AN IMPROVED APPROACH 70 CONNECTED COMPONENT LABEL]NG OF IMAGES*

Hanan Samet

Computer Science Department
University of Maryland
College Park, Maryland 20742

ABSTRACT

An improved and general approach to connected component
labeling of images is presented that is particularly uwseful {or process-
ing large images which do not fit in core. Its virtue is a very small
equivalence table. As the image is processed, equivalence classes are
reused when they cease to be associated with any “active” com-
.ponent. This technique is equally applicable to images represented by

hierarchical data structures such as quadtrees, octrees, and the general -

d -dimensional representation known as the bintree. Equivalences are
.processed by using UNION-FIND. An implementation of the algo-
rithm is given for a two-dimensional array. For an N XN array, the
number of equivalence classes is bounded by N /2. The amount of
internal storage is O (N). Its total processing cost is linear in the
number of pixels.

1. INTRODUCTION

Connected component labeling [3] is a fundamental task com-
‘mon to virtually all image processing applications in two as well as
three dimensions. For & binary image, represented as an array of 4~
dimensional pixels termed image -elements, it is the process of assign-
ing the same label to all adjacent BLACK image elements [3]. The
elements may be 4-adjacent or 8-adjacent [2]. :

Connected- component labeling can be performed by depth-
. first and breadth-first techniques, They differ in the time at which
equivalences between labels of adjacent BLACK image elements are
propagated. The depth-first approach labels each component in its
“entirety one-by-one. It requires the whole image to be readily accessi-
ble. If the cost of determining if two BLACK image elements are
adjacent is constant, then an algorithm employing this approach ean
be devised that runs in time proportional to the product of the dimen-
sionality of the image and the number of BLACK image elements.

In most applications we must process images which are much
bigger than the capacily of internal memory. Thus the depth-first
approach is inappropriate and we focus on the breadth-first approach.
This approach examines each pair of adjacent BLACK image elements
in succession and constructs an equivalence table where initially each
BLACK image element is in a séparate equivalence class. For each

such pair, a two stage process (also known as UNION-FIND [8]} is.

applied. It makes use of a tree to represent each equivalence class.
First, determine the equivalence classes associated with both BLACK
image elements that comprise the pair by using FIND. FIND traverses
father links in the tree to locate the root. If the classes differ, then
they are combined using UNION. UNION merges two trees by mak-
ing the father of the root of one tree point at the root of the other
tree. Path compression {7] is applied as part of FIND to make sure
that after UNION no equivalence class on the FIND path is more
than one link away from the root of its.tree. Stage two assigns a final
label to each BLACK image element (corresponding to the component
of which it is a member). When path compression is used, the results
of Tarjan and van Leeuwen [9] let us deduce that the worst-case exe-
_cution time of thie total (i.e., both stages) task is almost linear.

#The support of the National Science Foundation under Grant
DCR-83-02118 is gratefully acknowledzed.

CH2290-5/86/0000/0312501.00.© 1986 IEEE

Markku Tamminen

Labora‘t,ory for Information Processing Science
Helsinki University of Technology
Espoo, Finland

Several algorithms for two-dimensional arrays based on. the
breadth-first approach have been reported [1,3]. They require twe
passes il the images contain any adjacent BLACK image elements. In
this paper we present an improved breadih-first approach based on
reducing the number of equivalence classes that ean be active at any
instant. We ‘assume 4-adjacency although.cur metheds could also be

adapted to 8-adjacency. The technique is general in the sense and is’
equally applicable to images represented by hierarchical data struc-

_tures such as quadtrees, octrees, and the general d-dimensional

representation known as the bintree [4]. We conclude with an adapta-

- tion of the algorithm to a two-dimensional array representation of an

312

image whose total cost is linear in the number of pixels.
2. NEW ALGORITHM

A scanning order defines the order in which image elements
are processed. Given a d -dimensional image, each image element has
neighbors in 2-d directions. An image element and its neighbors are
adjacent in a given direction along a border of the image element.
These directions are grouped into d pairs each element of which is
opposite to the other. A scanning order is said to be admissible if,
when processing any image element P, all of P ’s neighbors in at least
one direction of every -direction pair have already been processed (i.e.,
scanned). A preprocessing phase initializes the boundaries of the
image to WHITE and hence the neighbors in their direction are said
to have been processed (i.e., scanried).

There are many scanning orders that are admissible (e.g., left .

to right and top to bottom for a 2-d array; NW, NE, SW, SE for a
quadtree; left, right for a bintree; etc,). Admissible scanning orders are
of interest because it is easy to see that a connected component, label-
ing algorithm that visits each image element using such a scanning
order insures that a transition was made through all adjacencies

between image elements. Of equal importance, each image element .

will only be visited once by this process. Of course, the second stage
of the breadth-first approach requires that the BLACK image ele-
ments be visited one more time so that their final label can be
assigned.

