Chapter 1

OBJECT REPRESENTATIONS

Hanan Samet, University of Maryland

Abstract A brief overview of interior-based and boundary-based object represen-
tations is presented. The emphasis is on the importance of aggregation
of similarly-valued elements, which was recognized early on by Azriel

Rosenfeld.

1. INTRODUCTION

Object representation has always played an important role in com-
puter vision research, since the success of computer vision systems de-
pends on the ability to process the data. This ability is often measured
in terms of efficient execution, which is a function of the appropriateness
of the underlying representation. Azriel Rosenfeld was one of the first to
recognize this, as evidenced by his pioneering research reviewed below,
and by Chapter 11 of Digital Picture Processing, an important text in
the field, co-authored with Kak [47]. This chapter laid the groundwork
for Samet’s two texts on spatial data structures [58, 59].

Rosenfeld’s earliest work was centered on the development of algo-
rithms for geometric processing of images represented primarily by bi-
nary arrays. He developed some of the earliest algorithms for such im-
portant operations as connected component labeling [48], the principles
of which still form the basis of current approaches.

Rosenfeld also recognized the importance of aggregation of similarly-
valued image elements and the fact that it would lead to faster algo-
rithms. This was manifested by his work on algorithms that use the me-
dial axis transformation (MAT) [38, 45] and the region quadtree [61, 62].
The latter initiated the work of this author and others by developing the
first algorithm for converting a region quadtree to a chain code repre-
sentation [13]. This work led to the development of several algorithms
for showing the interchangeability of the region quadtree with more tra-

2

ditional representations such as arrays and rasters [50, 52, 56, 69], as
well as further work on chain codes [51, 75]. These results led to the
work of Rosenfeld, Samet, and their students on using the region quad-
tree as the underlying representation in Geographic Information Systems
(GIS) [63, 64, 65].

An important ramification of this work is that it provided the im-
petus to obtaining additional evidence to support Hunter’s [26] result
that aggregation techniques such as the region quadtree don’t just save
space, but, more importantly, lead to faster algorithms whose execu-
tion time depends on the number of blocks rather than the sizes of the
blocks (for additional details, see the discussion in Section 3). This was
demonstrated by Samet in his algorithm for connected component la-
beling [11, 53] which was a direct adaptation of the earlier algorithm
by Rosenfeld [48]. Rosenfeld’s student Dyer [12] obtained an analogous
result for the genus or Euler number of an image, adapting the algo-
rithm of Minsky and Papert [34]. In particular, Dyer showed that the
genus can be computed in terms of the number of object quadtree blocks
and their adjacencies rather than the number of object pixels and their
adjacencies. This reinforced the principle that the number of quadtree
blocks is the most important factor in the execution time rather than
their sizes.

In a similar vein, Rosenfeld was one of the first to realize the utility
of the pyramid representation [43]. This is a multiresolution representa-
tion introduced by Tanimoto and Pavlidis [73]. It is in contrast to the
region quadtree, which is a variable-resolution representation. Fach has
its strengths. In particular, the region quadtree is useful for respond-
ing to location-based queries such as “given a location, what object is
there?”. On the other hand, for a feature-based query such as “given a
feature, find its location”, the region quadtree requires that we examine
every block to see if the feature is present. The pyramid stores summary
information in the nonleaf nodes of the data below them. Thus the sum-
mary can be used to determine if the tree structure should be descended
further. If the feature is not noted as present in a node, it cannot be
present in its subtrees and there is no need to descend the tree further.
Rosenfeld and his colleagues developed many algorithms exploiting the
pyramid for basic image processing operations [8, 24, 25, 39, 44, 46].

The above work has stimulated research in object representation in
many diverse fields such as computer graphics, pattern recognition, and
database management systems. In the rest of this chapter we provide
a brief review of some of the most common representations and demon-
strate the influence of Azriel Rosenfeld. We assume that the objects
are connected although their environment need not be. The objects and

Object Representations 3

their environment are usually decomposed into collections of more prim-
itive elements (termed cells) each of which has a location in space, a
size, and a shape. These elements can either be subobjects of varying
shape (e.g., a table consists of a flat top in the form of a rectangle and
four legs in the form of rods whose lengths dominate their cross-sectional
areas), or can have a uniform shape. The former yields an object-based
decomposition while the latter yields an image-based or cell-based de-
composition. Another way of characterizing these two decompositions is
that the former decomposes the objects while the latter decomposes the
environment in which the objects lie. Regardless of the characterization,
the objects (as well as their constituent cells) can be represented either
by their interiors or by their boundaries.

Each of the decompositions has its advantages and disadvantages.
They depend, in part, on the nature of the queries that are posed to
the database. The most relevant queries are where and what. They are
stated more formally as follows:

1. Given an object, determine its constituent cells (i.e., their locations
in space).

2. Given a cell (i.e., a location in space), determine the identity of the
object (or objects) of which it is a member as well as the remaining
constituent cells of the object (or objects).

The generation of responses to these queries is facilitated by building an
index (i.e., the result of a sort) either on the objects or on their locations
in space.

There are two fundamental methods of representing objects: by their
interiors or by their boundaries. Many of the representations can be
made more compact by aggregating similar elements. These elements are
usually identically-valued contiguous cells (possibly adjacent to identically-
oriented boundary elements), or even objects which, ideally, are in prox-
imity. Our main focus in Sections 2-5 is on interior-based representa-
tions, while Section 6 gives a brief overview of some boundary-based
representations. Concluding remarks are made in Section 7.

Section 2 examines representations based on collections of unit-size
cells. An alternative class of interior-based representations of the objects
and their environment removes the stipulation that the cells that make
up the object collection be of unit size and permits their sizes to vary.
The varying-sized cells are termed blocks and are the subject of Section
3. The representations described in Sections 2 and 3 assume that each
unit-size cell or block is contained entirely in one or more objects.

A cell or block cannot be partially contained in two objects. This
means that either each cell in a block belongs to the same object or

4

objects, or all of the cells in the block do not belong to any of the
objects. Section 4 permits a cell or a block to be a part of more than
one object, and does not require the cell or block to be contained in its
entirety in these objects. In other words, a cell or a block may overlap
several objects without being completely contained in them. This also
has the effect of permitting the representation of collections of objects
whose boundaries do not coincide with the boundaries of the underlying
blocks, and also permitting them to intersect (i.e., overlap). Section 5
examines the use of hierarchies of space and objects which enable efficient
responses to both queries 1 and 2.

2. UNIT-SIZE CELLS

The most common representation of the objects and their environment
is as a collection of cells of uniform size and shape (termed pizels and
vozelsin two and three dimensions, respectively) all of whose boundaries
(with dimensionality one less than that of the cells) are of unit size. Since
the cells are uniform, there exists a way of referring to their locations in
space relative to a fixed reference point (e.g., the origin of the coordinate
system). An example of a specification of a location of a cell in space is
a set of coordinate values that enable us to find it in the d-dimensional
space of the environment in which it lies. It should be clear that the
concept of the location of a cell in space is quite different from that of
the address of a cell, which is the physical location (e.g., in memory, on
disk, etc.), if any, where some of the information associated with the cell
is stored.

In most applications (including the ones that we consider here), the
boundaries (i.e., edges and faces in two and three dimensions, respec-
tively) of the cells are parallel to the coordinate axes. In our discussion,
we assume that the cells comprising a particular object are contiguous
(i.e., adjacent), and that a different unique value is associated with each
distinct object, thereby enabling us to distinguish between the objects.
For example, Figure 1.1 contains three two-dimensional objects A, B, and
C and their corresponding cells.

Interior-based methods represent an object o by using the locations in
space of the cells that comprise o. Operations on the cells (i.e., locations
in space) comprising o are facilitated by aggregating the cells of the
objects into subcollections of contiguous identically-valued cells. The
aggregation may be implicit or explicit, depending on how the contiguity
of the cells that make up the aggregated subcollection is expressed.

An aggregation is explicit if the identities of the contiguous cells that
form the object are hardwired into the representation. An example of

Object Representations b}

C+—

Figure 1.1: Example collection of three objects and the cells that
they occupy.

an explicit aggregation is one that associates a set with each object o
that contains the location in space of each cell that comprises 0. In this
case, no identifying information (e.g., the object identifier corresponding
to o) is stored in the cells. Thus there is no need to allocate storage for
the cells (i.e., no addresses are associated with them). One possible
implementation of this set is a list. For example, consider Figure 1.1
and assume that the origin (0,0) is at the upper-left corner. Assume
further that this is also the location of the pixel that abuts this corner.
Therefore, the explicit representation of object B is the set of locations
{(5,1) (6,0) (6,1) (7,0) (7,1)}. It should be clear that using the
explicit representation, given an object o, it is easy to determine the
cells (i.e., locations in space) that comprise it (query 1). Of course, even
when using an explicit representation, we must still be able to access
object o from a possibly large collection of objects, which may require
an additional data structure such as an index on the objects (e.g., a
table of object-value pairs where value indicates the entry in the explicit
representation corresponding to object).

The fact that no identifying information as to the nature of the object
is stored in the cell means that the explicit representation is not suited
for answering the inverse query of determining the object associated
with a particular cell at location [in space (i.e., query 2). Using the
explicit representation, query 2 can be answered only by checking for
the presence of [in the various sets associated with the different objects.
This is time-consuming, as it may require that we examine all cells in
each set.

