latter two operations to be performed without needless
exchange operations as would be the case if L were to be
implemented using an array. Each element e in L has two
data fields E and D corresponding to the item i (object or
nonobject) that e contains and i’s distance from q (i.e., d(q, i)
or MAXNEARESTDIST(q, i), respectively), and a number of
fields corresponding to control information specific to the data
structure used to implement the priority queue (e.g., a binary
heap). We use the function MaxL(L) to access the element
in L with the highest priority (i.e., at the top of the queue or,
equivalently, the first and most accessible element). When the

queue L is full, then MaxL(L) corresponds to the kth-nearest
neighbor (i.e., the farthest of the known k nearest neighbors
of q).

B. Properties of L When Containing MaxNearestDist Values

In this section, we prove some important properties of the
modification of L described in Section III. We assume that
each object appears just once in the search hierarchy2. Asso-
ciated with each nonobject element e in L is its corresponding
MaxNearestDist(q, e) value. This value results from the
postulation of the existence of an object o at this distance, and
o is said to be associated with e, whether or not such an object
actually exists. The key idea is that the particular positioning
of o is what determines the MaxNearestDist(q, e) value.
In particular, we prove that each of the elements of L is
associated with a unique object (Theorem 4.1), and that
there is no need to insert a nonobject element e such that
MaxNearestDist(q, e) ≥ Dk which means that L contains
at most k elements (Theorem 4.2).

Theorem 4.1: The object o associated with each element e

of L is unique.
Proof: Since the objects in the set from which the

neighbors are drawn are unique, once object o appears as
one of the elements in L, it cannot be a member of one
of the nonobject elements in L. Moreover, the fact that
nonobject element e is removed from L before inserting any
of e’s children into L ensures that no ancestor-descendant
relationship exists between any two elements of L. Therefore,
the object o associated with the nonobject element u of L at a
distance of MAXNEARESTDIST is guaranteed to be unique
even though it may not have been identified yet. In other
words, at the time at which we are ready to insert u into L, its

2Search hierarchies where objects appear more than once as is the case for
those based on a disjoint decomposition of the space from which the objects
are drawn such as an R+-tree [28] and a PM quadtree [27] are more complex
and beyond the scope of this paper.
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associated object o is not already in L nor is o associated with
any other nonobject element in L. Note that the definition of
the MAXNEARESTDIST upper bound ensures that for each of
the entries u in L, there is at least one object o in the data
set whose maximum possible distance from q is the one that
is associated with u.

Theorem 4.2: There is no need to insert into L any nonob-
ject element e such that MaxNearestDist(q, e) ≥ Dk, and
thus the maximum size of L is k.

Proof: There is no need to insert in L any nonobject
element e such that MaxNearestDist(q, e) ≥ Dk as e

by itself cannot be used to further reduce the value of Dk.
Moreover, failing to insert such an e in L does not affect
the k-nearest neighbor finding process as regardless of the
nature of the k-nearest neighbor finding algorithm that is
used (i.e., depth-first or best-first), the appropriate nonobject
elements that are subsequently processed are explored in
increasing order of their MINDIST values. Therefore, the fact
that MinDist(q, e) ≤ MaxNearestDist(q, e) for all q

and nonobject elements e, means that if MinDist(q, e) ≥
Dk, then e will never be explored further anyway, and if
MinDist(q, e) < Dk, then e will be explored regardless of
the value of MaxNearestDist(q, e) and whether or not e

was inserted into L. Therefore, not having inserted e in L

makes no difference since the descendants of e will be ex-
plored anyway. The size of L is upper-bounded by k (actually,
it can decrease) as when nonobject element e is removed from
L, it could be the case that MaxNearestDist(q, ei) ≥
Dk for each of the immediate nonobject child elements
ei of e in which case none of them are inserted into L.
Figure 3 is an example that illustrates how the size of L

can decrease for an element e with three spherical shell-
like children ea, eb, and ec, assuming a Euclidean distance
metric. In particular, in this case, we assume, without loss
of generality, that Dk is equal to MaxNearestDist(q, e)
and that MaxNearestDist(q, ei) = d(q, Mi) + ri,min for
each of the children ei (i = {a, b, c}). It is easy to see
that MaxNearestDist(q, ei) > Dk for each of ei (i =
{a, b, c}).