At any instant of time, say !, after processing tmage element
P, the scan partitions the image into three subsets:

(1) Scanned image elements whose 2-d borders are adjacent in
their entirety to image elements that have already been
scanned or to the image boundary.

{2) Scanned image elements having at least 4 but no.more than
2-d-1 borders adjacent in their entirety to image elements
that have already been scanned or to.the image boundary.

{3} Unscanned image elements.

These three subsets are illustrated in the figure below for a raster
seanning order {i.c., process each row from left to right starting at the
top row) and labeled appropriately. At time ¢, only image elements
that are members of the second subset can cause distinet components

consisting, in part, of members of the first subset to merge. We use

the term active to describe the set of image elements comprising the
second subset, their unscanned borders, and the equivalence classes in
which these image elements are members. At this time, if two distinct

components having image -elements that are members-of the first sub-:
set do not contain-any image elements: that are.active, then they.can
never become equivalent because all chains of adjacencies are: pro-
pagated via the active borders.’ Alternatively; this propérty: méans
that an equivalence class without at least-one active member will
never be referenced again. Thus the storage used to represent:it can
be used to represent another component. To see that this is true,.sup-
pose that after processing image element P:in the: figure below,. there
are no more active image elements that participate in:a..given
equivalence class, say E associated with component .. Therefore, no
subsequent image elements can belong to' éomponent .G nd: thus we
can reuse equlvalence class E to keep track ol' anobher component

The components are

the size of the equwalence Gable) is bounded by the number ol‘ classes
that can be active slmult.aneously This number i

that l;he whole image not be kept. in mternal memory is satisfied” The
algont.hm Is apphcable to:both; atrays-and hlerarchical representatlons

data structure) of the set of active i
chivice would depenid on- factors such as t,he unage I
array, quadtree, ete.} ‘and, of

el’fecuvely keep track of ‘the active 1mage ¢
active image elements i T30
well as-what other’ lnformatlon st be recorded for sach equwalence
class. An activeiimage. element ceases. to be active [and. is removed
from the set of active image elernent.s) when 2ll'2:d of its borders
adjacenz in thelr entlre(‘.y e 1ma.ge elements. tha.t have already bee

For example, wh'
tree block, say T

to each i 1mage element
ments: Du.rmg tb.ls

NACTIVE(E) indicates the number of act,we Lmage elemenhs_m class

Each active image ¢lémenit; say T is represented 25 a. Astuple
conS!St-lng of t.he ﬁelds C‘OL DSCR NBORDERS and, EQC COL(I 3

length of its side for a quadtree, NBORDERS(I } indicates how ma:ny
of the borders of I are active. It is initialized when I is added o the

EQC(I)X EQC(I_
locate the eleme

the most current value of the equwalence class containing
applied to EQOC(I) which means that the chain s
FATHER({EQG(I)) is traversed until: encountermg F
class ' such that FATHER{F is NULL.

Iri xmage element I causes' sev
to be merged; say 'O and ¥ (1<| <
an image clement at an earlier time than any’ of*
the classes (i.e., O) is the one that is retained.
that O is the cla.ss that is now associated With I and ‘that, 4l subse=
quently scanned image. elements that are members of t.he"merged
classes will be referenced by (. Such a merge is called aye (] _tmcmg

The EQC ﬁelcl ol' actwe lmage elel:nents whose‘ val

FATHER(Y; } is set. to point to © for each 6f"th'e X
parison between the classes is determined by . the
LABEL fields. In addltlon the number of el

merged . into -

313

e

-image_element, set AGTIVE;
HYTERWDIATE;

integ NL i
i GRAY{COL(I)) then
- ‘begin. /* This:case handles quadtrees, octrees, bintrees,
push{(INTERMEDIATE, <‘GRAY'>);
DECOWQSE;AND;RECUR(I;PRO CESS_ELEMENT_PASS1 %

