Using Quadtrees to Represent Polygonal Maps

H.

Samet
R. E. Webbepr

Computer Science Department and
Center for Automation Research
University of Maryland
College Park, MD 20T42

ABSTRACT
The quadtree data structure is adapted té
represent polygonal maps. The presentation is
motivated by the problem of point-in-polygon

determination. The goal: 1is
with absolute’ accuracy and obtain a worst-case ex-

ecution time "that is not overly: sensitive to the
_positioning of “the: map wher a _ quadtres-like
representation’ is" used. * A regular decomposition
variant of ‘the region quadtreé’ is Used to organize
the vertices and edges of the maps. - 4 number of
appropriate data structures °
iterative manner until a - structure is obtained
that meets the stated goals. : THe -result is termed
a PM quadtree and is based on a regular decomposi-
tion point space quadtrée- (PR - quadtree) ‘that
storeg additional informatlon about the edges at
its termlnal nodes.

1 Introduction

. Region representation is"an 1mportant prob-
lem in image processing, computer graphiecs,” compu-
terized cartography, and related areas. Recently
there ‘has been much interest in hieérarchical data
structures such as the quadtree (see the overview
in [9]1). Most of this work has involved regions
that are composed of a collection of squares. - .In
this paper we address the problem of representing
regions madé up of collections of arbitrary po-
lygons. It 1s ugeful in cartographic applications
(e.g., representing county boundaries, etc.) and
algso in a host of other’ disciplines that require

partitioning of the: plane into regions whose boun=-

daries consist of llne segments {e.g., Voron01 di-
agrams-[121)<- ;

) In this paper we show how .a quadtree-like
data. structure . can be -adapted to represent a. po-
lygonal map.. .. Our presentation is an. .evolutionary
one in the .sense .:that. we sgstart with one data

structure and. continualiy refine it.until it meets

all . of .our requirements in a satisfactory manner.
In..general, it is difficult . to ewvaluate a data
structure-in a vacuum. Thus we shall- use the task
of, point=in-polygon determination .on, a dynamlcally
changing. polygonal map- to. motivate. our discussion
and selection of a representation. This task is
pErformed under the assumptlon that each line 3eg-
ment that. forms the; boundary of a region contains

the names of the regions on both sides of. it (as_

CH1891-1/83/0000/012781.00 © 1983 IEEE

“to store these-maps

‘aré proposed - in an-

127

well as which region is on which side). This
reduces the poinkt-in-polygon task to the less res—
tricted problem of locating a line segment that
borders the region containing the query point.

2 General Considerations

In the follow1ng we consider polygonal maps
in their most general form, i.e., as a planar
embedding of a graph where all the . edges are
represented by non-intersecting straight line seg-
ments. Thus, the polygonal map is a hybrid object
in the sense that we are representing three types

of data - i.e., p01nts, lines, and regions. Poink.-
data ‘dre représented by isolated vertices. Linear
data are’ represented by acycllc subgraphs. Region _

data are represented by oyolic subgraphs that par-
tition the.plane. SThe region. labeling of a polyg-
onal map that is viewed as.-a graph is associated
with the vertices and the edges. .comprising- the
graph.

The term quadtree [2,4,5] is used to
describe a class of hierarchlcal data structures
whose common . property is that. they are based on
the princlple ‘of recursive decomp031tion. in twp
d1men51ons, a rectangular planar region is recur-
sively subdivided into four parts until each part
contains data that is sufflclently simple s¢ that
it ¢dn be organized by some other data structure
(e.g+y a single elemeént list, binary tree, ‘etec.).
They can be differentlated .on the basis. of the
type of data that they are_ used to represent,

on ~ the principle guidlng the decomposition pro-
cess. The decomp051tion may be into. equal sized
parts {termed a regular decomp031tlon) or it may. -

be arbltrary (i. e., dictated by the 1nput data).

-The point quadtree [2] a deeomposition
based on:the- point data being represented., It is
a multidimensional analog - of -the binary search
tree [6] where the.root node corresponds .to the
first node that was inserted into the tree. The
region quadtree [4,5] is used to represent spatial
data. It-makes use of. a'’ Ptegular decomposition.
Subdivision is- performed until a square region is
obtained which: is homogeneous. . Edge ‘quadtrees

£11] use - regular decomposition to ‘répresent
curves. A region is subdivided repeatedly until.
the leafs represent regions- containing a single

curve that can be approximated by a stralght line.
The 1line quadtree T101 similar to the edge -

and . .

quadtree except that a region is repeatedly subdi-
vided (using regular decomposition) until the
leafs represent regions that have no line segments
passing through their interior. There is also an
edge quadtree variant [8] that subdivides, again
-employing regular decomposition, until the leafs
represent regions containing a single curve that
gan be . approximated by k straight lines (where k
has been fixed a priori).)

