SEMAINE INTERNATIONALE DE IMAGE ELECTRONIQUE /INTERNATIONAL ELECTRONIC IMAGE WEEK

Deuxiéme colloque image /Second Image Symposium
traitement, synthése, technologie et applications / image processing computer generated images, technology and applications

Nice, Avril 1986

STRUCTURES HIERARCHIQUES DE DONNEES
HIERARCHICAL DATA ST RUCTURES*

Hanan Samet

Corhputer Science Deéartment, University of Maryland,
College Park, Maryland 20742 USA

Robert E. Webber

Computer Science Department, Rutgers Univei‘sity,
New Brunswick, New Jersey 08303 USA

RESUME

Une revue de lutilisation de structures de donndes
hi€rarchiques, telles que “quadtrees® ou “octrees’, est présentee,

pour les applications graphiques. Ces structures de donnédes

hi€rarchiques se divisent en deux classes - celles qui groupent les
objets d'une fagon hiérarchique et celles qui décomposent
hi¢rarchiquement un “espace-image”. Bien que les hi€rarchies
d’objets soient utiles pour construire les interfaces d'un logiciel
ou d’un systéme graphiques, il est préférable de definir les
problémes algorithmiques en termes de hidrarchie “espace-
image’. De telles techniques se sont réveéldes utiles pour de nom-
breuses applications graphiques, y compris le caleul de parcours
de rayons lumineux- et l'intersection de surfaces courbes. Dans de
nombreux cas, les hi€rarchies “‘espace-image” sont I'dquivalent
‘gdometrique d’un tri et de ce fait, il est vraisemblable qu’elles
resteront centrales dans les futures applications graphiques.

*The support of the National Science Foundation under Grant
DCR-83-02118 is gratefully acknowledged.

SUMMARY

An overview is presented of the use of hierarchical data
structures, such as the quadtree and octree, in computer graphics
applications. These hierarchical data structures are subdivided
into two classes - those that group objects in a hierarchical
manner and those that hierarchically decompose an image space.
While object hierarchies are useful in designing interfaces to a
graphics package or deviee, it is preferable to address algorithmic
issues in terms of an image-space hierarchy. Such techniques have
found use in many tasks in computer graphics ineluding ray trae-
ing and intersecting curved surfaces. In many cases the image:
space hierarchies are the geometric equivalent of sorting and
hence can be expected to remain central to graphics applications
in the future. : :

578

STRUCTURES HIERARCHIQUES DE DONNEES
HIERARCHICAL DATA STRUCTURES
Hanan Samet and Robert E. Webber

1, INTRODUCTION

- Computer graphics applications require the manipulation
of two distinct data formats: raster and vector. The raster for-
mat enables modeling the graphics image as a collection of square
cells of uniform size {called pixels). A color is associated with
each pixel. In contrast, instead of modeling the display screen
directly, the vector format models the ideal geometric space that
is to be represented on the display screen. Vector data consists of
points, line segments, filled polygons, and polykedral solids. In
addition to processing these two {ormats of data directly, in com-
puter graphics applications we also are concerned with the prob-
lemn of conversion between these formats.

Both data formats have obvious representations. These
representations are minimal in the sense of just providing

sufficient structure to allow updating. For the raster format, the-

obvicus representation is as a two-dimensional array of color
values. For the vector format, the obvious representation is as a
linked list of data items. While these representations are suitable
for medium range applications, once the scene being modeled
becomes significantly larger than the display grid, major logistic
problems. arise that require more complicated data structures to
efficiently manipulate the scene’s contents. There are two
approaches to handle the logistics problems. One approach, based
on object space hierarchies [9], is beyond the scope of this paper.
“The other approach, based on image space hierarchies, is typified
by hierarchical data structures such as quadtrees and octrees.

In the remainder of this paper we review the application
of hierarchical data structures such as the quadtree and octree in
computer graphics. Section 2 contains a general discussion of
their properties. Sections 3 and 4 describe algorithms using quad-
trees and octrees respectively. Section 5 concludes with a brief
discussion of some other applications of these data structures as
well as hardware implementations. For more references and
details on hierarchical data structures, see [48, 56].

2. PROPERTIES OF QUADTREES AND OCTREES

The quadtree data structure [29] is constructed in the fol-
lowing manner. If the entire image space has a simple descrip-
tion, then it does not require any further hierarchical structure.
If this is not the case, then the image space is partitioned into
four disjoint congruent square regions whose union covers the
original image space. Each of these new image spaces is treated
as if it was isolated and for each one the guestion is raised as to
whether or not it has a simple description. This decomposition:
technique is referred to as a regular decomposition in order to
distinguish it from decomposition approaches that vary the size
of the subregions formed from the original regions.

The test for determining whether or not an image space
has a simple description is called the leaf criterion. There are
many plausible leaf criteria. For the purposes of this paper, we
consider quadtress constructed from two different leal ecriteria
{one for handling raster date and the other for handling vector
data). For raster data, we use the quadtree built from the eri-
terion that no space can contain more than ome color. This
works for raster data because the raster grid is built of regions
that only contain one color and hence the hierarchy need never
decompose to a level lower than that of these pixels. As an
example, consider the region shown in Figure la which is
represented by the 2°x 2% binary array in Figure 1b. The I's
correspond to pixels that are in the region (black) and the O’s
correspond to pixels that are outside the region (white). The
-resulting squares for the array of Figure 1b are shown in Figure
Ic. This process can be represented by a tree of degree 4 (ie.,
each nonleal node has four soms) such that the root ncde
corresponds to the entire array. Each son of a node represents a

quadrant (_Ia,_belecil in orgler __NW, NE, SW, g.nd SE) of ‘the region’

— == |O0j0|O]|0|C
—|=]=|=lO|C|O|2
N e EE

o|-[=|<|~]-]c]e
clo]|—|=|-|=lolo
B ERNEEE

OQ{O|0lo|Oj0]|0
QOO |CIO0|O|2

{a}

[

(4}

575859 60

37 383940

Figare I. {a) A region, (b) its birary array, (¢} its maximal
blocks, and (d) the corresponding quadtree.
represented by that node. The leal nodes of the tree correspond
to those blocks for which no further subdivision is necessary. Fig-

ure 1d is the tree representation for Figure le.