C. Insertion of Nonobject Elements into L

One of the key properties underlying any k-nearest neighbor
algorithm is that the value of Dk, the distance of the kth-
nearest neighbor of q, is nonincreasing. This is ensured by
Theorem 4.2 and the actual k-nearest neighbor algorithms
(see Sections V and VI) which make use of procedure MAX-
NEARESTDISTINSERTL, given below, to update L as closer
objects and nonobjects are found, thereby causing existing
elements in L to be removed when L already contains k

elements. Elements of L that are removed in such a manner
are said to be removed implicitly, in contrast to elements that
are removed explicitly whenever attempts are made to insert
their children into L (see Section IV-D).

1 procedure MAXNEARESTDISTINSERTL(e,s)
2 /* Insert element (object or nonobject) e at distance s

from query object q into the priority queue L using
ENQUEUE. Assume that objects have precedence over

ra,min
MaMp

rp,min

rp,max

q
ra,max

Mb

rb,max

rb,min

Mc

rc,max

rc,min

e

Figure 3: Example illustrating how the number of el-
ements in L can decrease as a result of the situation
that arises when the MaxNearestDist values of the
three nonobject child elements ea, eb, and ec of ep

are greater than the current value of Dk which is the
MaxNearestDist value of ep, assuming a Euclidean
distance metric.

nonobjects when they are at the same distance Dk (i.e.,
the kth- nearest neighbor) from the query object q. */

3 if SIZE(L) = k then
4 h←DEQUEUE(L)
5 if not ISOBJECT(E(h)) then
6 while not ISEMPTY(L)
7 and not ISOBJECT(E(MAXL(L)))
8 and D(MAXL(L)) = D(h) do
9 DEQUEUE(L)

10 enddo
11 endif
12 endif
13 ENQUEUE(e,s,L)
14 if SIZE(L) = k then
15 if D(MAXL(L)) < Dk then
16 Dk←D(MAXL(L))
17 endif
18 endif

Procedure MAXNEARESTDISTINSERTL proceeds as fol-
lows. If there are k candidate nearest neighbors in L (de-
termined with the aid of the function Size(L) which is not
given here), then MAXNEARESTDISTINSERTL precedes the
insertion, which is performed by ENQUEUE (not given here),
by first dequeueing (i.e., implicitly removing) the current
farthest member (i.e., the kth-nearest member) from L using
DEQUEUE (not given here)3. Next, if there are k candidate
nearest neighbors after the insertion, then MAXNEAREST-
DISTINSERTL resets Dk to the distance of the current farthest
nearest neighbor (see lines 15 and 16), accessed by the

3Note the asymmetry between DEQUEUE which removes the item at the
front of the queue while ENQUEUE inserts an item in its appropriate position
in the queue. We also make use of a procedure REMOVEQUEUE in Section IV-
D which is the complement of ENQUEUE in that it removes a specific element
from the queue which may involve a search.
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function MAXL (not given here, although in the case of a
priority queue implemention of L as in this case, it is the
current first element in the queue).

The situation is different when there are fewer than k

candidate nearest neighbors in L as now there is no need
to dequeue (i.e., implicitly remove) any elements from L.
An example of such a situation was given in the proof of
Theorem 4.2 and is also always the case in the initial stages
of the k-nearest neighbor finding process. Moreover, in this
case, the insertion of an object or nonobject e into L does not
cause a change in Dk as Dk indicates the minimum of all of
the distance values that have been associated with the entry in
L that corresponds to the kth-nearest neighbor of q and Dk

has not changed as a result of the current insertion of e at a
distance d(q, e) < Dk into L.