The region quadtree can alsoc be adapted to
represent point data. We term such a tree a PR
quadtree (PR denoting point region). In this case
all points are associated with terminal nodes.
Regular decomposition is applied until no quadrant
contains more than one data point. For example,
Figure 2 is a PR quadtree representation of the
five vertices of the polygonal map in Figure 1.
Note that we have left the edges in the figure.
In order to cope with vertices that lie directly
on one of the quadrant lines emanating from a sub-
division point, we adopt the convention that qua-
drants NE and SE are closed with respect to the x
coordinate and quadrants NW and NE are closed with
respect to the y coordinate.

We use the PR quadiree because the shape of
point quadtrees is very sensitive to the order in
which the data points are inserted into the - tree.
There does not exist a dynamic balancing algorithm
for quadtrees that is analogous to the AVL algor-
ithm~ [1] for binary trees. In addition, PR quad-
trees yield an average-case balancing - under the
assumption that future data is equally likely in
any of the four quarters (called quadrants) of the

3quare.

In our adaptation of the PR quadtree for
.storing polygonal maps, we view the vertices as
being enclosed in a unit square {i.e., both their
coordinates ~lie between 0 and 1). The decomposi-
tion eriterion is termed C1 and defined below:

Cl: At most one vertex can lie *in a region
represented by a quadtree leaf.

Once we have defined our data structure, the
task of point-in-polygon determination is essen-
tially a tree search. Its worst—ease execution
time depends on the maximum tree depth which is,
in turn, a funetion 'of the ‘input polygon. For the
PR quadtree, the maximum tree depth is obtained as
follows. Recall that the polygonal map i= embed-
ded in a wunit square. As the depth of the PR
quadtree increases, the maximum separation between
two points in the same node is halved.. The max-
-imum separation between any twe points in the unit
square is the square root of 2. Points that are
this far apart require a tree with depth 1 to
separate them. Generalizing this observation we
have that when vv 4is the minimum separation
between two distinct vertices, then an upperbound
on the depth of the corresponding quadiree is

D1 =1+ 1082'(SQRT(2} /. vv)

Instead of .adapting the PR “quadtree, we
could,. have also considered using one of the line
quadtree schemes of [10]. This is unsatisfactory

" the PR quadtree to

for several reasons. First, line quadtrees store
only an approximation of a map and certain proper-

ties of polygonal maps cannot be directly
represented (e.g., it is impossible for five - line
segments to meet at a vertex because the line

quadtree is made up of a eollection of square-like

regions}. * Second, shifting or rotating a line
quadtree leads to a posaible loss of aceuracy with
respect to.the map that was originally approximat-
ed. Third, line quadtrees may require much space.
For example, Figure 3§ is the line quadtree
corresponding to the polygonal map of Figure 1.
Note that although Figure 1 consists of Jjust five
vertices and six edges, its line guadtree requires
105 leaf nodes.

3 Representing Polygonal Maps

In this section we discuss the adaptation of
represent a polygohal map.
During the presentation we will use the term PM
quadtree to refer to the evolving structure. Ve
shall use the polygonal map of Figure 1 as a com-
mon example. to illustrate various claims that we
make. Note that the map of Figure 1 partitions.
the plane into 3 regions which are labeled 1, 2,
and 3. In the PM quadiree structure it is assumed
that the region 1labels are associated with the
edges. For example edge AD is marked to indicate
that region 2 lies to the right of AD and region 1
lies to the left of -AD where right and 1left “are
with. respeet . te a - vantage point at the origin
(i.e., the lower 1left corner of the enclosing
square} and lines are viewed as if they have been
extended to intersect the enclosing square. In
our discussion, we frequently need to refer to
segments of edges of the the graph. In particu=-
lar, we. use the term g-edge to refer to a segment
of an edge that spans an entire block {e.g., RS in
Figure 2} or all of the block of which its
corresponding edge i3 a member (e.g., ER in Figure
2). For example, edge EB consists of the g-edge

. ER, RS, 8T, and TB. C

3.1 The Angular Ordering of Edge Segments About
the Point Where They Meet .

. A criterion analogous to C1, called (2,
which takes edges into account is given below.