The quadtree can also be represented without using
pointers. One such representation is in the form of a preorder
tree traversal (l.e., depth-first) of the nodes of the quadires [28,
37]. Another pointer-less representation is in the form of a collec-
tion of the leaf nodes comprising it. Each leaf node is enceded by
a number termed a locatione! code corresponding to a sequence
of -directional codes that locate the leal along a path from the
root of the quadtree (e.g., [16]). 7)

The octree is a three-dimensional analog of the quadtree.
The principle behind octrees is that if the objects within a cubi-
cal volume are sufliciently complex, then the volume is recur-
sively subdivided into eight congruent disjoint cubes (called "
octants) until the complexity is sufficiently reduced. As in the
raster quadtree, the leal criterion for raster octrees is homo-
geneity, ie., a volume element is represented by a leaf if it is
‘entirely ome color 20, 23, 32]. As an example, consider the solid
shown in Figure 2a whose octree representation is given in Figure
2b.

Many raster quadtree and octree algorithms are simply
preorder traversals of the structure and thus their execution time
is generally a linear function of the number of nodes in the struc-
ture. Hunter [20| has shown that for a simple polygon (ie., non-
self-intersecting edges) of perimeter p (measured in pixel widths)
on a 2" x2" grid, the number of nodes in the quadtree is
O{p+4n). An interpretation of this result is that as the resolu-
tion of the image is doubled, the perimeter doubles (ignoring
fractal effects), and hence the number of nodes will double. On
the other hand, the number of pixels in the binary. array

B = pLACKE'FYLL'
D = WHITE ='v0ID' (EMPTY!}
O = GRAY

'Fjgure 2. (a) Example object and (b) its octree. -

[
‘.
;
i
i
{
|
i
{
L
L
|
|
|
4

i
|
i

579

STRUCTURES HIERARCHIQUES DE DONNEES
HIERARCHICAL DATA STRUCTURES
Hanan Samet and Robert E. Webher

representation -quadruples. “I'hese results also apply to the octree
(i.e., the number of nodes is proportional to the surface area
measured in voxels) [32] and can be generalized to & dimensions
as follows:
the size of the k-dimensional quadtree of a set of k-
dimensional objects is proportional to the size of the (k-1)-
dimensional interfaces between these objects.

The other type of data that we want to represent is vee-

tor data. There are a number of useful leaf criteria [52] for
representing vector data using quadtrees. These criteria differ in
the degree of the complexity of the image-space description
versus the size of hierarchy (i.e., the number of nodes in the
quadtree). The criteria chosen depends on whether we prefer a
large number of simple leal nodes or a smaller number of more
complicated leal nodes (where it is understood that the expense
of processing a leaf is proportional to the complexity of the infor-
mation stored in the leaf). Below, we present a leaf criterion that
resuits in many simple leaf nodes, but which minimizes the com-
plexity of the descriptior of algorithims.

{1} There can be at most one vertex in an image space.
{2) If there is a vertex in the image space, then all line seg-
ments in the image space must share that vertex.
{8) If there are no vertices in the image space, then at most
one line segment passes through the image space.
For our purposes, vertices occur at the endpoints of line segments
and at any place where two line segments intersect. For a
related data structure, see the edge quadtree {57}.

The vector quadtree leaf eriteria can also be generalized
to.form vector octree leal criteria to represent polyhedra. Octree
data structures have been used where the octree decomposition
was performed as long as the number of primitives in a leaf node
exceeded a predefined bound [19, 25, 69]. The problem with such
an approach is that there are some features that cannot be
exactly represented, thus requiring a maximum depth truncation.
One way to avoid the information loss from a maximum-depth

cutofl is to permit a variable number of primitives to be associ--

ated with each octree leaf node. The vector octree analog {4, 5,
15, 35) of the vector quadtree consists of leaf nodes of type face,

‘edge, and vertex, defined as follows. A face node is an octree leaf

node: that is intersected by exactly one face of the polyhedron.
An edge node is an octree leaf node that is intersected by exactly
one edge of the polyhkedron. A vertex node is an octree leaf node
that is intersected by exactly one vertex of the polyhedron.

The vector octree techniques have also been extended to
handle curvilinear surfaces. Primitives including cylinders and

spheres have been used in conjunction with a decomposition rule

that limits the number of distinet primitives that can be associ-
ated with a leaf node [14, 69]. Another approach extends the con-
cepts of face node, edge node, and vertex node to handle faces
represerted by biquadratic patches. The use -of biquadratic
patches enables a better fit with fewer primitives than can be
obtained with polygonal faces, thus reducing the size of the
octree [36]. The difficulty in organizing curved surface patches by
using octrees lies in devising efficient methods of calculating the
intersection between a patch and an octree node. Observe that in
this approach we are organizing a collection of patches in the

image space, in contrast to decomposing a single patch in the .

parametric space by use of quadtree techniques as discussed in
Section 3.5.2.
3. ALGORITHMS USING QUADTREES

In this section we briefly describe how a number of basic
graphics algorithms can be implemented using quadtrees. In par-
ticular, we focus on set operations and image transformations,
polygon coloring, display, and quadtree construction. We also
expand on the concept of neighbor finding which serves. as a basis

of many algorithms using quadtrees and octrees. -

3.1. SET OPERATIONS AND TRANSFORMATIONS

The basic set-theoretic operations on quadtrees were first
described by Hunter and Steiglitz [20, 21] for pointer-based quad-

‘trees. Gargantini [18] and van Lierop [61] later investigated these

operations for pointer-less quadtrees. Gargantini [18] raises the
issue of performing these operations on quadtrees that are not
aligned. Hunter and Steiglitz [20, 22| and Peters [38] consider
the problem of performing an arbitrary linear transformation on
an object represented by a quadtree.