Query 2 can be answered more directly if we allocate an address a
in storage for each cell ¢ where an identifier is stored that indicates
the identity of the object (or objects) of which ¢ is a member. Such
a representation is said to be implicit because in order to determine

6

the rest of the cells that comprise the object associated with ¢ (and
thus complete the response to query 2), we must examine the identifiers
stored in the addresses associated with the contiguous cells and then
aggregate the cells whose associated identifiers are the same. However,
in order to be able to use the implicit representation, we must have a
way of finding the address a corresponding to ¢, taking into account that
there is possibly a very large number of cells, and then retrieving a.

Finding the right address requires an additional data structure, termed
an access structure, like an index on the locations in space. An example
of such an index is a table of cell-address pairs where address indicates
the physical location in which the information about the object associ-
ated with the location in space corresponding to cellis stored. The table
is indexed by the location in space corresponding to cell.

Such an access structure enables us to obtain the contiguous cells (as
we know their locations in space) that comprise an object without hav-
ing to examine all of the cells. This permits us to complete the response
to query 2 with an implicit representation. The existence of an access
structure also enables us to answer query 1 with the implicit represen-
tation, although this is quite inefficient. In particular, given an object
0, we must exhaustively examine every cell (i.e., location [in space) and
check if the address where the information about the object associated
with [is stored contains o as its value. This is time-consuming, as it
may require that we examine all the cells.

The multidimensional array (having a dimension equal to the dimen-
sionality of the space in which the objects and the environment are
embedded) is an access structure which, given a cell ¢ at a location [
in space, enables us to calculate the address a containing the identifier
of the object associated with ¢. The implicit representation can also
be implemented with access structures other than the array. This is an
important consideration when many of the cells are not in any of the
objects (i.e., they are empty). The problem is that using the array access
structure is wasteful of storage, as the array requires an element for each
cell regardless of whether the cell is associated with any of the objects.
In this case, we choose to keep track only of the non-empty cells.

We have two ways to proceed. The first is to use one of several
multidimensional access structures such as a point quadtree [14], k-d
tree [5], MX quadtree [59], etc. as described in [59]. The second is to
make use of an ordering of space to obtain a mapping from the non-empty
contiguous cells to the integers. The result of the mapping serves as the
index in one of the familiar tree-like access structures (e.g., binary search
tree, tange tree, BY-tree, etc.) to store the address which indicates the

Object Representations 7

physical location where the information about the object associated with
the location in space corresponding to the non-empty cell is stored.

3. BLOCKS

An alternative class of representations of the objects and their en-
vironment removes the stipulation that the cells making up the object
collection be of unit size, and permits their sizes to vary. The resulting
cells are termed blocks and are usually rectangular with sides parallel
to the coordinate axes (this is assumed in our discussion unless explic-
itly stated otherwise). The volume (e.g., area in two dimensions) of
the blocks need not be an integer multiple of that of the unit-size cells,
although this is often the case. Observe that when the volumes of the
blocks are integer multiples of that of the unit-size cells, we have two lev-
els of aggregation in the sense that an object consists of an aggregation
of blocks which are themselves aggregations of cells. We assume that
all the cells in a block belong to the same object or objects. In other
words, the situation that some of the cells in the block belong to object
01 while the others belong to object oz (and not to 01) is not allowed.

The collection of blocks is usually a result of a space decomposition
process guided by a set of rules. There are many possible decomposi-
tions. When the decomposition is recursive, we have the situation that
the decomposition occurs in stages and often, although not always, the
results of the stages form a containment hierarchy. This means that a
block b obtained in stage ¢ is decomposed into a set of blocks b; that
span the same space. Blocks b; are in turn decomposed in stage 7 4+ 1
using the same decomposition rule. Some decomposition rules restrict
the possible sizes and shapes of the blocks as well as their placement
in space. Other decomposition rules do not require that the blocks be
axis-parallel, while still others do not even require that the blocks be
rectangular. In addition, the blocks may be disjoint or be allowed to
overlap. Clearly, the choice is large. In the following, we briefly explore
some of these decomposition processes.

The simplest decomposition rule is one that permits aggregation of
identically-valued cells in only one dimension. It assigns a priority order-
ing to the various dimensions; fixes the coordinate values of all but one
of the dimensions, say 7; and then varies the value of the i* coordinate
and aggregates all adjacent cells belonging to the same object into a
one-dimensional block. This technique is commonly used in image pro-
cessing applications where the image is decomposed into rows which are
scanned from top to bottom, and each row is scanned from left to right
while aggregating all adjacent pixels with the same value into a block.

8

The aggregation into one-dimensional blocks is the basis of runlength
encoding [49]. Similar techniques are applicable to higher-dimensional
data.

The drawback of the decomposition into one-dimensional blocks de-
scribed above is that all but one side of each block must be of unit
width. The most general decomposition removes this restriction along
all of the dimensions, thereby permitting aggregation along all dimen-
sions. In other words, the decomposition is arbitrary. The blocks need
not be uniform or similar. The only requirement is that the blocks span
the space of the environment. We assume that the blocks are disjoint,
although this need not be the case. We also assume that the blocks are
rectangular with sides parallel to the coordinate axes, although again
this is not absolutely necessary, as there exist decompositions using other
shapes as well (e.g., triangles).

The use of a decomposition into blocks of arbitrary size makes it some-
what cumbersome to determine all the blocks that comprise the object
associated with location [. This process can be facilitated by impos-
ing some regularity on the decomposition process and therefore on the
size and placement of the resulting blocks. One of the earliest methods
of aggregating unit-size cells with the same value (e.g., belonging to the
same object) is the medial azis transformation (MAT)[6, 48]. The MAT
of object o is formed as follows. For each unit-size cell ¢ in o, find the
largest square s, of width w, (i.e., radius w./2) centered at ¢ that is
contained in o. s, is called a maximal block if it is not contained in the
largest square s.» of any other cell ¢’ in 0. 0 is completely specified by the
maximal blocks, their widths, and the unit-size cells at their centers —
that is, the set of triples (¢, s., w.) — since any point in o lies completely
inside one maximal block. The MAT of o is the set of these triples. We
usually do not construct the MAT of the regions containing the cells
that are not in any of the objects (i.e., the background of the image).

The MAT is compact as long as the objects have simple shapes. How-
ever, the MAT is somewhat wasteful of space, as some maximal blocks
are contained in the unions of others. Furthermore, when the MAT is
defined in the above manner, the widths of the blocks are restricted to
being odd integers. This means that half the possible block widths are
excluded. We can overcome this by redefining the maximal blocks to be
anchored at the unit-size cell at one of their corners instead of at their
centers.

Perhaps the most widely known decompositions into blocks are those
referred to by the general terms quadiree and octree [58, 59]. They are
usually used to describe a class of representations for two and three (or
higher) dimensional data, respectively, that are the result of a recursive

Object Representations 9

decomposition of the environment (i.e., space) containing the objects
into blocks (not necessarily rectangular) until the data in each block
satisfies some condition (e.g., with respect to its size, the nature of the
objects that comprise it, the number of objects in it, etc.). The positions
and/or sizes of the blocks may be restricted or arbitrary. We shall see
that quadtrees and octrees may be used with both interior-based and
boundary-based representations.

There are many variants of quadtrees and octrees, and they are used in
numerous application areas including high-energy physics, VLSI, finite-
element analysis, and many others. Below, we focus on region quadtrees 30,
27] and region octrees [26, 28, 33]. They are specific examples of interior-
based representations for two- and and three-dimensional region data
(variants for data of higher dimension also exist), respectively, that per-
mit further aggregation of identically-valued cells.

Region quadtrees and region octrees are instances of a restricted-
decomposition rule where the environment containing the objects is re-
cursively decomposed into four or eight, respectively, rectangular con-
gruent blocks until each block is either completely occupied by an object
or is empty (such a decomposition process is termed regular). For ex-
ample, Figure 1.2a is the block decomposition for the region quadtree
corresponding to Figure 1.1. We have labeled the blocks corresponding
to object 0 as 0i and the blocks that are not in any of the objects as Wi,
using the suffix i to distinguish between them in both cases. Notice that
in this case, all the blocks are square, have sides whose size is a power
of 2, and are located at specific positions. In particular, assuming an
origin at the upper-left corner of the image corresponding to the envi-
ronment containing the objects, the coordinate values of the upper-left
corner of each block (e.g., (a,b) in two dimensions) of size 2¢ x 2! satisfy
the property that @ mod 2° = 0 and b mod 2* = 0.

Hunter [26] has shown that the number of blocks in a region quadtree
representation of a simple polygonal object (i.e., with non-intersecting
edges and without holes) with perimeter p, measured in pixel-widths,
that is embedded in a 2?7 x 27 space is O(p + ¢). In all but the most
pathological cases (e.g., a small square of unit width centered in a large
space), the ¢ factor is negligible and thus the number of blocks is O(p).
An analogous result holds for three-dimensional data [32] (i.e., repre-
sented by a region octree), where perimeter is replaced by surface area,
as well as for objects of higher dimensions d, for which it is proportional
to the size of the (d — 1)-dimensional interfaces between the objects.

Algorithms that execute on a region quadtree representation of an ob-
ject, instead of simply imposing an array access structure on the original
collection of cells, usually have an execution time that is proportional

10

WL | V2
B2
W8 | B1
Al
WL0 Wil Al
A2 |A3 | A4 | A5
W4 WL5
WL W6 | W6 | WP B2WLOWL1
W8 | Cl
WL2 W3 c3
had [WL W2 W8 Bl A2 A3 W W A4 A5 W W W8 ClLW C2
@ (b)

Figure 1.2: (a) Block decomposition and (b) its tree representation
for the collection of objects and cells in Figure 1.1.

to the number of blocks in the region quadtree rather than the number
of unit-size cells. Applying this space complexity result means that the
use of the region quadtree representation, with an appropriate access
structure, to solve a problem in d-dimensional space leads to a solution
whose execution time is proportional to the (d — 1)-dimensional space of
the surface of the original d-dimensional image. On the other hand, use
of the array access structure on the original collection of cells results in
a solution whose execution time is proportional to the number of cells
that comprise the image. Therefore, region quadtrees and region octrees
act like dimension-reducing devices.