When L contains k elements and we must implicitly remove
an element e in order to accommodate the insertion of the new
element with distance less than Dk, then we must exercise
some caution if there are several elements (objects and nonob-
jects) at the same distance Dk from q. The motivation for this
is to try to minimize the need to search for e, and possibly
not find e due to e having been implicitly removed from L

earlier, when we subsequently attempt to explicitly remove e

from L. This needless search is avoided by adopting some
convention as to which element of L at distance Dk should
be removed implicitly by MAXNEARESTDISTINSERTL when
there are several nonobjects in L having Dk as their MAX-
NEARESTDIST value as well as objects at distance Dk.

We adopt the convention that objects have priority over
nonobjects in the sense that in terms of nearness, objects
have precedence over nonobjects in L. This means that when
nonobjects and objects are at the same distance from q,
the nonobjects appear closer to the maximum entry in the
priority queue L (i.e., MAXL(L)), which corresponds to the
kth-nearest candidate neighbor. In particular, we stipulate
that whenever insertion into a full priority queue results in
dequeuing a nonobject element b with MAXNEARESTDIST

value d, we check if the new MAXL(L) entry c corresponds
to a nonobject with the same MAXNEARESTDIST value d in
which case c is also dequeued. This loop continues until the
new MAXL(L) entry corresponds to an object at any distance
including d, or corresponds to a nonobject at any other distance
d′ < d, or L is empty (see lines 5–11). Note that Dk is
only reset if exactly one entry has been dequeued (from a full
priority queue) and the distance of the new MAXL(L) entry
is less than Dk (see lines 13–17). Otherwise, if we dequeue
more than one entry, then even though the distance of the new
MAXL(L) entry may now be less than Dk, it cannot be used
to reset Dk as L now contains fewer than k entries. In fact, it
should be clear that Dk should not be reset as Dk has not been
decreased since the only reason for the removal of the multiple
nonobject entries is to avoid subsequent possibly needless
searches when explicitly removing nonobject elements with
MAXNEARESTDIST value Dk.

D. Removal of Nonobject Elements from L

As we pointed out in the proof of Theorem 4.2, there
is no need for L to ever contain more than k elements.

This simplifies the k-nearest neighbor algorithms considerably.
However, it does mean that when we need to explicitly
remove a nonobject element e from L just before inserting
in L all of e’s nonobject child elements along with their
corresponding MAXNEARESTDIST values that are less than
Dk, it could be the case that e is no longer in L. This is
because e may have been implicitly removed as a byproduct
of the insertion of closer objects or nonobject elements as
a result of their corresponding MAXNEARESTDIST values
being smaller than that of e and thereby resulted in resetting
Dk. Procedure MAXNEARESTDISTREMOVEL, given below,
accomplishes this task, while also following our convention,
set forth in Section IV-C, that objects have priority over
nonobjects when they are in L at the same distance Dk (i.e.,
the kth-nearest neighbor) from the query object q.

1 procedure MAXNEARESTDISTREMOVEL(e)
2 /* Remove element (object or nonobject) e from the

priority queue L using REMOVEQUEUE. Assume that
objects have precedence over nonobjects when they
are in L at the same distance Dk (i.e., the kth-nearest
neighbor) from the query object q. */

3 if MAXNEARESTDIST(q, e) < Dk or
4 (MAXNEARESTDIST(q, e) = Dk and
5 D(MAXL(L)) = Dk and
6 not ISOBJECT(E(MAXL(L)))) then
7 REMOVEQUEUE(e, L)
8 endif