etc. #/

end”
elsa
begin)
addtoset(LACTIVE); |
NBORDERS(1)+"NBORDERS(I)+NUM_ACTIVE(I H :
if WHITE(COL(])) then push{INTERMEDIATE, < ‘WHITE >)
else /x1is BLACK */
begin
ESET+—empty;
MINLABEL+—MAXLABEL+1; . ‘
foreach A in ACTIVE such that FOUR_ADJACENT(A,]) do
/* Collect the equivalende classes of BLACK active * /
begin /* image elements that are 4-adjacent to L. +/
if BLACK(COL{A)) then
hegin_ :
addtoset(EQG{A),ESET);
T—~EQC(A);, .
while not null{FATHER(T)) do
T+FATHER(T}; /+ FIND */
if LABEL(T)< MINLABEL then /»
begin /+ Use LABEL feld +/
MINLABEL+—LABEL(T);
E~T, -
end;
end;
end; . :
if empty(ESET) then [+ No BLACK aétive image elements */
Begin /* are 4-adjacent to L */ : . :
E«—create{eq_class);
EQC()=E; .
FATHER(E)+=NIL;
MAXLABEL+MAXLABEL+1;
LABEL(E)+MAXLABEL;
end
else
begin
EQC{I)«-E; /* E is the oldest ¢lass */
foreach J in ESET do
begin /+ UNION operation with path compression ¥/
while not null(J} and J neq E and FATHER(J) neq E do
begin
T+—FATHER(J});
FATHER(J)}E;
JT,
NACTIVE(E)—NACTIVE(E}+1;
if not null(J) then NACTIVE(J)«—NACTIVE(J)-1;
while not null(J) and NACTIVE(J}=0 do
begin
T+FATHER{J);
returntoavail(J); :
J<T; '
if not null(J) then NACTIVE(J)—NACTIVE(J}-1;
end;)
end;
end;
end;
NACTIVE(E)NACTIVE(E)+1; :
push(INTERMEDIATE, < ‘BLACK’ EQC(I}>);
end;

foreach A in ACTIVE such that FOUR_ADJACENT(A]} do

/* Remove image elements that are no longer active */

Determine oldest ¢lass */

begin /+ by virtue of their 4-adjacency with 1. */
iil;n'ét_ PARTIALLY_ACGTIVE{DSCR(A),DSCR(I)) then
- ‘begin
NBORDERS(A)~—NBORDERS(A)-1;
if NBORDERS{A}=0 then
begin ‘
removefromset{A ACTIVE);
if BLACK(COL{A)} then
begin .
Q—EQC(A);
NACTIVE(Q)—NACTIVE(Q)-1;
while NACTIVE{Q)==0 do
begin /* Equivalence class Q can be reused »/
g‘ush(INTERMEDIATE, <‘EQCLASS",Q,FATHER(Q)>);
—Q;
Q—FATHER(Q);
- returntoavaillTh = ..
. if nul{Q) then return
else NACTIVE{Q)+—NACTIVE(Q)-1;
end;
end;
end;
end;
end;
end;.
end;

The second pass processes the file of records output in the first
pass in reverse order applying PROCESS_ELEMENT PASS2 to each
record. Whenever a record, say R, corresponding to an equivalence
class (i.e., of type EQCLASS), say E, is encountered, a unique label is
generated and associated with E if the father field specified in the
record (i.e., FATHER(R)) is NULL. Otherwise, £ is linked to the
class specified in the father field, say F (i.e., FATHER(E) is set to
F). This link is used by the FIND operation to obtain the correct
label when a record corresponding to a BLACK node in class F (or its
equivalent sons) is subsequently encountered. It can ‘be shown (see
Theorem 1) that when the link from E to-F is made, E is guaranteed
not to be associated with any other component that is still active (in
the backward pass meaning of “active’). WHITE (and GRAY for cer-
tain. hierarchical representations) nodes do not require any special
handling -on the second pass and are output into the final result as’
“place holders”.)

procedure PROCESS_ELEMENT_PASS2(R);
/* Assign the finsl component label to the image element correspond-
ing to R during the second pass. */
begin
value stack_entry R;)
global integer MAXLABEL; /* Initially 0 %/
if TYPE(R)='BLACK' then output{LABEL{FIND{EQC(R))))
else if TYPE{R)='EQCLASS’ then
begin
FATHER(EQC(R}))—FATHER(R);
if null{FATHER(R)) then
LABEL(EQC(R))+~MAXLABEL+MAXLABEL+1;
end ‘
else output{TYPE(R}); /+ WHITE or GRAY node */
end;

£|2[w|2|€{=lw] .
iiwwwwm:
Zig|wigi=|=|=]

T E1E || ===
m|z|o|g|ols|w

As an example, consider the 7X5 image given above where B
and W correspond to BLACK and WHITE pixels respectively. Assume
that the image has been raster-scanned. Let the origin be at the upper
left corner of the image with rows and columns numbered from 1 to
N. A pixel at {¢,7) is in row { and column . The image is redrawn

below where each cell contains a 1-tuple, 2-tuple, or 3-tuple consisting
of the information output for it on the first pass. The first entry in the
tuple. is- the type. (W for WHITE, B for BLACK, and E for
EQOCLASS). The second entry indicates the equivalence ¢lass assoei-
ated with BLACK or EQCLASS tuples, The third entry is the father
of the class for an EQCLASS tuple. A NULL pointer is specified by 0.
Note that records of type EQCLASS have been placed in the celi
associated with the pixel which triggered .its output. : .