The region quadtree can be viewed as a special case of the medial axis
transformation (MAT). This can be seen by observing that the widths
of the maximal blocks of the MAT are restricted to be powers of 2,
and the positions of their centers are constrained to be centers of blocks
obtained by a recursive decomposition of the underlying space into four
congruent blocks. The notion of a MAT can be further adapted to the
region quadtree by constraining only the positions of the centers of the
blocks and not their sizes. The result is termed a quadiree medial axis
transform (QMAT) [55, 57]. Thus the blocks of the QMAT can span a
larger area, as long as they are square-shaped.

The blocks of the QMAT are determined in the same way as the maxi-
mal blocks in the MAT. For each block b in the region quadtree for object
o, find the largest square s; of width w; centered at b that is contained in
0. S, is called a mazimal block if it is not contained in the largest square
sy of any other block & in o. Each object is completely specified by
the set of maximal blocks that comprise it. The QMAT is the quadtree
whose blocks are the ones that are occupied by objects and that have

Object Representations 11

a corresponding maximal block and an associated width. For example,
Figure 1.3b is the block decomposition of the QMAT corresponding to
the block decomposition of the region quadtree in Figure 1.3a. Notice
that in order to permit larger maximal blocks, we assume that the area
outside the array of unit-size cells corresponding to the space in which
object o is embedded is also part of o (e.g., the area to the north, west,
and northeast of block 1 in Figure 1.3a). It can be shown that the QMAT
is unique [55, 58].

23

1 1(6) B

8 | 9|10 11 16 | 37 10 J11(2)
15 H 15(4) K
3012
28 | 29 b 13 17 | 38 N | 13

34114 |18 | 19| 20 | 41
33 33 J L M
35|36 |39 |40 | 42| 43

(@ ()

Figure 1.3: Block decomposition induced by (a) the region quad-
tree for an object, and (b) its corresponding quadtree medial axis

transform (QMAT).

The traditional, and most natural, access structure for a region quad-
tree corresponding to a d-dimensional image is a tree with a fanout of
24 (e.g., Figure 1.2b, corresponding to the collection of two-dimensional
objects in Figure 1.1, whose quadtree block decomposition is given in
Figure 1.2a). Each nonleaf node f corresponds to a block whose volume
is the union of the blocks corresponding to the 2¢ sons of f. In this
case, the tree is a containment hierarchy and closely parallels the de-
composition in the sense that they are both recursive processes and the
blocks corresponding to nodes at different depths of the tree are similar
in shape.

Answering query 2 using the tree access structure is different from
using an array, where it is usually achieved by a table lookup having
an O(1) cost (unless the array is implemented as a tree, which is a
possibility [9]). In contrast, query 2 is usually answered in a tree by
locating the block that contains the location in space corresponding to

12

the desired cell. This is achieved by a process that starts at the root of
the tree and traverses the links to the sons whose corresponding blocks
contain the desired location. This process has an O(m) cost, where
the environment has a maximum of m levels of subdivision (e.g., an
environment all of whose sides are of length 2).

There are several alternative access structures to the tree with fanout
29, They are all based on finding a mapping from the domain of the
blocks to a subset of the integers (i.e., to one dimension) and then
applying one of the familiar tree-like access structures (e.g., a binary
search tree, range tree, B*-tree, etc.). There are many possible map-
pings (e.g., [58]).

As the dimensionality of the space (i.e., d) increases, each level of
decomposition in the region quadtree results in many new blocks, as
the fanout value 2% is high. In particular, it is too large for practical
implementation of the tree access structure. In this case, an access
structure termed a bintree [31, 66, 72] with a fanout value of 2 is used.
The bintree is defined in a manner analogous to the region quadtree
except that at each subdivision stage, the space is decomposed into two
equal-sized parts. In two dimensions, at odd stages we partition along
the y axis and at even stages we partition along the z axis.

The region quadtree, as well as the bintree, is a regular decomposition.
This means that the blocks are congruent — that is, at each level of
decomposition, all of the resulting blocks are of the same shape and
size. We can also use decompositions where the sizes of the blocks are not
restricted in the sense that the only restriction is that they be rectangular
and be a result of a recursive decomposition process. In this case, the
representations that we described must be modified so that the sizes of
the individual blocks can be obtained. An example of such a structure
is an adaptation of the point quadtree [14] to regions. Although the
point quadtree was designed to represent points in a higher-dimensional
space, the blocks resulting from its use to decompose space do correspond
to regions. The difference from the region quadtree is that in the point
quadtree, the positions of the partitions are arbitrary, whereas they are a
result of a partitioning process into 2¢ congruent blocks (e.g., quartering
in two dimensions) in the case of the region quadtree.

As the dimensionality d of the space increases, each level of decompo-
sition in the point quadtree results in many new blocks since the fanout
value 2% is high. In particular, it is too large for a practical implementa-
tion of the tree access structure. Therefore we use a k-d tree [5], which
is an access structure having a fanout of 2 that is an adaptation of the
point quadtree to regions. As in the point quadtree, although the k-
d tree was designed to represent points in a higher-dimensional space,

Object Representations 13

the blocks resulting from its use to decompose space do correspond to
regions.

The k-d tree can be further generalized so that the partitions take
place on the various axes in an arbitrary order. In fact, the partitions
need not be made on every coordinate axis. In this case, at each nonleaf
node of the k-d tree, we must also record the identity of the axis that
is being split. We use the term generalized k-d tree to describe this
structure. The generalized k-d tree is really an adaptation to regions of
the adaptive k-d tree [19] and the LSD tree [23], which were originally
developed for points. It can also be regarded as a special case of the BSP
(Binary Space Partitioning) tree [20]. In particular, in the generalized
k-d tree, the partitioning hyperplanes are restricted to be parallel to the
axes, whereas in the BSP tree they have arbitrary orientations. The
BSP tree is used in computer graphics to facilitate viewing.

One of the shortcomings of the generalized k-d tree is the fact that we
can only decompose the space into two parts along a particular dimension
at each step. If we wish to partition a space into p parts along dimension
1, then using the generalized k-d tree we must perform p — 1 successive
partitions on dimension 7. Once these p — 1 partitions are complete,
we partition along another dimension. The puzzletree [10] is a further
generalization of the k-d tree that permits the underlying space to be
decomposed into two or more parts along a particular dimension at each
step so that no two successive partitions use the same dimension. In
other words, the puzzletree compresses all successive partitions on the
same dimension in the generalized k-d tree.

4. ARBITRARY OBJECTS

In this section we loosen the restrictions on the cells, blocks, and
objects in Sections 2 and 3 that prevented a cell or a block from being
partially contained in several objects or that required a cell or a block to
be contained in its entirety in a single object. In other words, a cell or a
block may overlap several objects without being completely contained in
these objects. Furthermore, we permit objects to be of arbitrary shapes
rather than requiring their boundaries to be hyperplanes.

Loosening these restrictions enables the decoupling of the partition
of the underlying space induced by the decomposition process from the
partition induced by the objects. Moreover, the individual objects no
longer need to be represented as collections of unit-sized cells or rect-
angular blocks. Instead, collections of other shapes such as triangles,
trapezoids, convex polygons, etc. can be used. When there is no ex-
plicit relationship between the blocks and the objects that they contain

14

(e.g., containment), then in addition to keeping track of the identities of
all objects (or parts of objects) which can be covered by a block or part
of a block, we must also keep track of the geometric descriptions of both
the cells or blocks and the objects. This enables us to respond to query
2.

In Section 3 we halted the decomposition process whenever a block
was completely contained in an object or a set of objects. However, it
is clear that this rule is impossible to satisfy in general, now that the
boundaries of the objects need not coincide with the boundaries of the
blocks that are induced by the decomposition process. Thus we need to
find an alternative way of halting the decomposition process. There are
two natural methods of achieving this result, and they are the subject
of this section.

1. Restrict the number of blocks that can cover an object (i.e., parts
of it); this is termed coverage-based splitting [7] (Section 4.1).

2. Restrict the number of objects (or parts of objects) that can be
covered by a block or part of a block; this is termed density-based
splitting [7] (Section 4.2).

4.1 COVERAGE-BASED SPLITTING

A common way of implementing coverage-based splitting is to set the
number of blocks that can cover an object to 1. In particular, this block
is usually the smallest possible block that contains the object. For exam-
ple, the MX-CIF quadtree [29] is a quadtree-like regular decomposition
rule which decomposes the underlying space into four congruent blocks
at each stage (i.e., level) of the decomposition process so that each ob-
ject is associated with its minimum enclosing quadtree block. Figure 1.4
is an MX-CIF quadtree where we see that more than one object is as-
sociated with some of the nodes in the tree (e.g., the root and its NE
son).

Since there is no limit on the number of objects that are associated
with a particular block, an additional decomposition rule may be pro-
vided to distinguish between these objects. For example, in the case of
the MX-CIF quadtree, a one-dimensional analog of the two-dimensional
decomposition rule is used. In particular, all objects that are associated
with a given block b are partitioned into two sets: those that overlap the
vertical (horizontal) axis passing through the center of b. Objects that
overlap the center of b are associated with the horizontal axis. Associ-
ated with each axis is a one-dimensional MX-CIF quadtree (i.e., a binary
tree) where each object o is associated with the node that corresponds
to 0’s minimum enclosing interval.