Procedure MAXNEARESTDISTREMOVEL proceeds as fol-
lows. When a nonobject e is to be removed explicitly from
L and e’s MAXNEARESTDIST value is < Dk (see line 3),
then e has to be in L as it is impossible for e to have been
removed implicitly since Dk is nonincreasing in our algo-
rithms (i.e., the depth-first and best-first given in Sections V
and VI). Therefore, we remove e and decrement the size of
L using procedure REMOVEQUEUE which is not given here.
On the other hand, the situation is more complicated when e’s
MAXNEARESTDIST value is equal to Dk (see line 4). First, if
the maximum value associated with an element in L (i.e., the
one associated with MAXL(L)) is less than Dk (see line 5),
then e cannot be in L, and we do not attempt to remove e.
Such a situation arises, for example, when we have dequeued
more than one nonobject due to having several nonobjects at
distance Dk. Second, if the maximum value associated with
an element in L (i.e., the one associated with MAXL(L)) is
equal to Dk, then there are two cases depending on whether the
entry c in MAXL(L) corresponds to an object or a nonobject
(see line 6). If c corresponds to an object, then nonobject e

cannot be in L as we have given precedence to objects, and
all nonobjects at the same distance are either in L or they are
all not in L. If c corresponds to a nonobject, then nonobject
e has to be in L as all of the nonobjects at the same distance
have been either removed implicitly together or retained, and,
in this case, by virtue of the presence of c in L we know that
they have been retained in L. Note that when we explicitly
remove a nonobject at distance Dk from L, we do not remove
all remaining nonobjects at the same distance from L as this
needlessly complicates the algorithm with no additional benefit
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as they will all be removed implicitly together later if at least
one of them must be implicitly removed due to a subsequent
insertion into a full priority queue.

V. DEPTH-FIRST ALGORITHM USING MAXNEARESTDIST

Incorporating the MAXNEARESTDIST upper bound in the
depth-first k-nearest neighbor algorithm, thereby yielding what
we characterize as a maxnearest depth-first k-nearest neighbor
algorithm, is straightforward and is realized below by the
recursive procedure MAXNEARESTDISTDF which is invoked
with parameter e initialized to the root of the search hierar-
chy. In MAXNEARESTDISTDF, if the nonobject element e

being visited is at the deepest level of the search hierarchy
(usually referred to as a leaf or leaf element), then every
object o in e that is nearer to q than the current kth-nearest
neighbor of q (i.e., d(q, o) < Dk) is inserted into L, with
its associated distance from q (i.e., d(q, o)), using procedure
MAXNEARESTDISTINSERTL given in Section II (lines 2–9
of MAXNEARESTDISTDF). Otherwise (i.e., e is not a leaf
element), MAXNEARESTDISTDF generates the immediate
successors of e, places them in a list A(e), known as the
active list of e, and proceeds to insert any of them whose
MINDIST and MAXNEARESTDIST values are less than Dk

into L (lines 12–21). It then proceeds to recursively process all
of the nonobject child elements of e whose MINDIST value is
less than Dk (line 24) after removing them from L if possible
(line 26).

1 recursive procedure MAXNEARESTDISTDF(e)
2 if ISLEAF(e) then /* e is a leaf with objects */
3 foreach object child element o of e do
4 Compute d(q, o)
5 if d(q, o) < Dk or
6 (d(q, o) = Dk and SIZE(L) < k) then
7 MAXNEARESTDISTINSERTL(o,d(q, o))
8 endif
9 enddo

10 else /* e is a nonleaf with nonobjects ep */
11 Generate active list A with child elements ep of e

12 /* A is sorted in increasing order with respect to q

using MINDIST and processed in this order */
13 foreach element ep of A do
14 /* Try to apply MAXNEARESTDIST while process-

ing A in increasing order */
15 if MINDIST(q,ep) > Dk then
16 exit for loop /* No further insertions */
17 elseif MAXNEARESTDIST(q, ep) < Dk then
18 MAXNEARESTDISTINSERTL(
19 ep,MAXNEARESTDIST(q, ep))
20 endif
21 enddo
22 foreach element ep of A do
23 /*Process A in increasing order */
24 if MINDIST(q,ep) > Dk then exit for loop
25 else
26 MAXNEARESTDISTREMOVEL(ep)
27 MAXNEARESTDISTDF(ep)
28 endif

29 enddo
30 endif

We now prove a couple of important properties of our
algorithm. First, there are no nonobject elements in L when
the algorithm (i.e., MAXNEARESTDISTDF) terminates.