1) (B,1) B (B,1 (W)
W) [(w) W), B1) (W)
W) | . (B2) (W) {8,1) | {W)
W) | wy(E2) (W) Byl. W
2 {B.2) B2 w1l {B,1) .
(W} (W) | (WHE2D | (W) | (W) (ELR}
(W) (B,1) W E10) | (w) . (W)

Once: class 1 is. assighed to: pixel {1;1) this class is propagated to the
neighbors. of -this pixel as the image: is scanned.. When pixei (3,2} is
encountered, we assign class 2 to i, After processing pixel {4,2). class 2

_is' no longer active and is reused upon:encountering pixel (5,1}, When
processing pixel (5,4) we merge classes L and 2 and retain class 1'as it
is older than 2. Pixel (5,5) is. assigned to class 1. In addition, the
FATHER field of class 2 is set to Ppoint fo'1, Once pixel (6,3) has been
processed, class 2 is no longer active and an EQCILASS record is out-
put containing 2 and a pointer to 1 (its father). Once pixel (6,5) has
been- processed; -classi1’ is ‘no longer ‘active, and againi an EQCLASS
record is outpiit containing 1 .and a pointer to NULL as 1-has no
father, Class 1 is reused upon encountering pixel (7,2} but only. briefly
as'it ceases to be active after processing pixel (7,3}, i

The second pass -processes the output of the first pass in
reverse order, The first two itens are.(W). Upon encountering. (F,L,02)
a label is generated -forthe :first: component, say” C,. The ‘next
occurrence of (E,1,02) causes a label to be generated for the second
component, (/5. (E,2,1J causes the FATHER field of class 2 o he set
to point at class 1. Thereafter, all accurrences of class 2 will be associ-
ated with C'y. (E20) at (4,2) results in reusing class 2 and thus gen-
erates a label for the third component, say 5. From now on, all
occurrences of class 2 will-‘be associated with Cs.

The key to the correctness of our algorithm is being able o
" prove ‘that it does not reuse equivalence classes while they still con-
tain active image eleménts. Such a proof must demonstrate that both
the forward and backward (i:e:, the first ard second} passes opérate in
a manner -much-akin‘to a postorder tree traversal In- other words, we
must show that the following ‘property holds: :

Tree Propertys When equivalence class'.0 is encountered as the
first representative of component Cy; O will not be reused to
represent: another componént 5 until each équivalence class ¥ that
is subsequently encountered; whick .is merged with O $o that O is

retained, no longer is used to represent elements of € 1 Moréover, an -

equivalence class, say E, that represents component ¢y, is not reused
to represent -another component €, as long- as there exists' an
equivalence class whose FATHER field is £ .

Theorem 1: The tree property is satisfied by both the forward and
backward passes.of the algorithm . - =
Proof: See [6]. .. - SR C ‘.

3. LABELING TWO-DIMENSIONAL ARRAYS *

. Adapting the. algorithm of Section 2 to the array representa-
tion of a binary image is quite straightforward. We use a raster scan-
aing order which. is clearly admissible. Assume an, N XN image with
the origin at. the upper left. corner of -the image. Rows and: columns
are. numbered from 1.to N . A pixel at position {i,7) is in row ¢ and
column j_._a.nd_-;whg_r_l_;it is processed, the set. of active image, elements
consists of pixels: at positions, (¢ wp.}such that 0<p <5 and (£-1,p)
such that 7 <p <N. The sactive border elements are the: southern
sides of the active.image. elements. and the. eastern side of ‘the, active

image element at (4,5 -1). For simplicity we assume that each pixel of
the leftmost column (i.e., (p /0) such that 0<p <N) is WHITE as are

all pixels in row-0 (i.e., (0,p) such shat 0<p ZN)

- From this discussion it is easy to see that the set of active ele-
ments can be represented as an array. The array representation, -cou-
pled with:the raster scanning-order, facilitates many operations. First,
when collecting the equivalence classes of the' 4-adjacent neighbors of
an active image elément in PROCESS_ELEMENT_PASS1 we need
not do a ssarch - just do an array -access. Using a raster scanning
order, for.a pixel at {f,§), the 4-adjacent active image elements are
found at {i,7-1) and (i =1,7). Determining the equivalence classes
associated with these pixels only requires one FIND operation for the
class of (#=1,7). The class-of (¥ 5 —1) is currént since this was the most
recent pixel processed. Second, there is no need to have an NBORD-
ERS counter with each active image element, say I, since there is
only one-active border element (i.e;, the southern side) and thus when
this border ceases to be active, then so doss J.

