[Some 0

QUADTREE REPRESENTATIONS
OF BINARY IMAGES

Hanan Samet
Azriel Rosenfeld

Computer Science Department
: Computer Science Center
University of Maryland, College Park, MD 20742

ABSTRACT

This paper is concerned with a method of repre-
senting arrays by trees of degree 4, which are con-
structed by recursively subdividing the array into
blocks of constant value. In particular, this
method can be applied to binary arrays representing
regions (1's are region points). Algorithms for
conversion between this and other region represen-
tations, and for measuring geometric properties of
regions represented in this way, are informally
described. -

1. Introduction

Region representation plays a key role in
image and scene analysis, computer cartography, and
computer graphics. There are a variety of ap-
proaches to representing regions, based on their
boundaries or their "skeletons"; some of these are
reviewed in the following paragraphs. Recently, a
tree representation has been proposed which offers
a number of advantages; it is also described below.

We assume in what follows that a region is an
arbitrary subset of a 20_py-2" array, which we re-
gard as being made up of unit-square "pixels". Any
boundary of such a region can thus be specified,
relative to a given starting point, as a sequence of
unit vectors in the principal directions. We can
represent the directions by numbers, e.g. let i
represent 90i® (i=0,1,2,3). TFor example, the direc-
tion sequence for the boundary in Figure la, moving
clockwise starting from the leftmost of the upper-
mast border points, is

2 .5 .3 3 5 .6

0303727123 032 1°01010301¢01.

This type of boundary representation is called a
chain code. Generalized chain codes, involving
more than four directions, can also be used. Chain
codes provide a very compact region representation,
and make it easy to detect features of the region
boundary, such as sharp turns ("corners') or con-
cavities. On the other hand, it is harder to de-
termine properties such as elongatedness from a
chain code, and it is also difficult to perform
operations such as union and intersection on re-~
gions represented by chain codes. A general intro-
duction to chain codes and their uses can be found
in [1].

Another class of region representations in-
volves various types of maximal "blocks' that are
contained in a given region. For example, we can
represent a region R as a linked list of the runs

CH1499-3/80/0000-0815500.75©1980 IEEE

815

(of pixels) in which R meets the successive rows of
the array [2]. Here each "block" is a l-by-m rec-—
tangle, where m is the run length; the runs are the
largest such blocks that R contains, and R is de-
termined by specifying the initial points (or cen-~
ters) and lengths of the runs. Alternatively, we
can represent R by the set of maximal square blocks
(or blocks of any other desired shape) that it con-
tains; here R is determined by specifying the cen~
ters and radii of these blocks. This representa-
tion is called the medial axis transformation, or
MAT {3]. It is somewhat less compact than chain
code [4], but it has advantages with respect to
performing union and intersection operations or
detecting properties such as elongatedness (in
terms of the smallness of the radii relative to the
number of centers).

There has been recent interest in an approach
to region representation based on successive sub-
division of the array into quadrants. If the re-
gion does not cover the entire array, we subdivide
the array, and repeat this process for each qua-
drant, each subquadrant,... as long as necessary,
until we obtain blocks {possible single pixels)
that are entirely contained in the region or en-
tirely disjoint from it. The resulting blocks for
the region of Figure la are shown in Figure 1b.
This process can be represented by a tree of degree
4 {(for brevity: a quadtree) in which the entire
array is the root node, the four sons of a node are
its quadrants, and the leaf nodes correspond to
those blocks for which no further subdivision is
necessary.*® The quadtree representation for Figure
1b is shown in Figure lc. Note that here again we
are representing the region as a union of maximal
blocks, but this time the blocks must have standard
sizes and positions (powers of 2). Since the array
was assumed to be 2D-by-29, the tree height is at
most n. This method of region representation was
proposed by Klinger {6-9]; it has also been studied
extensively by Hunter and Steiglitz [10,11]. It is
relatively compact, and is also well suited to
operations such as umion and intersection and to
detecting various region properties.

This paper informally describes a collection
of algorithms for converting between quadtree and

*The quadtree region representation described here
should not be confused with the quadtree represen-
tation of two-dimensional point data. introduced by
Finkel and Bentley [5]. ’

other representations, and for measuring geometric
properties of regions represented by quadtrees.
Detailed descriptions of the algerithms can be

found in a series of papers by Samet et al. [12-20].