C2: At most . oné gq-edge can 1lie in a .region
represented by a quadtree leaf. '

Unfortunately C2 is inadequate because there exist
polygonal maps that would require a PM quadtree of
infinite depth to satisfy it. For example, con=-
sider vertex E and g-edge ER and EU in Figure 2
(i.e., the PR quadtree of . the polygonal map of
Figure 1). #Assume that the x and y .coordinates of
E cannot be expressed as an exact base 2 fraction.
This means’ that E can’ npever be a subdivision
point. Thus no matter how many times we subdivide
the quadrant containing E, EFR, and EU, by the con-
tinuity of the g-edges, there will always exist a
pair of infinitesimally small q-edges EH and ET
which will occupy the same quadtree leaf. Verf

128

tices at sgubdivision poirnts may at times avoid the
infinite depth problem by virtue of the conven-
tions adopted in Section 2 with respect to their
placement.

One solution to this problem lies in replac-
ing C2 with criteria C2° and C3 given below.

If a region contains a vertex, then it can
contain no g-edge that does not include that
vertex.

c2%:

C3: If a region contains no vertices, then it can
contain at most one ge-edge.’
A PM quadtree built from the criteria C1, C2° and

C3, representing the polygonal map of Figure 1, is
shown in Figure k.

Since c¢riterion C2° allows an arbitrary
number of gq-edges to be stored at one PM quadtree
leaf, the question of how these g-edges are organ-
ized arises. The simplest approach; consistent
with our interest in worst-case analysis, is to
store the g-edges in an AVL tree where the g-edges
are ordered by the angle that they form with a ray
originating at the vertex and parallel to the po-
sitive x-axis. Since the number of g-edges pass-
ing through a leaf is bounded from above by the
number of vertices belonging to the polygonal map,
aay V, the depth of the AVL tree is proportional
to

AY = 1032 (v)

It is appropriate at this point to recall
our task of point-in-polygon determination. For
PM quadtrees built from C1, ¢2°, and €3, this
problem has three cases which are illustrated by
queries with respect to the points x, y, and 2 in
Figure 4.

Point x illustrates the problem of point-
in=polygon determination when the point lies in a
leaf containing exactly one g-edge. Since region
information is - stored at each g-edge indicating
the regions associated with the g-edge, this
reduces to determining the side of the g-edge on
which the point lies.

Point y illustrates the case that the query
point lies

this example. This reduees to finding a gq-edge in

the AVL tree that would neighbor a hypothetical

gq-edge from C and passing through y. Sueh a

neighboring g-edge must border the region contain-

ing y. Thus, once again our task is reduced to

?ftermln%ng on which side of a q~-edge a point lies
s€ey ¥)o

Point z illustrates the case that the query
point lies in a 1lear, say q, containing no g-
edges. This means that all the points in the re-
glon represented by the leaf q lie in the same re-’
gion of the polyzonal map. It also means that one
of q°s brothers must be the root of a- subtree that
containg a g-edge that borders the region contain-
ing =z. In ‘order to find this (not necessarily
unique) brother, we move clockwise among the
brothers of q., This prevents us from prematurely

in a Jleaf containing a vertex, C in .

‘considering the diagonally neighboring brother

of
q {see why in next paragraph). When conaidering a
brother, one of two subcases arises.

Either g3 clockwise neighboring brother,
say r, (1) contains a g-edge, say b, lying on the
boundary between q-and r or {2) it doesn’t. In
subcagse (1), the problem reduces Lo determining
the side of g-edge b on which z lies. Subcase (2)

~ 1s slightly more complex. We postulate a hypothet-

. pothétical point z°

129

ical point 2 in region r that is infinitesimally
close to q°s region and recursively reapply the -
point-in-polygon procedure to z°. Figure 5 shows
why we don’t want to prematurely consider a diago-
nal brother. In this case placement of our hy-
in the SE brother of the qua-
drant containing z will lead us to conclude that z
lies in region 2 rather than region 1 by virtue of
its relative position to edge segment ST which is
the only edge segment in the quadrant. Note that
poeint R is associated with the NE brother of the
quadrant contalning z by virtue of the conventions
adopted in Section 2 with respect to points that
lie on quadrant lines emanating from subdivision
points.