Our algorithm and the representation of the active elements is
'simplified *'considerably by observing. that active image elements

become itiactive in the same relative order that they became active.
To see this, note ‘that the set of active elements is just the last N

" image elements that were scanned, In other words, when a pixel, say

P, Becomes active'we know that the equivalence class, say E, in
which P"is contained at the time it became active cannot outlive (i.e.,
its NACTIVE feld will have 2 nonzero value) any other equivalence
class to which E “subsequently becomes equivalent, This is useful for
several reasons. First, it facilitates keeping track of equivalence classes
that have been merged. It enables us.to avoid having to inerement the
NACTIVE field of the surviving equivalence class whenever a UNION
operation ‘or path compréssion oecurs. It also simplifies the process of
removing elements that are no longer active from the set of active ele-
ments, In' particular, there is no need for the loop at the end - of

PROGESS_ELEMENT PASS1.

: - Second, it means. that-the array for-the dctive elemeénts can be
implemented as an image buffer whose size is the width:of a:-row plus
one. Third; the “push® opérations in ‘PROCESS_ELEMENT: PASS1
can be -modified. to'output- the pixel at {r-1,7) after processing the
pixel at.{f,5:). Moreover;.when: outputting a pixel ab (#=1,7) we also
check if-it is the last active element of its equivalence ‘class, 'and if
¥es, then output the class of its father. Thus theré is no need to out-

put a special record: of type EQCLASS for the equivalence pair. The

result is that-all of the “push’operations- have been:combitiéd*and
oceur onice the pixel is removed-from the set of Active eleménts,« - -
: *~These modifications mean that-the output of the'fitst pass‘can
simply bea:list: of ‘pointers t6 equivalénce ¢lasses where we-dllocate
two classes; pointed at ‘by BEACK'_PDCEL andWHITE PIXEL, to

-correspond to. flags to distinguish: between BLACK: and- WHITE inter-

mediate output entries. In an actial implement}i_t.ion, ‘the Doiniters are
replaced by indicés. Below we' give: the result of “applying the first pass
to the 75 image: discussed earlier. Each ‘cell contains a-1-tuple; 2-
tuple, or' 3-tuple. defined as follows::For a WHITE ‘pixel; the output is
a_l-tuple-containing:a pointer’ to: WHITE_PIXEL {e¢/g;, W).‘For a
BLACK: pixel;: the: output isva '2-tuple:‘containing ‘a ‘pointer to its
equivalence class and-a-pointer to ‘BLACK_ PIXEL. ‘If: the BLACK
pixel was one that caused its equivalence class, say E, to cease being
active; then''the output i a2 3tuple with the: pointer to FATHER(E)

as-the third entry.-Note: that ‘the ‘order of the entries in the 2-tuple

"and the 3-tuple:is slightly :differéit from that usedin Section 2.

T IB) By | (1B) T (LB) | (WY
Cwrl W) e 8) | (WY |
- LWE T2Ea)Y] iwy A pwy b

O wy T T GB) [w)
“U2BE] (2B) 1 (%B) LB FaBg))
W) | (W) W) | (w) [(W)
W [aBa) | (wy s fawys Friw)

I T.he second -pass-of. the---algoiithm. needs. the following minor
modification to cope with. the above. implementation. As the pointers
to the equivalence: classes: are removed from- the. intermediate file,

‘table whos¢ width is 4t most V. Each time a

-there are three possibilities. If the pointer'is equal to WHITE .PIXEL,

then nothing is-done. I the pointer is equal to BLACK_PIXEL, then
the next item is a pointer to-its class :and ‘the appropriate’label is
obtained by FIND. If the pointer is neither BLACK_PIXEL or
WHITE_PIXEL, then it is a pointer.to a.father; say F..The next two
items.are BLACK_PIXEL and .a pointer to.the class associated. with

obtained by .determining. .the. equivalence.:class - presently associated

Teset if mecessary. (e.g.; entry (2,8,1) for:pixel:(5,3)). -

‘with the pixel by. use of FIND. starting with F - and FATHER(E }-is

] The code. for the algorithm is given:in the Appendix. The
entire: process is controlled by procedure LABEL. ARRAY. It -scans
the .image. pixel by. pixel and row. by.row. The first pass.is imple-
mented. by, procedures. PROCESS_PIXEL: and PUT_PIXEL. -The
second pass is implemented by procedure- PHASEIL ... i

. Analyzing the storagé requirements of the above algorithm is
nof difficult. Assume an N XN _image. In order to place our bounds
in 2 proper perspective, we compare thém to the algorithm of Lumia
et ‘gl [1}. We qualify Teferences to thsi algorithm by old and to our