In many applications the entire quadtree must be
traversed. For example, for binary images, the intersection of two
quadtrees that are aligned yields a biack node only when the
corresponding regions in both quadtrees are black. This operation
is performed by simultaneously traversing three quadtrees. The
first two trees correspond to the trees being intersected and the
third tree represents the result of the operation. At each step in
the traversal one of the following actions is taken:

{1) If either input quadtree node is white, then the output

quadtree node is white.

(2) If both input quadtree nodes are black, then the output
quadtree node is black.

{3) If one input quadtree node is biack and the other inpus
quadtres node is gray (i.e., an internal node), then the
gray node's subtree is copied into the output quadtree,

{4) If both input quadtree nodes are gray, then the output
quadtree node is gray, and these four actions are recur-
sively applied to each pair of corresponding soms. Once
the sons have been processed, we must check to see if
they are all leaf nodes of the same color in which case a
merge takes place. Note that for the intersection opera-
tion, a merge of four black leaf nodes is impossible and
thus we must only check for white leaf nodes.

The worst-case execution time of this algorithm is proportional
to the sum of the number of nodes in the two input quadtrees.
Note that because of the first action, it is possible for the inter-
section algorithm to visit fewer nodes than the sum of the nodes
in the two input quadtrees. ‘

The union operation can be easily implemented by apply-
ing DeMorgan’s law to the above intersection algorithm. When
the set-theoretic operations are interpreted as boolean operations,
union and intersection become “or” and “and” operations,
respectively., Other boolean operations, like “xor” and set-
theoretic operations such as set-difference are coded in an znalo-
gous manner with hnear-time algorithms. Similar algorithms can
also be devised for performing these operations on quadtrees that
are not aligned. Shifting and rotation can be shown to be special
cases of intersecting unaligned quadtrees where one of the quad-
trees corresponds to a black square (possibly rotated) in the
desired position. Since all- of these algorithms are based on
preorder traversals, they will execute efficiently regardless of the
specific encoding used for the quadtree. Note that-clipping is a

special case of the intersection operation where one of the input

quadtrees corresponds to a black- region that represents the
display screen’s location .and size, thereby making it easy to

- implement using quadtrees. -
r

Besides using the quadtree for the traditional graphics
operations of translation (shifting) and rotation which are men-
tioned above, the quadtree also can be used to scale an image.
Scaling by powers of two is simple and can be used in the pro-
gressive transmission of images which facilitates browsing a data-
base of images. One successful approach [54, 58] is to transmit
the nodes of a raster quadtree in breadth-first order, so that large

580

STRUCTURES HIERARCHIQUES DE DONNEES
HIERARCHICAL DATA STRUCTURES
Hanan Samet and Robert E. Webber

leaf nodes are seen first..

3.2. BOTTOM-UP NEIGHBOR FINDING

Many quadtree algorithms involve more than just travers-
ing the tree. In particular, in several applications we must per-
form a computation at each node that depends on the values of
its adjacent neighbors. Thus we must be able to locate these
neighbors. There are several technigues for achieving this result.

One approach makes use of the coordinates and size of the node

whose neighbor i1s being sought to compute the location of a
point in the neighbor and then accesses it by following a path
from the root of the quadtres. For a 2" X2" image, this can
require n steps. An alternative approach, and the one we
describe below, uses father links and computes a direct path to
the neighbor by following links in the tree. This method is
termed boifom-up neighbor finding and has been shown to require

an average of no more than four links to be followed for each’

neighbor that is sought [46, 55].

In this section we shall limit ourselves to neighbors in the
horizontal and vertical direction that are of size equal to or
greater than the node whose neighbor is being sought. For neigh-
bors in the diagonal direction, see [46]. Finding a node’s neighbor
in a specified horizontal or vertical direction requires us to follow
father links until 2 common ancestor of the two nodes is found.
Once the common ancestor is located, we descend along a path
that retraces the previous path with the modification that each
step is a reflection of the corresponding prior step about the axis
formed by the common boundary between the two nodes. For
example, when attempting to locate the eastern neighbor of node
38 (ie., node N) in Figure 1, node A is the common ancestor of
nodes 38 and N, and the eastern edge of the block corresponding
to node 38 is the common boundary between node 38 and its
neighbor. The main idea behind bottom-up neighbor finding can
be seen by examining more closely how the nearest common
ancestor of a node, say A, and its eastern neighbor of greater
than or equal size, say B, is located. In particular, the nearest
commonr ancestor has A as one of the easternmost nodes of one

of its western subtrees, and B as one of the westernmost nodes.

of one of its eastern subtrees.

3.3. CONSTRUCTING QUADTREES

Before we can operate on images represented by guad-
trees, we must first build the quadtrees. This involves being able
te convert between a number of different data formats and the
quadtree. In this section we briefly describe the construction of
raster quadtrees from vector and raster data. The construction of
vector quadtrees from either type of data can be performed in an
analogous manner.

The algorithm for building a raster quadtree from a two-
.dimensional array can be derived .directly from the definition of
the raster quadtree {43]. When building a quadtree from raster
data in raster scan order [44] we use the bottom-up neighbor-
~finding algorithm described in Section 3.2 to move through the
quadtree in the order in which the data is encountered.