2. Coanversion

2.1, AQuadtrees and arrays

In Section 1 we described a method of construc-
ting the gquadtree corresponding to a given region
by recursively subdividing the picture into blocks
which are quadrants, subquadrants,... We assume
that the region is represented by a binary array,
with region points having value 1 and non-region
points value 0. TIf a block consists entirely of
1's or 0's, it correspends to a "black" or "white'
ieaf node in the tree; otherwise, it corresponds
to a "gray" nonleaf node, which has four sons cor-
responding to its four quadrants. If we do this
in a "top-down" fashion, i.e., first examine the
entire picture, then its quadrants, then their
quadrants, etc. as needed, it may require exces-
sive computational effort, since parts of the pic-
ture that contain finely divided mixtures of 0's
and 1's will be examined repeatedly.

As an alternative, we can build the quadtree
"pottom up” by scanning the picture in a suitable

order, e.g. in the sequence
i 2 5 617 18 21 22
3 4 7 819 20 23 24
9 10 13 14 25 26 29 30
11 12 15 16 27 28 31 32
33...

where the numbers indicate the order in which the
points are examined. As we discover maximal blocks
of 0's or of 1's, we add leaf nodes to the tree,
together with their needed ancestor gray nodes.
This can be done in such a way that leaf nodes are
never created until they are known to be maximal,
so that it is never necessary to merge four leaves
of the same color and change their common parent
node from gray to black or white. For the details
of this algorithm see [17].

Bottom-up quadtree consStruction becomes some-
what more complicated if we want to scan the pic-
ture row by row. Here we add leaf nodes to the
tree as we discover maximal 1-by-1 or 2-by-2 blocks
of 0's or 1's; if four leaves with a common father
all have the same color, they are merged. The de-
tails can be found in [i6].

Given a quadtree, we can construct the corre-
sponding bimary picture by scanning the tree and,
for each leaf, creating a block of 0's or 1's of
the appropriate size in the appropriate positien.
A more complicated process can be used if we want
to create the picture row by row. Here we must
vigit each quadtree node once for each row that in-
tersects it (i.e., a node corresponding to a 2% by
2K block is visited ok times), and, for each leaf,
output a run of 0's or 1's of the appropriate
length (2k) in the appropriate position. For the
details, see [18]. ’

8lé

2.2. Quadtrees and borders

In order tc determine, for a given leaf node M
of a guadtree, whether the corresponding block is
on a border, we must visit the leaf nodes that
correspond to 4-adjacent blocks and check whether
they are black or white. To find the nodes corre-
sponding to, e.g., right-hand neighbor blocks, we
move upward from M in the tree until we reach some
ancestor node from its northwest or southwest son.
(If we reach the root node before this happens, M
is on the east edge of the picture and has no
right-hand neighbor blocks.) As soon as this cc~
curs, we go back down the tree making the mirror
images of the moves made on the way up--i.e., the
first move down is to the northeast or southeast
son, and the following moves are to northwest or
southwest sons. If a leaf node is reached by the

time we come to the end of this move sequence, its
block is at least as large as M's bleck, and is
M's sole right-hand neighbor. Otherwise, the non-

leaf node reached at the end of the sequence is
the root of a subtree whose leftmost leaf nodes
correspond to M's right-hand neighbors, and we can
find these nodes by traversing that subtree.

Let M,N be black and white leaf nodes whose
blocks are 4-adjacent. Thus the pair M,N defines
a common border segment of length 2% (the smaller
of the side lengths of M and N) which ends at a
corner of M or of N (or both). To determine the
next segment along this border, we must find the
other leaf P whose block touches the end of this

segment:
™
+ N

If the segment ends at a corner of both M and N,
we must find the other two leaves P,Q whose blocks

meet at that corner:
[;— N
P

X

This can be done by an ascending and descending
procedure similar to that described in the preced-
ing paragraph; see [12] for the details. The next
border segment is then the common border defined
by ¥ and P if P is white, or by N and P if P is
black. (In the common corner case, the pair of
blocks defining the next border segment is deter-
mined exactly as in the standard "crack following"
algorithm for traversing region borders.) This
process is repeated until we come to M,N again,

at which stage the entire border has been tra-
versed. The successive border segments constitute
a 4-direction chain code, broken up into pieces
whose lengths are powers of 2. The time required
for this process is on the order of the number of
border nodes times the tree height.

Using the methods described in the last two
paragraphs, we can traverse the quadtree, find all
borders, and generate their codes. We should mark
each border as we follow it, so that we will not
follow it again from another starting point; note
that the marking process is complicated by the

fact that a node's block may be on many different
borders.