'eq'liiiialje'i::({e_ ‘table! Thebuﬂer for the active elements requ1resN+1
‘entries, each représented by a fecord of two felds. The equivalence
table réquires' at most N/2 entries, ea d by 2 record of

repres

“three fields. The old algorithii’also makes two. passes over the data. It

nts in the ‘sense that it can be
tWo rows and an equivalence
has been processed,
the "equivalenices are determined, and each element in the row is

updated ‘to contéin its most current equivalénce class-value. .. -

has ‘similar”i

» similar”internal Storage require
implemented S1:

ng & bufferof th

The external siorage requirements of the two algorithms
depend on the size of .the intermediate file. The néw -algorithm out-

.puts_type information about .eack: pixel :(we-.ignore .the -end-of file

:marker here)-as iwell ‘as; an ‘equivalence. class painter for esach BLACK
.pixel. Moreover, an additicnal pointer is output for some:BLACK pix-

-els which signals that a -class.can be..rensed. - This situation arises

whenever two classes have been: merged (j:e., a - UNION), -or :the last
pixel .of the component.has been output. Since the number of classes
is ‘bounded by..N'/2, only logy(iV./2). bits :are required to specify each
class.. Assuming . that. the image . contains- B BLACK: pixels,. ¢ com-
ponents;.-that U . UNION . operations. .are: performed {recall that a

~ UNION is only done for vertically adjacent pixels), one end of file

marker, -and. that each field.is encoded by. logo{V-/2) -bits, then the
intermediate file requires. (N%+:B.+C +U}logy(N/2) bits: However,

- U+CEB and thus {N2+2: B:)-log,(N /2 is.an upper bound on this

quantity.” Similarly; the old algorithm .must also use an intermediate
file- to store the labels. assigned to the various pixels. In. this case, since

-the maximum number of classes: is-N%/2, each class: ean- be -encoded

using . 2-loga(V. /2). bits. Thus the total external storage requirements
are 2: Nlogs(N /2) bits. If the probability of a pixel being BLACK is
greater than 0.5, this'is lower than the new algorithm’s -bound. How-
ever, unlike the pew algorithm’s bound, this is not anupper bound,

but instead is the actual external storage required.. . :

) A.lt.ﬁough_ the -spéciﬁ_ca,tion:.ef Ithe'o]d aiéorithm:doesnot indi-

. :_ca_t,e how. equivalences are handled, for.the sake of «comparison of exe-

cution times: assume. that UNION-FIND. is used s it is.the optimal
method for such tasks:. For each pixel the new algorithm does a max-
imum of one UNION and;‘ one ‘FIND on :the first pass and one FIND

the pixel,:say. F . This results in‘the appropriate pointer being set (Le.,
‘FATHER(E }.is set. to. I}, If-the father was NULL, then ‘a new label s
:generated (e.g.; entry {1,B,Q} for pixel (7,2)). Otherwise,. the label is

on the second pass for a total of .one UNION and two FINDs. In con- g

trast, the old algorit

i Tequires:gite UNION and two FINDs for each
pixel on each of 0.

 for: & total of two UNIONs four FINDs,

~. We can tightén our analysis of the new algorithm even further

~.by making: use of the Tollowing resnits about the cost of FIND and

utig path compression’on both passes; From the following
the:sum:of-the linké traversed by these opera-
i8:not ‘greater than-eight times the number of

316

pixels in the image (five for -the first pass and:three: for the secénd
pass). The proof assumes that on the first pass, a FIND and s UNION
(actually. UNION_FIND} are done for every: pixel in' the image
although they. are. only done once-for each-pair-of vertically adjaéent
BLACK: pixels. No UNION is done on"the'sécond-pass, - - %

Theorem 2:.The average time Tiecessary to process’equivalences Tor
each pixel in the new algorithm is bounded by a constant and-thus
the new algorithm is linear in the number of pixels in the image.
Proof: See f6]. . - ST T

In ordef’to verify the practical efficiency. of -thé algorithm we
ran a number of ‘experiments with both an optimized and unoptimized
version of our program using randomly genersted images varying the
probabilities. of & pixel being BLACK. Optimization consisted mainly
of replacing funi¢tions by macros. The -experiments were performed on
a VAX 11#750 running-UNIX'BSD 4.2 The’ times-are “user”’ -CPU-
times as reported by UNIX taken as averages of three independent
runs. . The programs were written:in C, The results:are ‘tabulated in
Tables 1-and 2-for'a number of different probabilities-and’ row-sizes: It
is-clear. that for a:given: probability of ‘a:pixel being BLACK; the time
per pixel is constant:as-indicated-by. Theorem 2:-Not¢ that-sincé the
algorithmris:sequential; and: makes -useof {ittle internal ‘memory, ‘the
execution: times per pixel are-independent of ‘the image size and thus
can be. extrapolated -even forlarger images. . & = v Poas