As an example of the case that z lies in a
leaf containing no Ja-edges, consider Figure 4.
Since the leaf containing z, call it q, is empty,
we' examine its clockwise brother, say r. Since r
does not contain a gq-edge on the boundary between
q and r, subcase (2) applies. Thus we postulate a
point z° that is just aeross the boundary between

q and r. Determining the polygon in which lies z”
{in this example) is equivalent to determining the
polygon in which x lies. Note that in subcase
(2}, if r contains no gq-edges, then the algorithm
proceeds to examine r“s c¢lockwise brother. It
should be clear that one of the brothers must con-
tain a q-edge as otherwise the brothers would have
been merged to yield a larger node.

The worst-case execution time of point-in-
polygon determination wusing a PM quadtree con-
atrueted with eriteria C1, C2°, and C3 iz propor-
tional to the depth of the entire structure -
i.e., the depth of the quadtree built from C1,
C2°, and C3 plus A1, the maXimum depth of the AVL
trees at the quadtree leafs. The depth of the
quadtree can be determined as the maximum of the
depth required independently by each of the three
criteria for building . the quadtree. The factor
contributed by criterion €1 has already been noted
in Section 2 to be D1. If ev denotes the minimum
separation between an edge and a vertex not on
that edge {(for a given polygonal map), then by
reasoning similar to the derivation of D1, &the
depth of the PM quadtree required to fulfill cri-

“terion €27 is

D2° = 1 + log, (SQRT(2) / ev)

Analogously, if ss denotes the minimum separation
between two non-intersecting g-edges (i.e., por-
tions of edges bounded by either a vertex or the
boundary of a PM quadtree leaf of the PM quadtree
of the given polygonal map), then the PM quadtree
depth required to fulfill criterion €3 is

i
i
i
!
i
;
H
]

D3 =1 + Tog, (SQRT(2) / s5)

Although the“factors D1 and “D2° are fune-
tions of the poiygonal map and are independent of

the positioning df“'thg' uniderlying digitization

grid, ‘the factor D3 can vary as the polygonal .map

is shifted.” For maps. of the complexity of the one’

~.shownt " in Figure 1, the.D3 factor can become arbi-
trarily large. For exampie, suppose we shift the

polygonal map in Figure 1 to the right. As vertex

E (se& Figure 2) gets closer to the eastern boun-
dary 'of ‘the quadrant containing 'it, the minimum

separation bétween g-edges RS and - UV “{i.e., RO}

gets. ‘smaller and ‘smallep resulting in the grouwth

of D3 to unacceptable values. ‘While this is
better than the impossibility associated with c2,

it still behooves us £o find & better decomposi-
tion criterion than C3. S

3.2 The Angular Ordering of Edge Segments About

theleintsJﬁhere.Thgir_Edges.Meet'k

In order to remedy the deficiency assooiated.

with " eriterion ¢3, it ig necessary to determine
when it dominates the cost of storing a polygonal
map. .. In . particular, D3 is greater. than D2° only
if =3 ig smaller than év, which happens oniy)
the _ﬁwdnnéarésp,noneihterseetingmqfédges are. seg-
ments_of,edges,that‘intergectfat a vertex. .. For
example,"Figuréné;isfthe.PM:duadtree for polygongl
map ABCD where D3 is greater than D2°, because ss

(the distance between g-edges XY and WZ) is small-"
er than'ev (thé digﬁéﬁce“betweaﬁ_c and “BD)., ' Note &

that XY is a q-edge of BD, WZ is a"g-edge of ‘CD,’

and BD iritersects CD"at vertex D. " "This " analysis™"

leads us to” replace cﬁftébiop'C3'g§th‘ériterion

C3" defined below. =~ -~ = - 7

C37: If a region contaitis no vertices, then it can
contain only g-edges that meéet at & common
vertex exterior to the r@gion,

A PM quadtreé buiit from “ériteria “C1, €2, “and -

C3°, ‘for the polygonal map of, Figure 1, is shown '

in Figure 6.