Building a raster -quadtree from vector data is more com-
plicated than from raster data since a Hst of line segments has no
inherent spatial ordering. A top-down algorithm for producing 2
raster quadtree from vector data takes as input a list of line seg-
ments. This list is recursively clipped against the region, say R,
represented by the root of the current subtree of the quadtree. If
ro line segments fall within K, then a white leaf node is created.
If R is of pixel size and contains at east one [ine segment, then a
black leaf node is created. Otherwise, a gray node corresponding
to B is created, and the algorithm is recursively applied to each
of its four Chl]d]‘en using the list that has been clipped.

Alternatively, we could use a bottom-up approach to
building the raster quadtree from vector data. First, we must
convert the line segments into a list of pixekto-pixel steps (also
known as chain codes) using a traditional line drawing algorithm
[41]. Next, we follow the path formed by the chain codes of the
line segments creating black pixel-sized leaf nodes {42]. This is
done by using the bottom-up neighbor finding algorithm of Sec-
tion 3.2. Average-case analysis for the execution time of the chain
code to raster quadtree algorithm has shown it to be linear in the
length of the chain code [42]. Moreover, by preprocessing the
chain code, it has been shown that the worst-case analysis of this
algorithm is also linear in the length of the chain code {64]. Simi-
larly, the use of neighber finding to construct chain codes from
quadtrees is possible [13].

3.4. POLYGON COLORING

Another raster operation that can be efficiently imple-
mented in quadtrees using neighbor finding is the seed filling
approach to polygon coloring. The classic seed-filling algorithm
[41] has as its input a starting pixel location and a new color.
The algorithm propagates the new color throughout the polygon
containing the starting pixel location. When using arrays, this
algorithm is coded by a recursive routine that checks if the color
of the current pixel is equal to that of the original color of the
start pixel. Il yes, then its color is set to the new color and the
algorithm- is applied to each of the current pixel’s four neighbor-
ing pixels (for a 4-connected region). By using bottom-up neigh-
bor finding the array implementation of this algorithm can be
adapted to quadtrees. Another approach to coloring a region is to
color the border of the region and then move inward from

. smaller to larger quadtree nodes [20, 21). This algorithm could

also be implemented using bottom-up neighbor finding.

A more general version of polygon coloring is connected-
component analysis. Here, the task is to take a binary image and
recolor each of the distinet black regions so that each region has
a unique color. The general approach is to traverse the quadtree
in preorder and attempt to propagate different colors across the
different regions. We discuss three techniques for propagating
the colors. The first technique is to perform the quadtree-based
seed-filling polygon-coloring algorithm described above whenever
a new region is encountered during the traversal. The second
technique consists of a three stage algorithm [45, 51]. The first
stage propagates the color of a node to its southern and eastern
neighbors. This may result in the coloring of a single connected
component by more than one color in which case the equivalence
of the two colors is noted. These equivalences are merged in the
second stage. The third stage updates the colors of all nodes of

. the quadtree to reflect the result of the second stage. The third

technique [64] is a modification of the second technique and
avoids the second stage of merging equivalences. Each time the
border of a new region is encountered, the preorder traversal is
interrupted and the border of the region is traced and colored
using bottom-up neighbor finding. At the end of the trace, the
preorder traversal is resumed.

Both the second and third techniques described above use
2 special kind of neighbor finding, i.e., they perform a preorder
traversal of a quadtree and are interested in some of the neigh-
bors of each node in the traversal. For this approach top-down
neighbor finding can be used to produce improved worst-case
results [24, 47, 30, 64]. Top-down neighbor finding is based on
the observation that the neighbor of a node is either 1) a sibling
of the node, or 2) a child of a neighbor of the node’s father.
Thus, the neighbors of a node can be maintained as parameters
to the function that is performing the preorder traversal of the
quadtree. The same idea can be used for efficiently calculating
the perimeter ¢f a region represented by a quadtree [24].

.hidden surface task [59] is basically a sorting task.

581

STRUCTURES HIERARCHIQUES DE DONNEES
HIERARCHICAL DATA STRUCTURES
Hanan Samet and Robert E. Webber

3.5. QUADTREE HIDDEN-SURFACE ALGORITHMS

Probably one of the most basic graphics operations is the
conversion of an internal model of a three-dimensional scene into
a two-dimensional scene that lies on the viewplane for the pur-
pose of display on a two-dimensional screen. This is known as
the hidden surface operation. While there are many mappings
that are abstractly possible between a three-dimensional space

-and a two-dimensional space, we are interested in a mapping

that closely models classical optics. Each pixel of the viewplane
determines a pyramid that is formed by the set of all rays ori-
ginating at the viewpoint and intersecting the viewplane within

.the boundary of the pixel. A color is assigned to each pixel that

corresponds to the color of the object that is closest to the
viewpoint while also lying within the pixel’s pyramid. Thus the

There are three approaches to this task that are relevant
to this discussion. First, quadtrees can be used to model the
viewplane. Second, the parametrie space of the surface of a
three-dimensional object can be modeled by a quadtree. Finally,
the notion of a quadtree can be directly extended to model the
three-dimensional scene (which is discussed in the context of
octrees in Section 4). The first two approaches assume a vector
data representation of a three-dimensional scene.

3.5.1. WARNOCK’S ALGORITHM

The usage of the quadtree for modeling the viewplane
during the hidden surface operation was first described by War-
nock. [63]. The static presentation of Warnock’s algorithm is as a
quadtree with the following leaf criteria: 1) an empty leaf is
valid; 2) a leaf representing a region the size of a pixel is valid; 3}
a leaf containing a collection of polygons is valid only if one of
the polygons occludes all the others over the region represented
by the leaf,

Warnock's goal wasn’t to construct a quadtree, but,
instead, his algorithm yielded vector drawing commands for driv-
ing a display. Thus, rather than building a quadtree, the algo-
rithm traverses the data in the same manner as a quadiree
builder, However, when it comes to a a situation satisfying one of
the leaf eriteria described above, it takes the corresponding
display action. These display actions are: 1} draw nothing since
there are no lines in this region; 2) draw a point representing the
border of the polygon cecluding the upper lefthand corner of the

pixel {if no such polygon exists, then draw nething); 8) draw

nothing since all the polygon borders in this region are occluded.