'{ Table 1.” Execution timeg (secs.) for the unoptimized program, |

Row Size. Jo . . . Probability of _BLACK. Pixel .. .
. . - 0,1 . 025 4. 05 ..075:).:08 .|
128 492 | . 564 [-d04. [--.752 -] .80],
256 19.7 22.7 42.3 30.3 32.8
‘|.Table 2. Execution times {secs.).for the optimized program..
| Row Siie : '-.-,.;Probabilit..y of rBLACII{I-Pi:;el : i
N B |- BN SIS SERAERN ' 1]
.;.128__ E Chigaet s : .4.3‘3(R
256 134 | S 189
512 - R 7 % SUNERAFRRRIAY K - GR.8

It would be interesting to compare our results with those pub-
lished for the old. algorithm (see {1}). Unfortunately, this is not easy.
First, we do-not know what types of images they used. Second, it is
difficult. to factor out programming gkill. Third,. different computers
and_ operating systems .can also bias the comparison.. Nevertheless,
using a.metric of amount.of time per pixel we find that for the images
that they reported, their execution times ranged.between 681 to 1462
microseconds per pixel on a VAX11/780 for images ranging in size
between. 6K. and 10.24M pixels. In.contrast, our.results -depended. on
the probability of the pixel being BLACK: but were-between 204 {300)
and 264 (645) microseconds. per. pixel for: the optimized (unoptimized)
program on. a VAX11/750.for-images ranging in size between-16K and
262K.. The.speed of the VAX 11/750. is about 0.6 of the VAX11/780
and thus for a-more realistic. comparison our execution. times ranged
between .122 (180).and 158 (387) microseconds of ¥AX 11/780 CBU
time per pixel for the optimized (unoptimized) program. - . -

4. CONCLUDING REMARKS.-

An improved approach to breadth-first: connected component
labeling has been presented that is appropriate for images that must
be kept in external storage and when the size of the equivalence table
must be kept to 2 minimum. It is general in-the sense that it is appli-
cable to array representations as well as hierarchical data structures
such ‘as ‘quadtrees arid-bintreés and’in fact his been used for the bip-
tree “[5]. Applying ‘this ‘approach”to -an array’representation of o two-
dimensional yields an slgorithm’ that has’ kinear worst-case time eom-
plexity. For' data of higher dimensions, the “analysis is complicated by
the ability of the chains of 4-adjacent elements that form a connected
component to ‘‘wiggle” their way around each- otliér. For hierarchical
Tepresentations such as the quadtrée and biritrée, the” analysis is com-
plicated by ‘the fact’ that image eléments ‘do not become inactive in
the same relative order that they became active; This means that the

cost of path compression wiil not necessarily be recovered by subse-

quent FIND operations. Although our technique involved use of the :

UNION-FIND algorithm, its complexity was reduced due to the vse of
age balancing' and the limitation on the number of different
equivalence classes that can be active at any instant of time. In prac-
tice, the number of links that are manipulated by the combination of
UNION and FIND operations is small and empirical tests show that
our algorithm compares favorably with existing methods.

ACKNOWLEDGMENTS |

We have benefitted greatly from discussions with John Canning and
Mike Dillencourt. ’ :

REFERENCES

1. R. Lumia, L. Shapiro, and O. Zuniga, A new connected com-
ponents algorithm for virtual memory computers, Computer Vision,
Graphics, and Imege Processing 29, 3(May 1983), 287-300.

2. A. Rosenfeld and A.C. Kak, Digital Picture Processing, Second
Edition, Academic Press, New York, 1982.

3. A. Rosenfeld and J.L. Pfalts, Séquentis,l operations in digital
image processing, Journal of the ACM 18, 4(October 1866), 471-494.

4. H. Samet, The quadt.reé and related hierarchical data structures,
ACM Computing Survegs 16, 2(June 1984), 187-260. :

5. H. Samet and M. Tamminen, Efficient component labeling of
images of arbitrary dimension, Computer Science TR~1480, University
of Marylund, College Park, MD, February 1985. .