To generate a quadtree from a set of 4-direc-
tion chain codes, we first traverse each code and
create pairs of leaf nodes having the given border
segments, together with the necessary non-leaf
nodes. We then generate leaf (and non-leaf) nodes
corresponding te the interior blocks. At any
stage, if four leaves with a common father all have
the same color, they are merged. The details of
this algorithm will not be given here; see [13].
The time required 1s on the order of the perimeter
(=total 4-direction chain code length) times tree
height.

2.3. Quadtrees of derived sets

set of 1's in a given binary array,
complement of S. The quadtree of
that of §, with black leaf nodes
and vice versa. To get the quad-
tree of SUT from those of S and T, we traverse the
two trees simultanecusly. Where they agree, the
new tree is the same. If S has a gray (=nonleaf)
node where T has a black node, the new tree gets a
black node; if T has a white node there, we copy
the subtree of S at that gray node into the new
tree; if S has a white node and T a black node, the
new tree gets a black node. The algorithm for SiT
is exactly analogous, with the roles of black and
white reversed. The time required for these algo-
rithms is proportional to the number of nodes in
the smaller of the two trees [20]; see also [10}.

Let S be the
and let S be the
§ is the same as
changed to white

3. Property measurement

3.1. Connected component labeling

Given a binary array represented by a quadtree,
we can label its components by traversing the tree
in a standard order, say NW, NE, SW, SE. Whenever
we come to a black leaf node, we visit the leaf
nodes whose blocks adjoin M's block on its south
and east sides (and at its southeast corner, if we
are labeling 8-components); see Secticn 2.2 on how
to find these nodes. If we find unlabeled black
leaf nodes, we give them the same label as M; if
we find black leaf nodes that already have labels,
we note that their labels are equivalent. When the
traversal is complete, we sort out the equivalences,
retraverse the tree, and give the black leaf nodes
their final labeis. The time required is on the
order of the number of nodes in the tree times the
tree height. For the details of this algorithm
see [15].

3.2. Component counting and genus computation

Once the connected components have been la-
beled, it is trivial to count them, since their
number is the same as the number of inequivalent
labels. We will next describe a method of deter-
mining the number of components minus the number of
holes by counting certain types of local patterns
in the array; this number g is known as the genus
or Euler number of the array.

Let V be the number of 1's, E the number of
11's and %'s, and F the number of %l‘s in the
.array; it is well known [21] that g=V-E+F.
This result can be generalized to the case where

817

-represents a 2" by 2I' block.

the array is represented by a quadtree [19]. 1In
fact, let V be the number of black leaf nodes; E
the number of pairs of such nodes whose blocks are
horizontally or vertically adjacent; &nd F the
number of triples or quadruples of such nodes whose
blocks meet at and surround a common point, e.g.

s
3

Then g=V-E+F. These adjacencies can be found (see
Section 2.2} by traversing the tree; the time re-
quired is on the order of the number of nodes in
the tree times the tree height,

3.3. Area and moments

The area of a regicn represented by a quadtree
can be obtained by summing the areas of the black
leaf nodes, i.e., counting 40 for each node that
Similarly, the first
x and y moments of the region relative to a given
origin can be computed by summing the first moments
of these blocks; note that we know the position
(and size) of each block from the coordinates of
its leaf in the tree. Knowing the area and the
first moments gives us the coordinates of the cen-
troid, and we can then compute central moments re—
lative to the centroid as origin. The time re-
quired for any of these computations is essentially
proportional to the number of nodes in the tree.
Further details on moment computation from quad-
trees can be found in [20]; see alse [10}.

3.4. Perimeter

The perimeter of a region represented by a
quadtree can be obtained by traversing all the
borders of the region (Section 2.2) and summing the
numbers of steps in the resulting codes. Alterna-
tively, it can be computed by traversing the tree,
and for each leaf node, checking the colors of the
nodes whose blocks are adjacent to its block on two
sides, say bottom and right, to determine which of
these adjacencies contributes to the total peri-
meter. The time required for this is proportional
to the number of nodes times the tree height; see
[t4] for the details.

4. Concluding remarks

Quadtrees constitute an interesting alterna-
tive to the standard methods of digitally repre-
senting regions. Their chief disadwantage is that
they are not shift—iovariant; -two regions differing
only by a translation may have quite different
quadtrees. Thus shape matching from quadtrees is.
not straightforward. 1In other respects, however,
they have many potential advantages. They provide
a compact and easily constructed representation
from which standaxrd region properties can be effi-
ciently computed. In effect, they are "variable-
resolution avrays' in which detdail is represented
only when it is available, without leading to ex-~
cessive storage requirements for parts where detail
is lacking. It is hoped that this paper will help
draw attention to the advantages of quadtrees as

data structures for possible use in digital carto-
graphic information systems.