Theorem 5.1: There are no nonobject elements in L when
the maxnearest depth-first k-nearest neighbor algorithm (i.e.,
MAXNEARESTDISTDF) terminates.

Proof: We show this by contradiction. Suppose
that L contains a nonobject element e upon termination.
The fact that the algorithm has terminated means that
MinDist(q, u) > Dk for all unprocessed nonobject el-
ements u. However, the presence of e in L means that
MaxNearestDist(q, e) ≤ Dk and therefore by virtue
of MinDist(q, e) ≤ MaxNearestDist(q, e) we know
that e has been processed already which means that e must
have been removed explicitly from L which contradicts our
initial assumption that L contains nonobject elements upon
termination.

Second, we prove our main result which is that the number
of nonobject elements that must be examined due to using the
MAXNEARESTDIST upper bound is not increased.

Theorem 5.2: The maxnearest depth-first k-nearest neigh-
bor algorithm (i.e., MAXNEARESTDISTDF) visits at most the
same number of nonobject elements of the search hierarchy
as the conventional depth-first algorithm, and may visit less.

Proof: We know that Dk is nonincreasing as it is only
updated when an object or nonobject at a distance less than
Dk is inserted into L. This is true for both the conventional
and maxnearest versions of the depth-first k-nearest neighbor
algorithm. Inserting a nonobject element e into L in the
maxnearest algorithm causes Dk to decrease or at the worst
to maintain the same value. Suppose that Dk has indeed
decreased so that it now has the value de instead of the
previous value of dp. This means that a nonobject element
n with minimum distance dn such that de < dn < dp will not
be visited whereas n would have been visited had we not used
the MAXNEARESTDIST upper bound, and thus the number of
nonobject elements that are visited has decreased.

VI. BEST-FIRST ALGORITHM USING MAXNEARESTDIST

Incorporating the MAXNEARESTDIST upper bound in the
best-first algorithm, thereby yielding what we characterize as a
maxnearest best-first k-nearest neighbor algorithm, is straight-
forward and is realized below by procedure MAXNEAREST-
DISTBF which is invoked with parameter e initialized to the
root of the search hierarchy. Recall that in the depth-first
algorithm, incorporation of MAXNEARESTDIST enabled the
use of the nonobject elements of the search hierarchy to speed
up the convergence of Dk to its final value thereby helping
to prune the set of k candidate nearest neighbors instead of
pruning only with the aid of the k nearest objects as in the
standard implementation. It should be clear that both the fact
that a best-first algorithm examines the nonobject elements in
increasing MINDIST order and the fact that every nonobject
element with MINDIST less than the final value of Dk must
be examined together mean that no matter how fast the value
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of Dk converges to its final value, a best-first algorithm will
never examine any extra nonobject elements. However, use
of MAXNEARESTDIST in the best-first algorithm still helps
to speed up the convergence of Dk to its final value which
means that its use results in reducing the size of the priority
queue Queue as fewer nonobject elements are inserted into it
initially while Dk is at its initial value of ∞.

1 procedure MAXNEARESTDISTBF(e)
2 ENQUEUE(e,MAXNEARESTDIST(q, e), L)
3 ENQUEUE(e,0,Queue)
4 while not ISEMPTY(Queue) do
5 t←DEQUEUE(Queue)
6 e←E(t)
7 if D(t) > Dk then
8 return /* Found k nearest neighbors and exit */
9 else MAXNEARESTDISTREMOVEL(e)

10 endif
11 if ISLEAF(e) then /* e is a leaf with objects */
12 foreach object child element o of e do
13 Compute d(q, o)
14 if d(q, o) < Dk or
15 (d(q, o) = Dk and SIZE(L) < k) then
16 MAXNEARESTDISTINSERTL(o,d(q, o))
17 endif
18 enddo
19 else /* e is a nonleaf */
20 foreach child element ep of e do
21 if MINDIST(q, ep) < Dk then
22 if MAXNEARESTDIST(q, ep) < Dk then
23 MAXNEARESTDISTINSERTL(
24 ep,MAXNEARESTDIST(q, ep))
25 endif
26 ENQUEUE(ep,MINDIST(q, ep),Queue)
27 endif
28 enddo
29 endif
30 enddo
31 return