3.5.2. DISPLAYING CURVED SURFACES

In this paper, vector data is usually viewed as consisting
of straight line segments and polygons. However, the quadtree
paradigm also has proven useful to researchers interested in the
manipulation of curved features such as surfaces. Curved surfzces
are often represented by a collection of bicubic surface patches.
Determining the projected image of a pateh is complicated by the
fact that the perspective projection of a patch can have a compli-
cated border. One early approach to displaying such surfaces
was developed by Catmull [7]. The idea is to recursively decom-
pose the pateh into subpatches until the subpatches that are gen-
erated are so small that they only span the.center of one pixel (or
can be shown to lie outside the display region). The test for how
many pixel centers are spanned by the patch (or whether or not
the patch lies outside the display area) is based on the approxi-
mation of the patch by a polygon connecting the patch’s corners.’
As was observed by Catmull, this can be generalized to other
patch representations. Patch representations based on charac-
teristic polyhedrons (e.g., Bezier and B-spline patches), allow
these test decisions to be based on convex hulls that are
guaranteed to enclose the patch.

As ‘with Warnoek’s algorithm, Catmull’s algorithm is
oriented toward generating display commands and hence does
not explicitly generate the quadtree. structure although its pro-
cessing follows the quadtree decomposition paradigm in the
parametric space. Since more than one patch can span the same
pixel -center, the Catmull algorithm makes use of a z-buffer to
keep track of the intensity/color of the patch that has most
recently been found to be closest to the viewpoint.

Catmull’s display algorithm has been adapted to handle a
constructive solid geometry [40] representation of .objects (ie.,
objects composed as boolean combinations of primitive objects)
for the case where the initial primitives are solids bordered by
bicubic surfaces [6]. Instead of subdividing down to the pixel level
everywhere, the subdivision is performed only until it has gen-
erated subpatches that are mutually disjoint. Two subpatches
can be viewed as disjoint when the interiors of the convex hulls
of their respective control points are disjoint. While this
approach helps determine the actual intersection between two
subpatehes, it does not address the problem of determining which
-initial patches to compare. An ociree approach to this problem
[36] is described in Section 4. :

4. ALGORITHMS USING OCTREES

The algorithms for performing basic computer graphics
operations such as translation, rotation, scaling, and clipping on
both raster and vector octrees are direct extensions of the algo-
rithms discussed earlier for quadtrees. The techniques which were
used in performing some of these operations (e.g., preorder
traversal, rectilinear unaligned traversal, general unaligned
traversal,. bottom-up neighbor finding and top-down neighbor
passing) can all be extended to deal with octrees once some addi-
tional bookkeeping information is maintained.

Building an octree is not an easy process from .the point
of view of the sheer zmount of data that must be examined. A
number of different approaches have been proposed. Clearly, the
amount of work to construct a raster octree from an array
representation of a three-dimensional image is quite costly due to
the large number of primitive elements that must be inspected.
This situation is alleviated, in part, by initially representing the
data by using one of the more compact three-dimensional
representations such as the boundary method or the CSG tree
[40]. Tamminen and Samet {60] describe a method for building a
raster octree from a boundary representation by use of connec-
tivity fabeling. In [53] they show how to build a bintree represen-
tation of a raster octree from a CSG tree (see also [68]).

An even more fundamental problem than building the
octree is the acquisition of the initial boundary data to form the
boundary representation. One approach is to use a three-
dimensional pointing device to create a collection of samples {from
the surface of the cbjeet. Having collected the point data, it is

“then necessary to interpolate a reasonable surface containing the

point data. Oectrees have been used to determing this surface as
a triangulation of the initial point data derived from sampling

(the surface of a three-dimensional object [39],

Alternative approaches to building an octree consist of

taking a nuniber of differént views of an image [8, 62] or even

range data {10]. This task can be viewed as the iatersection of a
collection .of sweeps of two-dimensional -sithouettes [8]. - When
using such methods we must be careful that the views are
sufficient to describe. the object in suflicient detail.)

Once an cetree has been constructed, it is natural to want
to display it. For raster octrees, the most common display tech-
nique is the parallel projeetion [12]. Generalizations of the paral-
lel projection to planes of arbitrary position and orientation are

582

STRUCTURES HIERARCHIQUES DE DONNEES
HIERARCHICAL DATA STRUCTURES
Hanan Samet and Robert E. Webber

described by Meagher [32] and Yau |70|. A more complicated
display technique is to calculate the perspective projection. The
perspective view of each opaque octree node can be caleulated
and overlaid onto the display guadtree in place of the parallel
view of these opaque nodes. Binary tree variants of the raster
octree also have been used as an. intermediate step in the per-
spective projection of C8G trees [30].

One problem with displaying raster octrees is that there is

little potential for using lighting models for shading since all of
the faces meet at 90-degree angles. One approach to reducing
this problem is described by Doctor and Torborg (12]. They sug-
gest that the degree of shading of 2 node can be calculated as a
function of the number of its transparent neighbors. Thus a nede’
on the corner of an object surrounded by empty space will be
brighter than another node on the surface of an object that has
fewer transparent neighbors. This yields an interesting highlight-
ing effect.

While the above display techniques are suitable for
computer-aided design, realistic modeling of lighting efiects gen-
“erally requires using some variant of raytracing [41]. Raytracing
is a direct simulation of how light is propagated through the
scene landing on the image plane. The quality of the displayed
image is a function of the appropriateness of the equations for
modeling light and the precision with which the sceme was
represented. Nevertheless, the amount of time required to display
a scene is heavily influenced by the cost of tracing the path of
the rays of light as they move backward from the viewer’s eye,

through the pixels of the image plane, and ont through the scene.’