Object Representations 15

{AE}

{G}

{B.C,D}

{7}
() (b)

Figure 1.4: (a) Block decomposition induced by the MX-CIF quad-
tree for a collection of rectangle objects and (b) its tree representa-
tion.

The drawback of restricting the number of blocks that can cover an
object o to 1 (i.e., o’s minimum enclosing quadtree block) is that the
block tends to be rather large, on the average. In particular, in the worst
case, a small object that straddles the top-level split partition will have
the root as its minimum enclosing quadtree block (e.g., objects A and E
are associated with the root in the MX-CIF quadtree in Figure 1.4).

An easy way to overcome this drawback is to decompose o’s minimum
enclosing quadtree block (or the result of another space decomposition
method such as a bintree, etc.) into smaller blocks, each of which min-
imally encloses some portion of o (or, alternatively, some portion of 0’s
minimum bounding box). Orenstein [37] proposes the error-bound and
size-bound methods for deciding how much decomposition to perform to
yield the blocks covering object o.

In the error-bound method, the minimum enclosing block is recur-
sively split until level L is reached, where 0 is the level of the root and
L is a user-specified level threshold. In the size-bound method, the
minimum enclosing block is recursively split in a breadth-first manner,
and the process is terminated once a threshold number 5 of blocks that
collectively cover the space spanned by o has been obtained. For both
methods, once enough splitting has been performed, the blocks that
collectively cover o are shrunk so that each one minimally encloses the
portion of o inside it, and sibling blocks which both cover o are coa-
lesced. Orenstein [37] suggests that the error-bound method generally
leads to better query performance than the size-bound method, and this
has been confirmed by experiments [7].

Frank and Barrera [16, 17] and Ulrich [74] take a different approach,
by retaining the restriction that each object can be covered by just one
block. One solution is to expand the size of the space that is spanned

16

by each quadtree block b of width w by a factor p (p > 0) so that the
expanded block is of width (1 4 p) - w. In this case, an object would
be associated with its minimum enclosing expanded quadtree block. It
can be shown that the radius of the minimum bounding volume for any
object o that is associated with a block b of width w (on account of
overlapping the horizontal or vertical axes that pass through the center
of b while not lying within the expanded quadtree block of one of b’s
subblocks) must be larger than p-w/4. The terms cover fieldtree [16, 17]
and loose quadiree [74] are used to describe the resulting structure. We
use these terms interchangeably.

Ulrich [74] advocates setting the block expansion factor p to 1. He
argues that using block expansion factors much smaller than 1 increases
the likelihood that the minimum enclosing expanded quadtree block is
large, while letting the block expansion factor be much larger than 1
results in the areas spanned by the expanded quadtree blocks being too
large, thereby having much overlap. For example, letting p = 1 and
considering the collection of rectangle objects in Figure 1.4a, the only
difference between the corresponding MX-CIF and loose quadtrees is
that rectangle object E is associated with the SW son of the root of the
loose quadtree instead of with the root of the MX-CIF quadtree, as
shown in Figure 1.4b.

The loose quadtree and the cover fieldtree are similar to the quadtree
medial axis transform (QMAT) [55] (see Section 3), where the factor p
is bounded by 2 (i.e., it is less than 2) [54, 55]. In this case, for a black
block b of width w in a region quadtree, p - w/2 represents the distance
from the border of b to the nearest point which is on a boundary between
a black and a white block in the structure. The QMAT is used as an
alternative to the region quadtree representation of an image in that it
is an attempt to reduce the sensitivity of the storage requirements of the
region quadtree to the position of the origin with respect to which it is
built. The QMAT can also be used as a representation for a collection
of objects, as is done with a loose quadtree and a cover fieldtree.

Frank and Barrera [16, 17] also propose shifting the positions of the
centroids of blocks at successive levels of subdivision by half the width of
the block that is being subdivided as yet another alternative approach
to overcoming the problem of the minimum enclosing quadtree block
of o being much larger than o (e.g., 0’s minimum bounding volume).
Figure 1.5 shows an example of such a subdivision. The result is termed
a partition fieldtree by Frank and Barrera [16, 17] and is also similar to
the overlapped pyramid of Burt [8]. Note that the boundaries of blocks
at different levels of decomposition never coincide. Moreover, blocks at

Object Representations 17

a given level of decomposition [do not form a refinement of the blocks
at the previous level of decomposition | — 1.

Figure 1.5: Example of the subdivision induced by a partition field-
tree.

An important property of the partition fieldtree is that the relative
size of the minimum enclosing quadtree block for object o is bounded
with respect to the size of the minimum bounding volume v of 0. In
particular, it can be shown that objects of the same size can be stored
in nodes corresponding to larger blocks of at most three possible sizes
depending on their positions — that is, in the worst case, o will be stored
in a block that is 2% (i.e., 8) times o’s size (i.e., maximum width along
the axes) [17]. On the other hand, in the case of the cover fieldtree, the
bound depends on the value of p. In particular, it can be shown that it
is 2 for p = 1 [74] and 8 for p = 1/4. For values of p greater than 1/4,
the partition fieldtree yields a tighter fit than the cover fieldtree.

At this point, it is appropriate to review the distinction between the
cover and partition fieldtrees. In both cases, the goal is to expand the
area spanned by the subblocks of a block in order to reduce the size of
the minimum enclosing quadtree block b when an object o overlaps the
axes that pass through the center of b. In the case of the cover fieldtree,
the area spanned by the four subblocks is expanded, while in the case of
the partition fieldtree, the number of covering subblocks is enlarged by
offsetting their positions while retaining their sizes — that is, a set of
3 x 3 blocks of size u/2'*! x u/2"*! at level i 4 1 spans a block of size
u/2" at level i (assuming a universe of width u and a root at level).
The result in both cases is that the subblocks span an area that overlaps
the partition lines, which is something that would not be possible in
a conventional quadtree (e.g., the region quadtree, MX-CIF' quadtree,
or any quadtree where the blocks are disjoint), since the edges of the
blocks at successive levels of decomposition must coincide (i.e., they are
collinear).

18

4.2 DENSITY-BASED SPLITTING

Density-based splitting is formally specified as stipulating that a block
is decomposed whenever it is covered by more than 7" (7" > 1) objects
(or parts of them). Notice that this decomposition rule is not one that
decomposes a block if it contains more than T objects. Such a rule might
be difficult to satisfy in the sense that there would be very little decom-
position after an initial level, as blocks usually contain portions of many
objects rather than many entire objects. Such rules are characterized as
being bucket-like. The case T = 1 corresponds to halting the decompo-
sition whenever each cell in the block & is an element of the same object
o or is in no object. In other words, any cell ¢ in b is either in o or in no
object. Observe that even for the T = 1 case, the result is different from
the block decomposition rule described in Section 3, which required that
either all the cells in b are elements of the same object or all the cells in
b are in none of the objects.

There are many variants of bucket-like block decomposition rules, de-
pending in part on the nature of the objects being represented. Without
loss of generality, in this section we assume two-dimensional data. In
particular, we focus on how to deal with collections of arbitrary polyg-
onal objects. The specific variant that is used depends on whether the
polygons themselves are the objects being decomposed, which is the case
in this section, or if the decomposition rule is based on the primitive ob-
jects that comprise the polygon (e.g., its vertices and/or edges), which
is the case in the variants described in Section 6.

It is straightforward to formulate bucket-like variants of the differ-
ent block decomposition rules described in Section 3. Without loss of
generality, in the rest of this section we assume a quadtree-like regu-
lar decomposition rule which decomposes the underlying space into four
congruent blocks at each stage (i.e., level) of decomposition. As in Sec-
tion 3, the results of successive stages form a containment hierarchy, and
once the decomposition process has terminated, the result is a set of dis-
joint blocks. Of course, other decomposition rules such as those that do
not require the blocks to be congruent at a particular stage and similar
at successive stages (e.g., the point quadtree [14]), or do not subdivide
into just two parts as do the k-d tree [5] and bintree [31, 66, 72] (e.g.,
the puzzletree [10]), or do not require that the blocks be axis-parallel
(e.g., a BSP tree [20]) could also be used.

The bucket-like decomposition rule described above works well when
the polygons are disjoint, and we use the term bucket polygon quadtree
to describe the result. However, when the polygons are permitted to
overlap or are adjacent, problems can arise in the sense that there exist

Object Representations 19

polygon configurations for which the decomposition will never halt. In
this case, our goal is to prevent as much unnecessary decomposition
as possible, but at the same time to minimize the amount of useful
decomposition that is prevented from taking place.

As an example of a block configuration for which the bucket polygon
quadtree would require an infinite amount of decomposition, consider
the situation when ¢) > T polygons in block b are arranged so that
polygon p; is completely contained in polygon p; 1 for 1 <@ < . Now,
let us examine the instant of time when b contains T of the polygons. In
this case, upon insertion of the T+1%! polygon, we are better off not even
starting to decompose b, which now has T'+ 1 polygons, as we can never
reach the situation that all the blocks resulting from the decomposition
will be part of T or fewer polygons. For example, assuming T = 2,
the block containing the three polygons in Figure 1.6a is not split upon
insertion of the third polygon. In this case, the order of inserting the
polygons is immaterial.

[] § 1%

(@) (b) ()

Figure 1.6: Examples of collections of three overlapping polygons
and their effect on their containing block B, which is not split when
using (a) the completely contained decomposition rule or (b) the
mutual intersection rule. (c) B is split when using the touching rule
if the polygons are inserted in the order 1, 2, 3, while B is not split
if the polygons are inserted in the order 1, 3, 2.