MAXNEARESTDISTBF processes all nonobject elements in
Queue in the order in which they appear in Queue (i.e., the
element e at the front is processed first). We first remove
e from Queue (lines 5–6), and also check if e should be
explicitly removed from L using the same method as in MAX-
NEARESTDISTDF (line 9). Recall that this step ensures that
the objects that are associated with the different entries in L are
unique. This removal step is missing in a variant of a best-first
k-nearest neighbor algorithm that uses MAXNEARESTDIST

proposed by Ciaccia, Patella, and Zezula for the M-tree [12]
thereby possibly leading to erroneous results. Next, we check
if e is a leaf element in which case we examine its constituent
objects using the same method as in MAXNEARESTDISTDF
(lines 12–18). Otherwise, we examine each of e’s child el-
ements ep, and insert ep and its associated MINDIST(q, ep)
value into Queue (line 26) if MINDIST(q, ep) is less than Dk

(line 21). When MINDIST(q, ep) ≤ Dk, we also check if ep’s
associated MAXNEARESTDIST(q, ep) value is less than Dk

(line 22), in which case we use MAXNEARESTDISTINSERTL

to insert ep and MAXNEARESTDIST(q, ep) into L, and pos-
sibly reset Dk (line 23). As in MAXNEARESTDISTDF, this
action may cause some elements (both objects and nonobjects)
to be implicitly removed from L. Thus the MAXNEAREST-
DIST upper bound is used here to tighten the convergence of
Dk to its final value.

Notice that in contrast to the depth-first algorithm (MAX-
NEARESTDISTDF), the nonobject child elements ep of nonob-
ject element e (i.e., the elements of the active list of e)
are not sorted with respect to their distance (MINDIST or
MAXNEARESTDIST) from q before testing for the possibility
of insertion into L and enqueuing into Queue (lines 20–28).
In particular, assuming data of a fixed dimension and that
the active list contains T elements, there is no advantage in
incurring the extra time needed to sort the child elements (i.e.,
O(T log T ) time) since all that the sort can accomplish is
avoiding the tests (i.e., O(T ) time). In other words, unlike the
depth-first algorithm, in the best-first algorithm, there is no
need to worry about ordering the processing of the elements
of the active list.

We now prove a couple of important properties of our
algorithm. First, there are no nonobject elements in L when
the algorithm (i.e., MAXNEARESTDISTBF) terminates.

Theorem 6.1: There are no nonobject elements in L when
the maxnearest best-first k-nearest neighbor algorithm (i.e.,
MAXNEARESTDISTBF) terminates.

Proof: The fact that each time that a nonobject element
e is removed from the priority queue Queue, e is also
explicitly removed from L if it is in L by virtue of its
MAXNEARESTDIST value being less than Dk, and the fact
that MinDist(q, e) ≤ MaxNearestDist(q, e) together
ensure that there are no nonobject elements left in L when the
best-first algorithm terminates (i.e., when the distance value
associated with the first element in the priority queue Queue
is greater than Dk), and thus the elements in L are the k

nearest neighbors of q.
Theorem 6.1 is of interest as when the best-first algorithm
terminates, it is quite likely that the priority queue Queue is
not empty as we do not constantly check it for the presence
of nonobject elements with associated distance values greater
than Dk each time the value of Dk decreases.

Second, we prove our main result which is that the maxi-
mum number of nonobject elements that may be in the priority
queue due to using the MAXNEARESTDIST upper bound is
not increased.

Theorem 6.2: When the maxnearest best-first k-nearest
neighbor algorithm (i.e., MAXNEARESTDISTBF) terminates,
the maximum size attained by the priority queue Queue is at
most as large as that of the conventional best-first algorithm,
and may be less.