For example, Whitted [66] reports that as much as 95% of the
total picture-generation time may be required to caleulate points
of intersection between rays of light and objects in a complex
scene. Thus the motivation for using the octree in raytracing is
to enable the calculation of more rays with a greater amount of
accuracy. Since light modeling equations rely on the availability
of -accurate information about the location of the normal to the
surface at the point of its intersection with the ray, vector
octrees are generally more appropriate than raster octrees. This is
especially true for vector octrees that are can represent curved,
rather than planar, surfaces using either curved patches [36] or
curved primitives [69].

Qctrees have been used to speed up intersection calcula-
tions for raytracing [14, 19, 27, 25, 69]. Glassner [19] desctibes a
method to do this using a Hnear octree (ie., as a list of the loca-
tional codes of the leaf nodes) where the octree nodes are stored
in a hash table rather than a list [17]. Thus, instead of using
standard neighbor-finding techniques (either top-down or
bottom-up) to move between the nodes that lie sequentially along
a given ray, a neighboring node is located by calculating a point

that would lie in the neighbor and then searching the octree for

that point. This approach also has been applied to the pointer-
based representation of octrees {14, 69]. For an analogous
~approach using the binary tree representation of octrees {known
as the bintree [51]) see [27].

Although searching for the node containing a particular
point can be done very efficiently, standard neighbor-finding
- technigues should be faster for more complicated scenes. The use
of both top-down and bottom-up neighbor-finding for raytracing
on an octree is discussed by Jansen [25]. However, more empiri-
cal -results- are required to evaluate the merits of the various
‘neighbor-finding techniques for raytracing typical scenes.
Nevertheless, the octree approach to raytracing seems promising.
For example, Glassner [19] reports that tracing 597,245 rays in a
particular scene of 1,536 objects required 42 hours and 12
minutes using non-octree raytracing techniques, while only 2
hours and 57 minutes were required when using octrees. =

5. CONCLUDING REMARKS

As has been seen in the previous sections, quadirees and
octrees can be adapted to many tasks in computer graphies.
They also are used in other applications some of which are briefly
reviewed below. A quadtree heuristic is employed to caleulate the
nearest neighbor (see [t] for an exact computation) to reduce the
amount of wasted pen motions in a plotting program [3]. Vari-
ants of quadirees are used to represent points, lines, and areas in
a geographic information system [48]. They also have been
applied in finite element mesh generation [71].

An important advantage of quadtrees and octrees is that
it is easy to update them to reflect changes in the scene that they
are representing. Thus it is natural that they would prove useful
in the representation of scenes that change over time due to the
motion of objects within the scene. Ahuja and Nash [2] represent
motion by updating an octree structure as the object is moved.
Alternatively, Samet and Tamminen [53] view a changing three-
-dimensional scene as a four-dimensional object and use a four-
"dimensionsl bintree to represent the space-time object. Besides-
using octrees to represent motion, they also can be used to plan
motion. Kambhampati and Davis [26] have developed a mul-
tiresolution path-planning heuristic for two-dimensional motion
using quadtrees that could easily be extended to three-
dimensional motion using octrees.

It is also anticipated that in the future guadtree and
octree techniques will be incorporated in hardware designs.
Many graphics displays accept filled rectangles as a display prim-
itive {e.g., [65]) and thus the speed of displaying an image
represented by a quadtree becomes proportional to the number of
nodes in the displayed region (whereas pure raster displays would
require the user to decompose the rectangle info pixels). Of
course, when designing graphics display primitives, one issue is
minimizing the number of bits that need to be transferred to
represent a given primitive. Thus, while a general fill-rectangle
primitive requires location, height, and width information in
addition to color information, for a special purpose quadtree pro-
cessor that expects a series of quadtree leafl nodes, only the width
and color of the leaf nodes (deriving location from the position of
the leaf in the list) need to be specified. Such an approach has
been taken with at least one MC68000-based graphics display
{67). A more aggressive approach to quadtree hardware is to
design a parallel computer where individual processors are con-
nected like the nodes in a quadiree [11, 31, 63]. One such device
that has proven useful in image processing is the pyramid
machine {34]. An octree machine is described in (33}.

REFERENCES

1. D.J. Abel and J.L. Smith, A simple approach to the nearest-
neighbor problem, The Australian Computer Journal 16,
*4(November 1984}, 140-146.

2. N. Ahuja and C. Nash, Octree representations of moving
objects, Computer Vision, Graphics, and Fmage Processing 26,
2(May 1984), 207-215.

8. D.P. Anderson, Techniques for reducing pen plotting time,
ACM Transactions on Graphics 2, 3(July 1983), 197-212.

4. D. Ayala, P. Brunet, R. Juan, and I. Navazo, Object represen-
tation by means of nonminimal division quadtrees and octrees,
ACM Transactions on Graphics §, 1{January 1985), 41-59.

5. L. Carlbom, I. Chakravarty, and D. Vanderschel, A hierarchi-
cal data structure for representing the spatial decomposition of
3-D objects, IEEE Computer Graphics and Applications 5, 4(April
1985), 24-31. :

6. W.E. Carlson, An algorithm and data structure for 3D object

583

STRUCTURES HIERARCHIQUES DE DONNEES
HIERARCHICAL DATA STRUCTURES
Hanan Samet and Robert E. Webber

synthesis using surface patch intersections, Proceedings of the

SIGGRAPH’82 Conference, Boston, July 1982, 255-264.

7. E. Catmull, Computer display of curved surfaces, Procecdings
of the Conference on Computer Graphics, Pattern Recognition,
and Data Structure, Los Angeles, May 1975, 11-17.