A decomposition rule that prevents more decomposition than one that
halts the decomposition only upon complete containment is one that re-
quires the mutual intersection of all of the polygons in block b, including
the polygon p being inserted, to be nonempty in order to prevent decom-
position [68]. This mutual intersection rule is motivated by the desire to
be able to deal with the situation in which many edges of the polygons
have a common endpoint (e.g., in a polygonal subdivision of the plane
where the polygons are adjacent but not overlapping). For example,
assuming T = 2, the polygons in the block in Figure 1.6b are mutu-
ally intersecting and thus the block is not split regardless of the order
in which the polygons are inserted into it. In fact, the order in which

20

the polygons are inserted is always immaterial when using the mutual
intersection rule.

A decomposition rule that prevents even more decomposition than
the mutual intersection rule is one that splits a block & that contains
at least T polygons before inserting polygon p if p does not touch all
of the polygons already contained in b. We say that two polygons py
and py touch if p; and py have at least one point in common (i.e., the
polygons may overlap or just touch at their boundaries). For example,
assuming T" = 2, inserting polygons 1, 2, 3 in this order in Figure 1.6¢
avoids splitting the block. On the other hand, inserting the polygons in
the order 1, 3, 2 in Figure 1.6¢ results in the block being split. Thus
we see that the result of using the touching rule may be sensitive to the
order in which the polygons are inserted.

It is interesting to observe that using a decomposition rule based on
touching often prevents useful decompositions from taking place. For
example, in Figure 1.6c it may be better to decompose the block. Nev-
ertheless, although the mutual intersection rule is really a better decom-
position rule than the touching rule in the sense of allowing more useful
decomposition to take place, the use of the mutual intersection rule is
not suggested because its computation for the general case of polygons
of arbitrary shape is expensive.

Perhaps the most common type of collection of polygons is one where
all the polygons are adjacent. This is called a polygonal map and results
in the partition of the underlying image into connected regions. It arises
in many cartographic applications such as maps. For such data, use of a
bucket-like decomposition rule such as the bucket polygon quadtree can
still result in an infinite amount of decomposition. However, the case of
an infinite amount of decomposition due to more than T° polygons being
contained in each other is not possible, as the polygons do not overlap.
Nevertheless, infinite decomposition is still possible if the polygonal map
has a vertex at which more than T polygons are incident. An interesting
way to overcome this problem is to use a variant of a bucket polygon
quadtree, developed originally for line segment objects [35, 36], known
as the PMR quadtree (see also Section 6 for a discussion of its use for
line segment objects). It decomposes the block just once if it is a part
of more than T polygons. We term the result a PMR polygon quadtree.
Such a rule means that the shape of the resulting tree depends on the
order in which the polygons are inserted into it.

Once the space has been partitioned into blocks, we need to consider
the representations of the polygons that make up each block. There are
several possible methods. The first is to leave them alone and just asso-
ciate with each block a list of the polygons that overlap it. The elements

Object Representations 21

of this list are usually pointers to a polygon table which contains the full
geometric description of each polygon (e.g., a list of vertices or edges).
Of course, we could also apply some spatial sorting technique to the poly-
gons in each block (e.g., by the locations of their centroids, etc.). The
second is to decompose them into a collection of convex regions [40].
This is motivated by the fact that operations on convex polygons are
more efficient than operations on general or simple polygons (e.g., point
location). In particular, there are two choices for the decomposition into
convex regions. The first is to represent each polygon in the block by
a union of convex regions, and the second is as a difference of convex
regions.

5. HIERARCHICAL REPRESENTATIONS

Assuming the presence of an access structure, the implicit represen-
tations are good for finding the objects associated with a particular
location or cell (i.e., query 2), while requiring that all cells be examined
when determining the locations associated with a particular object (i.e.,
query 1). In contrast, explicit representations are good for query 1, while
requiring that all objects be examined when trying to respond to query
2. In this section, we focus on representations that enable both queries
to be answered without possibly having to examine every cell.

This is achieved by imposing containment hierarchies on the repre-
sentations. The hierarchies differ depending on whether the hierarchy
is of space (i.e., the cells in the space in which the objects are found),
or of objects. In the former case, we aggregate space into successively
larger-sized chunks (i.e., blocks), while in the latter, we aggregate ob-
jects into successively larger groups (in terms of the number of objects
that they contain). The former is applicable to implicit (usually image-
based) representations, while the latter is applicable to explicit (usually
object-based) representations.

The basic idea is that in image-based representations we propagate
objects up the hierarchy, with the occupied space being implicit to the
representation. Thus we retain the property that associated with each
cell is an identifier indicating the object of which it is a part. In fact,
it is this information that is propagated up the hierarchy so that each
element in the hierarchy contains the union of the objects that appear
in the elements immediately below it.

The resulting hierarchy is known as a pyramid [73] and is frequently
characterized as a multiresolution representation since the original col-
lection of objects is described at several levels of detail by using cells
that have different sizes, though they are similar in shape. Figure 1.7

22

shows the pyramid corresponding to the collection of objects and cells in
Figure 1.1 and the labels in Figure 1.2a. In this case, we are aggregating
2 x 2 cells and blocks. Notice the similarity between the pyramid and
the region quadtree implementation that uses an access structure which
is a tree with a fanout of 4 (Figure 1.2b).

n_{AB,C}
B A
B
BC

At (3{B} Q {A} 0 {C}

B B E B {BlQ N OO {AQ {AYQ [1 L[] [1 [OR(%=

4 1 4 P A P A A) A A P 1 REN&OO000000 goooooooooooooan ===1=
L O O B E B O UOE E 0O O B O B
W1 w2 w3 B1 A2 A3 W4 W5A4 A5 W6 W7 w8 C1 W9 C2

Figure 1.7: Pyramid for the collection of objects and cells in Fig-
ure 1.1.

Nevertheless, it is important to distinguish the pyramid from the re-
gion quadtree, which, as we recall, is an example of an aggregation into
square blocks where the basis of the aggregation is that the cells have
identical values (i.e., are associated with the same object, or objects if
object overlap is permitted). The region quadtree is an instance of what
is termed a wvariable-resolution representation, which, of course, is not
limited to blocks that are square. In particular, it can be used with
a limited number of non-rectangular shapes (most notably, triangles in
two dimensions [4, 59]).

The pyramid can be viewed as a complete region quadtree (i.e., where
no aggregation takes place at the deepest level, or, equivalently, all leaf
nodes with no sons are at maximum depth in the tree). The difference
is that in the case of the region quadtree, the nonleaf nodes serve only
as an access structure. Unlike the pyramid, they do not include any
information about the objects present in the nodes and cells below them.
This is why the region quadtree, like the array, is not useful for answering
query 1. Of course, we could also devise a variant of the region quadtree
(termed a truncated-tree pyramid [60]) which uses the nonleaf nodes to
store information about the objects present in the cells and nodes below

Object Representations 23

them. Note that both the pyramid and the truncated-tree pyramid are
instances of an implicit representation with a tree access structure.

On the other hand, in object-based representations we propagate the
space occupied by the objects up the hierarchy, with the identities of
the objects being implicit to the representation. Thus we retain the
property that associated with each object is a set of locations in space
corresponding to the cells that make up the object. Actually, since
this information may be rather voluminous, it is often the case that an
approximation of the space occupied by the object is propagated up the
hierarchy rather than the collection of individual cells that are spanned
by the object. The approximation is usually the minimum bounding box
for the object that is customarily stored with the explicit representation.
Therefore, associated with each element in the hierarchy is a bounding
box corresponding to the union of the bounding boxes associated with
the elements immediately below it.

The R-tree [22] is an example of an object hierarchy which is used
especially in database applications. The number of objects or bounding
boxes that are aggregated in each node is permitted to range between
m < [M/2] and M. The root node in an R-tree has at least two entries
unless it is a leaf node, in which case it has just one entry corresponding
to the bounding box of an object. The R-tree is usually built as the
objects are encountered rather than waiting until all objects have been
input.

Figure 1.8a is an example R-tree for a collection of rectangle objects
with m = 2 and M = 3. Figure 1.8b shows the spatial extents of the
bounding boxes of the nodes in Figure 1.8a, with heavy lines denoting
the bounding boxes corresponding to the leaf nodes, and broken lines
denoting the bounding boxes corresponding to the subtrees rooted at the
nonleaf nodes. Note that the R-tree is not unique. Its structure depends
heavily on the order in which the individual objects were inserted into
(and possibly deleted from) the tree.

The drawback of the R-tree (and any representation based on an ob-
ject hierarchy) is that we may have to examine all of the bounding boxes
at all levels when attempting to determine the identity of the object o
that contains location a (i.e., query 2). This is caused by the fact that
the bounding boxes corresponding to different nodes may overlap (i.e.,
they are not disjoint). The fact that each object is associated with only
one node while being contained in possibly many bounding boxes (e.g.,
in Figure 1.8, rectangle 1 is contained in its entirety in R1, R2, R3, and
R5) means that query 2 may often require several nonleaf nodes to be vis-
ited before determining the object that contains a. This can be overcome
by decomposing the bounding boxes so that disjointness holds (e.g., the

24

RO:RIR2 | EE c
| —
R1:[R3R4 R2:[R5[RE § |‘Q i| D |

R3: R4: RS: R6: re {||2[F]
;i ;: g:@ ;:n || re Rl B |
@ § i

(b)

Figure 1.8: (a) R-tree for a collection of rectangle objects with m=2
and M=3, and (b) the spatial extents of the bounding boxes. Notice
that the leaf nodes in the index also store bounding boxes, although
this is only shown for the nonleaf nodes.

k-d-B-tree [42] and the RT-tree‘[70]), which is a type of space hierarchy
in the spirit of the pyramid, albeit not a regular decomposition. The
drawback of this solution is that an object may be associated with more
than one bounding box, which may result in the object being reported
as satisfying a particular query more than once. For example, suppose
that we want to retrieve all the objects that overlap a particular region
(i.e., a window query) rather than a point as is done in query 2.