sﬁpséitutiéﬁ'df*C3'grér"cg does not lead to°

significant changes in the’ point-in-polygon deter- -

mination procédure. ' The .situation ‘arising “when
. poipt extérior to'

q-edges are ordered about’ a & ' Lo
thelr region is handled in theé- ame way as q-edges
that ' are engularly ‘ordered about their point of

intersection. . 0Of ‘course, it is necessary to store

with each AV, tree the point about which the ord-
ering 18 being pe#f@pﬁed. L

The worst-case execution time of the point-
in-polygon algorithm is again proportional to ‘the
sum of the depth of . the guadtree plus 41, the max-
imum depth ~of the AVL 'trees. However, the depth
of the gquadtree is bounded from above by the max-
imm- '6£°D1 and D2; the' factors attributed to cri-
teria ‘C1 dand €2° respectively " 'Note ‘that 'by vir- '
tue “of our definition of €3°, the maximum depth
resulting from its use is bounded from -~ above by

p2-,

when

A8 an example, consider .Figure 8, which
repreésents | the same polygonal map as Figure 7 ex-
cept that it uses C3’ instead of C3. The , analogue
of " as, terméd ss’, is defined as’ the minimum
Separation between two q-edges that are not seg-
ments of two intersecting edges. In this example,
D3" 1§ less than D27 because 83" (the distance
between ' 'UB and "SC) is greater than ev (the dis-
tance between C and DB). Note that the distance
between QR and ST, and the distance’ between RB and
TC are irrelevant to D3’, because, if nedegsary,
these segments could be in the same leaf,

We have now achieved a structure for which
point-in-polygon . determination }has__a wWorst-case
execution time that is less sensitive to shift and
rotation ‘of the polygonal map;‘”The.only-question
that remains is whether we can do better. Can the
factor of eriterion €2° be removed or reduced?

- 3.3 Ordering Edge Segments Witk Respect 'To Their

Boundary Intercepts

. In this section, we ‘consic
built using only ‘eriterion ¢
represent any polygonal m
the PM quadtree we revert to the ori

tree (e.g., Fig

7Ores at each terminal node corresponding to a
vertex of this map. Since the depth factor D1 is’
always less ‘than or equal to the factor D27, the
quadtree component .of the worst-case execution
time of point-in-polygon determination is lower
than in our previous. atructures. . .However,. this
structure . does . have the problem that the number
of g-edges that can be stored in a ‘léaf is now
bounded by the number Of Q=g
stead of the number of _
dffect ‘the order of thé worst-o
of point-in-polygon determination, because,

planar graph, the number of edges is bounded from
above by é‘linear‘fﬁnctipn"dffthé'nhmpér'fbf._vene

tices (this . is & _corpllary. of Euler’s formula. -
[(3D. T B o

. Théﬁé!éti%izbemaiéé‘tﬁé'ﬁtﬁﬁiemr of. How .10

organize the gq-edges in a leaf’s region. and,how
such an organization interacts with point-in-

polygon -determination, Wezupropdse to'partition

- the g-edges-inca-leafisw region into. T:i+:clagses,

each of which qggﬂba,quQQQq,byfan‘AVL:trgeqﬁ'Ngte
that in any given leaf, sg .of .these. classes will.

often be empty.

’;:lT;EiﬁbsiﬁébfidusiéiﬁésJ of .9-€dges - s - the.

elass QK;QQéggesughat;mégt,gt;a;veptexfwithin_ the
leaf’s region. This elass can be ordered . .in .an
angular manner as has been done previcusly. The
rqmaining_q-edges‘that‘gassﬂthrough-the leaf"s re-
gion must enter at one.side. and leave via.anothep. -
Ihis yields six classes: NE, NS, NW, EW,: . SW, :and-
SE, where NE denotes g-edges that-intersect-both

_thg)ndrtﬁiand,Qheanst‘bqupgary,q:ﬁthe;;eaf’s - rge-

gion. 'Note that the q-gdges. are .non~directional.
For example, the q-edges in. class: NE. (the other . 5
classes are ‘handled analogously) are.ordered ac.

cordirig to whether they lie to the left .or to . .the

- right df;'gaqh_qthgr“when\viewipg them in an.eas—-

terly direction from the northern boundary of the
leaf s region. Q-edges that coincide with the
border of a leaf’s region are placed in either N3
or EW as is appropriate. Note that any given
leaf s boundary can only contain one such q-edge,
because if it contained two, then it would have %o
contain two vertices and violate C1. Point-in-
polygon determination is accomplished by finding a
bordering q-edge with respect to each of the seven
classes and then using the closest of the seven as
the true bordering ag-edge.