1.

(]

10.

b.

References

H. Freeman, Computer processing of line-draw-
ing images, Computing Surveys 6, 1C74, 57-97:
D. Rutovitz, vata structures for operations on
digital images, in G. C. Cheng et al., eds.,
Pictorial Pattern Recognition, Thompson Book
Co., Washington, DC, 1968, 105-133.

H. Blum, A transformation for extracting new
deseriptors of shape, in W. Wathen-Dunn, ed.,
Models for the Perception of Speech and Visual
Form, M.I.T. Press, Cambridge, MA, 1967, 362-
380.

J. L. Pfalez and A. Rosenfeld, Computer repre-~
sentation of planar regions by their skeletons,
Comm. ACM 16, 1967, 119-122, 125.

K. A. Finkel and J. L. Bentley, Quadtrees: a
data structure for retrieval on composite keys,
Acta Informatica 4, 1974, 1-9.

A. Klinger, Data structures and pattern recog -
nition, Proc. ist Intl. Joint Conf. on Pattern
Recognition, 1973, 497-498.

A. Klinger and C. R. Dyer, Experiments in pic-
ture representaticn using regular decomposition,
Computer Graphics Image Processing 5, 1976, 68—
105.

N. Alexandridis and A. Klinger, Picture. decom-
position, tree data-structures, and identifying
directional symmetries as node combinations,
ibid. 8, 1978, 43-77.

A. Klinger and M. L. Rhodes, Organization and-
access of image data by areas, IEEE Transac-—

tions Pattern Analysis Machine Intelligence 1,

1979, 50-60.

G. M. Hunter and K. Steiglitz, Operations on
images using quad trees, IEEE Transactions
Pattern Analysis Machine Intelligence 1, 1979,
145-153.

1

% .

i~

Region.

=
N0
ot

e

3 +

iy chI}/TIﬁ/. ’ V
1 ME‘J}D%‘ /// " 0 x"
)
7l anes

w [¥] &z 31

Block decomposition of the

region in (a).

Figure 1.

11.

12.

13.

14

15.

156.

18.

20.

21.

23

L)
12131819141520216 7 9 102627 31322829 3334 35363839

¢. Quadtree representation of the blocks in (bh).

G. M. Hunter and K. Steiglitz, Linear transfor—
mations of pictures represented by quad trees,
Computer Science Image .Processing 10, 1979,
289-296.

C. R. Dyer, A. Rosenfeld, and H. Samet, Region
representation: boundary codes from quadtrees,
Comm. ACM 23, 1980, 171-179.

H. Samet, Region representation: quadtrees from
boundary codes, Comm. ACM 23, 1980, 163-170.

H. Samet, Computing perimeters of images repre-
sented by quadtrees, Computer Sci. Ctr. TR-755,
Univ. of Maryland, College Park, MD, April 1979.

H. Samét, Connected component labeling using
quadtrees, to appear in J. ACM.

H. Samet, An algorithm for converting rasters
to quadtrees, to appear in IEEE Transactions
Pattern Analysis Machine Intelligence.

H. Samet, Region representation: quadtrees from
binary arrays, Computer Graphics Image Proces-
sing 13, 1980, 88-93.

H. Samet, Region representation:
raster conversion, Computer Sci.
Univ. of Maryland, College Park,

quadtree-to-
Ctr. TR-768,
MD, June 1979.

€. R. Dyer, Computing the Euler number of an
image from its quadtree, to appear in Computer
Graphics Image Processing.

M. Shneier, Linear time calculations of geome-
tric properties using quadtrees, Computer Sci.
Ctr. TR-770, Univ. of Maryland, College Park,

~MDy May 1979.

A. Rosenfeld and A. C. Kak, Digital Picture
Processing, Academic Press, New York, 1976.

£
g y S o
)))}
O L L] () 00 » [)]
5 16 17 24 254041 30 42 43
0O Qo0 O @ O &
3 4 8 37
(3 O O 0 s npelsls 13

A region, its maximal blocks, and the corresponding quadtree.

Blocks in the region are shaded, background blocks are blank.

INTERNATIONAL
CONFERENCE

ON

EEDINGS

PROC

@,

SN

i
RS

€-66¥LHD08 "ON DOTVLVY) 3331