Note that the presence of the hierarchy does not mean that the alter-
native query (i.e., query 1 in the case of a space hierarchy and query 2 in
the case of an object hierarchy) can be answered immediately. Instead,
obtaining the answer usually requires that the hierarchy be descended.
The effect is that the order of the execution time needed to obtain the
answer is reduced from linear to logarithmic. Of course, this is not al-
ways the case. For example, the fact that we are using bounding boxes
for the space spanned by the objects rather than the exact space oc-
cupied by them means that we do not always have a complete answer
when reaching the bottom of the hierarchy. In particular, at this point
we may have to resort to a more expensive point-in-polygon test [15].

It is worth repeating that the only reason for imposing the hierarchy
is to facilitate responding to the alternative query (i.e., query 1 in the
case of a space hierarchy on the implicit representation, and query 2 in
the case of an object hierarchy on the explicit representation). Thus the
base representation of the hierarchy is still usually used to answer the
original query, because often, when using the hierarchy, the inherently

Object Representations 25

logarithmic overhead incurred by the need to descend the hierarchy may
be too expensive (e.g., when using the implicit representation with the
array access structure to respond to query 2). Of course, other consid-
erations such as space requirements may cause us to modify the base
representation of the hierarchy, with the result that it will take longer to
respond to the original query (e.g., the use of a tree-like access structure
with an implicit representation). Nevertheless, as a general rule, in the
case of the space hierarchy we use the implicit representation (which is
the base of this hierarchy) to answer query 2, while in the case of the
object hierarchy we use the explicit representation (which is the base of
this hierarchy) to answer query 1.

6. BOUNDARY-BASED
REPRESENTATIONS

Boundary-based representations are more amenable to the calculation
of global shape properties (e.g., perimeter, extent, etc.). Not surpris-
ingly, the nature of the boundaries plays an important role in the rep-
resentation that is chosen. Often, the boundary elements of the objects
are constrained to be hyperplanes (e.g., polygons in two dimensions and
polyhedra in three dimensions) which may in addition be constrained to
be axis-parallel. Much of the following presentation is in the context of
such constraints unless explicitly stated otherwise, although we will also
discuss the more general case.

Assuming that these two constraints hold, a simple representation is
one that records the locations of the different boundary elements asso-
ciated with each cell of each object and their natures (i.e., their ori-
entations and the locations of the cells to which they are adjacent).
For example, in two dimensions, the boundary elements are the sides
of the cells (i.e., unit vectors), while in three dimensions, the boundary
elements are the faces of the cells (i.e., squares of unit area, with direc-
tions normal to the object). Boundary-based representations aggregate
identically-valued cells whose boundary elements have the same direc-
tion, rather than just identically-valued cells as is done by interior-based
representations. In two dimensions, the aggregation yields boundary el-
ements which are vectors whose lengths can be greater than 1.

Whichever boundary-based representation is used, and regardless of
whether any aggregation takes place, the representation must also en-
able the determination of the connectivity between individual boundary
elements. The connectivity may be implicit or explicit (e.g., by specify-
ing which boundary elements are connected). Thus we notice that this
distinction (i.e., implicit vs. explicit) between boundary-based represen-

26

tations is different from the one used with interior-based representations
which was based on the nature of the specification of the aggregation.

As an example of a boundary-based representation, let us consider
two-dimensional objects for which the boundary elements are vectors.
The location of a vector is given by its start and end vertices. An
object o has one more boundary (i.e., a collection of connected boundary
elements) than it has holes. Connectivity may be determined implicitly
by ordering the boundary elements e;; of boundary b; of o so that the
end vertex of vector v; corresponding to e; ; is the start vertex of vector
vj41 corresponding to e; ;41. The result of applying such an ordering
when identically-valued cells whose boundary elements have the same
direction are aggregated yields a representation known as the polygon
representation. This term is also used to describe the representation of
arbitrary objects whose boundaries need not be axis-parallel.

In two dimensions, the most general example of a nonpolygonal object
boundary is the curvilinear line segment. Straight line segments with
arbitrary slopes are less general. A curvilinear line segment is often
approximated by a set of line segments termed a polyline. In order to
comply with our assumption that the objects are comprised of unit-
sized cells (i.e., pixels), we digitize the line and then mark the pixels
through which it passes. An alternative is to classify the pixels on the
basis of the slope of the part of the line that passes through them. One
such representation is the chain code [18], in which case the slopes are
restricted to four or eight principal directions. The chain code is of
particular interest when the slopes are restricted to the four principal
directions, as this is what is obtained when the boundaries of the objects
are parallel to the coordinate axes.

In dimensions higher than 2, the relationship between the boundary
elements associated with a particular object is more complex, as is its
expression. Whereas in two dimensions we have only one type of bound-
ary element (i.e., an edge or a vector consisting of two vertices), in d > 2
dimensions, given our axis-parallel constraint, we have d — 1 different
boundary elements (e.g., faces and edges in three dimensions). As we
saw, in two dimensions, the sequence of vectors given by a polygon rep-
resentation is equivalent to an implicit specification of the boundary,
by virtue of the fact that each boundary element of an object can be
adjacent to only two other boundary elements. Thus consecutive bound-
ary elements in the representation are implicitly connected. This is not
possible in d > 2 dimensions; assuming axis-parallel objects comprised
of unit-size d-dimensional cells, there are 291 different adjacencies per
boundary element. Therefore, it is difficult to adapt the polygon rep-
resentation to data of dimensionality greater than 2. Of course, it can

Object Representations 27

be used to specify a spatial entity comprised of a sequence of edges in
d-dimensional space which forms a cycle (i.e., the starting vertex is the
same as the final vertex). However, the spatial entity need not be planar.

Nevertheless, in higher dimensions we do have a choice between an
explicit and an implicit boundary-based representation. The bound-
ary model (also known as BRep [3, 59]) is an example of an explicit
boundary-based representation. In particular, observe that in three di-
mensions, the boundary of an object with planar faces is decomposed
into a set of faces, edges, and vertices. The result is an explicit model
based on a combined geometric and topological description of the object.
The topology is captured by a set of relations that indicate explicitly how
the faces, edges, and vertices are connected to each other. For exam-
ple, the object in Figure 1.9a can be decomposed into the set of faces
having the topology shown in Figure 1.9c. The geometry of the faces
can be specified by use of appropriate geometric entities (e.g., planes
in the case of polyhedra). In d dimensions, the boundary of object o
would be decomposed into d sets s; (0 < ¢ < d) where s; contains all
constituent i-dimensional elements of o. This forms the basis of the
boundary model and is illustrated by the winged-edge [3] and quad-
edge [21] data structures. Although this representation is quite general,
it is easy to constrain it to handle axis-parallel objects.

Constructive Solid Geometry (CSG) [41] is another example of an
implicit representation that is applicable to objects of arbitrary dimen-
sionality. Although it is usually thought of as an interior-based represen-
tation, it also has a boundary-based interpretation. In the interior-based
formulation, primitive instances of objects are combined to form more
complex objects by use of geometric transformations and regularized
Boolean set operations (e.g., union, intersection). The representation is
usually in the form of a tree where the leaf nodes correspond to primitive
instances and the nonleaf nodes correspond to Boolean operations. For
example, the object in Figure 1.9a can be decomposed into three primi-
tive solids with the CSG tree shown in Figure 1.9b, where the operation
AN—B denotes set difference. The key is that this representation is proce-
dural. Thus, it indicates how an item can be constructed — that is, what
operations are necessary. Often these operations have physical analogs
(e.g., drilling). A disadvantage of the CSG representation is that it is
not unique. In particular, often there are several ways of constructing
an object (e.g., from different primitive elements).

When the primitive instances in CSG are halfspaces and the objects
have planar faces, the result is an implicit boundary-based representa-
tion. In this case, the boundary of a d-dimensional object o consists of a
collection of hyperplanes in d-dimensional space (i.e., the infinite bound-

28

O

A
oD AT

(b)

™

g o

.
o)

(©)

Figure 1.9: (a) A three-dimensional object, (b) its CSG tree, and
(c) its boundary model.

aries of regions defined by the inequality Zfl:o a;z; > 0 where g = 1).
We have one halfspace for each (d — 1)-dimensional boundary element of
0. Both of these representations (i.e., primitive instances of objects and
halfspaces) are implicit, because the object is determined by associating
a set of regular Boolean set operations with the collection of primitive
instances (which may be halfspaces) the result of which is the object.
Although these representations are quite general, it is easy to constrain
them to handle axis-parallel objects.

It is usually quite simple to determine the cells that make up an
object (i.e., query 1) when using boundary-based representations since
the boundaries are usually associated with the individual objects. In
contrast, one of the principal drawbacks of boundary-based representa-
tions is the difficulty of determining the value associated with an arbi-
trary point of the space given by a cell (i.e., query 2) without testing
each boundary element using operations such as point-in-polygon tests

Object Representations 29

(e.g., [15]) or finding the nearest boundary element. The problem is that
these representations are very local in the sense that generally they just
indicate which boundary element is connected to which other boundary
element rather than the relationships of the boundary elements to the
space that they occupy. Thus if we are at one position on the boundary
(i.e., at a particular boundary element), we don’t know anything about
the rest of the boundary without traversing it element-by-element.