6. H. Samet- and M. Tamminen, A general apptoach to connected
component labeling of images, Computer Science TR-1649 University
of Maryland, College Park, MD, June 1986,

7. R Sedéewick, Algorithms, Addison-Wesley, Reading, MA, 1983.

8. R.E. Tarjan, Efficiency of a good but not linésr set union algo-
rithm, Journal of the ACM 22, 2(April 1875), 215-225. B

9. R.E. Tarjan and J. van Leeuwen, Worst-case analysis of set union
algorithms, Journal of the ACM 81, 2(April 1984), 245-281. -

APPENDIX - TWO-DIMENSIONAL ARRAY ALGORITHM

procedure LABEL_ARRAY(N); - . CoL

/* Perform connected component labeling for an NN array. The
acfive elements are stored in an array. of records of type pizel
pointed at by P, A record of type pize! has two fields, COL-and
EQQC, corresponding to its color and a pointer to the equivalence
class currently associated with it. */ '

begin

value integer N;

global integer MAYXI.ABEL; :

global pointer eq_class stack EQ_CLASS_STACK,

INTERMEDIATE;

integer [J;

pointer pixel array P{0:N);

pointer pixel PIXEL_ABOVE;

MAXLABEL«0; /* Initialize time stamp =/

EQ_CLASS_STACK«—empty; _

/* Initialize stack for intermediate output for the second pass: */

INTERMEDIATE —empty; :

/* Initialize position to the left of the first pixel: */

COL(P[0]}—"WHITE’;

PIXEL_ABOVE«create(pixel);

/* The image boundary is WHITE: */

COL(PIXEL_ABOVE)—‘WHITE";

for J+—1 step 1 until N do

begin /* Initialize first row */

37

P[J]«readpixel();
if COL(P[J]} = BLACK then
PROCESS_PIXEL(P{J],P[J-1),PIXEL_ABOVE);
end; .
for [—1 step I until N-1 do
begin /+ Process rows 2 to N and output rows 1 to N-1 */
for J—I step ! until N do
begin
COL(PIXEL_ABOVE}«—COL(P[J]}
EQC{PIXEL_ABOVE)—EQG{P[J]);
P[J]+~readpixel(); :
if COL{P[J]) = BLACK then _
PROCESS_PIXEL(P(J],P[J-1), PIXEL_ABOVE);
PUT_PIXEL(PIXEL_ABOVE);
end;) -
end;
for J—I1 step 1 until N do PUT_PIXEL{P[J]); /* Last row */
PHASEII(); :
end;

procedure PROCESS_PIXEL(C L,A);
/* Process pixel C. Pixel L is to the left of C and pixel A is above C.
If they are all BLACK, then merge their equivalence classes. */
begin . : o :
value pointer pixel O ,A;
if COL{L)} = ‘BLACK’ then
begin
if COL{A} = BLACK then UNION_FIND{C,EQC(L),EQC(A})
else ADD_PIXFL(C,L); ' :
end o
else if COL(A) = BLACK then ADD_PIXEL(C,FIND{(EQC(A))) -
else EQC{C)—GET_EQ_CLASS();

end;

procedure ADD_PIXEL(C,E};

/* Add pixel C to equivalence class E. *f
begin
value pointer. pixel C;

value pointer eq_class E;
EQC(C)+E;
NACTIVE(E)—NACTIVE(E)+I;

end;

procedure UNION_FIND(C,L,A);

/* Set the equivalence class of pixel C to the result of the merge of
the classes pointed at by L and the root of the FIND chain start-
ing at A if they are not already the same. Retain the oldest of
the two classes. Set the FATHER field of the younger ¢lass to
point at the older one. Apply path compression to elements of the
chain starting at A once the oldest class has been determined. ®/

begin -
value pointer pixel C;
value pointer eq_eclass L,A;
pointer eq_class E,0,T;
E«—A; /* Perform FIND without path compression: */
while not null{FATHER(A)) do A—FATHER(A);
if L = A then :)
begin
EQC(C)—L;

. NACTIVE(L)+NACTIVE(L)+1;
O+L; o

end .

else if LABEL(L) > LABEL(A) then -

begin :
EQC(C)—A;

FATHER({L)«A; e
NACTIVE(A}~-NACTIVE(A)+1;
O«A; -

end

elase

begin

EQC{C)+L;

FATHER{A)—L;

NAGTNE(L)<—NAGTIVE(L)+1 sh(INTERMEDI.ATE BQO(Q)); v
CO=L; sush(INTERMEDIATE BLACK "PD(EL) ‘
end; ELETE_ACTIVE(EQG(C

': “while FATHER(E) neq 0 and not null
begm /* Path ‘compression *; -
* “T+-FATHER(E):
FATHE:R(E)«—O_ R

g

(FATHER(E)) do

: pomt-er eq_class procedur FIND(E
" /* Determing the equivalence 1

- case he. appm te I ATHER -hnk and. lf the
Aather was NULL, then create s new label. */
begw

P ocedure_PUT_PDCEL(C),
¢ :Output, information about. pixel

end

begm . Yo

FATHER(S)<—FIND(E}," el
"7 output(LABEL{FATHER(S))

Jend;?
'end;