8. C.H. Chien and J.K. Aggarwal, Reconstruction and matching

of 3-d objects using quadtrees/octrees, Proceedings of the Third

{EEE Workshop on Computer Vision: Representation and Con-
trol, Bellaire, MI, October 1985, 49-54,

9. J. H. Clark, Hierarchical geometric models for visible surface
algorithms, Communications of the ACM 19, 10(October 1976),
547-5354. :

10. C.. Connolly, Cumulative generation of octree models from
range data, Proceedings of the Inlernational Conference on
Robotics, Atlanta, March 1984, 25-32.

11. M. Dippe and J. Swensen, An adaptive subdivision algorithm
and parallel architecture for realistic image synthesis, Proceed-
ings of the SIGGRAPH'8{ Conference, Minneapolis,, July 1984,
149-158.

12, L.J. Doctor and J.G.VTorboi-g, Displa,y techniques for octree-

encoded objects, IEEE Computer Graphics and Applications 1,

1(July 1981), 39-45.

13, C.R. Dyer, A. Rosenfeld, and H. Samet, Region represenfa—
tion: boundary codes from quadtrees, Communications of the
ACM 28, 3(March 1980}, 171-179.

14. K. Fujimoto and K. Twata, Accelerated ray tra.éing, Proceed-
ings of Computer Graphics’85, Tokyo, 1985, T1-2, 1-26,

15. K. Fajimura and T.L. Kunii, A hierarchical space indexing
method, Proceedings of Computer Graphics’85, Tokyo, 1985,

“T1-4, 1-14.

16. 1. Gargantini, An effective way to represent quadtrees, Com-
munications of the ACM 25, 12(December 19532), 905-910.

17. I Gargantini, Linear octirees for fast processing of three
dimensional objects, Computer Graphics and Image Processing

20, 4{December 1982), 365-374.

18. L Gargantini, Translation, rotation, and superposition of
linear quadtrees, fniernational Journal of Man-Machine Studies
18, 3(March 1983), 253-263.

19. A.S. Glassner, Space subdivision for fast ray tracing, IFEE
Computer Graphics and Applications 4, 10{October 1984}, 15-22.

20. G.M. Hunter, Efficient computation and data structures for
graphics, Ph.D. dissertation, Department of Electrical Engineer-
ing and Computer Science, Princeton University, Princeton, NJ,
1978. .

21. GM. Hunter and K. Steiglitz, Operations on images using
quad trees, [EEE Transactions on Pattern Analysis and Machine
Intelligence 1, 2(April 1979), 145-153.

22. GM. Hunter and K. Steigiitz, Linear transformation of pic-
tures represented by quad trees, Computer Graphics and [mage
Processing 10, 3(July 1979), 289-296..

23. C.L. Jackins ard S.L. Tanirﬁoto, Oct-trees and. their use in
representing three-dimensional objects, Computer Graphics and
Image Processing 14, 3(November 198_0_), 249-270. :

24. -C.L. Jackins.and S.L. Tanimoto, Quad-trees; oct-trees, and
k-trees - a generalized approach to recursive decomposition of

‘Euclidean space, IEEE Transsctions on Pattern Analysis and

Machine Intelligence 5, 5(September 1983), 533-539,

25. F.W. Jansen, Data structures for ray tracing, in Date Struc-
tures for Raster Graphics, F.J. Peters, LR.A. Kessener; andy
M.L.P. van Lierop, Eds., Springer Verlag, Berlin, 1986.

26. S. Kambhampati and L.S. Davis, Multiresolution’ path plan-
ning for mobile robots, Computer Science TR-1507, University of
Maryland, College Park, MD, May 1985.

27. MR. Kaplan, Space-tracing: a constant time ray-tracer,
SIGGRAPH'85 Tutorial on the Uses of Spatial Coherence in
Ray-Tracing, San Francisco, ACM, July 1983.

28. E. Kawaguchi, T. Endo, and J. Matsunaga, Depth-first
expression viewed from digital picture processing, IEEE Transac-
tions on Pattern Anolysis and Machine Intelligence 5, 4(July

1983), 373-384.

28. - A. Kiinger, Patterns and Search Statistics, in Optimizing
Methods in Statistics, J.5. Rustagi, Ed., Academic Press, New
York, 1971, 303-337.

.30. P. Koistinen, M. Tamminen, and H. Samet, Viewing so[id.‘
models by bintree conversion, Proceedings of the EUROGRAFPH-
IC5°85 Conference, C.E. Vandoni, Ed., North-Holland, 1985,
147-157.

31, T. Kushner, A. Wy, and A. Rosenfeld, Image processing on
ZMOB, IEEE Transactions on Compuiers 31, 10(October 1982),
943-951.

32. . Meagher, Geomeiric modeling using octree encoding,

Computer Graphics and Image Processing 19, 2(June 1982), 129-
147. '

33. D. Meagher, The Solids-Engine: a processor for interactive
solid modeling, Proceedings of the NICOGRAPH '8} Conference,
Tokyo, November 1984.

34. R. Miller and Q.F. Stout, Pyramid computer algorithms for
determining geometric properties of images, Proceedings of the
Symposium on Computational Geometry, Baltimore, June 1985,
263-269.

35. L Navazo, Contribucib a les fecniques de modelat geometric
d’objectes poliedrics usant la codificacio amb arbres octals, Ph.D.
dissertation, Department de Metodes Informatics, Universitat
Politechnica de Barcelona, Barcelona, Spain, January 1986,

36. I Navazo, D. Ayala, and P. Brunet, A geometric modeller

‘based on the exact octree representation of polyhedra, Depart-

ment de Metodes Informatics, Universitat Politechnica de Bar-
celona, Barcelona, Spain, January 1986.

37. M.A. Oliver and N.E. Wiseman, Operations on quadtree-,
encoded images, Clomputer Journal £6, (February 1983}, 83-91.

38. F.J. Peters, An a[gori-t.hm for transformations of pictures

- represented by quadtrees, Compufer Vision, Graphics, and Image

Processing 82, 3(December 1985), 397-403.