This situation can be remedied in two ways. The first is by aggregating
the cells that make up the boundary elements of the objects and their
environment into blocks such as those obtained by using a quadtree, an
octree, or a k-d tree variant, and then imposing an appropriate access
structure on the blocks. The PM quadtree family [35, 67] (see also edge-
EXCELL [71]) is an example of the first remedy and is usually applied
to polygonal maps (recall Section 4.2). There are several variants of
the PM quadtree: vertex-based and edge-based. They are all built by
applying the principle of repeatedly breaking up the collection of vertices
and edges (forming the polygonal map) until a subset is obtained that is
sufficiently simple that it can be organized by some other data structure.
PM quadtrees [67] are vertex-based. We illustrate the PM; quadtree.
Its decomposition rule stipulates that partitioning occurs as long as a
block contains more than one line segment, unless the line segments are
all incident at the same vertex which is also in the same block (e.g.,
Figure 1.10a).

o Tt Thle | o/ e

S e

= [

c c

(a) (b)

Figure 1.10: (a) PM; quadtree and (b) PMR quadtree for a collec-

tion of line segments.

30

A similar representation has been devised for three-dimensional ob-
jects (e.g., [1] and the references cited in [59]). The decomposition cri-
teria are such that no node contains more than one face, edge, or vertex
unless the faces all meet at the same vertex or are adjacent to the same
edge. This representation is quite useful since its space requirements for
polyhedral objects are significantly smaller than those of a conventional
octree.

The PMR quadtree [35] is an edge-based variant of the PM quadtree.
It makes use of a probabilistic splitting rule. A node is permitted to
contain a variable number of line segments. A line segment is stored in
a PMR quadtree by inserting it into the nodes corresponding to all the
blocks that it intersects. During this process, the occupancy of each node
that is intersected by the line segment is checked to see if the insertion
causes it to exceed a predetermined splitting threshold. If the splitting
threshold is exceeded, the node’s block is split once, and only once, into
four equal quadrants.

For example, Figure 1.10b is the PMR quadtree for the collection of
line segment objects in Figure 1.10a with a splitting threshold value of 2.
The line segments are inserted in alphabetic order (i.e., a—i). It should
be clear that the shape of the PMR quadtree depends on the order in
which the line segments are inserted. Note the difference from the PM;
quadtree in Figure 1.10a — that is, the NE block of the SW quadrant is
decomposed in the PM; quadtree, while the SE block of the SW quadrant
is not decomposed in the PM; quadtree.

The PMR quadtree is preferred over the PM; quadtree since it results
in far fewer subdivisions. In particular, in the PMR quadtree there is
no need to subdivide in order to separate line segments that are very
‘close’ or whose vertices are very ‘close,” which is the case for the PM;
quadtree. This is important since four blocks are created at each sub-
division step. Thus when many subdivision steps that occur in a PM;
quadtree result in creating many empty blocks, the storage requirements
of the PM; quadtree are considerably higher than those of the PMR
quadtree. Generally, as the splitting threshold is increased, the storage
requirements of the PMR quadtree decrease, while the time necessary
to perform operations on it increases.

The second remedy proceeds by aggregating the boundary elements
of the objects themselves by using variants of bounding boxes to yield
successively coarser approximations, and then imposing an appropriate
access structure on the bounding boxes. In Section 5 we examined two
hierarchical representations (i.e., the R-tree and, to a lesser extent, the
R*-tree) that propagate object approximations in the form of bounding
rectangles. In this case, the sides of the bounding rectangles had to be

Object Representations 31

parallel to the coordinate axes of the space from which the objects are
drawn. The strip tree [2] is another example of such an approach. It is
a hierarchical representation of a single curve that successively approx-
imates segments of it with bounding rectangles that, unlike the R-tree
and RT-tree, do not require that the sides be parallel to the coordinate

axes. The only requirement is that the curve be continuous; it need not
be differentiable.

7. CONCLUDING REMARKS

We have presented a brief overview of several object representations,
classified in several ways, principally on whether they are based on interi-
ors or boundaries of objects. We have also tried to stress the importance
of aggregation of similarly-valued elements, which was recognized early
on by Azriel Rosenfeld. In fact, much of the research described in this
overview might not have been carried out had not the author, as well as
many others, been motivated by Rosenfeld’s early contributions.

Acknowledgments

I'am indebted to Gisli R. Hjaltason and William C. Cheng for their help in drawing
the figures. 1 have also greatly benefitted from discussions with Azriel Rosenfeld.
The support of the National Science Foundation under Grants IRI-97-12715, ETA-99-
00268, and I1S-00-86162 is gratefully acknowledged.

References

[1] D. Ayala, P. Brunet, R. Juan, and 1. Navazo. Object representa-
tion by means of nonminimal division quadtrees and octrees. ACM
Transactions on Graphics, 4(1):41-59, January 1985.

[2] D. H. Ballard. Strip trees: a hierarchical representation for curves.
Communications of the ACM, 24(5):310-321, May 1981. Also cor-
rigendum, Communications of the ACM, 25(3):213, March 1982.

[3] B. G. Baumgart. A polyhedron representation for computer vi-
sion. In Proceedings of the 1975 National Computer Conference,
volume 44, pages 589-596, Anaheim, CA, May 1975.

[4] S. B. M. Bell, B. M. Diaz, F. Holroyd, and M. J. Jackson. Spatially
referenced methods of processing raster and vector data. Image and
Vision Computing, 1(4):211-220, November 1983.

[5] J. L. Bentley. Multidimensional binary search trees used for as-
sociative searching. Communications of the ACM, 18(9):509-517,
September 1975.

32

[6] H. Blum. A transformation for extracting new descriptors of shape.
In W. Wathen-Dunn, editor, Models for the Perception of Speech
and Visual Form, pages 362-380. MI'T Press, Cambridge, MA, 1967.

[7] F. Brabec, G. R. Hjaltason, and H. Samet. Indexing spatial objects
with the pk-tree. Submitted, 2001.

[8] P. J. Burt, T. Hong, and A. Rosenfeld. Segmentation and esti-
mation of image region properties through cooperative hierarchical

computation. IEFFE Transactions on Systems, Man, and Cybernet-
ics, 11(12):802-809, December 1981.

[9] R. A. DeMillo, S. C. Eisenstat, and R. J. Lipton. Preserving average
proximity in arrays. Communications of the ACM, 21(3):228-231,
March 1978.

[10] A. Dengel. Self-adapting structuring and representation of space.
Technical Report RR-91-22, Deutsches Forschungszentrum fiir
Kiinstliche Intelligenz, Kaiserslautern, Germany, September 1991.

[11] M. B. Dillencourt, H. Samet, and M. Tamminen. A general ap-
proach to connected-component labeling for arbitrary image repre-
sentations. Journal of the ACM, 39(2):253-280, April 1992. Also
Corrigendum, Journal of the ACM, 39(4):985, October 1992; Uni-
versity of Maryland Computer Science TR-2303.

[12] C. R. Dyer. Computing the Euler number of an image from its
quadtree. Computer Graphics and Image Processing, 13(3):270-
276, July 1980.

[13] C. R. Dyer, A. Rosenfeld, and H. Samet. Region representation:
boundary codes from quadtrees. Communications of the ACM,
23(3):171-179, March 1980.

[14] R. A. Finkel and J. L. Bentley. Quad trees: a data structure for
retrieval on composite keys. Acta Informatica, 4(1):1-9, 1974.

[15] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer
Graphics: Principles and Practice. Addison-Wesley, Reading, MA,
second edition, 1990.

[16] A. Frank. Problems of realizing LIS: storage methods for space re-
lated data: the field tree. Technical Report 71, Institut fiir Geodéasie
und Photogrammetrie, ETH, Zurich, Switzerland, June 1983.

[17] A. U. Frank and R. Barrera. The Iieldtree: a data structure for
geographic information systems. In A. Buchmann, O. Giinther,
T. R. Smith, and Y.-F. Wang, editors, Design and Implementation
of Large Spatial Databases — First Symposium, SSD’89, pages 29—
44, Santa Barbara, CA, July 1989. Also Springer-Verlag Lecture
Notes in Computer Science 409.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Object Representations 33

H. Freeman. Computer processing of line-drawing images. ACM
Computing Surveys, 6(1):57-97, March 1974.

J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for
finding best matches in logarithmic expected time. ACM Transac-
tions on Mathematical Software, 3(3):209-226, September 1977.

H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible surface gen-
eration by a priori tree structures. Computer Graphics, 14(3):124-
133, July 1980. Also Proceedings of the SIGGRAPH’80 Conference,
Seattle, WA, July 1980.

L. J. Guibas and J. Stolfi. Primitives for the manipulation of gen-
eral subdivisions and the computation of Voronoi diagrams. ACM
Transactions on Graphics, 4(2):74-123, April 1985. Also Proceed-
ings of the 15th Annual ACM Symposium on the Theory of Com-
puting, pages 221-234, Boston, April 1983.

A. Guttman. R-trees: a dynamic index structure for spatial search-
ing. In Proceedings of the ACM SIGMOD Conference, pages 47-57,
Boston, June 1984.

A. Henrich, H. W. Six, and P. Widmayer. The LSD tree: spatial
access to multidimensional point and non-point data. In P. M. G.
Apers and G. Wiederhold, editors, Proceedings of the 15th Interna-
tional Conference on Very Large Databases (VLDB), pages 45-53,
Amsterdam, The Netherlands, August 1989.

T. H. Hong, K. A. Narayanan, S. Peleg, A. Rosenfeld, and T. Silber-
berg. Image smoothing and segmentation by multiresolution pixel
linking: further experiments and extensions. [FFFE Transactions on
Systems, Man, and Cybernetics, 12(5):611-622, September/October
1982.