Proof: We know that Dk is nonincreasing as it is only
updated when an object (nonobject) at a distance (MAX-
NEARESTDIST) less than Dk is inserted into L. This is true for
both the conventional and maxnearest versions of the best-first
k-nearest neighbor algorithm. Inserting a nonobject element e

into L in the maxnearest algorithm causes Dk to decrease
or at the worst to maintain the same value. Suppose that Dk

has indeed decreased so that it now has the value de instead
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of the previous value of dp. This means that a subsequently
processed nonobject child element n with minimum distance
dn such that de < dn < dp will not be inserted into Queue
whereas n would have been inserted into Queue had we not
used the MAXNEARESTDIST upper bound and thus the size
of Queue has decreased.

VII. EXPERIMENTAL RESULTS

In this section we demonstrate, with the aid of an exam-
ple, situations where use of MAXNEARESTDIST can lead to
additional pruning in the depth-first algorithm and likewise to
a reduction in the size of the priority queue in the best-first
algorithm. In particular, assuming a Euclidean distance metric,
we applied the depth-first and best-first algorithms with and
without the use of MAXNEARESTDIST to the set of 100 two-
dimensional points given in Figure 4, stored in the R*-tree [2],
which is an object hierarchy where the minimum bounding
boxes are hyperrectangles instead of spheres as is the case for
the SS-tree [29]. The R*-tree has the desirable property that
overlap is kept low between minimum bounding boxes at the
same level (i.e., they are more likely to be disjoint or close to
disjoint).

Figure 4: Block decomposition at the top 2 levels
(depth 2 shown with darker borders than depth 1)
in an R*-tree for 100 points in a 512×512 space
with the origin at the upper-left corner where the
fanout at each node lies between 2 and 4. The
maximum depth of the tree is 6. q1, q2, q3, q4, and
q5 correspond to query points.

Figure 5 shows the difference in performance of the depth-
first (DF) and best-first (BF) algorithms with and without
use of MAXNEARESTDIST for values of k, the number of
nearest neighbors sought, ranging from 1 to 6 for five different
query points labeled q1...q5 on the data in Figure 4. From this
example, we see that the improvements/savings are maximized

as k gets smaller vis-a-vis the maximum capacity (i.e., fanout)
of the nodes of the search hierarchy that is used. This is not
surprising as MAXNEARESTDIST, which is most effective at
the initial stage of the search, cannot take effect until at least
k nonobjects have been processed. Thus when the capacity is
less than k, it does not come into effect until nodes at depth
1 have been processed, which reduces its pruning power both
in terms of nodes to be processed (depth-first) and enqueued
(best-first).

We also observe that the benefit of using MAXNEAREST-
DIST is more pronounced in the case of the best-first algorithm
where one of our examples demonstrated a 400% improve-
ment while 10–15% seems a more reasonable expectation for
the best-first algorithm. The fact that MAXNEARESTDIST is
more effective in the best-first algorithm than the depth-first
algorithm is attractive as the best-first algorithm is I/O optimal
and thus we are overcoming its only drawback, which is the
potentially large queue size.

In general, from our example, it can be seen that the
improvement/savings that can be obtained from use of MAX-
NEARESTDIST are heavily dependent on the underlying dis-
tribution of the data and on the positioning of the query point.
However, most importantly, the performance of the algorithms
can only be improved by using MAXNEARESTDIST, whereas
this is not the case in some of the prior usage of MAX-
NEARESTDIST where it was used to order the processing
of the elements of the active list in the depth-first algorithm
(e.g., [13], [25]).