4 Concluding Remarks

We have taken an iterative approach to
developing a quadtree-like data structure for
storing polygonal maps. We started with- the PR

Its final

quadtree and developed the PM quadtree.
formulation uses the same decomposition rule as
the PR guadtree but stores a considerable amount
of information in the terminal nodes. Note that
the PM quadtree enables storing polygonal maps
with absolute - acecurdey and for whom point-in-
polygon determlnatlon has a worst-case execution

time that is less sensitive to the p031tion1ng of-

Thuz unlike the region and/or

the polygonal map.

line quadtrees of [10], the quadtrees presented in

Sections 3.2 and 3.3 can be shifted or rotated
without distortion or unreasonable change in the
gsize of the atructure. HNote that:the storage re-
quirement are still somewhat dependent on the po-
gitioning of the space within which the map.is em-
" bedded. 'For_example, the polygonal map of Figure
9a requires 7 PR quadtree leafs, while Figure 9b
requires only 4 PR quadtree leafs. We also ob-

serve that our proposed.quadtrees are relatively
compact. As a comparison, we note that Figure 3
required 105 quadtree leafs, whereas Figure 7 re~

quired 13 quadtree leafs and " 21 AVL data - nodes
(scattered among 11 AVL trees), and Figure 2 (in-
terpreted as a PM quadtree) required 7 quadtree
leafs and 17 AVL data nodes (scattered among 9 AVL
trees). Note that many of the AVL trees consist
of single data nodes.

We have also shown that point-in-polygon
determination using the PM quadtree can be done in
time proportional to the depth of the structure.
While it is . true that others (e.g., [6]1) have
shown that structures exist that have better
worst-case analysis for the point-in-polygon task
than the PM quadtree desecribed above, the PM quad-
tree has a major advantage over cther structures
in that it organizes the data without a dimension-
al bias. Thus PM quadirees are generally better
for range queries, whose analysis is a natural ex-
tension of the above discussion of point-in-
- polygon for PM - quadtrees. The performance
analysis. of .other operations, e.g., shift, rota-
tion, and overlay, has yet to be done,

References

[1] G. M. Adelson-Velskii and Y. M. Landis, An al-
gorithm for the organization of information,
Soviet Math. Dokl. 3, 1962, 1259 - 1262.

131

{2] R. A. Finkel and J. L. Bentley, Quad trees: a
data structure for retrieval on composite
keys, Acta Informatica U, 1974, 1 - 9,

(3} F. Harary, Graph Theory, Addison-Wesley Pub-

lishing Company, Reading, MA, 1969.
[4] Hunter, G. M. and Steiglitz, K., -Operations
‘images wusing quadtrees, IEEE Transactions
Pattern Analysis and Machine
1979, 145-153,

on
on

Intelligence 1,

{51 A. Klinger, Patterns and search statisties, in
Optimlzlng Methods in Statisties, J. S. Rusta-

gi, Ed., Acadeplc Press, New York, 1971.

[6] D. E. Knuth, The Art of Computer Programming:
yol. 1/ Fundamental Algorithms, Second Edi-

tion, Addlaon—Wesley, Reading, MA, 1975.

(7] b. T, Lee and F. P. Preparata, Location of a
point in a planar subdivision and its applica-
tions, Proc. of Eighth Ann. ACM Symp. on
Theory of -Computing, Hershey, “FA, May 1976,

231 - 235.

(8] J. J. Martin, Organization of geographical
data with quadtrees and least squares approxi-
mations, Proc. Conf. Pattern Recognition and
Image Processing, Las Vegas, 1982, 158 - U63.

[9] H. Bamet and A. Rosenfeld, Quadtree structures
for image processing, Proceedings of Fifth
International Conference on Pattern Recogni-

tien, Miami Beach, December 1980, 815 - 818,

[10] H. Samet and R. E. Webber, Line quadtrees: a
hierarehical data structure for encoding boun-
daries, Proc. Conf. Pattern Recognition and
Image Processing, Las Vegas, 1982, 90 - 92.

[11] M. shneier, Two hierarchical ~linear feature
representations: edge pyramids and edge quad-
trees, Computer Graphics and Image Processing
17, November 1981, 211 -~ 224

£12] G. T. Tousssaint, Pattern recognition and
geometric complexity, Proceedings of Fifth
International Conference on Pattern Recogni-
tion, Miami Beach, December 1980, 132% — 1337.

Dl

Figure 1: Sample polygonal map.

Y