T. H. Hong, M. Shneier, and A. Rosenfeld. Border extraction using
linked edge pyramids. IFEF Transactions on Systems, Man, and
Cybernetics, 12(5):660-668, September/October 1982.

G. M. Hunter. Ffficient computation and data structures for graph-
ics. PhD thesis, Department of Electrical Engineering and Com-
puter Science, Princeton University, Princeton, NJ, 1978.

G. M. Hunter and K. Steiglitz. Operations on images using quad
trees. IKEFE Transactions on Pattern Analysis and Machine Intel-
ligence, 1(2):145-153, April 1979.

C. L. Jackins and S. L. Tanimoto. Oct-trees and their use in repre-
senting three-dimensional objects. Computer Graphics and Image
Processing, 14(3):249-270, November 1980.

34

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

G. Kedem. The quad-CIF tree: a data structure for hierarchical
on-line algorithms. In Proceedings of the 19th Design Automation
Conference, pages 352-357, Las Vegas, NV, June 1982.

A. Klinger. Patterns and search statistics. In J. S. Rustagi, editor,
Optimizing Methods in Statistics, pages 303-337. Academic Press,
New York, 1971.

K. Knowlton. Progressive transmission of grey-scale and binary pic-
tures by simple efficient, and lossless encoding schemes. Proceedings

of the IEEF, 68(7):885-896, July 1980.

D. Meagher. Octree encoding: a new technique for the represen-
tation, manipulation, and display of arbitrary 3-D objects by com-
puter. Electrical and Systems FEngineering IPL-TR-80-111, Rensse-
laer Polytechnic Institute, Troy, NY, October 1980.

D. Meagher. Geometric modeling using octree encoding. Computer
Graphics and Image Processing, 19(2):129-147, June 1982.

M. Minsky and S. Papert. Perceptrons: An Introduction to Compu-
tational Geometry. MIT Press, Cambridge, MA, 1969.

R. C. Nelson and H. Samet. A consistent hierarchical representation
for vector data. Computer Graphics, 20(4):197-206, August 1986.
Also Proceedings of the SIGGRAPH’86 Conference, Dallas, August
1986.

R. C. Nelson and H. Samet. A population analysis for hierarchical
data structures. In Proceedings of the ACM SIGMOD Conference,
pages 270-277, San Francisco, May 1987.

J. A. Orenstein. Redundancy in spatial databases. In Proceedings
of the ACM SIGMOD Conference, pages 294-305, Portland, OR,
June 1989.

J. L. Pfaltz and A. Rosenfeld. Computer representation of planar
regions by their skeletons. Communications of the ACM, 10(2):119—
122, February 1967.

M. Pietikdinen and A. Rosenfeld. Image segmentation by texture
using pyramid node linking. IFEF Transactions on Systems, Man,
and Cybernetics, 11(12):822-825, December 1981.

A. Rappoport. Using convex differences in hierarchical representa-
tions of polygonal maps. In Proceedings of Graphics Interface’90,
pages 183-189, Halifax, Newfoundland, Canada, May 1990.

A. A. G. Requicha and H. B. Voelcker. Solid modeling: a historical

summary and contemporary assessment. I[FEE Computer Graphics
and Applications, 2(2):9-24, March 1982.

Object Representations 35

[42] J. T. Robinson. The K-D-B-tree: a search structure for large multi-
dimensional dynamic indexes. In Proceedings of the ACM SIGMOD
Conference, pages 10-18, Ann Arbor, MI, April 1981.

[43] A. Rosenfeld. Quadtrees and pyramids. In Proceedings of the 5th
International Conference on Pattern Recognition, pages 802-811,
Miami Beach, December 1980.

[44] A. Rosenfeld. Some useful properties of pyramids. In A. Rosenfeld,
editor, Multiresolution Image Processing and Analysis, pages 2-5.
Springer-Verlag, Berlin, West Germany, 1984.

[45] A. Rosenfeld. Axial representations of shape. Computer Vision,
Graphics, and Image Processing, 33(2):156-173, February 1986.

[46] A. Rosenfeld. Pyramid algorithms for finding global structures in
images. Information Sciences, 50(1):23-24, January 1990.

[47] A. Rosenfeld and A. C. Kak. Digital Picture Processing. Academic
Press, New York, second edition, 1982.

[48] A. Rosenfeld and J. L. Pfaltz. Sequential operations in digital pic-
ture processing. Journal of the ACM, 13(4):471-494, October 1966.

[49] D. Rutovitz. Data structures for operations on digital images. In
G. C. Cheng, R. S. Ledley, D. K. Pollock, and A. Rosenfeld, editors,
Pictorial Pattern Recognition, pages 105-133. Thompson Book Co.,
Washington, DC, 1968.

[50] H. Samet. Region representation: quadtrees from binary arrays.
Computer Graphics and Image Processing, 13(1):88-93, May 1980.

[51] H. Samet. Region representation: quadtrees from boundary codes.
Communications of the ACM, 23(3):163-170, March 1980.

[52] H. Samet. An algorithm for converting rasters to quadtrees.
IFEFE Transactions on Pattern Analysis and Machine Intelligence,
3(1):93-95, January 1981.

[53] H. Samet. Connected component labeling using quadtrees. Journal
of the ACM, 28(3):487-501, July 1981.

[54] H. Samet. Distance transform for images represented by quadtrees.
IFEEFE Transactions on Pattern Analysis and Machine Intelligence,
4(3):298-303, May 1982. Also University of Maryland Computer
Science TR-780.

[55] H. Samet. A quadtree medial axis transform. Communications
of the ACM, 26(9):680-693, September 1983. Also corrigendum,
Communications of the ACM, 27(2):151, February 1984.

[56] H. Samet. Algorithms for the conversion of quadtrees to rasters.

Computer Vision, Graphics, and Image Processing, 26(1):1-16,
April 1984.

36

[57] H. Samet. Reconstruction of quadtrees from quadtree medial axis
transforms. Computer Vision, Graphics, and Image Processing,
29(3):311-328, March 1985.

[58] H. Samet. Applications of Spatial Data Structures: Computer
Graphics, Image Processing, and GI1S. Addison-Wesley, Reading,
MA, 1990.

[59] H. Samet. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, Reading, MA, 1990.

[60] H. Samet. Spatial data structures. In W. Kim, editor, Modern
Database Systems, The Object Model, Interoperability and Beyond,
pages 361-385. ACM Press and Addison-Wesley, New York, 1995.

[61] H. Samet and A. Rosenfeld. Quadtree structures for region process-
ing. In L. S. Baumann, editor, Proceedings of the ARPA Image Un-
derstanding Workshop, pages 36-41, Los Angeles, November 1979.
Also SAIC Technical Report SAI-80-974-WA.

[62] H. Samet and A. Rosenfeld. Quadtree representations of binary im-
ages. In Proceedings of the 5th International Conference on Pattern
Recognition, pages 815-818, Miami Beach, December 1980.

[63] H. Samet, A. Rosenfeld, C. A. Shaffer, and R. E. Webber. Quadtree
region representation in cartography: experimental results. IFEF
Transactions on Systems, Man, and Cybernetics, 13(6):1148-1154,
November/December 1983.

[64] H. Samet, A. Rosenfeld, C. A. Shaffer, and R. E. Webber. A geo-
graphic information system using quadtrees. Pattern Recognition,
17(6):647-656, November/December 1984.

[65] H. Samet, C. A. Shaffer, R. C. Nelson, Y. G. Huang, K. Fujimura,
and A. Rosenfeld. Recent developments in linear quadtree-based
geographic information systems. [Image and Vision Computing,
5(3):187-197, August 1987.

[66] H.Samet and M. Tamminen. Efficient component labeling of images
of arbitrary dimension represented by linear bintrees. IFEF Trans-
actions on Pattern Analysis and Machine Intelligence, 10(4):579—
586, July 1988.

[67] H. Samet and R. E. Webber. Storing a collection of polygons us-
ing quadtrees. ACM Transactions on Graphics, 4(3):182-222, July
1985. Also Proceedings of Computer Vision and Pattern Recogni-
tion’83, pages 127-132, Washington, DC, June 1983 and University
of Maryland Computer Science TR-1372.

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Object Representations 37

C. A. Shaffer. Application of alternative quadtree representations.
PhD thesis, Computer Science Department, University of Maryland,
College Park, MD, June 1986. Also Computer Science TR-1672.

C. A. Shaffer and H. Samet. Optimal quadtree construction al-
gorithms. Computer Vision, Graphics, and Image Processing,
37(3):402-419, March 1987.

M. Stonebraker, T. Sellis, and F. Hanson. An analysis of rule in-
dexing implementations in data base systems. In Proceedings of the

First International Conference on FExpert Database Systems, pages
353-364, Charleston, SC, April 1986.

M. Tamminen. The EXCELL method for efficient geometric access
to data. Acta Polytechnica Scandinavica, 1981. Also Mathematics
and Computer Science Series No. 34.

M. Tamminen. Comment on quad- and octtrees. Communications
of the ACM, 27(3):248-249, March 1984.

S. Tanimoto and T. Pavlidis. A hierarchical data structure for
picture processing. Computer Graphics and Image Processing,
4(2):104-119, June 1975.

T. Ulrich. Loose octrees. In M. DeLloura, editor, Game Program-
ming Gems, pages 444-453. Charles River Media, Rockland, MA,
2000.

R. E. Webber and H. Samet. Linear-time border-tracing algorithms
for quadtrees. Algorithmica, 8(1):39-54, 1992. Also University of
Maryland Computer Science TR 2309.