:'39. JI. Posdamer, Octal-tree spatial sorting and its applica-

“tions, Computer Science Report WUCS-82-1, Washington Univer-

- -sity, 8t. Louis, MO, January 1982.

40. A.A.G. Requicha, Representations of rigid solids:. theory,

584

STRUCTURES HIERARCHIQUES DE DONNEES
HIERARCHICAL DATA STRUCTURES
Hanan Samet and Robert E. Webber

methods, and systems, ACM Computing Surveys 18, 4(December
1980}, 437-464.

41. D.R. Rogers, Procedural Elements for Computer Graphics,
McGraw-Hill Book Company, New York, NY, 1985,

42, H. Samet, Region representation: quadirees from boundary
codes, Communications of the ACM 28, 3(March 80), 163-170.

43. H. Samet, Region representation: quadtrees from binary
arrays, Computer Graphics and Image Processing 18, 1{May
1980), 88-93,

44. H. Samet, An algorithm for converting rasters to quadtrees,
IEEE Transaclions on Patfern Analysis and Mechine Intelligence
8, 1(January 1981), 93-95.

45. H. Samet, Connected component labeling using quadtrees,
Journal of the ACM 28, 3(July 81), 487-501.

46. H. Samet, Neighbor finding techniques for images
represented by quadtrees, Computer Graphics and Image Pro--
cessing 18, 1{January 1982), 37-57.

47. H. Samet and R.E. Webber, Or enceding boundaries with
quadtrees, Computer Science TR-1162, University of Maryland,
College Park, MD, February 1982.

48. H. Samet, The quadtree and related hierarchical data strue-
tures, ACM Compuling Surveys 16, 2(June 1984), 187-260.

49. H. Samet, A. Rosenfeld, C.A. Shaffer, and R.E. Webber, A
geographic information system using quadtrees, Pattern Recogni-
tion 17, 6 (November/December 1984}, 647-656.

50. H. Samet, A top-down quadtree traversal algorithm, IEEE
Transactions on Pattern Analysis and Machine Intelligence 7,
#{January 1985}, 94-98.

51. H. Samet and M. Tamminen, Efficient component labeling of
images of arbitrary dimension, Computer Secience TR-1480,
Untversity of Maryland, College Park, MD, February 1985.

52. H. Samet and R.E. Webber, Storing a collection of polygons
using quadtrees, ACM Transections on Graphics {, (July 1985)
(also Proceedings of Computer Vision and Pattern Recognition
88, Washington, DC, June 1983, 127-132).

53. H. Samet and M. Tamminen, Bintrees, C8G trees, and time,
Proceedings of the SIGGRAPH’85 Conference, San Francisco,
July 1985, 121-130.

54. H. Samet, Data structures for quadtree approximation and
compression, Communications of the ACM 28, 9(September
1985), 973-993.

55. H. Samet and C.A. Shafler, A model for the analysis of
neighbor finding in pointer-based quadtrees, IEEE Transactions
on Patiern Analysis and Machine Intelligence 7, 8(November
1985), 717-720.

56. H. Samet, Bibliography on quadtrees and related hierarchical
data structures, in Date Structures for Raster Graphics, F.J.,
Peters, LR.A. Kessener, and MIL.P. van Lierop, Eds., Springer
“Verlag, Berlin, 1986.

57. M. Shneier, Two hierarchical linear feature representations:
edge pyramids and edge quadtrees, Computer Graphics end
Image Processing 17, 3(November 1981), 211-224.

58. K.R. Sloan Ir. and S.L. Tanimoto, Progressive refinement of

raster images, IEEE Transactions
11(November 1979), 871-874.

on Computers £8,

59. LE. Sutherland, R.F. Sproull, and R.A. Schumacker, A char-
acterization of ten hidden-surface algorithms, ACM Computing
Surveys 6, I{March 1974), 1-55.

60. M. Tamminen and H. Samet, Efficient octree conversion by
connectivity labeling, Proceedings of the SIGGRAPH’84 Confer-
ence, Minneapolis, July 1984, 43-51.

61. M.L.P. van Lierop, Transformations on pictures represented

by lealcodes, Department of Mathematics and Computing Sci-
ence, Eindhoven University of Technology, Eindhoven, The
Netherlands, 1984.

62. J. Veenstra and N. Ahuja, Octree generation from silhouette
views of an object, Proceedings of the International Conference
on Roboties, St. Louis, March 1985, 843-848.

63. J.E. Warnock, A hidder line algorithm for halftone picture-
representation, University of Utah Computer Science Tech.
Report 4-5, May 1968.

64. R.E. Webber, Analysis of quﬁdtreé algorithms, Ph.D. disser-'
tation, Computer Science Department, University of Maryland,
College Park, MD, 1983 (see also Computer Science TR-1376}.

65. D.S. Whelan, A rectangular array filling display system
architecture, Proceedings of the SIGGRAFPH’82 Conference, Bos-
ton, July 1982, 147-153.

66. T. Whitted, An improved illumination model for shaded
display, Communications of the ACM 28, 6{June 1980), 343-349.

67. P. Willis and D. Milford, Browsing high definition colour pic-
tures, Computer Graphics Forum 4, (1985), 203-208.

68. JR. Woodwark and X.M. Quinlan, Reducing the effect of
complexity on volume model evaluation, Computer-aided Design
14, 2(1982), 89-95. .

69. G. Wyvill and T.L. Kunii, A functional model for construe-
tive solid geometry, The Visual Computer 1, 1{July 1985}, 3-14.

70. M. Yau, Generating quadtrees of cross-sections from octrees,
Compuler Vision, Graphics, and Image Processing 27, 2(August
1984), 211-238.

71. MA. Yerry and M.S. Shepard, A modified quadtree
approach to finite element mesh generation, IEEE Computer
Graphics and Applications 8, 1(January/February 1983), 39-46.