VIII. CONCLUDING REMARKS

We have shown how to use MAXNEARESTDIST, an upper
bound corresponding to the maximum possible distance at
which a nearest neighbor is guaranteed to be found, to enhance
the performance of both a depth-first branch and bound and
a best-first k-nearest neighbor finding algorithm by virtue
of yielding tighter initial estimates of Dk, the distance at
which the kth-nearest neighbor is found. This enables us to
start pruning elements of the search hierarchy (both objects
and nonobjects) in the depth-first algorithm and to avoid
entering nonobject elements in the priority queue in the best-
first algorithm. Thus we see that use of MAXNEARESTDIST

enhances the performance of both the depth-first and best-
first algorithms by addressing their shortcomings — that is,
reducing the number of nonobject elements that need to be
examined by the former and reducing the storage requirements
of the latter at no extra cost in the execution time of the latter
and no extra storage requirements for the former. Nevertheless,
it is important to bear in mind that we are not saying anything
about the relative performance of the two algorithms, which
is a more general issue and beyond the scope of this paper.

Some implementations of the best-first nearest neighbor
algorithm (e.g., [16]–[18], [24]) also store the objects in a
priority queue thereby enabling the algorithms that employ
this method to be incremental. This means that now both the
objects and nonobjects are visited in increasing order of their
distance from q, and the objects are also reported in increasing
order of their distance from q. They are designed for the case
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Number of Query Points

Neighbors q1=(335,453) q2=(339,343) q3=(170,309) q4=(190,365) q5=(326,353)
DF BF DF BF DF BF DF BF DF BF

1 15:11 12:3 13:9 13:5 9:9 8:5 9:9 8:4 17:13 18:5
2 15:11 12:3 13:9 13:5 9:9 8:5 9:9 8:4 17:13 18:5
3 21:15 12:6 21:19 13:10 13:13 10:5 11:9 10:6 21:19 18:8
4 26:19 12:9 23:20 13:10 15:13 11:7 13:11 10:6 23:19 18:11
5 26:24 12:9 23:21 17:13 16:14 11:7 14:11 10:7 23:21 18:14
6 26:25 12:10 24:23 17:13 16:14 11:10 16:14 10:7 26:23 18:16

Figure 5: The effect of using MaxNearestDist in the depth-first and best-first k-nearest neighbor finding
algorithm for 5 different query points in the 100 data point R*-tree of Figure 4 where each node contains
at least 2 and at most 4 points. Entries A:B in columns labeled DF indicate the number of recursive calls
to the procedure using MaxNearestDist (B) and without using it (A). Entries C:D in columns labeled BF
indicate the maximum size of the priority queue Queue using MaxNearestDist (D) and without using it (C).

that k is not known in advance, thereby making them inap-
propriate for use with the MAXNEARESTDIST upper bound as
no nonobject elements can be excluded from Queue since they
may all be eventually needed should k get sufficiently large
(the same holds for probabilistic algorithms such as [9]).

Note, that the complexity of the process of computing the
MAXNEARESTDIST upper bound depends on the nature of
clustering process used to form the search hierarchy, as well
as the domain of the data. For example, in d dimensions,
using the Euclidean distance metric, its complexity is the
same as that of MINDIST when the cluster elements are
minimum bounding hyperspheres (i.e., O(d)), whereas when
the cluster elements are minimum bounding hyperrectangles,
the complexity of MAXNEARESTDIST is O(d2) while the
complexity of MINDIST in this case is just O(d).

The utility of the MAXNEARESTDIST upper bound depends
on the distribution of the underlying data and also on the nature
of the clustering methods that are applied in forming the search
hierarchies. An interesting and open question is determining
the type of data distributions and clustering methods for
which MAXNEARESTDIST is most effective. For example,
MAXNEARESTDIST may be most useful when using non-
standard clustering methods where objects are not necessarily
associated with the closest cluster center (see object o in Fig-
ure 6). Similarly, as another example, consider clusters formed
by the five interlocking Olympic rings. On the other hand,
MAXNEARESTDIST is not particularly useful for uniformly-
distributed data or when the query object is inside one of the
clusters.
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[4] S. Berchtold, C. Böhm, D. A. Keim, and H.-P. Kriegel. A cost model for
nearest neighbor search in high-dimensional data space. In Proceedings
of the 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS), pages 78–86, Tucson, AZ, May 1997.
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element ea whose cluster center Ma is farther away from o than cluster center Mb of element eb.
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